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Subcontinuum mass transport of condensed
hydrocarbons in nanoporous media
Kerstin Falk1, Benoit Coasne1, Roland Pellenq1, Franz-Josef Ulm1 & Lydéric Bocquet1,w

Although hydrocarbon production from unconventional reservoirs, the so-called shale gas,

has exploded recently, reliable predictions of resource availability and extraction are missing

because conventional tools fail to account for their ultra-low permeability and complexity.

Here, we use molecular simulation and statistical mechanics to show that continuum

description—Darcy’s law—fails to predict transport in shales nanoporous matrix (kerogen).

The non-Darcy behaviour arises from strong adsorption in kerogen and the breakdown of

hydrodynamics at the nanoscale, which contradict the assumption of viscous flow. Despite

this complexity, all permeances collapse on a master curve with an unexpected dependence

on alkane length. We rationalize this non-hydrodynamic behaviour using a molecular

description capturing the scaling of permeance with alkane length and density. These results,

which stress the need for a change of paradigm from classical descriptions to nanofluidic

transport, have implications for shale gas but more generally for transport in nanoporous

media.
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O
ver the last decade, natural gas recovery from shales has
increased worldwide, particularly in the United States,
where production rates are skyrocketing—nowadays

about 40% of the natural gas produced in the United States, as
compared with 1% in 2000 (refs 1,2). Predictions foresee this
transformation to continue with part of the attention shifted to
shale oil. However, the reliability of these predictions is highly
disputed3,4 because of large uncertainties over the availability of
this resource and large concerns about its environmental
impact5,6.

From a scientific perspective, shale gas and oil are trapped in a
complex network of small pores, in particular in organic
inclusions (kerogen) with sub-nanometre pore space7. A key
characteristic of these unconventional reservoirs is their ultra-low
permeability8. Quantitatively, flow rate predictions are classically
based on Darcy’s law

q ¼ � k
Z
�@zP ð1Þ

stating that the volumetric fluid flux through a porous material
depends linearly on the pressure gradient, the inverse of the fluid
viscosity Z and a material-specific permeability k. Typically, the
permeability scales as the square of the pore diameter and is
measured in Darcy (1DC0.987� 10� 12m2). Unconventional
reservoirs exhibit permeabilities of the order of 10� 9 D, typically
six orders of magnitude smaller than conventional reservoirs8,
and in direct line with the nanoporous structures of kerogen7.
Considering that kerogen is the hydrocarbon source, which
produces the gas and oil through its decomposition, the slow and
complex hydrocarbon migration from kerogen to the cracks
surface is the rate-limiting step9–11. Such ultra-low permeability
raises concerns on the applicability of the Darcy framework itself
to account for mass transport in the nanoporous kerogen.
Although attempts have been made to palliate for the breakdown
of Darcy approach by including slippage in gas flow, via, for
example, the Klinkenberg effect12,13, such empirical corrections
cannot capture the complex adsorption and transport behaviour
of hydrocarbon in ultra-confining porous materials. Such effects
must manifest themselves through a complex interplay between
apparent viscosity and wettability, as evidenced in recent
experiments on nanoconfined water14.

At a more global scale, some recent works aimed at explaining
the specific longtime production rates of shales beyond traditional
reservoir modelling. Monteiro et al.9 suggested a hydrodynamic
model of gas flow in nanoporous media by introducing a pressure
gradient-dependent permeability of kerogen. They predict a
power law for the decline of the production rate, which is
compatible with early-life data for several major US shale plays.
In the same line, Patzek et al.10 proposed a simplified model of
shale reservoirs, which are made up of parallel equidistant
fracture planes. Assuming Darcy-like gas flow bewteen these
fracture planes, they predict a crossover from an early-time
algebraic decay to an exponential decline at long time. Although
such macroscale modellings capture some specificities of
the gas recovery, in particular the long-time decay, they,
however, point to the lack of knowledge on small-scale
behaviours, and in particular on the role of the adsorption and
desorption processes, as well as non-Darcy multiphase flow.
Further research is needed to improve the—so far limited—
scientific understanding2.

As far as the fundamental question of fluid transport in
nanoporous materials is concerned, one expects two major
reasons for the breakdown of the Darcy framework. First, strong
adsorption effects occurring in nanopores are expected to induce
large changes in the phase behaviour of the confined hydro-
carbons15,16. The density of the alkane phase inside the

nanoporous material is usually much larger than its bulk
counterpart and confined hydrocarbons are expected to behave
as a condensed phase, at odd with the simple gas picture. This has
potentially dramatic consequences for their transport
properties17–19. Second, research in the field of ‘nanofluidics’
has demonstrated the breakdown of hydrodynamics at the
nanoscale20–22; new phenomena such as slippage, interfacial
transport and non-viscous effects appear as the ‘molecular
granularity’ of the fluid becomes non-negligible. Overall,
hydrocarbon transport in the multiscale and disordered
nanoporosity of kerogen remains essentially not understood.
Keeping in mind that large parts of the total amount of
hydrocarbons is trapped in this nanoporosity, and that the
overall permeability of the formation will be limited by the lowest
permeability in the fluid path, there is a strong need for a reliable
theoretical framework of hydrocarbon transport in nanoporous
matrix, with the ultimate goal of obtaining more reliable
predictions, towards a more efficient and environmentally safe
exploitation technology.

Here, we present an in-depth theoretical study of n-alkane
transport in a kerogen-like nanoporous matrix, which aims at
proposing such a new theoretical framework. By relying on
statistical mechanics molecular simulations that capture the
interplay between adsorption and transport as well as the
breakdown of hydrodynamics at the nanoscale, our approach
does not require assuming any flow type (Darcy, diffusive,
Knudsen and so on). We first show that the continuum
description—the so-called Darcy’s law—dramatically fails to
describe transport within a molecular model of nanoporous
kerogen. Such a failure of the conventional description is shown
to be due to the non-viscous nature of the flow in such complex
media, which arises from strong alkane adsorption. Nevertheless,
despite the intrinsic complexity of such heterogeneous, dis-
ordered media, all permeances are shown to follow an unexpected
yet simple scaling with the alkane length. To account for the
scaling of permeance with alkane length and fluid density, we
propose a molecular description in which transport arises from a
combination of slip-like friction of the hydrocarbons with the
matrix and a free volume term. This model provides an analytical
expression for the permeance, which allows to rationalize
hydrocarbon transport in kerogen and quantitatively describe
the permeance for all alkanes, at all densities.

Results
Alkane transport in kerogen. Figure 1a,b shows the nanoporous
structure used for this study; a disordered porous carbon,
obtained using an atom-scale reconstruction technique, which
can be seen as a reasonable molecular model of kerogen as it
captures its main features (pore size, density, chemical compo-
sition including sp2/sp3 hybridization ratio, morphological dis-
order)23–26. The pore size distribution of the numerical sample
considered here spans from a few Å to B15Å, which is fully
consistent with the pore sizes probed by N2 and CO2 adsorption
in kerogen (see Supplementary Fig. 1 for a comparison with
available experimental pore size distributions). We investigated
both hydrocarbon adsorption and transport in this molecular
model of kerogen using configurational biased grand-canonical
Monte Carlo and molecular dynamics simulations. Details about
the models and simulations can be found in the Supplementary
Discussion and Methods; see also Supplementary Table 1. This
will serve as the basis of a theoretical scaling model of transport,
based on the analysis of the fluctuations of microscopic variables
via the fluctuation dissipation theorem (FDT)27. Such a bottom-
up approach will allow us to assess fluid transport in ultra-low
permeable materials on the relevant microscopic scale (Fig. 1).
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Adsorption and transport of linear alkanes—methane, pro-
pane, hexane, nonane and dodecane—in the kerogen-like
nanoporous carbon28 shown in Fig. 1 were investigated under
temperature and pressure relevant to shale reservoir conditions
(T¼ 423K and Pr100MPa). Here, we present the key results
from an extensive investigation of adsorption, diffusion and
steady-state flow under constant pressure gradients. As shown in
Fig. 2a, the mean fluid flow velocity q in the matrix depends
linearly on the pressure gradient qzP for all considered n-alkanes
and static pressures,

q ¼ �K�@zP with q ¼ 1
N

X
l

vðlÞz ð2Þ

(vðlÞz is the velocity of molecule l, lA{1;N}). We emphasize that this
linear relation is in no way imposed, but is a result of the
simulations. In other words, no nonlinear effects occur. Note that
we checked that the values of the permeance K are in full
agreement with equilibrium calculation based on Green-Kubo
relationship, see Supplementary Fig. 5a. This demonstrates that
the linear relationship obtained here pertains to the small
pressure drops relevant to experimental conditions. However,
the proportionality factor K—called permeance to make a clear
distinction from the permeability kBK� Z usually defined by
Darcy’s law (equation (1))—depends on the fluid type and the
thermodynamic conditions as shown in Fig. 2b.

Non-Darcy behaviour and transport scaling law. When using
Darcy’s law, it is implicitly assumed that the permeability k is an
intrinsic material property, that is, kBK� Z is a constant
depending only on the geometry of the porous matrix. Figure 3a
shows that this expectation dramatically fails for hydrocarbon
transport in kerogen as k is found to depend on both the fluid
type and adsorbed amount. A first reason for this failure of the
classical porous-media-flow description can be found in the
adsorption behaviour. As seen from the form of the adsorption
isotherms in Fig. 1c, owing to the severe confinement in small
nanopores such as in kerogen, the confined alkanes are in a state
that drastically differs from their bulk counterpart at the same
pressure and temperature15,16. In particular, comparison with the
bulk phase shows that longer alkanes are in a condensed liquid-
like phase under confinement while they are in a gaseous phase in
bulk. As a result, the use of the bulk viscosity in this case is clearly
inappropriate to calculate flow properties in the nanopores. In an
attempt to extend Darcy’s law to hydrocarbon transport in
nanoporous media, we compared its predictions against the data
in Fig. 3 when using the bulk viscosity of the alkanes at the

density of the confined phase (Supplementary Fig. 3). As shown
in the inset in Fig. 3a, Darcy’s law with such corrected viscosities
also fails to describe the permeabilities observed in the molecular
simulations. We emphasize that such a pure dynamical effect
cannot be accounted for by the so-called ‘Darken factor’, which
describes the thermodynamic effect of adsorption on transport by
correcting local density gradients using local adsorption
isotherms29.

To further assess the magnitude of the hydrodynamic break-
down, many insights are provided by the molecular dynamics. An
interesting probe of the dynamical processes is the transverse
momentum fluctuations, defined in Fourier space:

jz kx; tð Þ ¼
X
l

mvðlÞz ðtÞexp � ikxx
ðlÞðtÞ

� �
ð3Þ

(with x and z two perpendicular directions). In a viscous fluid,
transverse momentum relaxes via momentum diffusion and its
correlation should exhibit a ‘universal’ exponential decay at small
k and long times27: hjz(k,t)jz(� k,0)iequBexp(� k2vt) (n¼ Z/r is
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Figure 2 | Alkane transport in kerogen-like nanoporous carbons. Flow of

different n-alkanes in nanoporous carbon under an external driving force

�rP: methane (black), propane (blue), hexane (green), nonane (yellow)

and dodecane (red). (a) Linear response of the mean flow velocity to the

pressure gradient (T¼423K, P¼ 25MPa, dashed lines: linear fits); (b)

permeance K¼ �q/rP as a function of the thermodynamic equilibrium

pressure P. Values of the permeance K are in full agreement with equilibrium

calculation based on Green–Kubo relationship, see Supplementary Fig. 5a.

This demonstrates that the linear relationship obtained here pertains to

small pressure drops relevant to experimental conditions.
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Figure 1 | Hydrocarbons in kerogen-like nanoporous carbon under reservoir conditions. (a) System setup: n-alkanes adsorbed in a porous carbon matrix

(volume (5 nm)3); (b) zoom on one dodecane molecule (red) with its neighbours and the surrounding carbon structure; (c) adsorption isotherms of

methane (black), propane (blue), hexane (green), nonane (yellow) and dodecane (red), normalized by the maximum density r1n reached at high pressures;

the mass density r1n increases slightly with the alkane length (see Supplementary Methods and Supplementary Fig. 2). Because of the small pore sizes

(B1 nm), the system is dominated by fluid/solid interfaces, and the fluid is in a supercritical phase, that is, no gas–liquid phase transition occurs. Inset: bulk

phase diagrams for comparison.
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the kinematic viscosity). When confined inside a solid matrix, a
viscous relaxation of the form exp[� (g0þ k2n)t] may be
expected, with g0 steming from the Darcy friction of the liquid
with the solid matrix. In strong contrast, we find a very different
behaviour for the transverse momentum fluctuation of the
confined alkanes, with a correlation in the form of a double
exponential hjz(k,t)jz(� k,0)iequ¼A exp(� akt)�B exp(� bkt),
and a complex dependence of the decay coefficients ak and bk on
the wave vector k (Supplementary Fig. 4). These features
demonstrate the violation of the hydrodynamic relaxation for
all explored k scales. It suggests that non-local effects and
memory effects as described in generalized hydrodynamics with
Mori-Zwanzig memory functions may occur30. This result shows
unambiguously that alkane transport in disordered nanoporous
materials such as kerogen cannot be accounted for, at any length
scale explored, by a hydrodynamic description.

Scaling law and nanofluidic transport. The failure of the
hydrodynamic approach under extreme confinement therefore
calls for alternative frameworks of alkane transport in kerogen. A
lead is suggested in Fig. 3b where it is shown that, in spite of this
complexity, permeances K for all alkanes can be collapsed onto a
single master curve as a function of loading G ¼ rnðPÞ=r1n (ratio
of the alkane density to its value at very large pressure, where the
adsorbed amount reaches a plateau. The maximum density r1n ,
which was obtained from a Langmuir fit of the adsorption iso-
therms shown in Supplementary Fig. 2, slightly depends on the
alkane length n. The permeance K is found to scale as the inverse
of the alkane length (number of carbon atoms n):

K Gð Þ � f Gð Þ
n

ð4Þ

where f(G) is a simple function of the loading G. More specifi-
cally, we find that KðGÞ ¼ f ðGÞ

nþ n0
with n0E2 for all alkanes pro-

vides an excellent rescaling.
With the aim to propose a molecular model of alkane transport

in disordered nanoporous materials such as kerogen, we make use
of the intimate links between dissipation and fluctuation of
microscopic quantities, as described by the FDT27. In this
framework, the permeance K is expressed in terms of the

fluctuation of the total momentum via a Green–Kubo equation:

K ¼ D0
N
VkBT

¼ V
kBT

Z1

0

qðtÞqð0Þh iequdt ð5Þ

where D0 is the collective diffusion coefficient, N the number of
alkane molecules, V the volume of the matrix, respectively, and
qðtÞ ¼ N � 1

P
l v

ðlÞ
z ðtÞ the fluctuating centre-of-mass velocity of

the fluid with respect to the frozen matrix. As expected from the
FDT described in equation (5), the collective diffusivity D0 for the
different confined alkanes—computed using equilibrium
molecular dynamics (MD) of the q-autocorrelation function—is
in full agreement with the permeances K estimated using non-
equilibrium MD, in which the flow is induced by a pressure
gradient (Supplementary Fig. 5a). This results further confirms
that hydrocarbon transport in kerogen is in the linear regime over
the entire range of pressure gradients considered. Owing to its
collective nature, D0 differs from the molecular self-diffusivity Ds

by cross-correlation terms (vðiÞz ðtÞvðjÞz ð0Þ with iaj) of the form

D0 ¼ Ds þO
X
i 6¼ j

vðiÞz ðtÞvðjÞz ð0Þ
D E

equ

0
@

1
A: ð6Þ

In all studied systems, the difference between D0 and Ds was
found to be small in most conditions. This is highlighted in
Fig. 4a showing that D0EDs, despite some differences for the
shortest alkanes. Consequently, we can relate the permeance K to
the mobility of single molecules as

K n;Gð Þ � Ds n;Gð Þ
kBT

�V
N

ð7Þ

which captures the main behaviour of the permeance K (see the
inset of Fig. 4a).

To proceed further, one needs to provide a molecular
description of the self-diffusion of the dense alkane phase in
the kerogen matrix. First, we compared the scaling of the self-
diffusion coefficient Ds with the chain length n for bulk and
confined alkanes. For the bulk fluid, we find that the diffusion of a
linear alkane molecule is well described by the Stokes–Einstein
relation with slip boundary conditions Dbulk

s ¼ kBT=ð4pZR0Þ for a
particle with an effective diameter close to its longitudinal cross-
section 2R0 � sCH2 ; see Supplementary Fig. 6, where R0BDs� Z
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is shown to be independent of the alkane density and length
(under typical shale reservoir conditions T¼ 423K and P¼ 25
MPa, the self-diffusivity and viscosity in the bulk liquid scale
roughly as DsBn� 0.7 and ZBn0.7, respectively, and the
n-dependence of the self-diffusion coefficient and the viscosity
compensate each other). The fact that the hydrodynamic
molecular sizes of alkanes are independent of their length n is
in agreement with experimental measurements31. However, we
emphasize that the origin of this behaviour is far from trivial. It
can be actually accounted for by the slippage of the continuum
alkane fluid on an individual alkane molecule along its length, as
illustrated in Fig. 5a32. This would require further investigation of
the chain dynamics using, for example, recently developed
diffusion maps33.

Coming back to the molecular diffusion of an alkane chain in
the amorphous carbon matrix, we find a very different picture, as
sketched in Fig. 5b. First, as shown in Fig. 4b, we find that, like
the permeance, Ds can be rescaled as the inverse of the alkane
length, DsB1/n. Furthermore, the rescaled diffusion n�Ds is
found to be a generic function of the free volume accessible to the

alkane molecules (Fig. 4b). Qualitatively, this scaling behaviour
can be attributed to two effects. First, the strong molecular
interaction of the alkanes with the carbon matrix leads to a large
fluid-wall friction (in contrast to the low liquid–liquid friction in
the bulk). This suggests a description in the spirit of the Rouse
model for polymer diffusion34. Consider a single alkane molecule
in the matrix. Each monomer i of the alkane experiences a slip-
like friction force from the matrix, fv¼ � x0vi, on top of internal
forces (x0 is the friction coefficient for a single monomer).
Therefore, the total external force acting on an alkane molecule
scales as FT¼ x0

P
ivi¼ n� x0v, with its centre of mass velocity

v¼ n� 1P
ivi and its mobility mT¼ (n� x0)� 1. Accordingly, the

self-diffusion coefficient should scale as

Dð0Þ
s ¼ kBT

nx0
/ 1

n
ð8Þ

where the superscript (0) stands for a single molecule.
Now, one should take into account density effects by

considering that a molecule is able to diffuse provided it finds a
free cavity around it. This effect can be quantified by a free
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volume approach35,36, which relies on the probability to find a
void space larger than a critical volume vcrit next to the diffusing
molecule. One can therefore write

Ds ¼ Dð0Þ
s exp � Nvcrit

Vfree

� �
ð9Þ

where vcrit is the minimum size of a void that allows the molecule
to move into it, whereas N is the number of alkane molecules and
Vfree the accessible free volume. Estimating vcrit as the size of one
alkane molecule valkane and using Vfree ¼ V0

free �N�valkane (with
V0
free the bare free volume in the matrix), equation (9) can be

recast as:

log
Ds

Dð0Þ
s

� �
/ � N�valkane

Vfree
¼ 1� V0

free

Vfree
: ð10Þ

with Ds
(0)

p 1/n. The free volume fraction Vfree=V0
free is calculated

independently for a given adsorbed amount G, see Supplementary
Information. As shown in Fig. 4b, equation (10) describes very
well the dependence of Ds on the alkane chain length and free
volume, and therefore confirms the validity of our description
(the calculation of the free volume in the simulations is described
in the Supplementary Methods).

Altogether, these results show that the bulk and confined
diffusion of alkanes follow very different mechanisms. As
illustrated in Fig. 5, the molecular self-diffusion in bulk alkanes
involves molecular motion that is mainly a translational move-
ment in the longitudinal direction, subject to very little friction
with the surrounding fluid molecules. In contrast, the diffusion of
the confined alkanes stems merely from the friction of the
molecule against the matrix, corrected for the free volume
accessible to the molecule under motion.

Coming back to alkane transport, one therefore predicts that
the permeance K behaves as

K n;Vfreeð Þ � 1
n
� 1
1� Vfree

V0
free

exp � a
V0
free

Vfree

� 	
ð11Þ

with Vfree=V0
free the free volume fraction and we used the

relationship Nvalkane=Vfree ¼ 1�Vfree=V0
free; a is a numerical

constant. Figure 6 shows that the prediction in equation (11) is
in excellent agreement with the MD results for the permeance K
for all alkanes at various densities. We allow for a shift n0 in the
alkane length dependence, as our arguments provide merely the
generic scaling behaviour. All the parameters needed in the
derivation of equation (10) can be determined from simple
experiments. V0

free and Vfree at a given adsorbed amount N can be
estimated from the adsorption isotherm. a and Ds(0), which
describe the dynamics of the confined alkanes, can be assessed
from diffusion experiments such as Quasi-Elastic Neutron
Scattering.

Finally, the permeance as described by equation (11) can be
recast to describe the dependency on the loading G, which is an
experimentally accessible quantity. One expects a linear relation-
ship between the free volume fraction and the loading G, that is,
Vfree=V0

free ¼ 1�bG. This is confirmed by our simulations, see
Supplementary Fig. 7, providing the value b¼ 0.60. Accordingly,
one obtains the following prediction for the mass transport
permeance K in terms of alkane length n and adsorbed amount G:

K n;Gð Þ � K0

n
� 1
bG

exp � a
1�bG

� 	
ð12Þ

As shown in the inset of Fig. 6, this single expression provides a
very good description of the permeance K for all alkanes, at all
densities and does confirm the relevance of the underlying
microscopic description. This expression takes into account both
the strong adsorption of the alkane in the microporous kerogen,
via the dependence on loading G, as well as the specific
nanofluidic transport of this dense alkane phase in the disordered
matrix. It provides an explicit prediction for the permeance K,
which quantitatively captures hydrocarbon transport in the
nanoporous kerogen matrix, in spite of the breakdown of Darcy’s
law. Furthermore, our prediction allows rationalizing the 1/n
rescaling of the permeance, as found in Fig. 3b. Altogether our
prediction, equation (12) therefore establishes a framework able
to describe quantitatively hydrocarbon transport in ultra-low
permeable materials.

Discussion
We demonstrated that hydrodynamics and, hence, Darcy’s law
fail to describe hydrocarbon transport in nanoporous media
because of strong molecular adsorption leading to non-viscous
flow. As an alternative to the continuum Darcy’s description, we
propose a microscopic description for the permeance K derived
from the theoretical framework of statistical mechanics, which
culminates in a quantitative prediction of the permeance as a
function of alkane length n and adsorbed amount G, an
experimentally accessible quantity37. This relation offers a
valuable tool for the fluid-specific prediction of hydrocarbon
transport properties in ultra-low permeable media such as
kerogen. Once integrated into a bottom-up model of fluid
transport in multiscale porous materials (using, for example, well-
established homogeneization techniques), this can be the starting
point for the development of a new generation of unconventional
reservoir simulators. More generally, it proposed a useful
framework for mass transport of dense fluids in nanoporous
materials, which is pertinent to questions relevant to catalysis,
energy storage and so on. Beyond the immediate practical
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implications, the presented results about the exotic transport in
porous materials also raises new challenging fundamental
questions. In particular, the cross-over between hydrodynamic
to non-hydrodynamic transport in disordered nanoporous media
calls for a shift of paradigm as conventional approaches—based
on percolation, porosity and tortuosity concepts—38,39 do rely on
continuum descriptions. The present work offers a well-grounded
molecular basis to adress these questions.
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