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Subcontinental heat wave triggers 
terrestrial and marine, multi-taxa 
responses
Katinka X. Ruthrof  1,2, David D. Breshears3,4, Joseph B. Fontaine5, Ray H. Froend6, 

George Matusick1, Jatin Kala  5, Ben P. Miller2,7, Patrick J. Mitchell8, Shaun K. Wilson9,10, 

Mike van Keulen5, Neal J. Enright5, Darin J. Law3, Thomas Wernberg  10 & 

Giles E. St. J. Hardy1

Heat waves have profoundly impacted biota globally over the past decade, especially where their 

ecological impacts are rapid, diverse, and broad-scale. Although usually considered in isolation 

for either terrestrial or marine ecosystems, heat waves can straddle ecosystems of both types at 

subcontinental scales, potentially impacting larger areas and taxonomic breadth than previously 

envisioned. Using climatic and multi-species demographic data collected in Western Australia, we 

show that a massive heat wave event straddling terrestrial and maritime ecosystems triggered abrupt, 

synchronous, and multi-trophic ecological disruptions, including mortality, demographic shifts and 

altered species distributions. Tree die-off and coral bleaching occurred concurrently in response to the 
heat wave, and were accompanied by terrestrial plant mortality, seagrass and kelp loss, population 

crash of an endangered terrestrial bird species, plummeting breeding success in marine penguins, 

and outbreaks of terrestrial wood-boring insects. These multiple taxa and trophic-level impacts 

spanned >300,000 km2—comparable to the size of California—encompassing one terrestrial Global 

Biodiversity Hotspot and two marine World Heritage Areas. The subcontinental multi-taxa context 

documented here reveals that terrestrial and marine biotic responses to heat waves do not occur in 

isolation, implying that the extent of ecological vulnerability to projected increases in heat waves is 

underestimated.

Recent dramatic ecological shi�s in response to climate extremes have had profound societal impacts1 and have 
galvanized recognition of extreme climate events, rather than gradual, mean change, as the most conspicuous 
hand of climate change1,2. Of particular concern are short and extreme temperature anomalies spanning days 
to weeks, referred to collectively here as “heat waves”3. A terrestrial heat wave event can be identi�ed as three or 
more consecutive days where the maximum temperature is over the 90th percentile4, whereas a marine heat wave 
is usually de�ned as a discrete, prolonged, anomalously warm water event in a particular location5. �e land area 
a�ected by heat waves is expected to double by 2020 and quadruple by 20406. In combination with droughts, heat 
waves are also predicted to increase in frequency and magnitude, with climate models pointing at land–atmos-
phere coupling as a key reason for this exacerbation7,8. Increases in frequency are not restricted to terrestrial heat 
waves; marine heat waves now occur 4–5 times more o�en than in the 1980s9.
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Heat waves can produce profound physiological consequences for �ora and fauna2,10,11, triggering mortality, 
abrupt demographic and community-level disruptions, and ecosystem recon�gurations12–14 – as also re�ected in 
well-documented spikes in human mortality during recent heat waves1,12. Despite the potential subcontinental 
scale of heat waves15, studies of heat wave e�ects on biota almost exclusively focus on physiological or phenolog-
ical change to a single species or ecosystem type10,16–18. �is precludes broader evaluation of their impacts, which 
could disrupt biota across taxonomic and evolutionary lineages, multiple trophic levels, and fundamentally di�er-
ent ecosystem types. In terrestrial ecosystems, research has focused on the combined e�ects of drought and heat 
on tree die-o�17, with more recent studies pointing to the speci�c importance of heat waves16. However in marine 
ecosystems, heat waves alone are recognised as obvious and dramatic drivers of extensive coral bleaching and 
mortality19–21. Long-term, gradual climate-driven changes in growth chronology have been reported within indi-
viduals from both terrestrial and marine organism systems22. But, despite the potential for heat waves to straddle 
terrestrial and marine ecosystems concurrently15,23 their ability to simultaneously trigger ecological responses in 
both ecosystems at the ecoregion and sub-continental scale has received limited attention. Furthermore, although 
heat waves are explicitly discussed in terms of impacts on human populations in the most recent climate assess-
ment reports, their full and detailed e�ects on ecosystems is lacking1,12. Given these gaps in reporting and knowl-
edge, the full extent of ecological vulnerability to projected heat waves may be underestimated.

Following a heat wave event in early 2011, which straddled both the marine and terrestrial ecosystems of 
Western Australia, we aimed to document, using a meta-analytic framework, the pervasive ecological e�ect of a 
climate change-induced extreme event, highlight the breadth of taxa a�ected, and quantify demographic change 
in the abundance and mortality rates. We predicted that the heat wave could cause the loss of foundation species, 
demographic shi�s, as well as alter the composition, structure and function of ecosystems, and change species 
distributions across a wide range of taxa. �at is, overall, some taxa would respond positively, others negatively. 
Organisms present prior to the event (sessile species, long-lived vagile taxa) were assumed a priori to be neg-
atively impacted, whereas vagile consumers that were not present or rare pre-heat wave were presumed to be 
neutral or increasing following a heat wave event.

Results
Climatic event.  �e terrestrial maximum temperatures extending from 25°S at Shark Bay to 34°S at Cape 
Leeuwin for all of March 2011, were 2 °C higher than the long-term March average over the period 1971–2000 
baseline (Fig. 1a). Minimum temperatures were also higher than average (see Fig. S1). At �ner temporal and 
spatial scales, weekly maximum temperature near the Western Australian city of Perth (32°S, 116°E) exceeded 
long-term means by ~5 °C (Fig. 1b). �e number of heat wave days in 2011 was the highest, and the Standardized 
Precipitation Evapotranspiration Index (SPEI)24 was the lowest on record since 1960 (Fig. S2a,b). �e terrestrial 
heat wave coincided with a drought characterized by an extremely dry 2010 winter (40–50% below the average 
rainfall25) and a 30-year pronounced drying trend of reduced winter rainfall (14% decline)26.

The conditions of the terrestrial heat wave were mirrored in marine conditions, and coincided with a 
near-record strength Leeuwin Current and one of the strongest La Niña events on record3. Sea surface tem-
peratures (SST) were abnormally high27 and also nested within a long-term increase in mean SST for Western 
Australia28. �e SSTs for March 2011 were 2–2.5 °C higher compared with the long-term March average over the 
period 1971–2011 (Fig. 1a) and close to the coast, weekly temperatures were 3–3.5 °C above long term averages 
(1990–2010) for that time of year (Fig. 1c).

Biotic response. �e subcontinental heat wave event triggered statistically signi�cant, abrupt, and synchro-
nous (i.e. occurring within 1–2 seasons) biotic disruptions in both terrestrial and marine ecosystems, including 
mortality, demographic shi�s and altered species distributions (Fig. 2a,b). Of 19 terrestrial quantitative contrasts, 
17 (89%) were signi�cant and all were in the expected direction (Fig. 2a). Of 20 marine quantitative contrasts, 14 
(70%) were signi�cant and all but one were in the hypothesised direction (Fig. 2b).

When further re�ned into trophic levels, primary producers in both terrestrial (Fig. 2c) and marine (Fig. 2d) 
ecosystems showed decreases in both survival and cover, in response to the heat wave. Consumers were subdi-
vided a priori into groups to di�erentiate those expected to decrease in abundance following a heat wave (sessile 
organisms, long-lived vertebrates) from those expected to increase in abundance or distribution (e.g. tropical 
�sh). Consumers expected to be negatively a�ected by the heat wave did so for both the terrestrial (Fig. 2e) and 
marine (Fig. 2f) ecosystems (abundance of the endangered cockatoo Calyptorhynchus latirostris, and breeding 
success of penguins Eudyptula minor declined). Similarly, consumers expected to increase in abundance did so for 
both the terrestrial (Fig. 2g) and marine (Fig. 2h) ecosystems (outbreaks of the wood boring insect Phoracantha 
semipunctata in response to dying trees) reinforcing support for the pervasive e�ect of the heat wave in both 
biomes. Further underscoring the scale of the event, taxa from a breadth of lineages were impacted by the heat 
wave (Table 1; species-speci�c responses by study are provided in Extended Data Table 1), providing additional 
evidence for the permeating e�ects of the heat wave.

�e magnitude of changes documented was substantial. Mean shrub and tree mortality (including Beaufortia 
elegans, Eucalyptus marginata and Corymbia calophylla) was 19% following the heat wave (Fig. 2a), greatly 
exceeding the magnitude of background mortality (e.g. for Eucalyptus marginata, reported locally: 0.02–2.42%/
yr29) and for forests elsewhere30. Annual counts of endangered Carnaby’s Black Cockatoo (Calyptorhynchus lati-
rostris), have to date, not recovered from the substantial decline (60%) observed (Fig. 2; Extended Data Table 1). 
Our quantitative results are reinforced by other qualitative studies indicating sub-lethal heat wave impacts, 
including partial tree canopy dieback31, coral bleaching32, decline in health status of turtles (Chelonia mydas)18, 
and altered lobster (Panulirus cygnus) behaviour33.
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Discussion
�e results of our meta-analytic approach illustrate a broad range of diverse and pervasive biotic disruptions 
caused by a heat wave, re�ecting strong spatial coherence between climate signal and ecological response. �ese 
include loss of foundation, habitat-forming species such as trees (e.g. Eucalyptus marginata and Corymbia cal-
ophylla16), corals (Acropora34), algae35, critical reductions in ionic vertebrate species such as an endangered 
cockatoo (Calyptorhynchus latirostris36), and penguins (Eudyptula minor37), increased abundance of �shes (e.g. 
Labracinus lineatus35), and an outbreak of wood boring insects (Phoracantha semipunctata38). Speci�cally, nega-
tive impacts of the heat wave were anticipated for taxa where individuals were physically present during the heat 
wave. For example, all sessile organisms, as well as longer-lived vertebrates such as Little Penguins (Eudyptula 
minor) and Carnaby’s Black Cockatoos (Calyptorhynchus latirostris). In contrast, a number of species increased 
dramatically from low numbers (tropical �sh and wood boring beetles). �e attribute of a species population 
being present prior to the heat wave provided a clear and useful way in which to consider heat wave response 
syndromes39. Qualitative studies describing responses to the heat wave also reinforced our quantitative results 

Figure 1. Temperature anomalies for Western Australia in early 2011. (a) Maximum temperature anomaly 
over land from gridded observations63 for March 2011 relative to March 1971–2000. Sea Surface Temperature 
(SST) anomaly from a combined in-situ and satellite derived product67 for March 2011 relative to 1971–2000. 
(b), Weekly mean maximum temperatures during 2011 (red dots), and the mean over 1971–2000 (blue dots) 
near Perth (32 °S, 116 °E) as shown by the black dot in panel (a,c) Weekly mean SST during 2011 and the mean 
over 1990–2010 o� the coast of Western Australia (−32.5 °S, 115.5 °E). Figure was created with the NCAR 
Command Language (Version 6.4.0) [So�ware]. (2017). Boulder, Colorado: UCAR/NCAR/CISL/TDD. http://
dx.doi.org/10.5065/D6WD3XH5.
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(Extended Data Table 1). Ecological changes triggered by heat waves like those we document here are likely to 
cause fundamental disruptions in the structure40, function41, and distribution of species leading to phase shi�s42 
or cascades43 to alternate ecological states with long-term consequences for ecosystem services44. For example, 

Figure 2. Heat wave-impacted organisms in terrestrial and marine ecosystems in Western Australia, 2011. 
(a,b) consistent with expected, (c–f) examples from species that decreased, and (g,h) increased. Blue dots and 
con�dence interval (CI) lines denote prior to heat wave, orange dots and CI lines denote following the heat 
wave. Note that these are di�erent types of responses (e.g. cover change, mortality) and are not connected in a 
cascade or food web, but are separate examples. Inset photos are an example of each type: (c) 12 species of trees 
plus 3 shrubs (photo credit: K. Ruthrof), (d) 3 species of seagrass/kelp (T. Wernberg), (e) 1 species of cockatoo 
(L. Valentine), (f) 1 species of penguin (B. Cannell), (g) 1 species of wood boring insect (G. Matusick) and, (h) 3 
species of �sh (T. Wernberg).



www.nature.com/scientificreports/

5SCIENTIFIC REPORTS |  (2018) 8:13094  | DOI:10.1038/s41598-018-31236-5

following the heat wave discussed in this study, 36% of seagrass meadows were damaged in Shark Bay, a world 
heritage listed area, and an estimated 2–9 Tg CO2 may have been released to the atmosphere44. Similarly, the 
2003 heat wave in Europe resulted in signi�cant disruptions to productivity across multiple forest ecosystems45,46, 
and the heat wave in 2012 in the NW Atlantic Ocean which led to marine species shi�ing their geographic dis-
tribution and seasonal cycles23. Additional �ow-on e�ects include changes to key ecological processes, such as 
herbivory14,35,42,47, which maintained altered habitats, reduced resilience of tree populations to pests and patho-
gens38, altered forest structure40,48, and increased proximal predicted rate of wild�re spread49. As the frequency 
and spatial extent of heat waves continues to increase1,50, recovery times and persistence opportunities for many 
of these species may be further impacted.

Collectively, these results show a consistent, synchronous large spatial and taxonomic response throughout a 
terrestrial-marine ecoregion. We infer this from the spatial coherence of observations and consistency of �ndings 
across taxa, trophic groups, and ecosystems types within 1–2 seasons following the heat wave. Our results do not 
enable us to evaluate more detailed questions about the precise causality of responses to the heat wave, or the 
longer-term impacts or resilience. �e rapid response of many taxa to heat stress indicate changes in abundance 
and condition are likely a direct consequence of the heat wave. However, for species with protracted change 
we are unable to determine if this is a direct response to the heat wave or an indirect response to changes in 
resource availability. Our results are consistent with some expected cross-taxa sensitivities, particularly for terres-
trial woody plant species for which mortality increased with lifeforms progressing towards more mesic-a�liated 
taxa, from heathland shrubs (~2% mortality) to heathland trees (~18%) to woodland trees (~25%) to forest trees 
(~49%; Table 1). �e coherence of marine and terrestrial responses to the heat wave also are suggestive that tree 
mortality patterns, while likely predisposed by drought, appear to have been triggered by the heat wave itself. 
Observations of changes in crown health corresponded with a prolonged heat wave in late February 201116. �ese 
�ndings provide a foundation on which to build future experimental and observational studies regarding the 
speci�c nature of heat wave impacts, while simultaneously providing evidence for the potential of heat waves to 
trigger pervasive and spatially extensive biotic disruptions.

Understanding the coherence of the marine and terrestrial heat wave requires an appreciation of large-scale 
atmospheric and oceanic climatic drivers. Sea surface temperatures (SSTs) along the west coast of Australia are 
linked to the El Niño Southern Oscillation (ENSO), which in�uences the strength of southerly �owing currents 
via the Indonesian Flow �rough. La Nina years are associated with a stronger Leeuwin current and warmer 
tropical SSTs at high latitude temperate reefs51,52. During the 2010–2011 Austral summer, an exceptionally strong 
La Nina event and northerly winds resulted in a surge in the Leeuwin current and abnormally high SSTs temper-
atures along the ocean margins of southwestern Australia53. In the terrestrial system, the warmer and dryer than 
average conditions in southwestern Australia leading up to the 2010–2011 event, follow a long-term warming 
and drying trend. While the warming trend has been largely attributed to increased anthropogenic greenhouse 
gas emissions26,54, the cause of the consistent reduction in rainfall since the 1970s is not as clear, with numer-
ous studies identifying several factors as likely contributors. �is includes natural variability55, changes in ocean 
temperatures56,57, land-use change58, a southern shi� of storm tracks59, as well as snowfall increases in coastal 
east Antarctica60. �e latest global climate projections61 and recent high resolution regional climate projections62 
show a statistically signi�cant decline in winter rainfall across southwestern Australia linked to few rain bearing 
fronts traversing the region, consistent with a southern shi� of storm tracks59. However, compound terrestrial and 
marine heat waves in this region, and the degree to which they could be linked along a given terrestrial-marine 
continental boundary, remains uncertain. Nonetheless, the coherence of the marine and terrestrial patterns seen 
in the 2011 event is striking, and future evaluation of potential linkages is warranted.

�e biotic disruptions that we document are notable in each of �ve aspects, in that our results: (1) build from 
a focus on single or co-dominant species studies10,16–18 to document responses across broad taxonomic lineages; 
(2) extend beyond physiological1,11 or phenological1 change to demographic disruptions; (3) move beyond focus 

Domain Trophic Level
Response 
group Lifeform N taxa

N quantitative 
studies Latitude

Duration 
(seasons)

Response 
Magnitude Units

Terrestrial

Producer Decreasing

Understory shrubs 3 3 29.6S 2 −2.4 Survival

Tree-emergent 2 2 29.6S 2 −17.6 Survival

Tree-woodland 7 7 31.4–32.4S 2 −25.1 Survival

Tree-forest 3 3 32.0–32.7S 2 −48.6 Survival

Consumer
Decreasing Bird 1 1 31.0–33.0S 1 −43.4 Abundance

Increasing Insect 1 1 32.0–32.7S 1 19.1 Abundance

Marine

Producer Decreasing

Coral 3 3 20.5–32.0S 2 −10.9 Cover

Macroalgae 4 3 30.3S 1 −21.4 Cover

Seagrass 1 1 26.2S 1 −49.7 Cover

Consumer
Decreasing

Shell�sh 4 0 26.2–32.0S 1 NA

Bird 1 1 32.0S 2 −23.2 Breeding success

Increasing Fish 5 3 30.3–32.0S 1 6.6 Range extension

Table 1. Taxonomic and spatial sample of heat wave induced impacts and their duration and magnitude. Note: 

terrestrial and marine ecosystems were impacted in Western Australia from January 2011 (see Extended Data 

Table 1 for individual studies).
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on gradual ecological changes12,22,30 to speci�cally assess abrupt ecological change; (4) quantify changes from 
individual locations16–18 to spanning up to sub-continental scale; and (5) break down silos across historic discipli-
nary boundaries between marine13,14,18,19,35,42,47 and terrestrial11,16 ecology. �at our results simultaneously show 
biotic responses in all �ve of these aspects provides evidence for the pervasive ecological vulnerability to a climate 
change-induced extreme event. We have documented and highlighted the breadth of taxa a�ected and quanti�ed 
demographic change in abundance and mortality rates. Collectively, our results imply that the full extent of eco-
logical vulnerability to projected heat waves is grossly underestimated.

Methods
We evaluated the ecological responses associated with a subcontinental heat wave in 2010–2011 across an ecore-
gion of adjoining terrestrial and marine ecosystems along the Western Australian coast. To characterize physical 
heat wave conditions in both terrestrial and marine ecosystems, we compared 2011 temperature conditions with 
long-term averages (1971–2000). Impact on terrestrial and marine biota (N = 30 taxa) was then assessed via 
assimilating published reports and summarising using a meta-analytic framework.

Climatic Data. �e daily maximum and minimum temperature and precipitation dataset used in this study is 
the Australian Bureau of Meteorology’s gridded observational product. �e dataset has a resolution of 5 km and 
represents an interpolation from a network of weather stations across Australia, employing topography-resolved 
analysis methods to minimize uncertainty in �tting a surface to observations63. �is dataset was chosen as it is the 
most reliable and widely used by numerous studies which focus on heat waves in Australia, e.g.4,64–66.

A terrestrial heat wave event within the climate record (1960–2014) was identi�ed as three consecutive days 
during Austral summer months (November to March) where the maximum temperature was over the 90th per-
centile threshold (based on a 15-day analysis window). �ese calculations followed the ‘CTX90pct’ method4, a 
method well suited to capturing trends in heat waves in Australia. Heat wave days are calculated as the sum of 
all summer days that were identi�ed in a heat wave event for a particular summer period (i.e. November 2010 to 
March 2011 was assigned as 2011 summer).

Sea Surface Temperature (SST) data are from Reynolds et al.67. �is dataset combines in-situ observations and 
remotely sensed estimates to produce a SST dataset at a 1 by 1 degree resolution and is suitable for monitoring of 
weather and climate on a weekly time-scale since the 1990s. Whilst there are other blended in-situ and remotely 
sensed SSTs datasets such as that of Rayner et al.68, these are only available on a monthly time-scale, which was 
judged too coarse for capturing heat wave events. �erefore the dataset of Reynolds et al.67 was chosen because of 
its higher frequency and previous use in heat wave studies, e.g5,69.

Biotic Data. Our aim was to quantify pre- to post-heat wave demographic change in the abundance or mor-
tality rates of individual taxa (see Extended Data Table 1 for detailed description of metrics). To quantify the 
magnitude of ecological impacts from the heat wave, data were sourced from peer-reviewed publications, gov-
ernment reports, and unpublished sources (Extended Data Table 1). Authors used the peer-reviewed literature, 
local knowledge, and professional contacts to identify data sources and develop a dataset of heat wave disruptions, 
encompassing 45 records of 30 terrestrial and marine taxa from within the impacted ecoregion. For marine data, a 
workshop was held shortly a�er the heat wave event33 and evidence of impacts, both quantitative and qualitative, 
were compiled. We relied on this report and participants’ subsequent publications for marine-based data. For 
terrestrial impacts, most data were unpublished and contributed by co-authors. To merit inclusion, data on heat 
wave impacts had to include information from October 2010 to July 2011 (start of the marine heat wave and end 
of the terrestrial heat wave responses), include an unimpacted contrast (typically prior measurement), and be 
from the impacted region of Western Australia (marine: latitudes 20–34 °S; terrestrial: 25–34 °S; Fig. 1, Fig S1). 
All such available data were included: taxa and data were not selected on the basis of an observed impact and were 
treated as a sample of taxa measured during the climate event. How the taxa examined were selected for survey in 
the �rst place varied for each study, typically species were keystone species, ecosystem dominants or threatened 
taxa. To be included, quantitative data had to report a pre to post comparison (10 studies) or a space for time 
substitution (1 study; Extended Data Table 1).

Data were extracted from studies recording taxon, location, mean, error, and sample size for pre and post heat 
wave measurements. Data were demographic in nature, including mortality rates of individual plants or changes 
in population abundance (cover of plants, mortality rates of individual plants, counts of animals; Extended Data 
Table 1). Where data included multiple pre-heat wave measurements we combined prior data or retained only 
the previous year (where time scales >2 years prior). Where studies included multiple taxa, spanned a major 
geographic divide (island groups) or distance (>100 km), we recorded each comparison separately (Extended 
Data Table 1). Taxa a�ected were categorized in relation to their ecosystem function (producers: photosynthetic 
organisms including algae, seagrass, coral, shrubs, and trees; consumers: non-photosynthetic organisms). We 
further divided organisms based on their pre-heat wave prevalence/abundance and life history attributes of distri-
bution (tropical/temperate) and disturbance response (positive/negative). �is resulted in taxa classi�ed in terms 
of expected positive (increaser) or negative (decreaser) response to a heat wave. In all cases, we relativised data 
within contrasts to set the pre-heat wave levels to an equivalent point to facilitate comparisons.

Impact data varied among studies depending on the initial design of the survey and the nature of the taxon 
in question. All parameters had a direct bearing on population response, and included: survival, abundance, 
range change or fecundity. Biotic disruption records were aggregated by trophic levels (primary vs. secondary), 
producers or consumers where taxa were classi�ed a priori expected to decrease in abundance following the heat 
wave from those expected to increase in abundance or distribution (range extension). We expressed all biotic dis-
ruptions as percent change post-event, and normalized all pre heat wave values to zero, thereby permitting assess-
ment of heat wave impacts and comparison across taxa and disparate units of measurement (similar to other 
meta-analytic studies where the outcome measures from di�erent experiments are standardised and put on the 
same scale70). Means and 95% con�dence intervals by functional group were calculated using a mean weighted by 
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the number of independent sample units in order to facilitate pre to post comparisons. Lack of con�dence interval 
overlap was interpreted as strong evidence of a di�erence between groups, and con�dence interval overlap but 
not including the mean was interpreted as moderate evidence71. �e datasets generated during and/or analysed 
during the current study are available from the corresponding author on request.
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