SUBCOMPLEXES OF BOX COMPLEXES OF GRAPHS

By
Akira Kamibeppu

Abstract

The box complex $\mathrm{B}(G)$ of a graph G is a simplicial \mathbf{Z}_{2} complex defined by J. Matoušek and G. M. Ziegler in [4]. They proved that $\chi(G) \geq \operatorname{ind}_{\mathbf{Z}_{2}}(\|\mathrm{~B}(G)\|)+2$, where $\chi(G)$ is the chromatic number of G and $\operatorname{ind}_{\mathbf{Z}_{2}}(\|\mathrm{~B}(G)\|)$ is the \mathbf{Z}_{2}-index of $\mathrm{B}(G)$. In this paper, to study topology of box complexes, for the union $G \cup H$ of two graphs G and H, we compare $\mathrm{B}(G \cup H)$ with its subcomplex $\mathrm{B}(G) \cup \mathrm{B}(H)$. We give a sufficient condition on G and H so that $\mathrm{B}(G \cup H)=\mathrm{B}(G) \cup \mathrm{B}(H)$ and $\mathrm{B}(G \cap H)=\mathrm{B}(G) \cap \mathrm{B}(H)$ hold. Moreover, under that condition, we show

$$
\max \{\chi(G), \chi(H)\} \leq \chi(G \cup H) \leq \max \left\{\chi(G)+l_{H}, \chi(H)\right\}
$$

where l_{H} is the number defined in Definition 3.8. Also we prove

$$
\operatorname{ind}_{\mathbf{Z}_{2}}(\|\mathrm{~B}(G \cup H)\|)=\max \left\{\operatorname{ind}_{\mathbf{Z}_{2}}(\|\mathrm{~B}(G)\|), \operatorname{ind}_{\mathbf{Z}_{2}}(\|\mathrm{~B}(H)\|)\right\}
$$

if $\max \left\{\operatorname{ind}_{\mathbf{Z}_{2}}(\|\mathrm{~B}(G)\|), \operatorname{ind}_{\mathbf{Z}_{2}}(\|\mathrm{~B}(H)\|)\right\} \geq 1$.
The complex $\mathrm{B}(G)$ of a graph G contains a 1-dimensional free \mathbf{Z}_{2}-subcomplex \bar{G} of $\mathrm{B}(G)$, defined in [2]. As a supplement to [2], we show that for a connected graph $G, \mathrm{~B}(G)$ is disconnected if and only if \bar{G} is disconnected if and only if G contains no cycles of odd length, or equivalently, G is bipartite.

1. Introduction

In this paper, we assume that all graphs are finite, simple, undirected and connected. The box complex $\mathrm{B}(G)$ of a graph G is introduced in [4] by J. Matoušek and G. M. Ziegler as one of applications of topological methods to

[^0]obtain a lower bound for the chromatic number $\chi(G)$ of G. The following theorem, in [4], indicates that a lower bound for $\chi(G)$ is obtained from the topology of the complex $\mathrm{B}(G)$ of G.

Theorem 1.1 ([4], p. 81). For any graph G, we have

$$
\begin{equation*}
\chi(G) \geq \operatorname{ind}_{\mathbf{z}_{2}}(\|\mathrm{~B}(G)\|)+2 \tag{1.1}
\end{equation*}
$$

This motivates us to study the relation between topology of box complexes and combinatorics of graphs. In order to obtain a lower bound for $\chi(G)$ by the inequality (1.1), we need to know the \mathbf{Z}_{2}-index of $\|\mathrm{B}(G)\|$, while it is not easy in general to obtain topological information of $\mathrm{B}(G)$ from the definition except for a few examples: complete graphs, paths and cycles etc.

To study the complex $\|\mathrm{B}(G)\|$, we decompose G into subgraphs G_{1}, \ldots, G_{k} and compare $\mathrm{B}(G)$ with $\bigcup_{i=1}^{k} \mathrm{~B}\left(G_{i}\right)$. It is easy to see that $\mathrm{B}(G)$ contains $\bigcup_{i=1}^{k} \mathrm{~B}\left(G_{i}\right)$ as a subcomplex. One cannot hope that $\mathrm{B}(G)=\bigcup_{i=1}^{k} \mathrm{~B}\left(G_{i}\right)$ and for $i, j=1, \ldots, k, \mathrm{~B}\left(G_{i}\right) \cap \mathrm{B}\left(G_{j}\right)=\mathrm{B}\left(G_{i} \cap G_{j}\right)$ in general. We confine ourselves to the case $k=2$. For the union $G \cup H$ of two graphs G and H, we give a sufficient condition under which $\mathrm{B}(G \cup H)=\mathrm{B}(G) \cup \mathrm{B}(H)$ and $\mathrm{B}(G) \cap \mathrm{B}(H)=\mathrm{B}(G \cap H)$ hold (see Theorem 3.3). For such a graph $G \cup H$, we obtain the following estimate of the chromatic number $\chi(G \cup H)$ in Theorem 3.9:

$$
\begin{equation*}
\max \{\chi(G), \chi(H)\} \leq \chi(G \cup H) \leq \max \left\{\chi(G)+l_{H}, \chi(H)\right\} \tag{1.2}
\end{equation*}
$$

where l_{H} is the number defined in Definition 3.8. In view of (1.1) and (1.2), it is natural to seek an estimate of $\operatorname{ind}_{\mathbf{Z}_{2}}(\|\mathrm{~B}(G \cup H)\|)$. We prove

$$
\begin{equation*}
\operatorname{ind}_{\mathbf{Z}_{2}}(\|\mathrm{~B}(G \cup H)\|)=\max \left\{\operatorname{ind}_{\mathbf{z}_{2}}(\|\mathrm{~B}(G)\|), \operatorname{ind}_{\mathbf{Z}_{2}}(\|\mathrm{~B}(H)\|)\right\} \tag{1.3}
\end{equation*}
$$

if $\max \left\{\operatorname{ind}_{\mathbf{Z}_{2}}(\|\mathrm{~B}(G)\|), \operatorname{ind}_{\mathbf{Z}_{2}}(\|\mathrm{~B}(H)\|)\right\} \geq 1$ (see Theorem 3.10). The inequalities (1.1), (1.2) and the equality (1.3) imply that, for the union $G \cup H$ satisfying the condition of Theorem 3.3, the lower bound $\operatorname{ind}_{\mathbf{Z}_{2}}(\|\mathrm{~B}(G \cup H)\|)+2$ is not better than the trivial one $\max \{\chi(G), \chi(H)\}$ for $\chi(G \cup H)$.

Appendix is a supplement to section 4 of [2]. In [2], a 1-dimensional free \mathbf{Z}_{2}-complex \bar{G} is defined as a subcomplex of $\mathrm{B}(G)$. It is proved that a graph G contains no 4 -cycles if and only if $\|\bar{G}\|$ is a strong \mathbf{Z}_{2}-deformation retract of $\|\mathrm{B}(G)\|\left([2]\right.$, Theorem 4.3). This indicates $\operatorname{ind}_{\mathbf{z}_{2}}(\|\mathrm{~B}(G)\|)=\operatorname{ind}_{\mathbf{Z}_{2}}(\|\bar{G}\|) \leq 1$ when G contains no 4-cycles. In appendix, we investigate the relation between $\mathrm{B}(G)$ and \bar{G} for a general graph G. It turns out that \bar{G} is a natural double covering of G. We prove that $\mathrm{B}(G)$ is disconnected if and only if \bar{G} is disconnected (see Theorem 4.2) if and only if G contains no cycles of odd length, or equivalently, G is bipartite (see [1], Theorem 1.6.1).

2. Preliminaries

First, we recall some basic notions on graphs, abstract simplicial complexes, and the \mathbf{Z}_{2}-index of a \mathbf{Z}_{2}-space. We follow [1] about the standard notation in graph theory.

A graph is a pair $G=(V(G), E(G))$, where $V(G)$ is a finite set and $E(G)$ is a family of 2-element subsets of $V(G)$. Under this definition, every graph is simple, that is, it has no loops and multiple edges. Elements of $V(G)$ are called vertices of G and those of $E(G)$ are called edges of G. Two vertices u and v of G are adjacent, if $\{u, v\}$ is an edge of G. An edge $\{u, v\}$ of a graph is simply denoted by $u v$ or $v u$. A subset A of $V(G)$ is said to be independent in G, if no two vertices of A are adjacent in G. A vertex of G which is only adjacent to one vertex of G is called an endvertex. For two graphs G and H, the union $G \cup H$ is defined by $V(G \cup H)=V(G) \cup V(H)$ and $E(G \cup H)=E(G) \cup E(H)$. If $V(G) \cap V(H) \neq \phi$, the intersection $G \cap H$ is defined by $V(G \cap H)=V(G) \cap V(H)$ and $E(G \cap H)=$ $E(G) \cap E(H)$. A k-coloring of G is a map $c: V(G) \rightarrow\{1, \ldots, k\}$ such that $c(u) \neq$ $c(v)$ whenever $u v \in E(G)$. The chromatic number of G, denoted by $\chi(G)$, is the minimum number k such that there exists a k-coloring of G.

An abstract simplicial complex is a pair $(V, \mathrm{~K})$, where V is a finite set and K is a family of subsets of V such that if $\sigma \in \mathrm{K}$ and $\tau \subset \sigma$, then $\tau \in \mathrm{K}$. The polyhedron of K is denoted by $\|\mathrm{K}\|$. The nth barycentric subdivision of K is denoted by $\mathrm{sd}^{n} \mathrm{~K}$. For a vertex v of K , the star of v in K , denoted by $\operatorname{st}_{\mathrm{K}}(v)$, is the union of all interiors of simplices of K which contain v. The link of v in K , denoted by $\mathrm{l}_{\mathrm{K}}(v)$, is the set $\overline{\operatorname{st}_{\mathrm{K}}(v)} \backslash \mathrm{st}_{\mathrm{K}}(v)$, where $\overline{\mathrm{st}(v)}$ is the union of all simplices with v.

A \mathbf{Z}_{2}-space $\left(X, v_{X}\right)$ is a topological space X with a homeomorphism $v: X \rightarrow X$ such that $v^{2}=\mathrm{id}_{X}$, called a \mathbf{Z}_{2}-action v on X. A \mathbf{Z}_{2}-action which has no fixed points is said to be free (and a space X with a free \mathbf{Z}_{2}-action is also said to be a free \mathbf{Z}_{2}-space).

Example 2.1. The n-dimensional sphere $S^{n}=\left\{x \in \mathbf{R}^{n+1} \mid\|x\|=1\right\}$ with the antipodal map $x \mapsto-x$ is a free \mathbf{Z}_{2}-space. We always think of S^{n} as a free $\mathbf{Z}_{2^{-}}$ space with this action.

For two \mathbf{Z}_{2}-spaces $\left(X, v_{X}\right)$ and $\left(Y, v_{Y}\right)$, a continuous map $f: X \rightarrow Y$ which satisfies $v_{Y} \circ f=f \circ v_{X}$ is called a \mathbf{Z}_{2}-map from X to Y. For a \mathbf{Z}_{2}-space (X, v), the \mathbf{Z}_{2}-index of (X, v) is defined as

$$
\operatorname{ind}_{\mathbf{Z}_{2}}(X, v):=\min \left\{n \mid \text { there is a } \mathbf{Z}_{2}-\operatorname{map} X \rightarrow S^{n}\right\}
$$

Next, following [3], we introduce the box complex of a graph. Let G be a graph and A a subset of $V(G)$. A vertex v of G is called a common neighbor of A if $v a \in E(G)$ for all $a \in A$. The set of all common neighbors of A is denoted by $\mathrm{CN}_{G}(A)$. For a one point set $\{a\}$, we see $\mathrm{CN}_{G}(\{a\})$ is the set of all neighbors of a in G. It is simply denoted by $\mathrm{CN}_{G}(a)$. For convenience, we define $\mathrm{CN}_{G}(\phi)=$ $V(G)$. The following holds:

$$
\begin{equation*}
A \subseteq B \Rightarrow \mathrm{CN}_{G}(A) \supseteq \mathrm{CN}_{G}(B) \tag{2.1}
\end{equation*}
$$

For $A_{1}, A_{2} \subseteq V(G)$ such that $A_{1} \cap A_{2}=\phi$, we define $G\left[A_{1}, A_{2}\right]$ as the bipartite subgraph of G with

$$
V\left(G\left[A_{1}, A_{2}\right]\right)=A_{1} \cup A_{2} \text { and } E\left(G\left[A_{1}, A_{2}\right]\right)=\left\{a_{1} a_{2} \in E(G) \mid a_{1} \in A_{1}, a_{2} \in A_{2}\right\} .
$$

The bipartite subgraph $G\left[A_{1}, A_{2}\right]$ is said to be complete if $a_{1} a_{2} \in E(G)$ for all $a_{1} \in A_{1}$ and $a_{2} \in A_{2}$. For convenience, $G\left[\phi, A_{2}\right]$ and $G\left[A_{1}, \phi\right]$ are also said to be complete.

Let A_{1} and A_{2} be subsets of $V(G)$. The subset $A_{1} \uplus A_{2}$ of $V(G) \times\{1,2\}$ is defined as

$$
A_{1} \uplus A_{2}:=\left(A_{1} \times\{1\}\right) \cup\left(A_{2} \times\{2\}\right) .
$$

For vertices $a_{1}, a_{2} \in V(G),\left\{a_{1}\right\} \uplus \phi, \phi \uplus\left\{a_{2}\right\}$, and $\left\{a_{1}\right\} \uplus\left\{a_{2}\right\}$ are simply denoted by $a_{1} \uplus \phi, \phi \uplus a_{2}$ and $a_{1} \uplus a_{2}$ respectively.

The box complex of a graph G is an abstract simplicial complex with the vertex set $V(G) \times\{1,2\}$ defined by

$$
\begin{aligned}
\mathrm{B}(G)= & \left\{A_{1} \uplus A_{2} \mid A_{1}, A_{2} \subseteq V(G), A_{1} \cap A_{2}=\phi,\right. \\
& \left.G\left[A_{1}, A_{2}\right] \text { is complete, } \mathrm{CN}_{G}\left(A_{1}\right) \neq \phi \neq \mathrm{CN}_{G}\left(A_{2}\right)\right\} .
\end{aligned}
$$

Whenever we consider the polyhedron $\|\mathrm{B}(G)\|$, an abstract simplex $A_{1} \uplus A_{2}$ and its geometric simplex are denoted by the same symbol $A_{1} \uplus A_{2}$. The simplicial map $v: V(\mathrm{~B}(G)) \rightarrow V(\mathrm{~B}(G))$ defined by

$$
v \uplus \phi \mapsto \phi \uplus v \quad \text { and } \quad \phi \uplus v \mapsto v \uplus \phi \quad \text { for all } v \in V(G)
$$

induces a free \mathbf{Z}_{2}-action on $\|\mathrm{B}(G)\|$. We always think of $\|\mathrm{B}(G)\|$ as a free \mathbf{Z}_{2} space with this action.

3. Decomposition of Box Complexes

In this section, to study the box complex $\mathrm{B}(G)$ of a graph G, first we take a decomposition $G=\bigcup_{i=1}^{k} G_{i}$ and compare $\mathrm{B}(G)$ with its subcomplex
$\bigcup_{i=1}^{k} \mathrm{~B}\left(G_{i}\right)$. In the following theorem, we give a sufficient condition so that $\mathrm{B}(G)=\bigcup_{i=1}^{k} \mathrm{~B}\left(G_{i}\right)$.

Theorem 3.1. Let G be a graph and assume that G is represented by the union $G=\bigcup_{i=1}^{k} G_{i}$, where G_{1}, \ldots, G_{k} are the subgraphs of G such that
for each maximal subset $M_{1} \uplus M_{2} \subseteq V(G) \times\{1,2\}$ with respect to the condition $G\left[M_{1}, M_{2}\right]$ is complete, there is an $i \in\{1, \ldots, k\}$ so that $G_{i}\left[M_{1}, M_{2}\right]$ is complete.

Then we obtain

$$
\mathrm{B}(G)=\bigcup_{i=1}^{k} \mathrm{~B}\left(G_{i}\right) .
$$

Before proving this theorem, we prove the following lemma.
Lemma 3.2. Let $G=\bigcup_{i=1}^{k} G_{i}$ be a graph and assume that G_{1}, \ldots, G_{k} satisfy the assumption of Theorem 3.1. Then for any subset $A \subseteq V(G)$ such that $\mathrm{CN}_{G}(A) \neq \phi$, there is an $i \in\{1, \ldots, k\}$ such that $\mathrm{CN}_{G_{i}}(A) \neq \phi$.

Proof. For a subset A of $V(G)$ such that $\mathrm{CN}_{G}(A) \neq \phi$, we notice that $G\left[A, \mathrm{CN}_{G}(A)\right]$ is complete. Let $M_{1} \uplus M_{2}$ be a maximal subset of $V(G) \times\{1,2\}$ with respect to $A \subseteq M_{1}, \mathrm{CN}_{G}(A) \subseteq M_{2}$ and the condition $G\left[M_{1}, M_{2}\right]$ is complete. By the assumption, there is an $i \in\{1, \ldots, k\}$ such that $G_{i}\left[M_{1}, M_{2}\right]$ is complete. Hence, we see $G_{i}\left[A, \mathrm{CN}_{G}(A)\right]$ is complete. Thus, we obtain $\mathrm{CN}_{G_{i}}(A) \supseteq$ $\mathrm{CN}_{G}(A) \neq \phi$, and hence, $\mathrm{CN}_{G_{i}}(A) \neq \phi$.

Proof of Theorem 3.1. It follows from the definition of box complex that $\mathrm{B}(G) \supset \bigcup_{i=1}^{k} \mathrm{~B}\left(G_{i}\right)$. To show $\mathrm{B}(G) \subset \bigcup_{i=1}^{k} \mathrm{~B}\left(G_{i}\right)$, we prove that each simplex of $\mathrm{B}(G)$ is a simplex of some $\mathrm{B}\left(G_{i}\right)$.
(i) For each simplex of the form $A \uplus \phi, \phi \uplus A \in \mathrm{~B}(G)$, where A is nonempty, we have $\mathrm{CN}_{G}(A) \neq \phi$. By Lemma 3.2, there is an $i \in\{1, \ldots, k\}$ such that $\mathrm{CN}_{G_{i}}(A) \neq \phi$. Thus, $A \uplus \phi, \phi \uplus A \in \mathrm{~B}\left(G_{i}\right)$.
(ii) For each simplex of the form $A_{1} \uplus A_{2} \in \mathrm{~B}(G)$, where both A_{1} and A_{2} are nonempty, let $M_{1} \uplus M_{2}$ be a maximal subset of $V(G) \times\{1,2\}$ with respect to $A_{1} \subseteq M_{1}, A_{2} \subseteq M_{2}$ and the condition $G\left[M_{1}, M_{2}\right]$ is complete. By the assumption of this theorem, there is an $i \in\{1, \ldots, k\}$ such that $G_{i}\left[M_{1}, M_{2}\right]$ is complete. Then, we see that $G_{i}\left[A_{1}, A_{2}\right]$ is complete, and hence, $A_{1} \uplus A_{2} \in \mathrm{~B}\left(G_{i}\right)$.

These prove the desired inclusion $\mathrm{B}(G) \subset \bigcup_{i=1}^{k} \mathrm{~B}\left(G_{i}\right)$.

In what follows, we confine ourselves to the case $k=2$. Next, we present a sufficient condition on $G \cup H$ such that $\mathrm{B}(G) \cap \mathrm{B}(H)=\mathrm{B}(G \cap H)$ in addition to $\mathrm{B}(G \cup H)=\mathrm{B}(G) \cup \mathrm{B}(H)$.

Theorem 3.3. Let $G \cup H$ be the union of two graphs G and H, and assume that the intersection $G \cap H$ is of the form:

$$
V(G \cap H)=\left\{u_{1}, \ldots, u_{k}, v_{1}, \ldots, v_{k}\right\} \quad \text { and } \quad E(G \cap H)=\left\{u_{i} v_{i} \mid i=1, \ldots, k\right\} .
$$

Further we assume that
(1) u_{1}, \ldots, u_{k} are endvertices of H,
(2) v_{1}, \ldots, v_{k} are endvertices of G and
(3) the set $\left\{u_{1}, \ldots, u_{k}\right\}$ is independent in G.

Then, we obtain

$$
\mathrm{B}(G \cup H)=\mathrm{B}(G) \cup \mathrm{B}(H) \quad \text { and } \quad \mathrm{B}(G \cap H)=\mathrm{B}(G) \cap \mathrm{B}(H) .
$$

Note. Under the condition of Theorem 3.3, we notice $u_{i} v_{j} \notin E(G \cup H)$ for $i \neq j$. Indeed, we see $u_{i} v_{j} \notin E(H)$ for $i \neq j$ by (1) and $u_{i} v_{i} \in E(H)$. We obtain $u_{i} v_{j} \notin E(G)$ for $i \neq j$ by (2) and $u_{j} v_{j} \in E(G)$.

Also we notice that

$$
\mathrm{B}(G \cap H)=\left\{u_{i} \uplus v_{i}, v_{i} \uplus u_{i} \mid i=1, \ldots, k\right\},
$$

the disjoint union of $2 k$ 1-simplices, since the intersection $G \cap H$ consists of disjoint k edges.

To prove $\mathrm{B}(G \cup H)=\mathrm{B}(G) \cup \mathrm{B}(H)$ for the union $G \cup H$ with the condition given in Theorem 3.3, we present the following two lemmas.

Lemma 3.4. Let $G \cup H$ be the union of two graphs G and H with the intersection $G \cap H$ defined by

$$
V(G \cap H)=\left\{u_{1}, \ldots, u_{k}, v_{1}, \ldots, v_{k}\right\} \quad \text { and } \quad E(G \cap H)=\left\{u_{i} v_{i} \mid i=1, \ldots, k\right\} .
$$

We assume (1) and (2) of Theorem 3.3. If $(G \cup H)\left[M_{1}, M_{2}\right]$ is complete, we have

$$
M_{1}, M_{2} \subseteq V(G) \quad \text { or } \quad M_{1}, M_{2} \subseteq V(H)
$$

Proof. We assume $(G \cup H)\left[M_{1}, M_{2}\right]$ is complete. Suppose that

$$
\text { " } M_{1} \not \subset V(G) \text { or } M_{2} \not \subset V(G) " \text { and " } M_{1} \not \subset V(H) \text { or } M_{2} \not \subset V(H) " \text {. }
$$

Our consideration is divided into four cases.

Case 1. $M_{1} \not \subset V(G)$ and $M_{1} \not \subset V(H)$. There are two vertices $m_{1}, m_{1}^{\prime} \in M_{1}$ such that $m_{1} \in V(H) \backslash V(G)$ and $m_{1}^{\prime} \in V(G) \backslash V(H)$. Then, we show that
for any $m_{2} \in M_{2}$, either m_{1} or m_{1}^{\prime} is not adjacent to m_{2} in $G \cup H$. (*) If both m_{1} and m_{1}^{\prime} are adjacent to m_{2} in $G \cup H$, we notice $m_{1} m_{2} \in E(H)$ and $m_{1}^{\prime} m_{2} \in E(G)$ since $m_{1} \notin V(G)$ and $m_{1}^{\prime} \notin V(H)$. Then, we see $m_{2} \in V(G \cap H)=$ $\left\{u_{1}, \ldots, u_{k}, v_{1}, \ldots, v_{k}\right\}$. If $m_{2}=u_{i}$, then $m_{1}=v_{i} \in V(G)$ by the assumptions (1) and $u_{i} v_{i}, m_{1} u_{i} \in E(H)$. This contradicts the choice of $m_{1} \notin V(G)$. If $m_{2}=v_{j}$, then $m_{1}^{\prime}=u_{j} \in V(H)$ by the assumptions (2) and $u_{j} v_{j}, m_{1}^{\prime} m_{2} \in E(G)$. This also contradicts the choice of $m_{1}^{\prime} \notin V(H)$.

However, the statement $(*)$ contradicts the assumption that $(G \cup H)\left[M_{1}, M_{2}\right]$ is complete.

CASE 2. $M_{2} \not \subset V(G)$ and $M_{2} \not \subset V(H)$. We can derive a contradiction from the same argument as above Case 1.

Case 3. $M_{1} \not \subset V(G)$ and $M_{2} \not \subset V(H)$. There are two vertices $m_{1} \in M_{1}$ and $m_{2} \in M_{2}$ such that $m_{1} \in V(H) \backslash V(G)$ and $m_{2} \in V(G) \backslash V(H)$. Then, m_{1} is not adjacent to m_{2} in $G \cup H$. This contradicts the assumption that $(G \cup H)\left[M_{1}, M_{2}\right]$ is complete.

CASE 4. $M_{2} \not \subset V(G)$ and $M_{1} \not \subset V(H)$. We can derive a contradiction from the same argument as above Case 3.

In all cases, we derived contradictions, and hence, our statement is proved.

Lemma 3.5. Let $G \cup H$ be the union of two graphs G and H with the intersection $G \cap H$ defined by

$$
V(G \cap H)=\left\{u_{1}, \ldots, u_{k}, v_{1}, \ldots, v_{k}\right\} \quad \text { and } \quad E(G \cap H)=\left\{u_{i} v_{i} \mid i=1, \ldots, k\right\} .
$$

We assume the condition of Theorem 3.3. If $(G \cup H)\left[M_{1}, M_{2}\right]$ is complete, we have

$$
G\left[M_{1}, M_{2}\right] \text { is complete or } H\left[M_{1}, M_{2}\right] \text { is complete. }
$$

Proof. We assume that $(G \cup H)\left[M_{1}, M_{2}\right]$ is complete. By Lemma 3.4, we see $M_{1}, M_{2} \subset V(G)$ or $M_{1}, M_{2} \subset V(H)$. Suppose that neither $G\left[M_{1}, M_{2}\right]$ nor $H\left[M_{1}, M_{2}\right]$ is complete. Our consideration is divided into two cases.

CASE 1. $M_{1}, M_{2} \subset V(G)$. As $G\left[M_{1}, M_{2}\right]$ is not complete, there are two vertices $m_{1} \in M_{1}$ and $m_{2} \in M_{2}$ such that $m_{1} m_{2} \in E(H) \backslash E(G)$. Hence, we see

Figure. The union $G \cup H$ of two graphs G and H.
$m_{1}, m_{2} \in V(G \cap H)=\left\{u_{1}, \ldots, u_{k}, v_{1}, \ldots, v_{k}\right\}$. Since $m_{1} m_{2} \in E(H) \backslash E(G)$, we notice that both m_{1} and m_{2} belong to $\left\{v_{1}, \ldots, v_{k}\right\}$ by the assumption (1). Let $m_{1}=v_{i}$ and $m_{2}=v_{j}$ (see Figure).

On the other hand, since $H\left[M_{1}, M_{2}\right]$ is not complete, there are two vertices $m_{1}^{\prime} \in M_{1}$ and $m_{2}^{\prime} \in M_{2}$ such that $m_{1}^{\prime} m_{2}^{\prime} \in E(G) \backslash E(H)$. Then, we show that

$$
\begin{equation*}
\text { both } m_{1}^{\prime} \text { and } m_{2}^{\prime} \text { belong to } V(H) \text {. } \tag{**}
\end{equation*}
$$

If not, we have $m_{1}^{\prime} \in V(G) \backslash V(H)$ or $m_{2}^{\prime} \in V(G) \backslash V(H)$. If $m_{1}^{\prime} \in V(G) \backslash V(H)$, then we see

$$
m_{1}^{\prime} v_{j}=m_{1}^{\prime} m_{2} \in E(G \cup H)=E(G) \cup E(H),
$$

since $(G \cup H)\left[M_{1}, M_{2}\right]$ is complete. As $m_{1}^{\prime} \notin V(H)$, we see that m_{1}^{\prime} is adjacent to v_{j} in G. Then, by the assumptions (2) and $u_{j} v_{j} \in E(G)$, we obtain $m_{1}^{\prime}=u_{j} \in V(H)$, which contradicts the choice of $m_{1}^{\prime} \notin V(H)$. Similarly, if $m_{2}^{\prime} \in V(G) \backslash V(H)$, then we see

$$
v_{i} m_{2}^{\prime}=m_{1} m_{2}^{\prime} \in E(G \cup H)=E(G) \cup E(H)
$$

By the same argument as above we obtain $m_{2}^{\prime}=u_{i} \in V(H)$, which contradicts the choice of $m_{2}^{\prime} \notin V(H)$. Hence ($* *$) is proved.

By (**) and $m_{1}^{\prime} m_{2}^{\prime} \in E(G)$, we see $m_{1}^{\prime}, m_{2}^{\prime} \in V(G) \cap V(H)=\left\{u_{1}, \ldots, u_{k}\right.$, $\left.v_{1}, \ldots, v_{k}\right\}$. Since m_{1}^{\prime} is not adjacent to m_{2}^{\prime} in H, we see $\left\{m_{1}^{\prime}, m_{2}^{\prime}\right\} \neq\left\{u_{i}, v_{i}\right\}$ for any $i=1, \ldots, k$. Moreover, we see $\left\{m_{1}^{\prime}, m_{2}^{\prime}\right\} \not \subset\left\{v_{1}, \ldots, v_{k}\right\}$ and $\left\{m_{1}^{\prime}, m_{2}^{\prime}\right\} \neq\left\{u_{i}, v_{j}\right\} \quad(i \neq j)$ by the assumption (2). Thus, we conclude that $\left\{m_{1}^{\prime}, m_{2}^{\prime}\right\} \subset\left\{u_{1}, \ldots, u_{k}\right\}$. This contradicts the assumption (3).

CASE 2. $M_{1}, M_{2} \subset V(H)$. Since $H\left[M_{1}, M_{2}\right]$ is not complete, there are $m_{1} \in M_{1}$ and $m_{2} \in M_{2}$ such that $m_{1} m_{2} \in E(G) \backslash E(H)$. Since $m_{1}, m_{2} \in V(H)$ and $m_{1} m_{2} \in E(G)$, we see $m_{1}, m_{2} \in V(G) \cap V(H)=\left\{u_{1}, \ldots, u_{k}, v_{1}, \ldots, v_{k}\right\}$. Then, we notice $\left\{m_{1}, m_{2}\right\} \not \subset\left\{u_{1}, \ldots, u_{k}\right\}$ by the assumption (3). Moreover, we see $\left\{m_{1}, m_{2}\right\} \not \subset\left\{v_{1}, \ldots, v_{k}\right\}$ and $\left\{m_{1}, m_{2}\right\} \neq\left\{u_{i}, v_{j}\right\}(i \neq j)$ by the assumption (2).

Therefore, there is an $i \in\{1, \ldots, k\}$ such that $m_{1} m_{2}=u_{i} v_{i} \in E(H)$. This contradicts the condition $m_{1} m_{2} \notin E(H)$.

These complete the proof of our statement.
Proof of Theorem 3.3. For any maximal subset $M_{1} \uplus M_{2} \subseteq V(G) \times\{1,2\}$ with respect to the condition $(G \cup H)\left[M_{1}, M_{2}\right]$ is complete, we see that

$$
G\left[M_{1}, M_{2}\right] \text { is complete or } H\left[M_{1}, M_{2}\right] \text { is complete, }
$$

by Lemma 3.5. Thus, we obtain $\mathrm{B}(G \cup H)=\mathrm{B}(G) \cup \mathrm{B}(H)$ by Theorem 3.1.
Next, we show that $\mathrm{B}(G \cap H)=\mathrm{B}(G) \cap \mathrm{B}(H)$. It is easy to see that $\mathrm{B}(G \cap H) \subset \mathrm{B}(G) \cap \mathrm{B}(H)$, so we show that $\mathrm{B}(G \cap H) \supset \mathrm{B}(G) \cap \mathrm{B}(H)$. A nonempty set M such that $M \uplus \phi, \phi \uplus M \in \mathrm{~B}(G) \cap \mathrm{B}(H)$ is a subset of $V(G) \cap V(H)=$ $\left\{u_{1}, \ldots, u_{k}, v_{1}, \ldots, v_{k}\right\}$ and it also satisfies $\mathrm{CN}_{G}(M) \neq \phi$ and $\mathrm{CN}_{H}(M) \neq \phi$. We see that such a nonempty set M has precisely the following form:

$$
\begin{equation*}
M=\left\{u_{i}\right\} \quad \text { or } \quad M=\left\{v_{i}\right\} \quad(i=1, \ldots, k) . \tag{4}
\end{equation*}
$$

Indeed, the common neighbors of $\left\{u_{i}\right\}$ and $\left\{v_{i}\right\}$ in G and in H are nonempty. On the other hand, we see that every subset M of $V(G) \cap V(H)$ which is neither $\left\{u_{i}\right\}$ nor $\left\{v_{i}\right\}$ satisfies one of the following three conditions:
(4.1) $M \subseteq\left\{u_{1}, \ldots, u_{k}\right\}$ and $|M| \geq 2$;
(4.2) $M \subseteq\left\{v_{1}, \ldots, v_{k}\right\}$ and $|M| \geq 2$;
(4.3) $M \supseteq\left\{u_{i}, v_{j}\right\} \quad(i, j=1, \ldots, k)$.

For (4.1), we see $\mathrm{CN}_{H}(M)=\phi$ by the assumptions (1) and $u_{i} v_{i} \in E(H)$ for each i. For (4.2), we notice $\mathrm{CN}_{G}(M)=\phi$ by the assumptions (2) and $u_{i} v_{i} \in E(G)$ for each i. For (4.3), we obtain $\mathrm{CN}_{G}(M) \subseteq \mathrm{CN}_{G}\left(\left\{u_{i}, v_{j}\right\}\right)$ from (2.1). Here we verify $\mathrm{CN}_{G}\left(\left\{u_{i}, v_{j}\right\}\right)=\phi$. Suppose that $x \in \mathrm{CN}_{G}\left(\left\{u_{i}, v_{j}\right\}\right)$. Then x is adjacent to v_{j} in G and $x=u_{j}$ by the assumption (2). Hence, u_{i} is adjacent to u_{j} in G. This contradicts the assumption (3).

For any $M \uplus \phi, \phi \uplus M \in \mathrm{~B}(G) \cap \mathrm{B}(H)$, we obtain $\mathrm{CN}_{G \cap H}(M), \neq \phi$ by the assumption with respect to the graph $G \cap H$ and (4). Therefore, $M \uplus \phi, \phi \uplus M \in \mathrm{~B}(G \cap H)$.

For any $M_{1} \uplus M_{2} \in \mathrm{~B}(G) \cap \mathrm{B}(H)$ such that $M_{1} \neq \phi \neq M_{2}$, we notice that $G\left[M_{1}, M_{2}\right]$ and $H\left[M_{1}, M_{2}\right]$ are complete. Hence, we conclude that $(G \cap H)\left[M_{1}, M_{2}\right]$ is complete, and hence, $M_{1} \uplus M_{2} \in \mathrm{~B}(G \cap H)$. Therefore, we have $\mathrm{B}(G) \cap \mathrm{B}(H) \subset$ $\mathrm{B}(G \cap H)$.

For the union $G \cup H$ satisfying the condition of Theorem 3.3, an upper bound for its chromatic number is given in the following:

Proposition 3.6. Let $G \cup H$ be the union of two graphs G and H satisfying the condition of Theorem 3.3. Let $l_{c_{H}}:=\left|\left\{c_{H}\left(u_{1}\right), \ldots, c_{H}\left(u_{k}\right)\right\}\right|$, where c_{H} is a $\chi(H)$-coloring of H. Then, there is a $\max \left\{\chi(G)+l_{c_{H}}, \chi(H)\right\}$-coloring c of $G \cup H$ such that $\left.c\right|_{V(H)}=c_{H}$.

Proof. Let $c_{H}: V(H) \rightarrow\{1, \ldots, \chi(H)\}$ be a $\chi(H)$-coloring of H. Without loss of generality, we may assume $\left\{c_{H}\left(u_{1}\right), \ldots, c_{H}\left(u_{k}\right)\right\}=\left\{1, \ldots, l_{c_{H}}\right\}$. We define a map c on $V(G \cup H)$ as an extension of c_{H}. First, we define

$$
\begin{equation*}
c(v)=c_{H}(v) \tag{3.1}
\end{equation*}
$$

for all $v \in V(H)$. Next, we define c on $V(G) \backslash V(H)$. Take a $\chi(G)$-coloring c_{G} of G and let $V_{1}, \ldots, V_{\chi(G)}$ be the color classes of $V(G)$ given by c_{G}. Then, we define

$$
\begin{equation*}
c(v)=l_{c_{H}}+i \tag{3.2}
\end{equation*}
$$

for $v \in V_{i} \backslash V(G \cap H)$ and each $i=1, \ldots, \chi(G)$. We notice that $c(V(G) \backslash V(H))=$ $\left\{l_{c_{H}}+1, \ldots, l_{c_{H}}+\chi(G)\right\}$. Since $\left\{u_{1}, \ldots, u_{k}\right\}$ is independent in G and v_{1}, \ldots, v_{k} are endvertices of G, we see that the map c defined by (3.1) and (3.2) is a $\max \left\{\chi(G)+l_{c_{H}}, \chi(H)\right\}$-coloring of $G \cup H$.

Corollary 3.7. We assume that the union $G \cup H$ of two graphs G and H satisfies the condition of Theorem 3.3. Moreover we assume that $\left\{v_{1}, \ldots, v_{k}\right\}$ is independent in H. Then, there is a $\min \left\{\max \left\{\chi(G)+l_{c_{H}}, \chi(H)\right\}\right.$, $\left.\max \left\{\chi(H)+l_{c_{G}}, \chi(G)\right\}\right\}$-coloring of $G \cup H$.

Definition 3.8. Let H be a graph satisfying the condition of Theorem 3.3. We define

$$
l_{H}:=\min \left\{l_{c_{H}} \mid c_{H} \text { is a } \chi(H) \text {-coloring of } H\right\} .
$$

We remark that $l_{H} \leq 2$. We take a $\chi(H)$-coloring c_{H} of H and a number $n \in\{1, \ldots, \chi(H)\}$ with $n \neq c_{H}\left(v_{1}\right)$. Assume that $l_{c_{H}}=\left|\left\{c_{H}\left(u_{i}\right) \mid i=1, \ldots, k\right\}\right| \geq 3$. Then, we can take another $\chi(H)$-coloring c_{H}^{\prime} of H defined as follows:

$$
c_{H}^{\prime}(v)= \begin{cases}c_{H}(v) & \text { if } v \in V(H) \backslash\left\{u_{1}, \ldots, u_{k}\right\}, \\ c_{H}\left(v_{1}\right) & \text { if } v=u_{i} \text { and } c_{H}\left(v_{i}\right) \neq c_{H}\left(v_{1}\right), \\ n & \text { if } v=u_{i} \text { and } c_{H}\left(v_{i}\right)=c_{H}\left(v_{1}\right)\end{cases}
$$

Then, we have $l_{H} \leq l_{c_{H}^{\prime}}=2$.
As a consequence of Proposition 3.6, we have the following.
Theorem 3.9. Let $G \cup H$ be the union of two graphs G and H satisfying the condition of Theorem 3.3 and let $k=|E(G \cap H)|$.
(1) If $k \geq 2$, then we have

$$
\chi(G \cup H) \leq \max \left\{\chi(G)+l_{H}, \chi(H)\right\} .
$$

(2) If $k=1$, we have

$$
\chi(G \cup H)=\max \{\chi(G), \chi(H)\}
$$

Proof. Our statement (1) follows from Proposition 3.6. We prove (2). If $k=1$, without loss of generality, we may assume $\chi(G) \geq \chi(H)$. First, take a $\chi(G)$-coloring $c_{G}: V(G) \rightarrow\{1, \ldots, \chi(G)\}$ of G and a $\chi(H)$-coloring $c_{H}: V(H) \rightarrow$ $\{1, \ldots, \chi(H)\}$ of H. We define a map c on $V(G \cup H)$ as an extension of c_{H}. First, put $c(v)=c_{H}(v)$ for $v \in V(H)$. Notice that $c_{H}\left(u_{1}\right) \in\{1, \ldots, \chi(G)\}$. Then, take the transposition $\left(c_{G}(V) c_{H}\left(u_{1}\right)\right)$ on $\{1, \ldots, \chi(G)\}$, where V is the color class of $V(G)$ given by c_{G} containing u_{1}. Then, we define $c(V(G) \backslash V(H))=$ $\left(\left(c_{G}(V) c_{H}\left(u_{1}\right)\right) \circ c_{G}\right)(V(G) \backslash V(H))$. We see that the map c is a $\chi(G)$-coloring of $G \cup H$.

In view of (1.1) and Theorem 3.9, it is natural to compute $\operatorname{ind}_{\mathbf{Z}_{2}}(\|\mathrm{~B}(G \cup H)\|)$ for the union $G \cup H$ satisfying the condition of Theorem 3.3. Recall that

$$
\mathrm{B}(G) \cap \mathrm{B}(H)=\mathrm{B}(G \cap H)=\left\{u_{i} \uplus v_{i}, v_{i} \uplus u_{i} \mid i=1, \ldots, k\right\},
$$

the disjoint union of $2 k$-simplices, since the intersection $G \cap H$ consists of disjoint k edges.

Theorem 3.10. Let $G \cup H$ be the union of two graphs G and H which satisfies the condition of Theorem 3.3.
(1) If $\max \left\{\operatorname{ind}_{\mathbf{Z}_{2}}(\|\mathrm{~B}(G)\|), \operatorname{ind}_{\mathbf{Z}_{2}}(\|\mathrm{~B}(H)\|)\right\} \geq 1$, we have

$$
\operatorname{ind}_{\mathbf{Z}_{2}}(\|\mathrm{~B}(G \cup H)\|)=\max \left\{\operatorname{ind}_{\mathbf{Z}_{2}}(\|\mathrm{~B}(G)\|), \operatorname{ind}_{\mathbf{Z}_{2}}(\|\mathrm{~B}(H)\|)\right\} .
$$

(2) If $\operatorname{ind}_{\mathbf{z}_{2}}(\|\mathrm{~B}(G)\|)=\operatorname{ind}_{\mathbf{z}_{2}}(\|\mathrm{~B}(H)\|)=0$, we have

$$
\operatorname{ind}_{\mathbf{z}_{2}}(\|\mathrm{~B}(G \cup H)\|) \leq 1
$$

Proof. We use the same notation used in Theorem 3.3. Let $m:=\operatorname{ind}_{\mathbf{Z}_{2}}(\|\mathrm{~B}(G)\|)$ and $n:=\operatorname{ind}_{\mathbf{Z}_{2}}(\|\mathrm{~B}(H)\|)$. Before we prove (1) and (2), we will define \mathbf{Z}_{2}-maps $\|\mathrm{B}(G)\| \rightarrow S^{m}$ and $\|\mathrm{B}(H)\| \rightarrow S^{n}$ such that each $u_{i} \uplus v_{i}$ is mapped to a point. By using these \mathbf{Z}_{2}-maps, we will construct a \mathbf{Z}_{2}-map $\|\mathrm{B}(G \cup H)\| \rightarrow S^{l}$, where $l:=\max \{m, n\}$.

First, we construct a \mathbf{Z}_{2}-map from $\|\mathrm{B}(G)\|$ to S^{m} such that each $u_{i} \uplus v_{i}$ is mapped to a point. Let $\mathrm{K}:=\mathrm{B}\left(G \backslash\left\{v_{1}, \ldots, v_{k}\right\}\right)$. We define a simplicial \mathbf{Z}_{2}-map $f_{1}: \mathrm{B}(G) \rightarrow \mathrm{K}$ as

$$
f_{1}\left(\phi \uplus v_{i}\right)=u_{i} \uplus \phi, \quad f_{1}\left(v_{i} \uplus \phi\right)=\phi \uplus u_{i}
$$

and $f_{1}(v)=v$ for any other vertex v of $\mathrm{B}(G)$. We take a \mathbf{Z}_{2}-map f_{2} as the composition

$$
\|\mathrm{K}\| \hookrightarrow\|\mathrm{B}(G)\| \rightarrow S^{m}
$$

where the latter map is an arbitrary \mathbf{Z}_{2}-map. Then, the composition $f_{2} \circ f_{1}$ is a desired \mathbf{Z}_{2}-map. Similarly, we can construct a \mathbf{Z}_{2}-map from $\|\mathbf{B}(H)\|$ to S^{n} such that each $u_{i} \uplus v_{i}$ is mapped to a point as follows. Let $\mathrm{L}:=\mathrm{B}\left(H \backslash\left\{u_{1}, \ldots, u_{k}\right\}\right)$. We define a simplicial \mathbf{Z}_{2}-map $g_{1}: \mathrm{B}(H) \rightarrow \mathrm{L}$ as

$$
g_{1}\left(\phi \uplus u_{i}\right)=v_{i} \uplus \phi, \quad g_{1}\left(u_{i} \uplus \phi\right)=\phi \uplus v_{i}
$$

and $g_{1}(v)=v$ for any other vertex v of $\mathrm{B}(H)$. Let g_{2} be the composition $\|\mathrm{L}\| \hookrightarrow\|\mathrm{B}(H)\| \rightarrow S^{n}$, where the latter map is an arbitrary \mathbf{Z}_{2}-map. The composition $g_{2} \circ g_{1}$ is a \mathbf{Z}_{2}-map such that each $u_{i} \uplus v_{i}$ is mapped to a point.

Next, to construct a \mathbf{Z}_{2}-map from $\|\mathrm{B}(G \cup H)\|$ to S^{l}, we need the following claim:

Claim. If $m \geq 1$ and $m \geq n$, there exist \mathbf{Z}_{2}-maps $f_{3}:\|\mathrm{K}\| \rightarrow S^{m+1}$ and $g_{3}:\|\mathrm{L}\| \rightarrow S^{m+1}$ such that

- $f_{3}\left(u_{i} \uplus \phi\right)=g_{3}\left(\phi \uplus v_{i}\right)$ and $f_{3}\left(\phi \uplus u_{i}\right)=g_{3}\left(v_{i} \uplus \phi\right)$ for all i,
- the union im $f_{3} \cup \mathrm{im} g_{3}$ does not contain the north and south poles of S^{m+1}. We show Claim. Let $I: S^{n} \rightarrow S^{m}$ be the inclusion defined by $I(x)=(x, 0, \ldots, 0)$ and $a: S^{m+1} \rightarrow S^{m+1}$ the antipodal map. By the continuity of $f_{2}:\|\mathrm{K}\| \rightarrow S^{m}$ and $g_{2}:\|\mathrm{L}\| \rightarrow S^{n}$, we can take a sufficiently large positive integer $r \geq 1$ so that $f_{2}\left(\mathrm{k}_{\mathrm{sd}^{r} \mathrm{~K}}\left(u_{i} \uplus \phi\right)\right)$ and $g_{2}\left(\mathrm{lk}_{\mathrm{sd}^{r} \mathrm{~L}}\left(\phi \uplus v_{i}\right)\right)$ contain no pair of antipodal points for each i. Since $m \geq 1$, the sphere S^{m} is not covered with the union $a \circ f_{2}\left(\mathrm{lk}_{\mathrm{sd}^{r} \mathrm{~K}}\left(u_{i} \uplus \phi\right)\right) \cup a \circ I \circ g_{2}\left(\mathrm{lk}_{\mathrm{sd}^{\prime} \mathrm{L}}\left(\phi \uplus v_{i}\right)\right)$. Hence, we see

$$
X_{i}:=S^{m} \backslash\left(a \circ f_{2}\left(\mathrm{lk}_{\mathrm{sd}^{\prime} \mathrm{K}}\left(u_{i} \uplus \phi\right)\right) \cup a \circ I \circ g_{2}\left(\mathrm{l}_{\mathrm{sd}^{\prime} \mathrm{L}}\left(\phi \uplus v_{i}\right)\right)\right)
$$

is nonempty. Then, we take a point $w_{i} \in S^{m+1}$ that belongs to the interior of $\left\{\left.\frac{x}{\|x\|} \right\rvert\, x \in p * X_{i}\right\}$, where p is the north pole of S^{m+1} and $p * X_{i}$ is the Euclidean cone on X_{i} with p.

For each i, we modify f_{2} on neighborhoods $\mathrm{st}_{\mathrm{sd}^{\mathrm{r}} \mathrm{K}}\left(u_{i} \uplus \phi\right)$ and $\mathrm{st}_{\mathrm{sd}^{\prime} \mathrm{K}}\left(\phi \uplus u_{i}\right)$ to obtain a \mathbf{Z}_{2}-map f_{3} that maps $u_{i} \uplus \phi$ to w_{i} and $\phi \uplus u_{i}$ to $a\left(w_{i}\right)$. For any $x \in \mathrm{st}_{\mathrm{sd}^{r} \mathrm{~K}}\left(u_{i} \uplus \phi\right) \backslash u_{i} \uplus \phi$, there exists the unique point $y_{x} \in \mathrm{k}_{\mathrm{sd}^{\prime} \mathrm{K}}\left(u_{i} \uplus \phi\right)$ such that x is represented by $(1-t) y_{x}+t\left(u_{i} \uplus \phi\right)$ for some $t \in(0,1)$. Similarly, for $x \in \mathrm{st}_{\mathrm{sd}^{\prime} \mathrm{K}}\left(\phi \uplus u_{i}\right) \backslash \phi \uplus u_{i}$, there exists a unique point $z_{x} \in \mathrm{lk}_{\mathrm{sd}^{\prime} \mathrm{K}}\left(\phi \uplus u_{i}\right)$ such that x is represented by $(1-t) z_{x}+t\left(\phi \uplus u_{i}\right)$ for some $t \in(0,1)$. Since $r \geq 1$, for $i \neq j$, we see

$$
\mathrm{st}_{\mathrm{sd}^{\prime} \mathrm{K}}\left(u_{i} \uplus \phi\right) \cap \mathrm{st}_{\mathrm{sd}^{\prime} \mathrm{K}}\left(u_{j} \uplus \phi\right)=\phi=\mathrm{st}_{\mathrm{sd}^{\prime} \mathrm{K}}\left(u_{i} \uplus \phi\right) \cap \mathrm{st}_{\mathrm{sd}^{\prime} \mathrm{K}}\left(\phi \uplus u_{j}\right) .
$$

We define a \mathbf{Z}_{2}-map $f_{3}: \|$ sd $^{r} \mathrm{~K} \| \rightarrow S^{m+1}$ as follows:

\[

\]

Similarly, we can modify $I \circ g_{2}$ to obtain a \mathbf{Z}_{2}-map $g_{3}: \|$ sd $^{r} \mathrm{~L} \| \rightarrow S^{m+1}$ such that $g_{3}\left(\phi \uplus v_{i}\right)=w_{i}$ and $g_{3}\left(v_{i} \uplus \phi\right)=a\left(w_{i}\right)$. By the choice of points $\left\{w_{i}\right\}$, we see that the union $\operatorname{im} f_{3} \cup \mathrm{im} g_{3}$ does not contain the north and south poles of S^{m+1}. This completes the proof of Claim.

We prove (1). We assume $m \geq n$. We define a \mathbf{Z}_{2}-map $h:\|\mathrm{B}(G \cup H)\| \rightarrow$ S^{m+1} as

$$
h(x)= \begin{cases}\left(f_{3} \circ f_{1}\right)(x) & \text { if } x \in\|\mathrm{~B}(G)\|, \\ \left(g_{3} \circ g_{1}\right)(x) & \text { if } x \in\|\mathrm{~B}(H)\|,\end{cases}
$$

and define a \mathbf{Z}_{2}-map $h^{\prime}: S^{m+1} \backslash\{p, a(p)\} \rightarrow S^{m}$ as

$$
\left(x_{1}, \ldots, x_{m+2}\right) \mapsto \frac{1}{\sqrt{1-x_{m+2}^{2}}}\left(x_{1}, \ldots, x_{m+1}\right)
$$

We can regard h as a \mathbf{Z}_{2}-map from $\|\mathrm{B}(G \cup H)\|$ to $S^{m+1} \backslash\{p, a(p)\}$. Then, the composition $h^{\prime} \circ h$ is a \mathbf{Z}_{2}-map from $\|\mathrm{B}(G \cup H)\|$ to S^{m}, and hence,
$\operatorname{ind}_{\mathbf{Z}_{2}}(\|\mathrm{~B}(G \cup H)\|) \leq m$. On the other hand, we see that $\|\mathrm{B}(G)\|$ and $\|\mathrm{B}(H)\|$ are contained in $\|\mathrm{B}(G \cup H)\|$ as \mathbf{Z}_{2}-subcomplexes, and hence, we have $\operatorname{ind}_{\mathbf{Z}_{2}}(\|\mathrm{~B}(G \cup H)\|) \geq m$. Similarly, if $m<n$, we obtain a \mathbf{Z}_{2}-map from $\|\mathrm{B}(G \cup H)\|$ to S^{n} by the same argument as above. The statement (1) is proved.

We prove (2). If $m=n=0$, it is not always possible to construct f_{3} and g_{3} so that they satisfy the latter condition of Claim; Example 3.11 is one of such examples. However, we may repeat the argument of Claim by taking $\left\{w_{i}\right\}$ as arbitrary points of the upper semicircle of S^{1}. Then, the map h is a desired \mathbf{Z}_{2}-map from $\|\mathrm{B}(G \cup H)\|$ to S^{1}. Hence, the statement (2) follows.

Example 3.11. For a cycle C_{5} of length $5,\left\|\mathrm{~B}\left(C_{5}\right)\right\|$ is \mathbf{Z}_{2}-homotopy equivalent to S^{1}, and hence, $\operatorname{ind}_{\mathbf{z}_{2}}\left(\left\|\mathrm{~B}\left(C_{5}\right)\right\|\right)=1$. On the other hand, C_{5} is decomposed into P_{4} and P_{3} such that these satisfy the sufficient condition of Theorem 3.3. Since $\operatorname{ind}_{\mathbf{Z}_{2}}(\|\mathrm{~B}(P)\|)=0$ for any path P, the inequality of Theorem 3.10 (2) is optimal.

Example 3.12. Let G be the graph defined by

$$
\begin{gathered}
V(G)=\left\{x, u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{n}\right\} \quad \text { and } \\
E(G)=\left\{x u_{i} \mid i=1, \ldots, n\right\} \cup\left\{u_{i} v_{i} \mid i=1, \ldots, n\right\}
\end{gathered}
$$

where $n \geq 4$. Let H be the graph $K_{n}+\left\{u_{i} v_{i} \mid i=1, \ldots, n\right\}$, where $V\left(K_{n}\right)=$ $\left\{v_{1}, \ldots, v_{n}\right\}$. Then, we notice $\operatorname{ind}_{\mathbf{Z}_{2}}(\|\mathrm{~B}(G)\|)=0$ and $\operatorname{ind}_{\mathbf{Z}_{2}}(\|\mathrm{~B}(H)\|)=n-2$. By Theorem 3.10 (1), we see $\operatorname{ind}_{\mathbf{Z}_{2}}(\|\mathrm{~B}(G \cup H)\|)=n-2$. We also have $\chi(G \cup H) \leq \max \{4, n\}=n$ by Theorem 3.9 (1). Hence, we see that the inequality of Theorem 3.9 (1) is optimal by the inequality (1.1).

For the union $G \cup H$ satisfying the condition of Theorem 3.3, we obtain

$$
\begin{gathered}
\operatorname{ind}_{\mathbf{Z}_{2}}(\|\mathrm{~B}(G \cup H)\|)+2=\max \left\{\operatorname{ind}_{\mathbf{Z}_{2}}(\|\mathrm{~B}(G)\|), \operatorname{ind}_{\mathbf{Z}_{2}}(\|\mathrm{~B}(H)\|)\right\}+2 \\
\quad(1.1) \max \{\chi(G), \chi(H)\} \leq \chi(G \cup H)
\end{gathered}
$$

by Theorem 3.10 (1) and the inequality (1.1), if $\max \left\{\operatorname{ind}_{\mathbf{z}_{2}}(\|\mathrm{~B}(G)\|)\right.$, $\left.\operatorname{ind}_{\mathbf{Z}_{2}}(\|\mathrm{~B}(H)\|)\right\} \geq 1$. The lower bound $\operatorname{ind}_{\mathbf{z}_{2}}(\|\mathrm{~B}(G \cup H)\|)+2$ is not better than the trivial one $\max \{\chi(G), \chi(H)\}$ for $\chi(G \cup H)$.

4. Appendix: Addendum to [2]

Here we supplement to section 4 of [2]. For a graph G, let \bar{G} be an abstract simplicial complex with the vertex set $V(\bar{G})=V(B(G))$ defined by

$$
\bar{G}:=\{u \uplus \phi, v \uplus \phi, \phi \uplus u, \phi \uplus v, u \uplus v, v \uplus u \mid u v \in E(G)\} .
$$

We notice that \bar{G} is a free \mathbf{Z}_{2}-subcomplex of $\mathrm{B}(G)$ with the restriction of the free \mathbf{Z}_{2}-action on $\mathrm{B}(G)$. In [2], the author proved that a graph G contains no 4cycles if and only if $\|\bar{G}\|$ is a strong \mathbf{Z}_{2}-deformation retract of $\|\mathrm{B}(G)\|$. The $\mathbf{Z}_{2}{ }^{-}$ subcomplex \bar{G} is a natural double covering of G with the map $V(\bar{G}) \rightarrow V(G)$ defined by $v \uplus \phi, \phi \uplus v \mapsto v$ for each $v \in V(G)$.

Let T be a spanning tree T of G. Then, the graph G is obtained from T by adding finitely many edges $\left\{u_{i} v_{i}\right\}_{i=1}^{l}$, where $u_{i} v_{i} \in E(G) \backslash E(T)$. Then, we see $\bar{G}=\bar{T} \cup\left\{u_{i} \uplus v_{i}, v_{i} \uplus u_{i}\right\}_{i=1}^{l}$. Since all trees are bipartite, $V(T)$ is the disjoint union of the partite sets A and B. Let $T^{1}=T \times\{1\}$ and $T^{2}=T \times\{2\}$ be the copies of T with $V\left(T^{1}\right)=A^{1} \amalg B^{1}$ and $V\left(T^{2}\right)=A^{2} \amalg B^{2}$, where $A^{1}=A \times\{1\}, A^{2}=$ $A \times\{2\}, B^{1}=B \times\{1\}$ and $B^{2}=B \times\{2\}$. Then, we notice that \bar{T} is isomorphic to the disjoint union $T^{1} \amalg T^{2}$ of two copies of T by the following correspondence $V\left(T^{1} \amalg T^{2}\right) \rightarrow V(\bar{T}):$

$$
\begin{array}{ll}
(a, 1) \in A^{1} \mapsto a \uplus \phi, & (b, 1) \in B^{1} \mapsto \phi \uplus b, \\
(a, 2) \in A^{2} \mapsto \phi \uplus a, & (b, 2) \in B^{2} \mapsto b \uplus \phi .
\end{array}
$$

We consider the unique path P in T connecting u_{i} to v_{i} for each i. If we add an edge $u_{i} v_{i}$ to T so that $T \cup\left\{u_{i} v_{i}\right\}$ contains a cycle of even length, the path P is of odd length. Then, we notice $u_{i} \uplus \phi$ and $\phi \uplus v_{i}$ belong to the same component of \bar{T} and $\phi \uplus u_{i}$ and $v_{i} \uplus \phi$ belong to the other component of \bar{T}. Hence, $\bar{T} \cup\left\{u_{i} \uplus v_{i}, v_{i} \uplus u_{i}\right\}$ is disconnected. If we add an edge $u_{i} v_{i}$ to T so that $T \cup\left\{u_{i} v_{i}\right\}$ contains a cycle of odd length, the path P is of even length. Then we see $u_{i} \uplus \phi$ and $v_{i} \uplus \phi$ belong to the same component of \bar{T} and $\phi \uplus u_{i}$ and $\phi \uplus v_{i}$ belong to the other component of \bar{T}. Hence, $\bar{T} \cup\left\{u_{i} \uplus v_{i}, v_{i} \uplus u_{i}\right\}$ is connected. Repeating this consideration for edges $u_{1} v_{1}, \ldots, u_{l} v_{l}$, we see that \bar{G} is disconnected if and only if G contains no cycles of odd length, or equivalently, G is bipartite (see [1], Theorem 1.6.1).

Theorem 4.1. Let G be a connected graph with k induced cycles of G.
(1) If G contains no cycles of odd length, we have $\|\bar{G}\| \simeq \bigvee_{k} S^{1} \amalg \bigvee_{k} S^{1}$.
(2) If G contains at least one cycle of odd length, we have $\|\bar{G}\| \simeq \bigvee_{2 k-1} S^{1}$.

Proof. By the preceding argument, the statement (1) holds. Let G be a connected graph which contains at least one cycle of odd length. Then, it follows that \bar{G} is connected. Since the Euler characteristic $\chi_{\bar{G}}$ of \bar{G} is twice as large as that of G, we see

$$
\operatorname{rank} H_{1}(\bar{G})=1-\chi_{\bar{G}}=1-2 \cdot \chi_{G}=1-2(1-k)=2 k-1,
$$

and hence, the statement (2) follows.
Theorem 4.2. Let G be a connected graph. Then, $\mathrm{B}(G)$ is connected if and only if \bar{G} is connected.

Proof. Let G be a connected graph. If $\mathrm{B}(G)$ is disconnected, then \bar{G} is disconnected since \bar{G} is a subcomplex of $\mathrm{B}(G)$ with $V(\bar{G})=V(\mathrm{~B}(G))$.

Conversely, we assume that \bar{G} is disconnected. Then, we see that G contains no cycles of odd length, and hence, \bar{G} is isomorphic to the disjoint union $G \amalg G$. Suppose that $\mathrm{B}(G)$ is connected. Then, for the two vertices $u \uplus \phi$ and $\phi \uplus u$ of $\mathrm{B}(G)$, there exist the vertices v_{0}, \ldots, v_{n} of $\mathrm{B}(G)$ such that $v_{0}=u \uplus \phi, v_{n}=\phi \uplus u$ and each $v_{i} v_{i+1} \in \mathrm{~B}(G)$. Every 1 -simplex of $\mathrm{B}(G)$ is one of the following forms: $x \uplus y, y \uplus x,\{x, y\} \uplus \phi$ and $\phi \uplus\{x, y\}$, in particular, $x \uplus y$ and $y \uplus x$ are simplices of \bar{G}. If the 1 -simplex $v_{i} v_{i+1} \in \mathrm{~B}(G)$ is the form $\{x, y\} \uplus \phi$, then there is a vertex $z \in V(G)$ such that $z \in \operatorname{CN}_{G}(\{x, y\})$. The two vertices v_{i} and v_{i+1} are joined by two simplices $x \uplus z$ and $z \uplus y$ of \bar{G}. Similarly, if the 1 -simplex $v_{i} v_{i+1} \in \mathrm{~B}(G)$ is the form $\phi \uplus\{x, y\}$, we can join the two vertices v_{i} and v_{i+1} by simplices of \bar{G}. Thus, $u \uplus \phi$ and $\phi \uplus u$ are joined by simplices of \bar{G}. This contradicts the fact that $u \uplus \phi$ and $\phi \uplus u$ do not belong to the same component of \bar{G}.

References

[1] R. Diestel. Graph Theory. 3rd ed. Graduate Texts in Mathematics 173, Springer-Verlag, 2005.
[2] A. Kamibeppu. Homotopy type of the box complexes of graphs without 4-cycles, Tsukuba J. Math. 32 (2008), no. 2, 307-314.
[3] J. Matoušek. Using the Borsuk-Ulam Theorem. Lectures on Topological Methods in Combinatorics and Geometry, Universitext, Springer-Verlag, 2003.
[4] J. Matoušek and G. M. Ziegler. Topological lower bounds for the chromatic number: A hierarchy. Jahresbericht der Deutschen Mathematiker-Vereinigung, 106 (2004), no. 2, 71-90.

Institute of Mathematics

University of Tsukuba
Tsukuba-shi, Ibaraki 305-8571, Japan
E-mail address: akira04k16@math.tsukuba.ac.jp

[^0]: * Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba-shi, Ibaraki 3058571, Japan.
 E-mail address: akira04k16@math.tsukuba.ac.jp
 Received April 2, 2008.
 Revised September 1, 2008.

