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Subclinical myocardial inflammation and diffuse
fibrosis are common in systemic sclerosis – a
clinical study using myocardial T1-mapping and
extracellular volume quantification
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Abstract

Background: Systemic sclerosis (SSc) is characterised by multi-organ tissue fibrosis including the myocardium.

Diffuse myocardial fibrosis can be detected non-invasively by T1 and extracellular volume (ECV) quantification, while

focal myocardial inflammation and fibrosis may be detected by T2-weighted and late gadolinium enhancement

(LGE), respectively, using cardiovascular magnetic resonance (CMR). We hypothesised that multiparametric CMR can

detect subclinical myocardial involvement in patients with SSc.

Methods: 19 SSc patients (18 female, mean age 55 ± 10 years) and 20 controls (19 female, mean age 56 ± 8 years)

without overt cardiovascular disease underwent CMR at 1.5T, including cine, tagging, T1-mapping, T2-weighted,

LGE imaging and ECV quantification.

Results: Focal fibrosis on LGE was found in 10 SSc patients (53%) but none of controls. SSc patients also had areas

of myocardial oedema on T2-weighted imaging (median 13 vs. 0% in controls). SSc patients had significantly higher

native myocardial T1 values (1007 ± 29 vs. 958 ± 20 ms, p < 0.001), larger areas of myocardial involvement by native

T1 >990 ms (median 52 vs. 3% in controls) and expansion of ECV (35.4 ± 4.8 vs. 27.6 ± 2.5%, p < 0.001), likely

representing a combination of low-grade inflammation and diffuse myocardial fibrosis. Regardless of any regional

fibrosis, native T1 and ECV were significantly elevated in SSc and correlated with disease activity and severity.

Although biventricular size and global function were preserved, there was impairment in the peak systolic

circumferential strain (-16.8 ± 1.6 vs. -18.6 ± 1.0, p < 0.001) and peak diastolic strain rate (83 ± 26 vs. 114 ± 16 s-1,

p < 0.001) in SSc, which inversely correlated with diffuse myocardial fibrosis indices.

Conclusions: Cardiac involvement is common in SSc even in the absence of cardiac symptoms, and includes

chronic myocardial inflammation as well as focal and diffuse myocardial fibrosis. Myocardial abnormalities detected

on CMR were associated with impaired strain parameters, as well as disease activity and severity in SSc patients.

CMR may be useful in future in the study of treatments aimed at preventing or reducing adverse myocardial

processes in SSc.
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Background
Systemic sclerosis (SSc) is an autoimmune connective

tissue disorder characterised by vascular dysfunction and

multi-organ fibrosis. The heart is one of the major

organs commonly involved in SSc, with an estimated

clinical prevalence of 15-35% [1]. Cardiovascular disease

(CVD) in SSc may be direct (cardiac fibrosis, myocardi-

tis, dilated cardiomyopathy, cardiac failure, premature

coronary artery disease, conduction system abnorma-

lities, valvular disease and pericardial disease) or indirect

(pulmonary hypertension and renal crisis) [2,3]. In the

majority of SSc patients, however, CVD often remains

subclinical [4]. SSc patients with apparent cardiovascular

clinical features are at greater risk of deterioration and

premature cardiovascular death [5]. Therefore, early

detection and monitoring of myocardial and vascular

involvement is a crucial aspect of management [6].

Diffuse myocardial fibrosis is the pathological hallmark

of cardiovascular involvement in SSc, reported in up to

80% of cases in autopsy studies [7], and is thought to rep-

resent the final common expression of ‘contraction band

necrosis’, recurrent episodes of ischaemia-reperfusion in-

jury, microvascular dysfunction and chronic myocardial

inflammation [4,8,9]. However, myocardial inflammation

and diffuse fibrosis are difficult to detect clinically, and

endomyocardial biopsy is limited by sampling error, low

diagnostic sensitivity and its invasive nature [10].

Cardiovascular magnetic resonance (CMR) can non-

invasively detect myocardial inflammation and fibrosis.

T2-weighted imaging can identify areas of myocardial

oedema, and late gadolinium enhancement (LGE) im-

aging can identify areas of focal fibrosis in patients with

SSc [11,12]. However, conventional T2-weighted imaging

only has modest sensitivity in detecting myocardial

oedema [13,14], especially in mild cases, and LGE is sub-

optimal as a technique to detect diffuse myocardial fi-

brosis [15,16]. Recently, T1 mapping and extracellular

volume (ECV) quantification have emerged as novel

methods that can overcome both of these limitations

and are promising to detect subtle forms of myocardial

inflammation and diffuse myocardial fibrosis. T1 map-

ping is highly sensitive to myocardial water and is superior

to T2-weighted imaging in detecting myocardial oedema

[14,17]. T1 mapping and ECV measurements can also act

as surrogates for diffuse fibrosis [18,19] on the premise of

detecting myocardial water in the expanded interstitial

space, and have been shown to correlate well with histo-

logical indices of myocardial fibrosis in various clinical

contexts [20,21].

We therefore hypothesised that T1 and ECV quantifi-

cation would reveal subclinical myocardial involvement

in asymptomatic SSc patients with no known cardiovas-

cular involvement when compared to controls of similar

age and sex. We also sought to investigate the relationship

between myocardial findings on CMR and indices of SSc

activity, severity and chronicity, and early signs of myocar-

dial dysfunction.

Methods
Study population

This was a prospective study enrolling unselected pa-

tients with SSc (n = 19), without any known CVD. Pa-

tients were recruited from 5 hospitals in the Thames

Valley, United Kingdom (John Radcliffe Hospital, Oxford;

Nuffield Orthopaedic Centre, Oxford; Great Western

Hospital, Swindon; Royal Berkshire Hospital, Reading; and

Stoke Mandeville Hospital, Aylesbury) between January

2011 and December 2012. The SSc patients were between

the ages of 18 and 65 years, and were diagnosed with SSc

using the 1980 American College of Rheumatology cri-

teria [22]. Exclusion criteria included inability to tol-

erate CMR, contraindications to CMR, non-sinus rhythm,

known heart disease (previous myocardial infarction, pre-

vious myocarditis, heart failure, arrhythmia on 12-lead

ECG and medical history or other chronic cardiac condi-

tion), renal impairment (estimated glomerular filtration

rate below 30 mL/min), impaired liver function (alanine

aminotransferase greater than twice the upper limit of

normal), a female who was pregnant, lactating or planning

a pregnancy, and known hypersensitivity to gadolinium.

Age- and sex-matched healthy individuals (n = 20) with

no cardiac history, not on cardiovascular medications

(except 3 on hormone replacement therapy) and with

a normal ECG were used for comparison. All subjects

gave written informed consent to participate in the

study. Ethical approval was granted for all study pro-

cedures by the Oxford Research Ethics Committee (REC

Ref 10/H0606/32).

CMR

CMR studies were performed using a single 1.5 T MR

system (Avanto, Siemens Healthcare, Germany). A 32-

channel phased-array chest coil was used for all data ac-

quisition, except for STIR imaging, for which the body

coil was used. A complete stack of short axis images

were obtained during breath hold and cardiac gating for

cine, precontrast (native) T1 mapping, T2-weighted and

LGE imaging. T1 mapping was performed using the

ShMOLLI (Shortened Modified Look-Locker Inversion

Recovery) sequence [19], and T2 weighted-CMR was

performed with the black blood short-Tau inversion re-

covery (STIR) sequence as previously published [23].

Tagged cine CMR was acquired with an ECG-triggered

segmented k-space gradient echo sequence with spatial

modulation of magnetisation (SPAMM) in orthogonal

planes [24]. Three short axis (basal, mid-ventricular and

apical) scans and a single long axis (horizontal) scan

were obtained for tagging. T2-weighted and cine tagged
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images were acquired before administration of contrast

agent. LGE imaging was performed as previously de-

scribed [25], using a T1-weighted phase-sensitive inver-

sion recovery sequence about 8 minutes after intravenous

administration of contrast agent (Gadoterate meglumine–

Gd-DOTA, Dotarem, Guerbet LLC, France; 0.15 mmol/kg

body weight). A single mid-ventricular short axis slice was

acquired for postcontrast T1 maps at 1, 2, 3, 4, 8, 15

and 20 minutes after the administration of contrast

(Gd-DOTA). Typical imaging parameters for the se-

quences used were as previously published [14].

CMR image analysis

All CMR images and maps were analysed offline in a

blinded fashion.

Cine images

Analysis of left ventricular ejection fraction was per-

formed using Argus software (Version VB17, 2011, Sie-

mens Medical Solutions). Left ventricular (LV) short axis

epicardial and endocardial borders were manually con-

toured at end-diastole and end-systole. LV end systolic

(LVESV) and end diastolic (LVEDV) volumes were used

to calculate stroke volume (SV) and ejection fraction

(EF) – (EF = SV/EDV). Myocardial mass was also calcu-

lated by subtracting the endocardial volume from the

epicardial volume, based on prior knowledge of myo-

cardial specific gravity (1.05 g/cm3). Left atrial diameter

was measured in the LV outflow tract (3-chamber) view.

Tagged cine images

Post-processing and semi-automated analysis was per-

formed using CIM software (CIMTag2D, Auckland, New

Zealand) by aligning a grid to the myocardial tagging

planes in end-diastole. End-systole was determined visually,

and tags are adjusted at each frame through the cardiac

cycle. From the mid-short axis slice, peak circumferential

systolic strain and peak diastolic strain rate were derived.

STIR images

Quantitative analysis was performed by comparing the LV

myocardium in short axis against adjacent skeletal muscle

in the same slice, verified on a corresponding SSFP image.

The T2 signal intensity (SI) ratio was calculated as T2

SImyocardium:skeletal = SImyocardium/SIskeletal muscle, as previ-

ously published [23]. Myocardial oedema was diagnosed

when myocardial T2 SI ratio is > 1.9. Care was taken to

exclude non-suppressed blood pool signal due to slow-

flow adjacent to the subendocardium and to avoid using

areas with abnormally low signal for normalisation.

LGE images

Images were evaluated qualitatively for the presence or

absence, pattern (subendocardial, midwall, subepicardial,

transmural) and regional distribution of LGE areas by

three observers, each with at least 4 years of CMR ex-

perience. The detection of LGE was made by consensus

of all 3 observers. In addition, endocardial and epicardial

regions of interest (ROI) were manually contoured in the

LGE images, together with a reference ROI in the anterior

LV wall without visual LGE, and focal areas of LGE were

defined quantitatively as those with SI ≥ 2.0 standard devi-

ations above the mean SI of normal myocardium.

T1-maps

Analysis of T1 mapping was performed as previously de-

scribed [19]. Briefly, after T1maps were generated, short

axis images were manually contoured using in-house

software MC-ROI (programmed by SKP in Interactive

Data Language, version 6.1, Exelis Visual Information

Solutions, Boulder, Colorado, USA) to outline the endo-

and epicardium, and then divided into 6 segments per

slice using the anterior right ventricular RV-LV insertion

point as reference and for comparing segments amongst

sequences [14].

Consistent with established methods of estimating myo-

cardial ECV using a delayed postcontrast bolus protocol

[26], we measured precontrast and postcontrast myocar-

dial and blood T1 values. The estimation of ECV and

lambda (λ) was based on multipoint regression [27], in-

corporating all available precontrast and postcontrast

points, in order to increase the robustness of the estimates

by increasing number of underlying data points. ECV was

calculated as (1 – haematocrit). We have not observed

any consistent deviations from the linear regression line in

our data (median R = 0.99, interquartile range = 0.99 to

1.00) to support effects of transcytolemmal exchange, in-

dicating that fast exchange effects only contribute less that

0.1% effect on ECV [28]. We also checked that the esti-

mates obtained from the latest postcontrast time (~20 mi-

nutes) did not yield any significant difference both across

all (P > 0.9) and in the most affected subgroup (P = 0.8) to

exclude any potential effects of sub-equilibrium gadoli-

nium redistribution. For calculation of postcontrast T1

values, the postcontrast T1 map acquired at 20 minutes

was utilised.

Areas of myocardial involvement by STIR and precontrast

T1 mapping

Briefly, on dark-blood T2W images, oedema was diag-

nosed when myocardial T2 SI is ≥ 1.9 compared to that

of skeletal muscle [13]; on T1 maps, acute myocardial in-

jury was diagnosed when T1 was > 990 ms, as previously

published for the objective detection of acute myocardial

oedema [17]. For all quantitative analyses of T2-weighted

and T1 map images, only regions of myocardium with a

contiguous area of ≥40 mm2 above the specified thresh-

olds were considered relevant. This corresponds to 10

Ntusi et al. Journal of Cardiovascular Magnetic Resonance 2014, 16:21 Page 3 of 12

http://jcmr-online.com/content/16/1/21



adjacent pixels for the STIR method, in accordance with

currently proposed recommendations [13], to reduce the

detection of noise as positive findings. To calculate the ex-

tent of myocardial involvement in a subject detected by

the tissue characterisation techniques, the percentage of

abnormal myocardium as defined above was determined

for each segment and then averaged for that subject.

Echocardiography

Two-dimensional, M-mode and Doppler echocardio-

grams were acquired using a Toshiba Artida 4D system

(Toshiba Medical Systems Corporation, Tokyo, Japan).

Images were acquired with the patients in the left lateral

decubitus position. Primary measurements of mitral in-

flow included the peak early filling (E-wave) and late dia-

stolic filling (A-wave) velocities, the E/A ratio, deceleration

time (DT) of early filling velocity, which were derived by

placing the cursor of the pulsed wave Doppler in the LV,

above the tips of the mitral valve, to display the onset of

mitral inflow, using a 5 MHz transducer. The passive LV

filling (E’-wave) was measured from the pulsed wave tissue

Doppler of the mitral septal annular velocity. Right ven-

tricular systolic pressure was based on measurement of

maximal tricuspid regurgitation velocity and applying the

modified Bernoulli equation before addition of the esti-

mated right atrial pressure (5 mmHg).

SSc disease activity and severity

Disease activity was assessed using the Valentini disease

activity index (VDAI) of the European Scleroderma

Study Group criteria for disease activity in SSc [29], which

incorporates skin changes, digital necrosis, lung function

tests, ESR and serum complement.

SSc patients were classified as having either diffuse

(n = 10) or limited cutaneous SSc (n = 9). The sever-

ity of skin fibrosis was quantified using the modified

Rodnan skin score (mRSS) [30], a measure of SSc disease

severity and activity based on skin thickness at 17 anato-

mical sites.

Statistical analysis

Normality of data was tested using the Kolmogorov-

Smirnov test. Normally distributed data are presented as

mean ± standard deviation (SD) or, where highly skewed,

as median (interquartile range); non-parametric data are

presented as numbers (percentages). The chi-square test

or Fischer’s exact test was used to compare dichotomous

data. The unpaired Student t-test (when normally distri-

buted) or Mann-Whitney U test (for non-parametric data)

was used to compare continuous variables between SSc pa-

tients and controls, as appropriate. Post-hoc Bonferroni

correction was used to explore whether there were differ-

ences between the SSc patients and controls. Any segmen-

tal data were averaged on a per-subject basis before group

comparisons to control for clustering of segments within

each subject. Bivariate correlations were assessed using

the Pearson R or Spearman RS coefficient, as appropriate.

All statistical tests were two-tailed and a p-value of less

than 0.05 was considered statistically significant. All ana-

lysis was performed using SPSS version 20 (IBM, Armonk,

New York, USA).

Results
Baseline characteristics of the patient population

The SSc patients were well-matched with controls for

age, sex and comorbidities and only a small minority of

patients were on regular disease modifying anti-rheumatic

drugs (Table 1). Most patients had been diagnosed with

SSc for more than a decade (median disease duration

14 years, IQR 5-19). In SSc patients, the VDAI and the

mRSS were 4 ± 2 and 20 ± 6, respectively, indicating the

presence of active disease and organ involvement in the

group overall.

Myocardial structure and function

There was no significant difference in LV size, mass and

ejection fraction between SSc patients and controls

(Table 2). Despite normal global LV systolic function on

cine imaging, peak systolic circumferential strain by

tagged CMR was impaired in SSc patients compared to

controls (-16.8 ± 1.6 vs. -18.6 ± 1.0, p < 0.001), indicating

an abnormality in regional function and myocardial de-

formation characteristics. The left atrial (LA) diameter was

larger in SSc patients (37 ± 6 vs. 28 ± 5 mm, p < 0.001),

likely due to diastolic dysfunction, as demonstrated by the

reduced peak diastolic strain rate in SSc patients (83 ± 26

vs. 114 ± 16 s-1, p < 0.001) compared to controls. Evidence

of impaired diastolic function was also confirmed on echo-

cardiographic assessment, which showed abnormal rela-

xation indices in SSc patients (E/A: 1.8 ± 0.5 vs. 1.4 ± 0.2,

p = 0.039; and E/E’: 11 ± 4 vs. 7 ± 1, p = 0.006).

We found no difference in RV size and global systolic

function between SSc patients and controls. While right

ventricular systolic pressures were higher in the SSc

patients (24 ± 5 vs. 16 ± 4 mmHg, p < 0.001), they were

within normal limits for all study subjects, excluding

the presence of significant pulmonary hypertension in

this cohort.

Patchy fibrosis (LGE imaging)

Confirming previously published data, we found in-

creased incidence of LGE in SSc patients compared to

matched controls (53% vs. 0%), as shown in Table 2. All

had a non-ischemic pattern of fibrosis, with about a third

of SSc patients demonstrating patchy mid-wall LGE in the

basal inferolateral wall; and 21% in the septum (Figure 1).

No patient had any previous myocardial infarction

(isolated LGE involving the subendocardium). Overall,
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SSc patients had a small volume of scarring by LGE

(3.8 ± 0.4% of total LV mass).

Myocardial oedema (T2-weighted CMR)

On conventional dark-blood T2-weighted imaging, while

there was no significant difference in the overall global

myocardial T2 SI ratio in SSc patients compared to

controls (1.7 ± 0.4 vs. 1.6 ± 0.5, p = 0.66), SSc patients

had significantly more areas of focal myocardial oedema

within the left ventricle (median 13% vs. 0% in controls;

p < 0.001).

T1 mapping and extracellular volume (ECV) quantification

Native T1 mapping was performed in all SSc patients;

and postcontrast T1 mapping was done in 14 of the 19

SSC patients, as 5 patients were not consented for gado-

linium. SSc patients had significantly higher average myo-

cardial T1 values (1007 ± 29 vs. 958 ± 20 ms, p < 0.001)

and larger areas of myocardial involvement detected

by native T1 mapping (median 52% vs. 3% in controls,

p < 0.001). SSc patients also had significantly higher λ

(0.56 ± 0.23 vs. 0.44 ± 0.15, p = 0.02) and expanded ECV

(35.4 ± 4.8 vs. 27.6 ± 2.5%, p < 0.001; Figure 2).

Postcontrast T1 and λ values were found to be less

good as measures of diffuse myocardial fibrosis. There

was no difference in postcontrast T1 values between SSc

Table 1 Baseline characteristics of the study population

Controls SSc P
value

N = 20 N = 19

Demographic and clinical features and co-morbidity

Female sex, n (%) 19 (95) 18 (95) 0.74

Age, years 56 ± 8 55 ± 10 0.64

Current smokers, n (%) 0 (0) 2 (11) -

Hypertension, n (%) 2 (10) 4 (21) 0.41

Diabetes, n (%) 0 (0) 0 (0) –

Hyperlipidaemia, n (%) 4 (20) 3 (16) 0.73

Obesity, n (%) 2 (10) 4 (21) 0.34

BMI, kg/m2 25 ± 4 27 ± 7 0.23

Medical therapy

Methotrexate, n (%) None 5 (26) –

Prednisolone, n (%) None 2 (11) –

Azathioprine, n (%) None 1 (5) –

Chloroquine, n (%) None 1 (5) –

Leflunomide, n (%) None 1 (5) –

Sulfasalazine, n (%) None 0 (0) –

HRT, n (%) 3 (15) 4 (21) 0.62

NSAID, n (%) None 3 (16) –

Duration of DMARDs, years (median, IQR) N/A 2 (1-8) –

Duration of NSAIDs, years (median, IQR) N/A 1 (1-4) –

Disease activity and chronicity indices

SSc VDAI N/A 4 ± 2 –

ESR, mm/hr (median, IQR) N/A 11 (3-18) –

CRP, mg/L (median, IQR) 3 (1-4) 5 (2-8) 0.01

Hemoglobin (g/L) 13 ± 1 12 ± 1 0.05

Haematocrit (%) 41 ± 11 34 ± 9 0.001

Creatinine (μmol/L) N/A 67 ± 10 –

Duration of SSc, years (median, IRQ) N/A 14 (5-19) –

mRSS N/A 20 ± 6 –

Limited/diffuse cutaneous SSc, n (%) N/A 10/9 –

Anti-centromere antibodies, n (%) N/A 8 (42) –

Anti-topoisomerase 1 antibodies, n (%) N/A 5 (26) –

Continuous data are mean ± SD unless otherwise indicated.

AID, Autoimmune disease; BMI, Body mass index; CAD, Coronary artery disease;

CRP, C-reactive protein; DMARD, Disease modifying anti-rheumatic drug; ESR,

Erythrocyte sedimentation rate; HRT, Hormone replacement therapy; mRSS,

Modified Rodnan skin score; NSAID, Non-steroidal anti-inflammatory drug; SSc,

Systemic sclerosis; VDAI, Valentini disease activity index of the European

Scleroderma Study Group.

Table 2 CMR findings

Controls SSc P
value

N = 20 N = 19

LVEDV indexed, mL/m2 77 ± 16 69 ± 11 0.08

LVESV indexed, mL/m2 21 ± 5 18 ± 5 0.06

LVEF, % 73 ± 5 74 ± 6 0.52

LV Mass indexed, g/m2 52 ± 11 51 ± 8 0.74

LA size, mm 28 ± 5 37 ± 6 <0.001

RVEDV indexed, mL/m2 85 ± 19 77 ± 12 0.32

RVESV indexed, mL/m2 28 ± 7 25 ± 7 0.06

RVEF, % 67 ± 4 67 ± 6 0.14

Mid SA circumferential strain -18.6 ± 1.0 -16.8 ± 1.6 <0.001

Peak diastolic circumferential
strain rate (s-1)

114 ± 16 83 ± 26 <0.001

Presence of LGE (%) 0 10 (53) –

Volume fraction of LGE > 2SD (%) 0 4 (2-5) –

Global myocardial T2 SI Ratio 1.6 ± 0.5 1.7 ± 0.4 0.66

Volume fraction of oedema by T2 (%) 0 13 (0-21) –

Average myocardial T1, ms 958 ± 20 1007 ± 29 <0.001

Volume fraction of T1 > 990 ms (%) 3 (1-9) 52 (40-70) <0.001

Postcontrast T1, ms 454 ± 29 457 ± 50 0.9

λ 0.44 ± 0.15 0.56 ± 0.23 0.02

ECV (%) 27.6 ± 2.5 35.4 ± 4.8 <0.001

Continuous data are mean ± SD unless otherwise indicated.

LA, Left atrium; LGE, Late gadolinium enhancement; LV, Left ventricle/

ventricular; LVEDV, Left ventricular end-diastolic volume; LVEF, Left ventricular

ejection fraction; LVESV, Left ventricular end-systolic volume; RVEDV; Right

ventricular end-diastolic volume; RVEF, Right ventricular ejection fraction;

RVESD, Right ventricular end-systolic volume; SA, Short axis; SSc, Systemic

sclerosis; STIR, Short Tau inversion recovery.

For postcontrast T1, λ and ECV, the number of SSc patients included in the

analysis is 14 rather than 19.
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patients and controls (T1 at 20 min post gadolinium:

457 ± 50 vs. 454 ± 29 ms, p = 0.9). Also, there was no dif-

ference in postcontrast T1 values between controls and

SSc patients with LGE, despite the significant differences

in native T1 and ECV. Importantly, between SSc patients

without LGE and SSc patients with LGE, there was no

difference in native T1, postcontrast T1, λ, and ECV, in-

dicating that the increase in ECV was not driven by the

presence of LGE (Table 3).

When SSc patients were stratified according to limited

cutaneous or diffuse SSc, only native T1 mapping and ECV

quantification were able to further differentiate the two

subgroups according to myocardial involvement (Table 4):

patients with diffuse SSc had higher native T1 values

(1011 ± 24 vs. 1002 ± 32 ms, p = 0.01), larger areas of

myocardial involvement by native T1 mapping (median

63% vs. 45%, p < 0.001) and larger ECV (37 ± 4 vs. 33 ± 5%,

p = 0.002), supporting previous reports of greater extent of

diffuse fibrosis affecting multiple organs in SSc patients

with diffuse cutaneous involvement [7]. However, such a

small difference in native T1 and ECV values may not per-

mit diagnosis in individual patients. Other CMR tissue

characteristics showed no significant difference between

the two groups.

Figure 1 Representative examples of pre- and postcontrast T1 maps with corresponding LGE images in SSc and controls. Top panel

(A): normal control with no LGE, native T1 947 ms, postcontrast T1 514 ms, ECV 26.7%; Second panel (B): SSc patient with linear septal and

patchy basal inferolateral LGE, native T1 1001 ms; postcontrast T1 453 ms; ECV 33.7%; Third panel (C): SSc patient with small areas of mid-wall

inferior and lateral LGE, native T1 988 ms, postcontrast T1 439 ms, ECV 36.1%; Fourth panel (D): SSc patient with no LGE, native T1 1017 ms,

postcontrast T1 421 ms, ECV 39.4%. LGE, late gadolinium enhancement. Note the scale change between precontrast and postcontrast T1 maps.
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Correlation of myocardial T1 and ECV to LV function

and SSc disease severity

There was significant, moderate correlation of myo-

cardial involvement detected by T1 and ECV to indices of

SSc disease activity and severity: ECV and mRSS (R 0.60,

p = 0.03), ECV and SSc VDAI (RS 0.60, p = 0.04); native

T1 and mRSS (R 0.55, p = 0.02), native T1 and SSc VDAI

(RS 0.55, p = 0.05), native T1 and serum CRP (RS

0.41, p = 0.01) as shown in Figure 3.

The extent of myocardial oedema on T2-weighted

imaging showed significant moderate correlation with

peak systolic strain (RS 0.49, p = 0.001) and diastolic

strain rate (RS -0.46, p = 0.003). Both native T1 and

ECV correlated inversely with peak circumferential sys-

tolic strain (R 0.43, p = 0.006) and diastolic strain rate

(R -0.46, p = 0.003; (Figure 3), suggesting that subclinical

myocardial inflammation and/or diffuse myocardial fibrosis

are associated with deformational abnormalities and early

signs of myocardial dysfunction.

Discussion
Our data demonstrated that subclinical myocardial

changes are common in patients with SSc even with ap-

parently normal hearts, which can be detected using

multiparametric CMR. In addition to focal areas of fibrosis

(as detected by LGE), there were also areas of focal myocar-

dial oedema or inflammation (as detected by T2-weighted

imaging). Further, using more sensitive techniques such as

native T1 mapping and ECV quantification, we were able

Figure 2 Myocardial T1 and extracellular volume (ECV)

quantification in SSc patients and normal controls. ECV,

extracellular volume, SSc, systemic sclerosis. A, Median T1 area

>990 ms in SSc and controls (horizontal line indicates median, box

indicates 25th and 75th centiles); B, Mean ECV values in SSc and

controls (error bars indicate 95% confidence interval).

Table 3 Measures of subclinical myocardial involvement

by T1 mapping and ECV in SSc patients with and without

LGE

SSc without
LGE

SSc with
LGE

P
value

N = 9 N = 10

Volume fraction of LGE > 2SD (%) 0 6 (3-9) –

Precontrast T1 (ms) 1007 ± 36 1006 ± 17 0.99

Volume fraction of T1 > 990 ms (%) 55 (48-78) 51 (39-73) 0.78

Postcontrast T1 (ms)* 470 ± 69 443 ± 12 0.57

λ 0.52 ± 0.21 0.62 ± 0.23 0.13

ECV (%) 34 ± 4 37 ± 5 0.18

STIR T2 Ratio 1.7 ± 0.4 1.6 ± 0.3 0.65

Volume fraction of oedema
(T2 STIR SI >1.9, %)

21 (9-23) 14 (6-17) 0.55

Data are mean ± SD unless otherwise indicated.

*At 20 minutes post gadolinium administration.

λ, Myocardial partition coefficient (Lambda); ECV, Extracellular myocardial

volume; LGE, Late gadolinium enhancement; STIR, Short Tau

inversion recovery.

For postcontrast T1, λ and ECV, the number of SSc patients included in the

analysis is 14 rather than 19.

Table 4 Tissue characterisation in diffuse SSc vs. limited

cutaneous SSc

Diffuse SSc Limited SSc P
value

(n = 10) (n = 9)

Volume fraction of LGE > 2SD (%) 4 (1-6) 4 (2-5) 0.981

Volume fraction of oedema
(T2 STIR SI >1.9, %)

12 (2-17) 14 (0-21) 0.939

Volume fraction of T1 > 990 ms (%) 63 (47-78) 45 925-68) <0.001

Precontrast T1 (ms) 1011 ± 24 1002 ± 32 0.010

Postcontrast T1 (ms)* 440 ± 44 466 ± 53 0.367

λ 0.63 ± 0.19 0.49 ± 0.22 0.032

ECV (%) 37 ± 4 33 ± 5 0.002

Data are mean ± SD unless otherwise indicated.

*At 20 minutes post gadolinium administration.

λ, Myocardial partition coefficient (Lambda); ECV, Extracellular myocardial

volume; LGE, Late gadolinium enhancement; STIR, Short Tau

inversion recovery.

For postcontrast T1, λ and ECV, the number of SSc patients included in the

analysis is 14 rather than 19.
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to demonstrate even more areas of myocardial involve-

ment in SSc patients than conventional CMR techniques

can reveal, with SSc patients showing significantly larger

areas of T1 abnormality and expanded ECV, which likely

represent a combination of low grade inflammation and

diffuse myocardial fibrosis that are well-described disease

processes in this cohort. Interestingly, T1-mapping and

ECV quantification were sensitive enough to further stra-

tify myocardial involvement in patients with diffuse SSc

compared to patients with limited cutaneous SSc, with the

former showing significantly larger areas of myocardial T1

abnormality and ECV expansion. Finally, T1 and ECV

measures were associated with subtle myocardial systolic

and diastolic dysfunction. The results of this study suggest

that CMR, particularly T1 and ECV quantification, can be

used for early detection of subclinical myocardial involve-

ment in SSc patients, potentially serving as an early

screening tool before overt LV dysfunction or irreversible

myocardial damage occurs.

In historic autopsy studies, diffuse myocardial fibrosis

has been reported as the pathological hallmark of cardio-

vascular involvement in SSc [7,8]. Chronic myocardial in-

flammation together with recurrent ischaemia-reperfusion

injury and microvascular dysfunction are thought to play

a crucial pathophysiological role in the development of

diffuse myocardial fibrosis in SSc [4,8,9] and ultimately

lead to premature cardiovascular mortality, particularly in

those SSc patients with obvious clinical features of heart

disease [5].

Myocardial fibrosis is characterised by excessive de-

position of extracellular matrix proteins, rich in collagen

[31], which ultimately affects myocardial structure and

function, and is associated with impaired systolic and dia-

stolic function, cardiac chamber dilation and arrhythmias

Figure 3 Correlation of myocardial T1 and ECV to peak circumferential systolic strain and peak diastolic circumferential strain rate.

ECV, extracellular volume. Red dot indicates systemic sclerosis. Blue dot indicates control.
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[32,33]. LGE CMR has been traditionally used to image

regional fibrosis/scarring in the myocardium, based on the

distribution difference of gadolinium in between healthy

and diseased myocardium [15]. The LGE technique has

significant limitations in the assessment of diffuse myocar-

dial fibrosis, where the entire myocardium may be affected

more homogeneously, as occurs with SSc, where there

may be little unaffected myocardium.

Native (precontrast) T1 and ECV mapping are novel

CMR markers that provide a quantitative measure of tis-

sue characterisation without relying on relative signal

comparisons [15]. T1 maps are quantitative, pixel-wise

representations of the T1 relaxation time of the under-

lying myocardial tissue [16]. Increase in native T1 values

is non-specific and can be seen in acute myocardial

oedema, infarction, myocarditis, amyloidosis and diffuse

fibrosis [14,17,34,35]. Postcontrast T1 is dependent on

renal function, body fat distribution, dose of contrast

used, the time delay in measurement after contrast ad-

ministration, but calculating the ECV may minimise

these confounding effects by incorporating the pre- and

post-contrast myocardial and blood T1, partition coeffi-

cient (λ), and adjusting for the haematocrit [36]. In the

absence of oedema or other causes of ECV expansion

such as amyloid and prior myocardial infarction, ECV

increases are considered the best non-invasive surrogate

of diffuse fibrosis [36]. ECV has been validated against

histological collagen proportion [37], and correlates with

poor early cardiovascular outcomes [38]. In this study,

postcontrast T1 values were found to be poor measures

of diffuse fibrosis compared to native T1 and ECV calcu-

lation. Due to the greater variability of this measure-

ment, postcontrast T1 has not been considered as a

preferred method of assessment of diffuse myocardial fi-

brosis in the consensus statement on Myocardial T1

mapping and extracellular volume quantification by the

Society for Cardiovascular Magnetic Resonance (SCMR)

and CMR Working Group of the European Society of

Cardiology [36].

We showed increased native T1 and expanded ECV in

SSc patients without cardiovascular symptoms. It is diffi-

cult to separate how much of the increase in T1 was due

to myocardial inflammation as opposed to diffuse myo-

cardial fibrosis, as both would increase native T1 values

(and hence also ECV). There was a degree of myocardial

oedema as shown by results using T2-weighted imaging,

but the areas of oedema detected are not directly sub-

tractable from areas of abnormality detected by T1, since

these are different techniques with different sensitivities

and specificities for oedema [14]. Native T1 is significantly

more sensitive to myocardial water than conventional T2-

weighted imaging, so areas of oedema detected by T1 are

expected to be larger than those by T2-weighted imaging,

even in just a single disease process. In this cohort, both

myocardial inflammation and diffuse fibrosis likely co-

exist, and thus, CMR findings (as for any other diagnostic

imaging modality) must be interpreted within the clinical

context. Trying to distinguish between myocardial inflam-

mation and diffuse fibrosis based on imaging alone may

be challenging; the chronicity and relapsing nature of this

disease must be taken into account, which can result in

active myocardial inflammation over existing diffuse fibro-

sis from a previous episode. This is an inherent limitation

that lends a necessary uncertainty, but currently no non-

invasive diagnostic test can achieve this goal and no other

cardiac imaging modality can provide more information

on myocardial tissue characteristics than multiparametric

CMR at this time. In either case, this study shows that

CMR can detect subclinical myocardial involvement in

SSc patients whose hearts would appear otherwise normal

using conventional measures; longitudinal studies follow-

ing disease course and trials assessing response to treat-

ment strategies may shed more light onto the clinical

meaning of T1 and ECV abnormalities in this cohort.

Despite the absence of global functional impairment,

we found impaired peak circumferential LV systolic

strain in SSc patients, in keeping with previous reports

[39]. There was also evidence of diastolic dysfunction

with impaired peak diastolic strain rate, elevated E/E’

and increased left atrial dimensions. Although there

were no major clinical effects on the SSc patients in this

study, the presence of low grade myocardial inflamma-

tion, T1 abnormalities and ECV expansion may not be

benign [16,31-33] and may ultimately lead to focal or

diffuse fibrosis. Certainly, an autopsy study has previ-

ously found focal and interstitial myocardial fibrosis in

SSc patients who had sustained high prevalence of

ventricular arrhythmias and conduction disturbances,

intractable congestive cardiac failure and sudden car-

diac death [8].

T1 and ECV measures both correlated inversely with

peak systolic strain and peak diastolic strain rate in SSc

patients. Several reports (including assessment of focal

myocardial fibrosis by LGE) have confirmed that myo-

cardial fibrosis precedes strain abnormalities and that fi-

brosis is a significant contributor to the pathogenesis of

myocardial relaxation abnormalities [40,41]. Notably, in

hypertensive patients, diastolic function improves after

treatment with aldosterone antagonists, likely reflecting

an antifibrotic effect of these drugs [42]. In diabetes, car-

diac dysfunction, relating to loss of contractile reserve

and abnormal myocardial stiffness, is proportional to the

degree of extracellular matrix deposition [43]. Our find-

ings support the hypothesis that in SSc, adverse myocar-

dial processes may lead to diffuse myocardial fibrosis

and are associated with impairment in myocardial strain.

We have found that both ECV and native T1 are useful

for the assessment of myocardial involvement in SSc. In
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patients who are unable to tolerate gadolinium, native

T1 may be used as a surrogate biomarker for myocardial

fibrosis [15,17], if other causes of increased T1 are un-

likely. In this study, ECV and native T1 both correlated

positively with indices of SSc activity and severity, indica-

ting that CMR may be useful in assessing both myocardial

disease severity and activity in SSc. Furthermore, ECV and

native T1 are increased even in SSc patients without focal

fibrosis on LGE imaging, suggesting that these novel CMR

markers provide additional information on tissue cha-

racterisation beyond that achieved by LGE.

Limitations

Our study has several limitations. First, the number of

SSc patients included in this study is small; nevertheless

the control group was well chosen and large significant

differences in the parameters measured have been ob-

served. Second, native myocardial T1 values may in-

crease with myocardial oedema, myocardial infarction,

myocarditis or amyloidosis [17,34,35] and are not spe-

cific for myocardial fibrosis as discussed. Third, T2 map-

ping was not performed in this cohort, which would

have been an interesting comparison; however, T2 map-

ping at the present time seems to have a large inter-

individual variability [43-45], which may not have helped

significantly in distinguishing between myocardial water

from inflammation versus that in an expanded extra-

cellular space. Fourth, besides T1 mapping there is no

other serum or histological test performed to support

the presence of diffuse myocardial fibrosis in our patients;

in this study of early disease in asymptomatic patients,

no myocardial biopsy for histological correlations could

be justified. Finally, we used the VDAI as a measure of dis-

ease activity in SSc. However, several other scores do exist

which could have been used, which all have their own

limitations.

Conclusions
In conclusion, subclinical myocardial involvement is com-

mon in SSc patients without cardiac symptoms, as

measured by T2-weighted imaging, native T1, quanti-

tative LGE and ECV measurement; and likely signifies

a combination of myocardial inflammation and diffuse

fibrosis which correlated with both SSc disease activity and

skin fibrosis severity, as well as with subclinical impairment

of systolic and diastolic strain despite the preserved LV

ejection fraction. These findings support a mechanistic role

for myocardial inflammation and possible diffuse fibrosis

in preclinical as well as advanced SSc disease. The results

of this study highlight key advantages of multiparametric

CMR to track these preclinical changes, which may be

useful in the clinical setting and possibly as surrogate end-

points for therapeutic trials. Finally, our data suggest that

native T1 and ECV measurement may add incremental

information to LGE focal fibrosis quantification, and that

focal and diffuse fibrosis may reflect different underlying

pathological processes.
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