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Abstract 

CO2 subcooling has resulted a method to upgrade the performance of CO2 refrigeration plants in the recent 

years, with overall improvements up to 12% with internal heat exchangers, 22% with economizers, 25.6% 

with thermoelectric systems and 30.3% with dedicated subcooling methods. This paper comprehensively 

reviews the recent studies that consider subcooling as a way to upgrade the performance of CO2 

refrigeration cycles. The review is limited to CO2 refrigeration cycles with accumulation receiver for 

commercial purposes and does not consider air conditioning or MAC systems. It is organized as follows: 

first, the thermodynamic aspects of subcooling in CO2 refrigeration cycles are described and discussed; 

second, the main results and conclusions of the recent investigations are analysed inside two big groups: 

subcooling internal methods and subcooling external methods. Finally, the review synthesizes the current 

state of the art and points out the lines of research that deserve future developments. 

 

Highlights 

 Research using subcooling as way to improve CO2 refrigeration is analysed. 

 COP improvements up to 37.8% of CO2 base systems have been reported. 

 State-of-the art subcooling systems are presented and discussed 

 New opportunities for research are highlighted in the review. 
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Nomenclature 𝐵𝑃 back-pressure 𝐶𝑂𝑁𝐷 condenser 𝐶𝑂𝑃 coefficient of performance 𝐸𝐽 ejector 𝐸𝑉 evaporator 𝐺𝐶 gas-cooler/condenser 𝐺𝑊𝑃 global warming potential ℎ specific enthalpy, J·kg-1 𝐼𝐻𝑋 internal heat exchanger 𝑀𝐴𝐶  mobile air conditioning system 𝑚  refrigerant mass flow rate, kg·s-1 𝑝 pressure, bar 𝑃  electric power consumption, W 𝑃 ,  electric power consumption of the subcooling system, W 𝑄 heat transfer rate, W 𝑞 specific enthalpy difference, J·kg-1 𝑅𝑒𝑐 receiver 𝑅𝐼𝐶𝑂𝑆𝑃 ratio of increase in capacity related to subcooling capacity 𝑆𝑈𝐵 subcooling degree, K 𝑆𝐻 superheating degree at evaporator, K 𝑡 temperature, ºC 𝑇𝐸𝑉 thermostatic expansion valve 𝑇𝑆𝑆 thermoelectric subcooling system 𝑤  specific compression work, J·kg-1 𝑥  vapour quality 

Greek symbols ∆ increment 𝜂 efficiency 
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𝜀 thermal effectiveness 

Subscripts 𝑎𝑖𝑟 air 𝐴𝑈𝑋 auxiliary compressor 𝑏𝑎𝑠𝑒 base line system 𝐶 cold source level, critical point condition 𝑐𝑟𝑖𝑡 critical point conditions 𝑑𝑒𝑝 accumulation vessel 𝑒𝑗𝑒 ejector 𝑒𝑛𝑣 environment 𝑒𝑥𝑝 expander 𝑔𝑐 gas-cooler/condenser 𝐻 hot sink level 𝐼 intermediate temperature level 𝐼𝐻𝑋 internal heat exchanger 𝑖𝑛 inlet 𝐾 condenser 𝑀𝐴𝐼𝑁 main compressor 𝑂 evaporator 𝑜𝑢𝑡 outlet 𝑃𝑆 pseudocritical temperature 𝑠 isentropic process 𝑠𝑢𝑏 subcooler, subcooling device, subcooling 𝑤  water, secondary fluid  
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1. Introduction 

CO2 refrigeration systems were rescued by Prof. Lorentzen (1994) in the nineties as a reasonable and 

technical possible solution to replace artificial refrigerants in air conditioning and refrigeration applications. 

As Lorentzen and Pettersen stated, implementation of CO2 cycles would avoid ‘continued emissions of 

several hundred thousand tonnes of alien chemicals to the atmosphere each year, involving the potential 

risk of unforeseen environmental effects’ (Lorentzen and Pettersen, 1993). 

Renaissance of CO2 as working fluid for refrigerant applications was slow, because the initial CO2 

refrigeration systems, especially those working or analysed in transcritical conditions, reached an energy 

efficiency level not comparable to that of artificial refrigerants. To solve the problem, the scientific community 

did great effort on the last decades. First, research was focused on defining alternative refrigeration schemes 

and on improving the performance of individual components (Groll and Kim, 2007; Kim et al., 2004). This 

initial stage of research clearly showed that the working schemes of competitive plants would be very 

different from the traditional schemes used with artificial refrigerants, owing that CO2 refrigeration requires 

a devoted control of the heat rejection pressure in transcritical conditions (Peñarrocha et al., 2014). Second, 

CO2 refrigeration was taken a step forward due to the development of expanders (Singh and Dasgupta, 

2016) and ejector systems (Elbel, 2011; Elbel and Lawrence, 2016; Hafner et al., 2014), which allowed to 

recover energy in the expansion processes. Finally, CO2 refrigeration systems have been combined with 

other systems (hybrid systems) to provide air-conditioning, to perform heat recovery, etc,.., i. e., to supply 

all thermal demands of an application using a very efficient combined system (Pardiñas et al., 2018). 

In the last years, in parallel with the approval of the F-Gas Regulation in Europe (European Commission, 

2014) and the adoption and ratification of the Kigali amendment to the Montreal Protocol (UNEP, 2016), 

CO2 refrigeration is in a massive expansion stage, especially in supermarket refrigeration. This sector, which 

electricity consumption for refrigeration purposes reaches around 45% of its total consumption (International 

Institute of Refrigeration, 2015), needed a refrigerant that mitigated its large negative contribution to the 

Greenhouse effect derived from the use of high-GWP refrigerants and high refrigerant leakage rates (from 

5 to 23% annually) (Llopis et al., 2015b). The first reason why CO2 turned out to be the best candidate, was 

that it combines favourable environmental properties (GWP=1) and high security properties (A1 Ashrae 

classification). The second reason is that the advance of the technique has allowed implementing CO2 

refrigeration systems competitive or even better than with traditional systems, which increased complexity 

of course. 

  



6 
 

Although some upgrades of CO2 refrigeration systems have been extensively covered in the last decade, 

the improvements associated with ‘subcooling’ or ‘after-cooling’1 of CO2 at the exit of the gas-

cooler/condenser have not been analysed globally. Accordingly, the purpose of this review is to join the most 

recent research in relation to cycles, mechanisms and possibilities to improve the energetic performance of 

CO2 refrigeration plants using subcooling at the exit of the gas-cooler/condenser. Revision of the state of 

the art shows that considering as base line system the CO2 cycle without improvements, the possibilities to 

enhance the overall performance reach 12% using internal heat exchangers, 22% using economizers, 

25.6% using thermoelectric systems, 21.3% using integrated mechanical subcooling systems and 30.3% 

using dedicated mechanical subcooling systems (see Table 1 for reference values). Most of the review 

research is at an initial stage and there is room for improvement in some of the methods. 

This review is limited to subcooling systems devoted to CO2 refrigeration systems and concretely to cycles 

with subcooling at the exit of the gas-cooler/condenser with the use of heat exchanger. Other options, such 

as parallel compression technologies (Chesi et al., 2014) are not covered, because they do not directly rely 

on CO2 subcooling. Here, we make emphasis on refrigeration systems including an accumulation vessel, 

being its design is the most appropriate for supermarket application. For these systems, due to the presence 

of the accumulation vessel, the thermodynamic behaviour of the cycles is independent on the refrigerant 

charge. 

The review is organized as follows: First, in Section 2 the thermodynamic aspects of subcooling in CO2 

refrigeration systems are analysed: cycle modification in subcritical and transcritical conditions, benefits and 

cost of subcooling and optimization of the systems are addressed. Second, Section 3 is devoted to 

subcooling mechanisms based on internal methods, i. e., using the CO2 cycle to provide subcooling: internal 

heat exchangers, economizers, integrated mechanical subcooling systems and heat storage systems are 

covered. Third, Section 4 is focused on dedicated subcooling methods, consisting on hybrid systems: 

dedicated mechanical subcooling, thermoelectric systems and others are reviewed. Finally, Section 5 

extracts the main conclusions of the current state-of-the-art and highlights the points and options that require 

further developments, since as it is concluded there is room for improvement using this approach. 

 

                                                           

1 Mohammadi, S.M.H. (2018) pointed out that the term ‘subcooling’ is not suitable to be used, since there is 

no real subcooling in the supercritical region, and suggested to use the term ‘after-cooling’. Authors do agree 

with the definition of the term. However, most of the research work consider the CO2 subcooling also in 

subcritical conditions, where, according to Mohammadi, S.M.H. (2018), the term ‘subcooling’ would be 

appropriate. Since most of the research has used the term ‘subcooling’, authors have followed the same 

nomenclature. Nonetheless, either ‘subcooling’ or ‘after-cooling’ would be equivalent in this manuscript. 
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2. Thermodynamic aspects of CO2 subcooling 

This section is dedicated to discuss the main thermodynamic aspects of CO2 refrigeration cycles with 

subcooling. Subsection 2.1 summarizes some CO2 properties related with the Review; Subsection 2.2 

details the basic subcooled cycle and describes the cycle operation principles. Subsection 2.3 establishes 

the benefits of subcooling, in terms of capacity and COP improvements. Subsection 2.4 discusses about 

the cost or additional energy input needed to provide the subcooling. And finally, subsection 2.5 details the 

operating parameters that must be optimized in a subcooled cycle. 

2.1. Summary of CO2 properties 

CO2 combines favourable environmental properties (GWP=1), high security properties (A1 Ashrae 

classification) and excellent thermo-physical properties (Kim et al., 2004), what has made it as preferred 

refrigerant for centralized commercial purposes, especially for supermarket applications.  

CO2 vapour pressure is high (34.8 bar at 0ºC and 16.8 bar at -25ºC), its latent heat of phase change (230.9 

kJ·kg-1 at 0ºC and 293.3 kJ·kg-1 at -25ºC) combined with its small specific volume (0.0102 kg·m-3 at 0ºC and 

0.0228 kg·m-3 at -25ºC) results in volumetric capacity is between 3 to 10 times higher than artificial 

refrigerants used for centralized commercial systems, which helps reducing dimensions of liquid and vapour 

lines as well as compressor’s (Ma et al., 2013). Transport properties of CO2, which play an important role in 

heat transfer and pressure drop characteristics, are also favourable in contrast with artificial refrigerants, 

especially its thermal conductivity and viscosity  (Kim et al., 2004). However, what makes it a ‘special 

refrigerant’ is its low critical temperature (tC=30.978 ºC) combined with a high critical pressure (pC=73.77bar). 

At environment temperatures higher than its critical temperature, CO2 cycles perform heat rejection in 

transcritical conditions (in practice at temperatures higher than 25ºC, approximately), where unlike common 

artificial refrigerants, pressure and temperature are not coupled (Sánchez et al., 2014b). Instead of 

condensing, CO2 along the supercritical region experiences a gas-cooling process with a decreasing 

temperature profile and large glide in the heat rejection process, thus the heat exchanger for energy rejection 

is known as gas-cooler. Transcritical cycles require optimization of the heat rejection pressure since its 

energy efficiency is bonded to the pressure at the high side of the cycle. Its optimum value is generally 

correlated with the environment/gas-cooler exit and evaporation temperatures (Chen and Gu, 2005; Kauf, 

1999; Liao et al., 2000). For CO2 cycles, heat rejection pressures are high (98.5 bar at tO=-0.8ºC and 

tgc,out=40.4ºC, 101.2 bar at tO=-10.0ºC and tgc,out=40.2ºC) and the high pressure rates between heat rejection 

and the evaporation level cause large exergetic losses that result in reduced energy efficiency values of the 

corresponding cycles (Cabello et al., 2008). 

Reduction of exergetic losses in CO2 expansion processes has been the ‘key’ or the ‘challenge’ to enlarge 

the energy efficiency of CO2 refrigeration cycles in the last two decades, with great achievements in the 

development of expanders (Singh and Dasgupta, 2016) and ejectors (Elbel and Lawrence, 2016). This 
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achievements, already in development, have placed CO2 cycles at similar energy efficiency level than former 

refrigerants used for centralized commercial purposes. In addition, in the last decade, subcooling strategies 

have been also considered to increase the energetic performance of CO2 cycles, which current state of the 

art is discussed in this Review. 

2.2. Cycle with subcooling and operation 

CO2 reference cycle configuration considered for the analysis of subcooling corresponds to the most basic 

classical layout used for centralized commercial purposes, it being detailed in Figure 1. It consists of a 

compression system, a gas-cooler/condenser performing heat rejection to the hot sink (tH), a generic 

subcooling system which function is to subcool the CO2 absorbing energy along the subcooler at an 

intermediate temperature (tI<tH), a back-pressure valve to control the heat rejection pressure and a receiver 

where the non-in-service refrigerant is stocked. Then, liquid refrigerant is extracted from the vessel and sent 

to the evaporators where the cycle absorbs the heat load from the cold source (tC). Evaporators are usually 

controlled by expansion valves maintaining a constant degree of superheat. 

 

Figure 1. Schematic layout of a CO2 refrigeration system with double-stage expansion with subcooling system 

The low critical temperature of CO2 (tcrit=30.978ºC) implies that these refrigeration systems run according to 

two principal modes of operation: at low heat rejection temperature the cycle works in subcritical conditions, 

where the heat exchanger performs heat rejection through condensation at constant temperature. At high 

heat rejection temperature, theoretically for heat rejection temperatures above the critical value but in 

practice for temperatures also below the critical (Sánchez et al., 2014b), the cycle works in supercritical 

conditions. In this case, the heat exchanger acts as gas-cooler with a decreasing temperature profile through 
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heat rejection. (Kim et al., 2004). Throughout a year, the refrigeration cycle alternate its operation in 

subcritical and supercritical conditions, being the analysis needed for both modes of operation. 

2.2.1. Subcooling in subcritical conditions 

CO2 subcooling in subcritical conditions can be performed using two types of strategies, extensively 

analysed by Koeln and Alleyne (2014).  

The first one consists of condensing at a forced pressure higher than the minimal that the condenser allows. 

This situation is represented in Figure 2a with dashed line, with condensing temperature tK* higher than tK. 

In this case, the condenser performs heat rejection at a high temperature and is able to provide a small 

degree of subcooling by itself (a subcooler device can be used before). This strategy is used in practice for 

small capacity refrigeration systems for commercial use working with capillary tubes, where the refrigerant 

mass charge is optimized to obtain a desired subcooling degree in the condenser, as described by Pisano 

et al. (2015), and thus maximize the energy performance of the system. According to Pottker and Hrnjak 

(2015), for a single-stage compression cycle with water-cooled-condenser, liquid subcooling below 

saturation increases the refrigerant effect and the COP of the system, because liquid subcooling reduces 

the throttling losses in the expansion device. Their simulations for air conditioning systems indicated COP 

improvements of 8.4% with R-1234yf, 7.0% with R-410A, 5.9% with R-134a and 2.7% with R-717, at 

condenser and evaporator inlet temperatures of 14ºC and 0ºC, respectively. The application of this strategy 

in CO2 refrigeration plants for centralized commercial purposes (Figure 1) would be possible in practice due 

to the presence of the back-pressure, which would rise the heat rejection pressure and increase the 

subcooling degree. However, neither theoretical nor experimental research studies have been found about 

by the authors in relation to CO2 systems.  

The second strategy corresponds to the usual in centralized commercial systems, which is represented in 

continuous line in Figure 2. It consist of performing heat rejection at the minimal temperature that the 

condenser allows (tK), until saturation, and then incorporate a subcooling system to reduce CO2 liquid 

temperature. Again, due to availability of the back-pressure, the condensing pressure could be forced to be 

higher, but the theoretical results of Nebot-Andrés et al. (2017) indicate that the best performing situation is 

when CO2 at the exit of the condenser is in saturation. This mode of operation is possible due to the presence 

of the back-pressure, which must provide a pressure drop (∆𝑝 ) to guarantee that the vessel is at 

saturated condition. In this case, as presented in Figure 2a, the subcooling brings about three positive effects 

in relation to the cycle without subcooling: a pressure reduction in the vessel (∆𝑝 ), an increase of the 

specific refrigerating effect (∆𝑞 ) and a reduction of the vapour quality at the inlet of the evaporator (∆𝑥 ), 

which can result in a slight increment of the evaporating level (Qureshi et al., 2013). No negative effects are 

introduced except of the cost of subcooling, which is discussed in subsection 2.4. Furthermore, as observed 

in the temperature-entropy diagram in the shaded triangles (Figure 2b), the introduction of the subcooling 

to the CO2 cycle also reduces the exergy losses in the throttling processes. 
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Figure 2. CO2 cycle (red) and CO2 with dedicated mechanical subcooling (green) in subcritical conditions.  

a: p-h; b: t-s. tenv=20ºC, tO=-10ºC, ∆tgc=5K, SH=10K. Adapted from Nebot-Andrés et al. (2017) 

2.2.2. Subcooling in transcritical conditions 

At high heat rejection temperature the refrigeration system operates in transcritical conditions and there is 

only one possible strategy to subcool the CO2, which is represented in Figure 3. It is based on the use of a 

subcooling system at the exit of the gas-cooler and prior to the back-pressure to provide the desired degree 

of subcooling. Research discussed in Sections 4 and 5 indicates that subcooling reduces the optimum heat 

rejection pressure in relation to non-subcooled layouts. Accordingly, the beneficial effects of subcooling are 
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enhanced in transcritical conditions (Figure 3a), since it allows: a reduction of the optimum heat rejection 

pressure (∆𝑝 ), a reduction of the specific compression work in the compressor (∆𝑤 ), a pressure 

reduction in the receiver (∆𝑝 ), an increment of the specific refrigerating effect (∆𝑞 ) and a reduction of 

the vapour quality at the inlet of the evaporators (∆𝑥 ), which can result also in an increment of the 

evaporating level (Qureshi et al., 2013). Again, the unique drawback is the ‘cost of subcooling’ or energy 

input to the subcooling system, which is discussed in 2.3. In addition, according to Figure 3b, it is observed 

that the subcooling reduces the exergy losses in the expansion devices, and with a larger extend than in 

subcritical conditions, since the optimum heat rejection pressure is reduced.  The subcooling device in 

transcritical conditions will operate near the critical point, generally crossing the critical isotherm (tcrit) and 

sometimes the pseudocritical temperature line (tPS), where the isobaric specific heat of CO2 reaches 

maximum values (Liao and Zhao, 2002) and CO2 properties are subjected to large variations, as analysed 

by Torrella et al. (2011). At high heat rejection temperature, the subcooling system could be subjected to 

CO2 properties variations, therefore, it indicates that the design principles of the subcooling heat exchanger 

should follow the same guidelines as gas-coolers. 
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Figure 3. CO2 cycle (red) and CO2 with dedicated mechanical subcooling (green) in transcritical conditions.  

a: p-h; b: t-s. tenv=33ºC, tO=-10ºC, ∆tgc=5K, SH=10K. Adapted from Nebot-Andrés et al. (2017) 

 

2.3. Benefits of subcooling  

Subcooling in CO2 refrigeration systems presents the different advantages or improvements detailed in 

Section 2.2, nevertheless, a common approach to quantify the practical effects of subcooling is attending to 

the energy parameters of the refrigeration cycle: capacity and COP. 
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2.3.1. Capacity 

Eq. (1) expresses the cooling capacity of the CO2 refrigeration system with subcooling (Figure 1), which 

corresponds to the product of refrigerant mass flow rate and the specific refrigerating effect in the evaporator. 

This term can be expressed as the addition of the capacity of the CO2 cycle without considering the 

subcooling (𝑚 𝑞 , ) and the heat extracted by the subcooling device (𝑄 ), as expressed by Eq. (2) 

and (3). The specific refrigerating effect of the cycle without subcooling (𝑞 , ), Eq. (4), is the difference 

between the enthalpy at the exit of the evaporator and at the exit of the gas-cooler/condenser, where ‘*’ 

represents enthalpy value at the exit of the gas-cooler/condenser in the new optimum conditions considering 

the subcooling system, which could be different than of the optimized cycle without subcooling.  

𝑄 𝑚 𝑞 𝑚 𝑞 , ∗ ∆ℎ   (1) 

𝑄 𝑚 𝑞 , ∗ 𝑄   (2) 

𝑄 𝑚 ∆ℎ 𝑚 ℎ , ∗ ℎ ,  (3) 

𝑞𝑜,𝑏𝑎𝑠𝑒∗ ℎ , ℎ , ∗  (4) 

Table 1 relates the capacity increments achieved by some general subcooling systems, which are expressed 

in percentage in relation to the reference system used for the evaluation. Torrella et al. (2011) measured up 

to 12% capacity enhancement by the use of an internal heat exchanger in a single-stage refrigeration plant 

in relation to the basic layout at high heat rejection temperatures and Llopis et al. (2016a) measured up to 

55.7% increase in capacity for a single-stage plant operating with an R-1234yf dedicated mechanical 

subcooling system at optimum COP conditions. However, the rest of studies where evaluated from a 

theoretical approach and did not reported the possible capacity increments. 

Li et al. (2017) proposed the parameter RICOSP, Eq. (5), to quantify the relationship between the increase 

in capacity of a subcooled vapour compression system (𝑄 𝑄 , ) to the power or heat extracted 

by the subcooling device (𝑄 ). From a theoretical approach in subcritical cycles, they concluded that the 

subcooling power cannot be fully transformed into an increase of the cooling output and established the 

thermodynamic limit of RICOSP to 1. At the subcritical conditions shown in Figure 2, neglecting energy 

losses to the environment, RICOSP parameter equals to one since the increment on capacity (∆𝑞 ) 

coincides with the enthalpy difference achieved in the subcooler (∆ℎ ). In Li et al. (2017) simulations, 

they calculated a RICOSP value of 0.805. However, and also stated by the same authors, if the subcooling 

modifies the operating conditions of the cycle, as in the case of transcritical conditions (Figure 3), the 

RICOSP can exceed the unit. At the transcritical conditions shown in Figure 3, RICOSP exceeds the unit  

(∆ℎ ∆𝑞 ) because the subcooling also increases the refrigerant mass flow rate due to the reduction 

of optimum heat rejection temperature. For example, Llopis et al. (2016a) measured a RICOSP value of 
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1.19 using an R-1234yf dedicated mechanical subcooling in a single-stage CO2 refrigerating plant at -10ºC 

of evaporating and 40ºC of gas-cooler outlet temperatures at the optimum heat rejection pressure. The use 

of the subcooling system offered a reduction of the optimum gas-cooler pressure of 5.2 bar, which resulted 

in an increment of the refrigerant mass flow rate in the CO2 cycle of 0.5%. 

𝑅𝐼𝐶𝑂𝑆𝑃 𝑄 𝑄 ,𝑄  
(5) 

Accordingly, it can be deduced that the use of subcooling systems in CO2 cycles offers highest possibilities 

than in subcritical conditions, since the subcooling system modifies the operating conditions of the CO2 cycle 

towards lower pressures. However, the thermodynamic limits of subcooling in transcritical conditions have 

not been extensively analysed. Also, expression of RICOSP for CO2 cycles must be evaluated at the 

optimum heat rejection pressures. 
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2.3.2. COP 

Eq. (6) expresses the COP of a CO2 refrigeration cycle with subcooling, where: 𝑄  is the cooling capacity 

offered by the cycle, Eq. (1); 𝑃  is the power consumption of the CO2 compressor; and  𝑃 ,  is the 

electrical energy input to the subcooling system. 

𝐶𝑂𝑃 , ,   (6) 

Defining the COP of the subcooling system as the quotient between the heat extracted by the subcooling 

device and the energy input to activate the subcooling system, Eq. (7), the overall COP of the subcooled 

CO2 refrigeration system can be expressed through an energy balance in the subcooler system as detailed 

by Eq. (8). In Eq. (8) it is observed that the overall COP depends on the CO2 enthalpy difference caused by 

the subcooling system (∆ℎ ) and on the COP of the subcooler system (𝐶𝑂𝑃 ). The subcooling will 

have positive effect on the COP only if ∆  results positive. It can be easily demonstrated that the 

subcooling system will enhance the overall COP if the COP of the subcooling system satisfies Eq. (9) at the 

operating conditions of the cycle. That is to say that a subcooling system would enhance the performance 

of a CO2 cycle as long as 𝐶𝑂𝑃 𝑓 𝑡 , 𝑡  is higher than the 𝐶𝑂𝑃 𝑓 𝑡 , 𝑡   of the CO2 cycle. 

In the case of mechanical subcooling systems (subsections 3.3 and 4.1), condition of Eq. (9) is generally 

satisfied if the subcooling system performs heat rejection to the same hot sink as the CO2 cycle (𝑡 ), 

because the cold source of the subcooling system (𝑡 ) is higher than the cold source of the CO2 cycle (𝑡 ). 

However, when the subcooling system presents low COP values, such as with the use of thermoelectric 

devices (subsection 4.2) the improvements are restricted to fulfil Eq. (9) and obtain lower improvements due 

to the low values of COPsub. These effects can be observed in the results presented in Table 1. Vapour 

compression systems used as subcooling systems obtain large improvements in the overall COP because 

they operate with low temperature difference between the cold source and the heat sink (Llopis et al., 

2016a), however, improvements achieved by thermoelectric systems are shorter due to their low COP 

values (Sarkar, 2013). 

𝐶𝑂𝑃 ,   (7) 

𝐶𝑂𝑃 , ∆∗ ∆   (8) 

𝐶𝑂𝑃 𝐶𝑂𝑃  (9) 

Accordingly, it can be affirmed that the subcooling systems would offer higher COP increments when higher 

the COP of the subcooling system is, however, the thermodynamic limits of this improvement have not been 

extensively analysed. 
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2.4. Energy required by the subcooling system (cost of subcooling) 

The cost of subcooling or the additional energy input that the system requires to obtain the subcooling 

depends on the amount of subcooling to be provided and on the thermodynamic behaviour of the subcooling 

system. Eq. (10) expresses the total energy input to the system, which considers the energy consumption 

of the CO2 cycle and of the subcooling system. Eq. (11) expresses the increment on energy consumption of 

a subcooled system (‘*’) in relation to a non-subcooled one. 

𝑃 ∗ 𝑃 , 𝑃 ,  𝑚 𝑤 𝑃 ,  (10) 

∆𝑃 𝑃 ∗ 𝑃 𝑚 ∗ 𝑤 ∗ 𝑚 𝑤 𝑄𝐶𝑂𝑃  
(11) 

Taking as reference the ideal system of Figure 1, if the subcooling is performed in subcritical conditions 

(Figure 2), the subcooling does not modify the optimum heat rejection pressure and thus the behaviour of 

condenser and compressor. Correspondingly, the increment on energy input of the subcooled system is the 

quotient between the heat extracted by the subcooling device and the COP of the subcooling system, Eq. 

(12). This situation occurs in CO2 subcritical systems and it is also applicable to conventional refrigerants 

working in subcritical conditions (Qureshi et al., 2013; Zubair, 1994) 

∆𝑃 𝑄𝐶𝑂𝑃 𝑚 ∆ℎ𝐶𝑂𝑃  
(12) 

However, the use of subcooling in transcritical conditions is able to reduce the heat rejection pressure 

(Figure 3) and thus modify the operating conditions of the compressor. If the heat rejection pressure is lower, 

the CO2 refrigerant mass flow rate of the subcooled cycle is higher than the non-subcooled (𝑚 ∗ 𝑚 ), 

but the specific compression work of the subcooled cycle is lower than the non-subcooled (𝑤 ∗𝑤 ), whose trends are opposite. Nonetheless, the experimental results of Llopis et al. (2016a) with a 

dedicated mechanical subcooling system (DMS) single-stage plant showed that the CO2 compressor power 

consumption was reduced when subcooling the cycle, and the results of Bush et al. (2017) with a DMS two-

stage plant even resulted in decrements of the total system power consumption. Subsequently, it can be 

affirmed that the increment on energy consumption due to the subcooling system in transcritical conditions 

will be lower than the one established in subcritical condition, as expressed by Eq. (13). 

∆𝑃 𝑄𝐶𝑂𝑃 𝑚 ∆ℎ𝐶𝑂𝑃  
(13) 
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2.5. Optimization of subcooling 

As mentioned before, subcooling in a CO2 refrigeration system modifies its optimum operating conditions, 

especially in transcritical conditions, where the subcooling is able to reduce the optimum high rejection 

pressure and thus modify the behaviour of the CO2 compressor. Obviously, it is required for such systems 

to determine the operating parameters that maximize the COP of the overall system. 

COP of the subcooled cycle, Eq. (6), depends on the cooling capacity and on the energy input to the 

compressor and to the subcooling system. For a fixed operating condition, with defined evaporating level 

and gas-cooler outlet temperature, the power consumption of the CO2 compressor only depends on the high 

rejection pressure, Eq. (14) (Cabello et al., 2008), and the cooling capacity depends on the high rejection 

pressure as well as on the subcooling, Eq. (15). Referring to the subcooling system, its cold source at 𝑇  

only depends on the subcooling degree, subsequently the energy input to the subcooling system is a 

function of the subcooling, Eq. (16). Therefore, it can be affirmed that the COP of the whole system is 

function of the heat rejection pressure and of the subcooling degree, as expressed by Eq. (17). In subcritical 

conditions the optimum heat rejection pressure is equal to the condensing pressure, as discussed in 

subsection 2.2, and only the subcooling degree needs to be optimized. However, in transcritical conditions 

the COP of the plant is bounded to two parameters (Nebot-Andrés et al., 2017) that must be optimized 

together. 

𝑃 𝑓 𝑝  (14) 

𝑄 𝑓 𝑝 , 𝑆𝑈𝐵  (15) 

𝑡 𝑓 𝑆𝑈𝐵 → 𝑃 , 𝑓 𝑆𝑈𝐵  (16) 

𝐶𝑂𝑃 𝑓 𝑝 , 𝑆𝑈𝐵  (17) 

It is important to highlight that the classical relations to define the optimum heat rejection pressure in CO2 

transcritical cycles (Chen and Gu, 2005; Kauf, 1999; Liao et al., 2000) are not suitable for subcooled cycles, 

since the optimum condition also depends on the used subcooling system. This is another subject to be 

investigated concretely for each type of subcooling system. 
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3. Internal methods 

This section reviews the methods evaluated to provide the subcooling at the exit of the gas-cooler/condenser 

internally, i. e. using the cycle itself to cool down CO2 at the exit of the heat exchanger. Suction-line to liquid-

line or internal heat exchangers and their use in different cycle layouts are included in subsection 3.1; the 

economizer or subcoolers used in two-stage cycles in subsection 3.2; integrated mechanical subcooling 

systems based on the use of additional compressors in subsection 3.3.; and other internal methods in 

subsection 3.4. 

3.1. Internal Heat Exchanger (IHX) 

The use of the IHX was the first subcooling device implemented in the renewed use of CO2 as refrigerant. 

In fact, the first researchers who revived the use of CO2, Lorentzen and Pettersen (1993), stated that its use 

in CO2 refrigeration systems is completely convenient, since it improves COP due to the reduction of the 

throttling loss from cooling the refrigerant before entering the throttling device, however, they also stated 

that its use causes strong increments on the compressor discharge temperature. 

With artificial refrigerants, the IHX was used as a way to guarantee the right operation of the refrigeration 

plants, by avoiding liquid entering the compressor and ensuring the presence of liquid at the expansion 

valves. The IHX presents two opposite effects, an enhancement of the specific cooling capacity and a 

reduction of the refrigerant mass flow rate due to increased specific suction volume. These opposite effects 

counteract in artificial refrigerants, where the energy efficiency of the plant could increase or decrease 

depending on the refrigerant, as studied by Domanski et al. (1994) and Aprea et al. (1999). However, 

theoretical studies of the IHX in CO2 transcritical plants (Chen and Gu, 2005; Robinson and Groll, 1998) and 

the initial experimental studies (Aprea and Maiorino, 2008; Cavallini et al., 2007) clearly demonstrated its 

beneficial effects in CO2 systems. In transcritical CO2 systems, the increase of specific suction volume in 

the IHX trends to reduce the refrigerant mass flow rate; however, CO2 subcooling in the IHX in addition to 

increasing the specific cooling capacity, also reduces the optimal working pressure (see subsection 2.3.1), 

thus it reduces the compression ratio and tends to increase the refrigerant mass flow rate. In combination, 

the positive effects dominate over the negative ones, achieving capacity and COP increments, as measured 

experimentally by the authors reviewed in subsection 3.1.1. Nonetheless, it needs to be mentioned that the 

use of the IHX subjects the compressor to high discharge temperatures, with temperature increments up to 

20K (Torrella et al., 2011), which must be considered in the plant’s design. 

3.1.1 Classical positions 

The IHX or liquid-line-to-suction-line heat exchanger, placed at the exit of the gas-cooler/condenser and at 

the exit of the evaporator (Figure 5, Layout A), subcools the CO2 through reheating of the vapours at the 

exit of the evaporator. In an overall vision, this device increments the specific refrigerating effect in the 



19 
 

evaporator due to the subcooling and increments the compressor suction temperature, as with conventional 

artificial refrigerants. However, when it is used in transcritical conditions, its use is able to reduce the 

optimum heat rejection pressure, enhancing the performance of the plant through an increment of the 

refrigerant mass flow rate and a reduction of the specific compression work in the compressor (section 2.2). 

Table 2 and Figure 4 collect the experimental COP increments achieved with the use of the IHX in CO2 

refrigeration plants with different typologies. Only specific investigations devoted to the IHX analysis are 

collected in Table 2.  

On the one hand, considering transcritical operation, for environment temperatures higher than 30ºC, 

Cavallini et al. (2005) first simulated an air-to-air double compression with intercooling single-stage throttling 

cycle with and without IHX quantifying a 7.6% COP improvement due to the IHX, however, in its later 

experimental verification (Cavallini et al., 2007) they measured 20% COP increment. They argued that the 

deviation from the theoretical approach was the increased temperature at compressor suction that led to 

higher heat rejection at the intercooler. Aprea and Maiorino (2008) measured experimentally the IHX effect 

in an air-to-air single-stage compression two-stage throttling plant for air-conditioning purposes. They 

measured COP increments from 8.1 to 10.5%. Rigola et al. (2010) evaluated a water-to-water single-

throttling plant with an hermetic compressor at -10ºC of evaporation, measuring COP increments due to the 

IHX between 20.5 to 23.2%. This is the largest reported increment, and could be related to the use of a 

single-stage expansion device or to the use of a hermetic compressor, however, no additional data was 

reported. Sánchez et al. (2016) tested another water-to-water plant working with a hermetic compressor 

measuring a maximum COP increment of 6.7% when using the IHX. Finally, Torrella et al. (2011) presented 

an extensive experimentation of the IHX using a water-to-water double-stage throttling with a single-stage 

semihermetic compressor at evaporating temperatures from -17 to 0ºC. They verified the COP increment, 

however, the improvements were the lowest among the transcritical tested plants, varying between 3.3 to 

9.7% at optimal conditions.  All these experimental improvements are summarized in Figure 4. 

On the other hand, considering the effect of the IHX in subcritical conditions, Zhang et al. (2011) theoretically 

predicted a slight COP reduction due to the use of the IHX and advised not to use it in subcritical plants. 

This COP trend was experimentally verified by Llopis et al. (2015c) in the CO2 subcritical cycle of a cascade 

plant with a semihermetic compressor, however, they highlighted that its use at low evaporating levels is 

needed to guarantee the proper operation of the lubricant oil. Furthermore, in a subsequent investigation 

(Llopis et al., 2016b) they evaluated the IHX effect in the overall COP of a cascade cycle, concluding that 

the use of the IHX in the low temperature cycle is also recommended because the overall COP of the 

cascade was improved up to 3.7%.  

Accordingly, from the reported experimental results it is evident that the use of the IHX in the classical layout 

(exit gas-cooler/exit evaporator) is recommendable for transcritical systems, not for stand-alone subcritical 

cycles and yes for low-temperature cycles of cascade systems.  
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Figure 4. Reported experimental COP improvements in CO2 refrigeration plants 

 

Moreover, additional research was also conducted to evaluate the IHX in different layouts in the refrigeration 

cycle, as summarized in Table 3. Karampour and Sawalha (2014) theoretically evaluated nine positions of 

the IHX in a two-stage booster system with heat recovery. After modelling the booster supplying 150kW 

cooling demand at medium temperature and 50kW at low temperature, they concluded that the IHX provided 

no significant improvement in terms of refrigeration COP. However, considering simultaneous refrigeration 

and heat recovery they calculated up to 12% efficiency improvement with IHX at gas-cooler outlet, double 

IHX at gas-cooler outlet and at the exit of the accumulation tank and double IHX at gas-cooler outlet and at 

the liquid line to low temperature cabinets, for the booster system with flash gas by-pass. And up to 11% 

improvement with double IHX at the exit of gas-cooler and at the exit of the accumulation tank, double IHX 

at gas-cooler outlet and liquid line to low temperature cabinets, double IHX at exit of the accumulation tank 

and double IHX at exit of accumulation tank and liquid line to low temperature cabinets, for the booster 

system without flash gas by-pass. 

Sánchez et al. (2014a) conducted experimental research with the IHX at three positions in the classical 

cycle for centralized commercial refrigeration at medium temperature. They evaluated the IHX at the exit of 

the gas-cooler (Layout A, Figure 5), at the exit of the accumulation receiver (Layout B, Figure 5) and double 

IHX at the exit of gas-cooler and at the exit of the accumulation receiver (Layout C, Figure 5). They 

concluded that in any position the IHX resulted positive in terms of COP. However, improvement with Layout 

B was lower than in the classical position (Layout A) and the Layout C with double IHX provided the largest 
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COP increment up to 13%, however, authors advised that the use of two IHX caused increments on the 

compressor’s discharge temperature up to 20K. 

  

IHX at the exit of the gas-cooler/condenser (Layout A) 

  

IHX at the exit of the receiver (Layout B) 

  

Double IHX at the exit of the gas-cooler and at the exit of the receiver (Layout C) 

Figure 5. Different IHX layouts
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3.1.2. Combination of the IHX with ejectors 

Use of IHX has also been considered in CO2 refrigeration systems using ejectors (¡Error! No se encuentra 

el origen de la referencia.), whose representative cycle layout is detailed in Figure 6.  

First of all, Elbel and Hrnjak (2004) trough simulation analysed four different CO2 air conditioning systems 

for mobile appliances including a gas ejector and analysed the effect of the IHX on this cycle at 35ºC of gas-

cooler outlet temperature. They observed that for matching cooling capacities (variable rotational speed of 

compressor) the system with ejector and without IHX obtained highest COP and reduced optimum heat 

rejection pressure, however, when the system was analysed under constant rotational speed of the 

compressor, they observed that the use of the IHX in combination with the ejector obtained the highest COP 

but reduced the capacity of the system in relation to the system with only ejector. After further analysis, they 

concluded that the use of the IHX in combination with ejectors with variable displacement compressors was 

not recommended. Previous theoretical hypothesis were experimentally corroborated by Xu et al. (2011) 

although in a CO2 cycle with a two-phase fixed ejector for water heating purposes. They corroborated that 

the use of the IHX in combination with the ejector weakened the ejector contribution to the system in terms 

of COP but they observed large increments of the cooling capacity provided by the system with ejector and 

IHX. 

However, experimental results of Nakagawa et al. (2011) with a 2 to 4kW capacity CO2 refrigeration system 

with two-phase ejector showed that the IHX was beneficial in combination with the ejector. This different 

trend can be associated, as stated by the authors, that the improvement achieved by the IHX was larger 

when higher the heat rejection temperature was and this improvement lowered and even worsened at low 

temperatures, due to the reduction of pressure recovery in the ejector. In this case, experimental results of 

Nakagawa et al. (2011) were obtained for gas-cooler outlet temperatures from 42 to 47ºC and evaporating 

temperatures from 0 to 4ºC, far away from Xu et al.’s evaluation range (Xu et al., 2011).  

Finally, Zhang et al. (2013), using a theoretical approach, extended the analysis of the use of IHX in ejector 

refrigeration systems. They included in the analysis the ejector isentropic efficiency and extended the 

simulations to a wide range of evaporating and gas-cooler exit temperatures. They discovered that the use 

of the IHX is only beneficial in terms of COP for high gas-cooler and evaporating temperatures and for 

ejector systems with low isentropic efficiency. For systems with ejectors with low isentropic efficiency, the 

use of the IHX provided highest improvements than the ejector itself, thus its use was not recommendable. 
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Figure 6. Position of the IHX in CO2 refrigeration systems with ejector 

 

3.1.3. Combination of the IHX with expanders 

Use of IHX has scarcely been evaluated in combination with CO2 refrigeration cycles using expanders to 

recover energy during the expansion process of the refrigerant, which schematic cycle layout is presented 

in Figure 7, and the main results summarized in Table 4. 

Zhang et al. (2014) and J.Shariatzadeh et al. (2016)  using theoretical approaches based on first and second 

Law of Thermodynamics evaluated the effect of the IHX in the cycle. They concluded that the IHX increases 

the specific cooling capacity and the compression work, as well as reduced the optimum working pressure. 

This last effect affected the energy recovered in the expander, making the IHX only beneficial for expanders 

with low isentropic efficiency at high gas-cooler exit temperatures. They calculated that an ideal expander 

(ηs,exp=100%) cycle with IHX presented 12.3 to 16.1% maximum COP reduction in relation to the same cycle 

without IHX (Zhang et al., 2013).  

  

Figure 7. Position of the IHX in CO2 refrigeration systems with expander 
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3.1.4. IHX with vapour extraction from the intermediate vessel 

Finally, the use of the IHX has also been evaluated in combination with vapour extraction from the 

accumulation vessel. Vapour extraction is performed to increase the specific refrigerating effect in the 

evaporator through recompression of the extracted vapours. Temperature of extracted vapour is colder than 

that at the exit of the gas-cooler, thus, it can be used to subcool the main refrigerant steam, as presented in 

Figure 8 (injection point ‘a’) in combination with an IHX. Cabello et al. (2012) experimentally evaluated the 

effect of vapour extraction with expansion from the intermediate vessel and their injection in three positions 

of a water-to-water CO2 cycle: a) before the IHX, b) after the IHX and c) at the suction port of the compressor. 

They concluded that any of the three configurations reached similar increments in capacity and COP 

reaching maximum values of 9.8 and 7%, respectively, at tw,O,in=5ºC and tw,gc,in=34.9ºC. However, the 

position providing subcooling (point ‘a’) allowed the minimum reduction of compressor’s discharge 

temperature among the evaluated configurations. Similar conclusions were obtained theoretically by 

Karampour and Sawalha (2014) for a booster system. 

  

Figure 8. IHX with vapour extraction from the vessel and different injection points 
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3.2. Economizer or subcooler 

Use of two-stage cycles brings about the possibility to use specific and more controllable subcooling 

systems, such as the economized cycle or two-stage cycle with subcooler, which principle scheme is 

detailed in Figure 9. In this configuration the refrigerant leaving the gas-cooler/condenser is split into two 

streams. The auxiliary stream is throttled to the intermediate pressure and evaporated inside the economizer 

or subcooler, allowing to subcool the main steam of refrigerant. As analysed by Torrella et al. (2009), the 

COP increment that economization allows is dependent on the thermal effectiveness of the subcooler or the 

closed flash tank separator and the improvement for 100% effectiveness reaches the open flash separator 

performance at the intermediate pressure. 

The first reference found about system was the theoretical study of Cavallini et al. (2005), who denoted it as 

split cycle and was evaluated for air-conditioning purposes. At an evaporating temperature of 2.7ºC and 

gas-cooler outlet temperature of 33ºC they predicted a COP of 3.17 without IHX at the low temperature 

suction and 3.25 using the IHX. Taking as reference the two-stage cycle with IHX and intercooler, the 

economized cycle reached a COP improvement of 12.4% and 15.2%, respectively. It must be said that in 

this study the intermediate pressure considered for the calculation was the geometric mean value of gas-

cooler and evaporator temperature, thus not subjected to complete optimization. Then, Cecchinato et al. 

(2009) theoretically optimized the two-stage split cycle in transcritical conditions and contrasted it to other 

CO2 two stage cycles for evaporating levels of 4, -10 and -30ºC and external environment temperatures 

from 25 to 35ºC. They concluded that both the open flash tank and split cycle presented the greatest 

improvement, especially for the heaviest operating conditions (-30 / 35ºC). 

Later, Wang et al. (2011) theoretically and experimentally analysed a two-stage cycle with closed flash tank 

separator at the intermediate pressure in contrast to a two-stage cycle with additional gas-cooler at the low-

pressure compressor discharge. Through optimization of the intermediate pressure, they verified the higher 

performance of the closed flash-tank system (10.87% COP increment), but the experimental improvements 

were lower than those predicted theoretically. Finally, Zhang et al. (2016) theoretically analysed the two-

stage cycle with closed flash tank without gas-cooler at the low compression discharge analysing the effect 

of the use of an expander instead of an expansion valve in the throttling at the gas-cooler exit. They 

concluded that the two-stage cycle with closed flash tank was best option, it offering higher COP values at 

low evaporating levels and high gas-cooler outlet temperatures than even the two-stage cycle with 

intercooler and expander. Despite being a high-performance cycle, no more references, especially 

experimental, have been found by the authors. 
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Figure 9. CO2 two-stage cycle with subcooler or economizer 

In a similar way, Fazelpour and Morosuk (2014) theoretically considered the use of the economizer in a 

single-stage compression system, where vapours at the exit of subcooler were driven directly to compressor 

suction. The economizer did not affect neither the optimum gas-cooling pressure neither the energy 

performance of the plant. However, from a second law approach they calculated that the use of the 

economizer improved by 7% the exergetic efficiency of the cycle, and from an exergoeconomic point of view 

that the economizer increased the cost of the plant by 4% at an evaporating level of 25ºC.  

3.3. Integrated Mechanical subcooler 

Another mechanism to provide large subcooling degrees in the CO2 at the exit of the gas-cooler/condenser 

is the integrated mechanical subcooler, whose principle scheme is detailed in Figure 10, and a summary of 

the conducted research is collected in Table 6. This system splits the stream at the exit of the gas-

cooler/condenser and uses the auxiliary one, through throttling in an expansion valve, to subcool CO2 at the 

exit of the subcooler. The auxiliary steam is evaporated and compressed by an auxiliary compressor to the 

high pressure gas-cooler. The advantage of this cycle in contrast to the economized cycle is that the 

evaporating level in the subcooler could be higher than the intermediate pressure in economized cycles, 

therefore, the auxiliary compressor could operate with lower compression ratios with higher efficiency. Also, 

it needs to be mentioned that the extraction of refrigerant for subcooling can be performed at the exit of the 

gas-cooler (point 4, Figure 10 ), at the exit of the subcooler (point 5, Figure 10 ) or at the exit of the vessel 

(point 5, Figure 10 ), however no references have been found regarding the two last positions. This cycle 

can be used as one-level evaporator or as high pressure cycle in booster configurations. 

The main advantage of this cycle, in contrast to the split cycle (Figure 9) is that the auxiliary compressor 

operates with reduced compression ratios and thus with large efficiencies, and in relation to parallel 

compression systems (Karampour and Sawalha, 2016) is that the displacement of the auxiliary compressor 

is reduced because it only compresses the evaporated refrigerant instead of vapours from the intermediate 

vessel. However, at the moment, the operation of the auxiliary compressor and thus the performance of the 

cycle is limited by the operating restrictions of the compressor, which are a maximum suction pressure 
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(around 55 bar) and minimum compression ratio (around 1.5). This cycle provides an important increase in 

cooling capacity and large increments in energy efficiency in relation to basic CO2 refrigeration cycles. 

  

Figure 10. CO2 cycle with integrated mechanical subcooling 

The first reference found to the integrated mechanical subcooling system is the patent of Shapiro (2007). 

This patent did not referred directly to any refrigerant, therefore it could cover the application in CO2 systems. 

Shapiro (2007) reported that the COP of the system was bonded to the evaporating temperature at the 

subcooler and that the optimum subcooling degree raised at high heat rejection temperature. The first patent 

covering the integrated mechanical subcooling systems in CO2 refrigeration cycles is of Kantchev and 

Lesage (2013), who specifically considered this system as a way to reduce power consumption in 

compressors and thus enhancing the COP and to increase the cooling capacity of this systems.  

Using a theoretical approach, Cecchinato et al. (2009) evaluated 17.3% increase in energy efficiency in 

relation to a basic single-stage CO2 cycle at -10ºC of evaporating temperature and 30ºC of gas-cooler outlet 

temperature. They concluded that this cycle also overcame the standard double compression cycle, 

reaching COP increments up to 12%. They recommendation is to use this system for high evaporating 

temperature applications. Then, Qureshi and Zubair (2012, 2013) theoretically studied and review the use 

of the integrated mechanical subcooling system in single-stage refrigeration cycles with artificial refrigerants. 

They concluded that this auxiliary system enhances the performance of the cycle, however they did not 

considered CO2 in their analysis. And finally, Gullo and Cortella (2016) performed an exergoeconomic 

analysis of the integrated mechanical subcooling system in relation to a standard parallel compressor and 

a system using a gas ejector for medium temperature applications. They concluded that the integrated 

system allowed a COP increase 2.8 to 5.5% in relation to the parallel compression system but did not 

reached the ejector system one. One of the main reasons is that they considered 3K increase in the 

evaporating level due to the possibility of flooded evaporators. They also highlighted that the integrated 

solution presented a total investment cost much larger than solutions based on ejector. 

Although the possibilities of this subcooling system, no references have been found by the authors in relation 

to the optimum working conditions (optimum pressures and optimum subcooling degrees) neither validation 

in experimental systems. 
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3.4. Heat storage systems 

Polzot et al. (2016) evaluated the performance of a CO2 booster system (with and without parallel 

compressor) when using a water storage system to provide subcooling at the exit of the gas-

cooler/condenser for mild climate applications, using the scheme of Figure 11. For the simulations they 

considered as heat reservoir the fire prevention water tank of a supermarket. During night-time, when the 

COP of the plant is higher and the cooling demand of the system is low, the water tank is cooled by 

evaporating liquid CO2 from the intermediate vessel then it being returned to the vessel. During day-time, 

the cooled water of the tank is used to subcool the refrigerant at the exit of the gas-cooler/condenser to 

increase the capacity of the system. Their simulation, for a standard European supermarket of 140kW 

capacity at MT and 22kW at LT placed in Northern Italy with a 950m3 water reservoir, resulted in a 2.4% 

reduction in annual energy consumption of the installation. They also evaluated the possibility to increase 

the capacity of the reservoir, for double volume the reduction reached 3.5% and for larger volumes the ratio 

of energy reduction did not increase. Similar conclusions were obtained from a theoretical point of view by 

Fidorra et al. (2016). 

 

Figure 11. CO2 booster system with water storage tank (Polzot et al., 2016) 
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4. Dedicated subcooling methods 

This section revises the methods evaluated to provide the subcooling at the exit of the gas-cooler/condenser 

using external or dedicated systems. Dedicated mechanical subcooling systems based on vapour 

compression technology are analysed in subsection 4.1, thermoelectric subcooling devices in subsection 

4.2 and subsection 4.3 collects other scattered external methods.  

4.1. Dedicated mechanical subcooling (DMS) 

Dedicated mechanical subcooling (DMS) or dedicated mechanical aftercooling in CO2 refrigeration cycles, 

understood as the use of an additional vapour compression cycle to provide subcooling at the exit of gas-

cooler/condenser is one of the recent improvements being investigated by different authors. The DMS, as 

detailed in Figure 12, consists of an auxiliary vapour compression system especially devoted to subcool the 

refrigerant at the exit of gas-cooler/condenser. This function can also be performed by air conditioning 

chillers. Auxiliary and CO2 cycles perform heat rejection to the same hot source, the CO2 cycle evaporates 

at its cool production temperature and the auxiliary one at an intermediate level corresponding to the 

average temperature in the subcooler minus the temperature difference in the subcooler (∆Tsub), thus this 

last operates with a reduced temperature lift between the cold source and hot sink, reaching high COP 

values. The auxiliary cycle generally works with a different refrigerant and is sized to obtain the optimum 

subcooling degrees, which are dependent on the heat rejection temperature and evaporating level. As 

analysed theoretically by Llopis et al. (2015a), this system is able to increase the overall COP and the cooling 

capacity provided by the CO2 cycle, and its performance is not much dependent on the refrigerant used in 

the auxiliary cycle. Furthermore, theoretical results of Nebot-Andrés et al. (2017) indicate that this system 

overcomes the performance of cascade plants for temperature lifts below 28.5K, but considering annual 

operation its yearly-performance is higher than that of cascades for evaporating levels higher than -15ºC, 

thus covering the medium temperature application range and even the high-pressure cycle of two-stage CO2 

cycles. 
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Figure 12. CO2 refrigeration system with R-134a dedicated mechanical subcooling. (a) T-s diagram. (b) CO2 p-h 

diagram. 

Table 7 summarises the main theoretical and experimental results in relation to dedicated subcooling 

methods up to the moment.  

The first theoretical studies of DMS systems for CO2 cycles were performed by Hafner A. and Hemmingsen 

A. K. (2015), who rated the performance of a R-290 DMS system in a single-stage compression system with 

flash-tank and IHX at the evaporator exit. In their simulation, they fixed the pressure at the receiver tank at 

40bar and considered a DMS with maximum capacity of 30% in relation to the main cycle. They compared 

the performance of this system with an R-404A direct expansion plant (base line), with the same system 

without DMS and with a system working with an ejector and parallel compressor. The simulation was 

extended to different cities and it was observed that the DMS system required between 77 to 97% of the 

energy input of the base system, and stated that the DMS obtained the highest improvements at high heat 

rejection temperatures. However, it needs to be mentioned that subcooling optimization was not considered 

in this study since the capacity of the DMS was limited.  

Then, Llopis et al. (2015a) using experimental overall efficiencies of compressors evaluated theoretically 

the energy improvement of the R-290 DMS in single- and double-stage with intercooling compression cycles 

at 5, -5 and -30ºC of evaporating temperature over a wide range of environment temperatures. Considering 

as reference system the same cycles without DMS, they predicted maximum COP increments of 20.0% and 

maximum capacity enhancement of 28.8%, being the improvement of the system higher at higher heat 

rejection levels and high evaporating temperatures. The largest improvement was achieved for environment 

temperatures from 25ºC on. However, this last work also did not considered optimization of subcooling, it 

being limited to 7.5K maximum. 

In the same line, Gullo et al. (2016) simulated the operation of a booster refrigeration system with R-290 

DMS for a typical European supermarket (97kW / -10ºC MT, 18kW / -35ºC LT) placed in Valencia (Spain) 

and Athens (Greece). A minimum condensing temperature in the systems was set to avoid low compression 
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ratios in the high-pressure compressor. They also simulated two designs of the DMS, one that allowed 

achieving 7ºC at the exit of the subcooler and another smaller rated to provide a minimum temperature at 

the exit of the subcooler of 15ºC. In contrast to booster systems with flash gas, they quantified an average 

COP improvement of 23.2% for the DMS at 15ºC and 23.3% for the DMS at 7ºC. They emphasized that the 

DMS at 7ºC would operate most of the year at low partial load, and both designs will equally operate at high 

environment temperature, where the needed capacity in the subcooler decreases. They also evaluated the 

use of the DMS in booster systems with parallel compressors using R-290 and R-1270 as refrigerants, 

however those systems did not achieved enough improvement to be recommended.  

Dai et al. (2017a) evaluated the impact of the DMS in a single-stage cycle using simplifying assumptions, 

mainly constant isentropic efficiencies of compressors, for three evaporating levels (5, -5, -15ºC) in a wide 

range of environment temperatures (20-40ºC). They focused the study on the evaluation of the COP 

improvement and high-pressure reduction using different pure refrigerants in the DMS, results were 

established through optimization of the subcooling degree. They concluded that the optimum subcooling 

degree is higher as higher the heat rejection and lower the evaporating levels are. Also, they obtained the 

best improvement with R-717 and the lowest with R-41 as DMS refrigerants, however, it needs to be 

mentioned that the differences among the different fluids were small.  

Next, Purohit et al. (2017) compared different two temperature supermarket refrigeration systems among 

which there was an R-744 booster solution with a R-290 DMS. Using compressor efficiencies relations 

obtained from the manufacturer’s data, they examined the systems considering temperature and heat load 

variation along a year for four locations. In relation to the DMS, they concluded that the DMS configuration 

could be more energetically beneficial than the parallel compression at high outdoor temperature operation. 

And recently, Dai et al. (2018) from a theoretical point of view evaluated the possibility to use zeotropic 

refrigerant mixtures as working fluid in the DMS through optimization of high-pressure and subcooling. For 

an operation of the cycle at -5ºC of evaporation and 35ºC of environment temperatures, they concluded that 

COP and optimum high pressure of mixtures with low temperature glide in evaporation are directly correlated 

with the glide, and that optimized refrigerant mixtures in terms of glide offer a COP improvement and 

optimum pressure reduction in relation to pure refrigerants. They evaluated different refrigerant mixtures 

and concluded that mixture R-32/R-1234ze(Z) (55/45 by mass) increased COP by 4.91% and reduced 

optimum pressure by 11 bar in relation to the use of R-32 as pure refrigerant in the DMS. However, no 

experimental validation was presented. 

A similar approach, was used by She et al. (2014), who studied the classical DMS scheme (Figure 12) but 

it being activated by the energy recovered by an expander in the CO2 expansion process. They predicted 

theoretical COP increments up to 67.76% and recommended R-12 and R-717 as the most beneficial fluids 

for the auxiliary system. 

Using an experimental approach, Nebot-Andrés et al. (2016) presented a preliminary experimental study of 

the use of an R-1234yf DMS in a single-stage double-throttling refrigeration plant with a 4kW CO2 and 0.7kW 
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R-1234yf semihermetic compressors. They evaluated the performance of the plant at nominal speed of 

compressors at 0ºC of evaporation temperature for two gas-cooler exit temperatures (30.2 and 40ºC). At 

the optimum gas-cooler pressures, they measured increments on capacity of 34.9% and 40.7% at 30.2 and 

40.0ºC respectively and COP increments of 22.8% at 30.2 and 17.3% at 40.0ºC. Llopis et al. (2016a) using 

the same plant extended the experimentation to two evaporating levels (0 and -10ºC) and three water inlet 

temperatures to condenser and gas-cooler (24.0, 30.2 and 40.0ºC). The evaluation was also made at 

constant compressor speeds and only optimization of CO2 heat rejection pressure was considered. They 

verified that the optimum heat rejection pressures are reduced by the use of the DMS (up to 8 bar), measured 

cooling capacity increments at optimum pressure from 23.1 to 55.7% and COP increments from 6.9 to 

30.3%. However, this study did not considered optimization of the subcooling degree neither was extended 

to subcritical conditions. With a small-capacity system working with hermetic compressors, Sánchez et al. 

(2016) evaluated an R-600a DMS in a CO2 system working at -10ºC of evaporation and two gas-cooler 

outlet temperatures. They measured increments in capacity from 27.2 to 42.8% and COP increments from 

195.1 to 19.3%. Eikevik et al. (2016) simulated, using as reference an experimental prototype, a single-

stage compression double-stage throttling refrigeration cycle using a R-290 DMS with scroll compressor. 

The DMS was activated when the CO2 high pressure reached 67 bar, thus it did not operated in subcritical 

conditions. The heat rejection of this prototype was performed by an integrated air cooled CO2/R-290 

condenser. Their simulations indicated that the best environment temperature to start the DMS was 23.5ºC. 

And they observed high increments on COP and refrigerating capacity over all the tested range, however, 

they not provided quantification of the improvements. Using data obtained from DMS CO2 refrigeration 

systems placed in different warm and hot countries (maximum external temperatures up to 48ºC), Mazzola 

et al. (2016) analysed real effects of the DMS. The systems activated the DMS when the temperature at the 

exit of the gas-cooler reached 30ºC, its operation was restricted to transcritical operation. They compared 

measurements of energy consumption and maximum discharge temperature as a function of the 

environment temperature in relation to the same system without DMS. They observed that the DMS allowed 

10bar reduction in the discharge pressure and quantified an electric peak reduction between 16 to 40%. 

After further analysis they concluded that the use of the DMS in those locations reached 25% reduction of 

energy consumption. And finally, Beshr et al. (2016) and Bush et al. (2017) first simulated and then 

experimentally validated a prototype of a booster system for supermarket applications with flash tank using 

an indirect DMS working with R-134a and water-glycol mixture as heat transfer fluid. They evaluated the 

system under variable speed of the MT compressor and fixed speed of LT and auxiliary compressors for 

three heat rejection levels, 29, 35 and 39ºC. In the experimental verification they observed the theoretical 

predicted effects, a reduction of the optimum heat rejection pressure (1.9 bar at 29ºC, 0.9 bar at 35ºC), a 

large increment of the cooling capacity (+23.7% at 29ºC and +37.9% at 35ºC) and a big improvement in the 

overall COP of the system (+33.5% at 29ºC and +36.7% at 35ºC). Nonetheless, authors did not mentioned 

if the system was optimized in terms of subcooling. Recently, Bush et al. (2018) have modelled the system 

under transient operation. 
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In relation to subcooler-based CO2 systems for heat pump applications, the works of (Song and Cao, 2018; 

Song et al., 2017; Song et al., 2018) have demonstrated that the DMS system is also useful for heating 

purposes, however, they are not analysed in this manuscript, since it is focused on refrigeration systems. 

As it can be seen from the state-of-the-art, the DMS is a system with predicted and evaluated large 

possibilities of improving the performance of CO2 refrigeration systems. However, the experimentation 

phase is not complete, since the experimental evaluation has been only focused on transcritical conditions, 

in most of the cases, the optimum subcooling degree has not been quantified and the use of zeotropic 

refrigerant mixtures in the DMS system should be explored.  

4.2. Thermoelectric subcooling systems (TSS) 

Subcooling at the exit of the gas-cooler, at least with low subcooling degrees, can be also provided using 

thermoelectric systems, using the simplified scheme of Figure 13. Thermoelectric elements, due to the 

Peltier effect, generate a temperature difference between both semiconductors that make the element when 

a DC current is applied to them, therefore they can remove heat from the refrigerant (subcool) and drive it 

to the environment. One of the advantages of the thermoelectric elements for subcooling is that they operate 

at a low temperature difference between the cold and hot surfaces (environment temperature and average 

temperature of CO2 in the subcooler), where these elements show high COP values. However, the maximum 

temperature difference at which it can be of profit is when COPCO2<COPTSS as discussed in subsection 2.3. 

The other advantage of the TSS is that it can be activated by the electricity generated by an expander 

associated with a DC electric generator (Figure 14), thus it being an easy mechanism to take profit of the 

energy recovered in the expansion process. Table 8 summarizes the most relevant theoretical and 

experimental works considering TSS in CO2 refrigeration cycles. 

  

Figure 13. CO2 refrigeration system with thermoelectric subcooling system 
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Figure 14. CO2 refrigeration system with thermoelectric subcooling system and expander 

Schoenfield et al. (2008) and Schoenfield et al. (2012) were the first found references testing a TSS in a 

CO2 single-stage transcritical refrigeration plant. They used Bismuth-Telluride thermoelectric modules 

between a microchannel heat exchanger at the cold-side and a single-stage closed thermosyphon working 

with R22 as heat transfer refrigerant to the environment. They tested the TSS under variable current applied 

to the thermoelectric elements. In terms of COP, they observed that the highest improvement was achieved 

for low input current, condition at which the COPTSS is highest, however, the COP increment was reduced 

for higher input currents. Nonetheless, they observed that the capacity of the system also increased with 

increased input currents. They established two scenarios for comparison with the base line system. When 

the overall COP value was maximized, they measured 3.3% COP increase jointly with 7.9% increment in 

capacity, and when the objective function was the capacity, they measured 18.7% increment in capacity 

jointly with 2.1% reduction in the overall COP. They also theoretically evaluated the possibility to activate 

the TSS using the energy generated by an expander-electrical generator (Figure 14), reaching the 

conclusion that it could provide 13% COP enhancement and 11% capacity increment, values higher than 

those obtained experimentally. 

Sarkar (2013) theoretically evaluated a single-stage CO2 compression system using a TSS to provide 

subcooling at the exit of the gas-cooler. Using a constant value of the isentropic efficiency of the compressor 

of 75% and a TSS based on 100 couples bismuth-telluride, he optimized the set performance for gas-cooler 

exit temperatures from 30 to 50ºC and evaporating levels from -15 to 5ºC. He highlighted that such a system 

is bonded to three optimization parameters: high-pressure, subcooling degree and current input to the TSS. 

He quantified as maximum improvement for an input current of 11A, 25.6% increase in COP and 15.4% 

discharge pressure reduction. Next, Yazawa et al. (2015) and Yazawa et al. (2016) theoretically evaluated 

the thermodynamic profit of using an hypothetical TSS to air conditioning systems for data centers. Using 

thermoelectric elements with a figure-of-merit of 1.5 and 70% isentropic efficiency for the compressor, they 

predicted 20% COP improvement at a subcooler exit temperature of 12ºC for a gas-cooler exit temperature 

of 40ºC. They also presented a cost analysis of the TSS, evaluating a minimum cost of the TSS of 1.5 to 3 

$·W-1 of cooling capacity, a cost comparable to the cost of a heat exchanger according to the authors. Dai 
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et al. (2017b) theoretically studied the use of a TSS to a double-compression single-stage CO2 refrigeration 

cycle, obtaining similar conclusions to the other authors. In addition, they analysed the possibility of 

integrating an expander in the system (Figure 14) and the corresponding electric generator to supply the 

needed DC current to the TSS. They evaluated two possible allocations of the expander, one between the 

subcooler and the accumulation vessel and the second between the vessel and the evaporator. Their 

analysis confirmed that the best position was after the subcooler, and for that location the system with TSS 

and expander predicted a 37.8% COP improvement. And finally, Jamali et al. (2017) gave a step forward 

and also considered a TSS composed of a two-stage thermoelectric generator recovering energy at the gas-

cooler to supply the energy input to another two-stage thermoelectric cooler providing subcooling to the CO2 

at the exit of the gas-cooler. Their simulations at gas-cooler outlet temperatures form 35 to 50ºC and 

evaporating temperatures from -10 to 10ºC indicated that, the thermoelectric generator provided only a part 

of the power needed by the thermoelectric cooler, and for the mentioned cycle the COP improvement 

reached 18.9% at 5ºC of evaporation. However, no experimental validation was presented.  

From the literature review about thermoelectric subcooling systems, it is observed that from a theoretical 

point of view the possibilities of enhancing the performance of the CO2 refrigeration systems is large, from 

3.3 to 37.8%, however the main challenge of this technology is the integration of the thermoelectric elements 

with the corresponding heat exchangers, where minimization of the thermal resistance is needed to avoid 

reductions in the operating COP of the thermoelectric elements. Further research, especially with 

experimental approach is needed. 

4.3. Other hybrid systems 

Literature reveals some other scattered methods to improve the performance of CO2 refrigeration systems. 

Although some of them are not directly focused on achieving subcooling at the exit of the gas-cooler, their 

principle scheme reveals that it would be possible, and in most of the cases it should be recommended.  

Arora et al. (2011) combined theoretically a single-stage CO2 refrigeration plant with a single-stage BrLi-

H2O absorption plant, activated by heat recovery at gas-cooler, and used to provide additional capacity in 

the evaporator, at the same temperature level that the refrigeration system. They estimated an increase in 

capacity from 3.5 to 49.8% and an enhancement of the overall COP between 3.7 to 48.9%. Nonetheless, 

authors did not investigated the use of the cooling capacity of the absorption system to provide subcooling 

at the exit of the gas-cooler, method that will also reduce the optimum working pressure and benefit the 

operation of the compressor. Subcooling by means of an absorption system was analysed by Salajeghe and 

Ameri (2016). They concluded that the combination reduces the optimum high working pressure, improves 

the energy utilization factor and reduces the energy consumption in relation to conventional vapour 

compression systems. Similar conclusions were reached by Mohammadi (2018), who theoretically 

evaluated different possible combinations of a BrLi-H2O absorption with a CO2 refrigeration systems to 
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provide ‘after-cooling’ at the exit of the gas-cooler. However, no experimental studies have been found about 

the integration of both systems. 

Also, Mazzola et al. (2016) analysed experimental data from a CO2 supermarket installation using 

groundwater subcooling. The subcooling system was activated at environment temperatures from 25ºC, 

reaching reductions of the optimum high pressure of 15bar at 35ºC and 30% energy savings during a year. 

Finally, Chen et al. (2017) theoretically analysed and optimized an hybrid CO2 refrigeration cycle assisted 

by an ejector cooling system driven by heat rejected by the CO2 cycle. At evaporation temperatures from 0 

to 10ºC, the hybrid system allowed 25-30% increase of the overall COP.  

5. Concluding remarks 

In recent years, the use of subcooling methods has been researched and different developments have 

shown that subcooling of CO2 at the exit of the gas-cooler/condenser presents numerous advantages in 

relation to artificial refrigerant cycles, which makes it an improvement to be considered to enhance the 

performance of such cycles. 

This paper comprehensively reviews the work done so far, and the following conclusions have been obtained 

from the reviewing process: 

 CO2 subcooling, with internal or external methods, enhances the performance of the cycle if the 

COP of the subcooling system is higher than that reached by the isolated CO2 cycle. At that 

situation, benefits of subcooling are a large increase in capacity and an improvement of the overall 

COP. However, expected improvement in subcritical conditions is lower than in transcritical 

conditions (high heat rejection temperatures), because in transcritical conditions subcooling 

reduces the optimum working pressure and maximizes the improvement. Optimization of a CO2 

plant with a subcooling system is bonded to at least two variables, the optimum heat rejection 

pressure and the degree of subcooling, both bonded to the type of subcooling system. 

 About internal methods to provide subcooling: it results obvious that the use of the internal heat 

exchanger (IHX) is mandatory when CO2 operates in transcritical conditions, with reported COP 

increments up to 20% or even more, but this component presents the drawback of increased 

discharge temperature. The combination of the IHX with expansion energy recovery elements 

(ejectors and expanders) results negative, since the IHX penalizes those elements. Economization 

of CO2 cycles, generally used with double-stage compression systems, showed COP 

improvements up to 15.2%, the use of integrated mechanical subcooling systems up to 17.5%, and 

the combination with heat storage systems up to 3.5%. 

 Considering external subcooling systems: dedicated mechanical subcooling systems, generally 

based on the use of an additional vapour compression system with another refrigerant, have been 

widely investigated, with predicted COP improvements up to 28.8% and up to 67.7% using the 
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dedicated subcooling system jointly with an expander. However, the theoretical approach seems 

to be based on conservative assumptions, since the reviewed experimental work reported COP 

increments nearly up to 40%. It is mentioned that subcooling reduces the size of the CO2 

refrigeration system, however, existing research did not cover it. Thermoelectric subcooling 

systems are said to enhance the COP of the cycle between 20 to 25.6%, but, its combination with 

energy recovery systems (expanders or thermoelectric generators) increases this figure up to 

37.8%. However, the main drawback of thermoelectric subcooling still relies on the design of the 

heat exchanger that joins the thermoelectric elements with the subcooler, where thermal 

resistances have an important role. 

Conclusions from actual research reveal that subcooling is a worth method to increase the performance of 

CO2 refrigeration systems, however, due to its recent approach the following subjects require further 

attention: 

 Optimum conditions (theoretical or experimental) of integrated and external mechanical methods 

(subcooling degree and optimum high pressure) have not been extensively investigated. It should 

be needed to include in the analysis the CO2 system size reduction and also a thermoeconomic 

approach would be needed to reach definite conclusions. 

 Due to the complexity of the systems, experimental research is needed with integrated mechanical 

subcooling systems and economized cycles, since the actual research has not reached the 

improvement limits. Also, the dedicated subcooling systems must be explored from an 

experimental approach, where the use of refrigerant mixtures in the auxiliary refrigeration cycle 

could even enhance more the performance. Heat recovery systems integrated with the refrigeration 

cycle and those based on phase-change materials should be addressed. 

 Combination of CO2 refrigeration cycles with heat recovery systems for subcooling such as 

absorption systems or adsorption systems is nearly inexistent. The published theoretical works 

indicate that the combination of these systems would be very positive, however, the experimental 

evaluation of its combination is a mechanical challenge. 

 Recent CO2 refrigeration cycles rely on the use of ejectors and parallel compression, with great 

results. However, the introduction of dedicated subcooling systems to them has not been explored 

extensively. In the case of the ejector, the subcooling system could narrow its operating conditions 

and help them to simplify its design or regulation. 
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TABLES 

Table 1. Improvements of CO2 refrigeration systems with different subcooling systems. Simple effects. 

Subcooling system Reference 

system 

COP of reference system tO (ºC) tgc,out (ºC) Capacity increment in relation 

to reference system (%) 

COP increment in relation 

to reference system (%) 

Type Reference 

Internal heat exchanger basic cycle 1.16 (tO=-15.0ºC, tgc,out=33.9ºC)  

to  

1.91 (tO=-5.1ºC, tgc,out=31.0ºC) 

-15 to -5 

ºC 

31 and 

34ºC 

12% max 12% max. E, O (Torrella et al., 2011) 

 

Economizer double-stage 

cycle with 

intercooling 

2.62 (tO=2.7ºC, tgc,out=33.0ºC) 

and 

2.87 (tO=2.7ºC, tgc,out=22.0ºC) 

2.7ºC 22, 33ºC - 22.1%, 21.0% 

 

T, O (Cavallini et al., 2005) 

Thermoelectric basic cycle 2.412 (tO=5.0ºC, tgc,out=40.0ºC) -15 to 

5ºC 

30 to 50ºC - 7.0 to 25.6% T, O (Sarkar, 2013) 

Integrated mechanical 

subcooler 

basic cycle not provided -10ºC 30 to 42ºC - 20.5 to 21.3% T, O (Gullo and Cortella, 

2016) 

Dedicated mechanical 

subcooler 

basic cycle 1.32, 1.93, 2.57 (tO=0.0ºC, tw,in=24, 30.2, 40, ºC) 

and 

0.98, 1.44, 1.91 (tO=-10.0ºC, tw,in=24, 30.2, 40, ºC) 

0, -10ºC 24, 30, 

40ºC 

23.1 to 39.4% (tO=0.0ºC) 

and 

24.2 to 55.7% (tO=-10.0ºC) 

10.9 to 26.1% (tO=0.0ºC) 

and 

6.9 to 30.3% (tO=-10.0ºC) 

E (Llopis et al., 2016a) 

T=Theoretical, E= Experimental, O= optimized cycle, Basic cycle: single-stage cycle without IHX 
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Table 2. Conducted research to quantify the COP improvement due to IHX in the classical position in CO2 refrigeration plants 

Authors Character Analysed system Base system tO (ºC) tgc,o / [tenv] / 

(tK) (ºC) 

COP measured 

/ predicted 

ΔCOP in 

relation to 

base 

system (%) 

(Cavallini et al., 2005) T Air-to-air double compression with intercooling single-

stage throttling with IHX, air-cooled 

Same without IHX 2.7 33  [30] 2.82 7.6 

(Cavallini et al., 2007) E Air-to-air double compression with intercooling single-

stage throttling with IHX, air-cooled 

Same without IHX 2.7 33  [30] 2.20 20 

(Aprea and Maiorino, 

2008) 

E Air-to-air single-stage compression two-stage 

throttling with IHX 

Same without IHX 4.5 / 5.25 25 / 40  2.11 / 1.2 8.1 / 10.5 

(Cecchinato et al., 2009) T Single-throttling single-compression with IHX Same without IHX -30 / 4 [30] 1.05 / 3.25 4.8 / 16.5 

(Rigola et al., 2010) E Water-to-water single-throttling single-compression 

with IHX 

Same without IHX -10 [35 / 43] 0.875 / 1.175 20.5 / 23.2 

(Torrella et al., 2011) E, O Water-to-water double-stage throttling single-

compression with IHX 

Same without IHX -17 / 0 31 / 39 1.3 / 2.5 3.3 / 9.7 

(Llopis et al., 2015c) E, O Refrigerant-to-water single-stage throttling single-

compression with IHX and desuperheater 

Same without IHX -40 / -25  (-15 / -5) 2.1 / 4.7 -1.7 / 1.22 

T=Theoretical, E= Experimental, O= optimized cycle 
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Table 3. Conducted research to quantify the COP improvement due to IHX in non-classical positions in CO2 refrigeration systems 

Authors Chara

cter 

Analysed system Base system tO / [tw,in](ºC) tgc,o / [tw,in] 

(ºC) 

COP measured 

/ predicted 

max ΔCOP in relation to base system (%) 

Karampour 

and Sawalha 

(2014) 

T, O Transcritical booster 

system with 9 IHX 

positions. With heat 

recovery at gas-cooler 

exit. 

Transcritical booster 

system without IHX. Heat 

recovery at gas-cooler 

exit. With and without flash 

gas by-pass. 

tO,MT=-8ºC 

tO,LT=-12ºC 

35 3.3 to 3.75 Booster system with flash gas by-pass: 12% IHX at 

gc exit (HR), 2-IHX (gc exit, exit accumulation 

tank), 2-IHX (gc exit, liquid line LT cabinets) 

Booster system with flash gas by-pass: 11% 2-IHX 

(gc exit, exit accumulation tank), 2-IHX (gc exit, 

liquid line LT cabinets) 

Sánchez et 

al. (2014a) 

E, O Water-to-water single 

stage cycle with IHX at: 

a) gc exit, b) exit 

receiver, c) 2-IHX (gc 

exit, exit receiver) 

Water-to-water single 

stage cycle without IHX 

[5 and 15ºC] [25, 30, 

35ºC] 

(see reference) a) 10.6% max 

b) 6.2% max 

c) 13.0% max 

T=Theoretical, E= Experimental, O= optimized cycle 
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Table 4. Research quantifying the influence of the IHX with ejectors and expanders in CO2 refrigeration systems 

Authors Chara

cter 

Analysed system Base system Evaporation 

conditions 

Heat rejection 

conditions 

COP measured / predicted max ΔCOP in relation to base 

system (%) 

Elbel and 
Hrnjak 
(2004) 

T, O Air-to-air single-
stage cycle with 
ejector and/or IHX 
for mobile air 
conditioning 

Air-to-air single-
stage cycle 
without IHX and 
without ejector 

tO,air,in=35ºC, 
40% RH 

tgc,air,in=35ºC 2.2 at 1500 rpm +10% at 1500 rpm 

not provided +26% at variable compressor speed in 
relation to system with IHX 

Xu et al. 
(2011) 

E, O Water-to-water 
single-stage cycle 
with ejector and IHX 

Water-to-water 
single-stage cycle 
with ejector  

tO,w,in=17ºC tw,gc,in=18 to 
26ºC 

2.2 to 2.5 (heating COP) -58 to -62% (heating COP) 

Nakagawa et 
al. (2011) 

E Air-to-water single-
stage cycle with 
ejector and IHX (30, 
60cm length) 

Air-to-water 
single-stage cycle 
with ejector 

tO=0 to 4ºC tgc,out=42 to 
47ºC 

At tgc,out=42ºC: 
- 1.4 (tO=0ºC) – 1.73 (tO=4ºC), 

(Eje. + IHX 30cm) 
- 1.05 (tO=0ºC) – 1.20 

(tO=4ºC), (Eje. + IHX 60cm) 
At tO=0ºC: 

- 0.92 (tgc,out=47ºC) – 1.54 
(tgc,out=42ºC), (Eje. + IHX 
30cm) 

- 1.10 (tgc,out=47ºC) – 1.70 
(tgc,out=42ºC), (Eje. + IHX 
60cm) 

 

At tgc,out=42ºC: 
- 33% (tO=0ºC) – 44% 

(tO=4ºC), (Eje. + IHX 30cm) 
- 52% (tO=0ºC) – 58% 

(tO=4ºC), (Eje. + IHX 60cm) 
At tO=0ºC: 

- 28% (tgc,out=47ºC) – 187% 
(tgc,out=42ºC), (Eje. + IHX 
30cm) 

- 42% (tgc,out=47ºC) – 243% 
(tgc,out=42ºC), (Eje. + IHX 
60cm) 

 
Zhang et al. 
(2013) 

T, O Single-stage cycle 
with ejector and IHX 

Single-stage cycle 
with ejector 

tO=0, 5, 10ºC tgc,out=40, 45, 
50ºC 

At tO=5ºC and tgc,out=40ºC: 
- ηs,eje=20%, εIHX=80%: 2.52 
- ηs,eje=72%, εIHX=80%: 2.85 

 

At tO=5ºC and tgc,out=40ºC: 
- ηs,eje=20%, εIHX=80%: +3% 

- ηs,eje=72%, εIHX=80%: -11% 
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Zhang et al. 
(2014) 

T, O Single-stage cycle 
with expander 
(ηs,exp=80%) and 
IHX 

Single-stage cycle 
with expander 
(ηs,exp=80%) 

tO=0, 5, 10ºC tgc,out=40, 45, 
50ºC 

At tO=5ºC and tgc,out=40ºC: 
- εIHX=80%: 2.91 
- εIHX=60%: 2.95 

At tO=5ºC and tgc,out=40ºC: 
- εIHX=80%: -10.4% 
- εIHX=60%: -9.2% 

J.Shariatzad
eh et al. 
(2016)   

T, O Single-stage cycle 
with expander and 
IHX 

Single-stage cycle 
with expander  

tO=-25 to 20ºC tgc,out=30 to 
60ºC 

At tO=5ºC and tgc,out=40ºC: 2.95 
 

At tO=5ºC and tgc,out=40ºC: -8.4% 
 

T=Theoretical, E= Experimental, O= optimized cycle 
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Table 5. Research quantifying the influence of the integrated mechanical subcooler in CO2 refrigeration systems 

Authors Chara

cter 

Analysed system Base system Evaporation 

conditions 

Heat rejection 

conditions 

COP measured / predicted max ΔCOP in relation to base 

system (%) 

Cavallini et 
al. (2005) 

T Two-stage 
compression system 
with intercooler and 
economizer (split-
cycle), with and 
without IHX at 
evaporator exit 

Two-stage 
compression 
system with 
intercooler and 
without IHX (split-
cycle) with and 
without IHX at 
evaporator exit 

tO=2.7ºC tgc,out=33ºC - Two-stage with intercooler and 
economizer without IHX at 
evaporator exit: 3.17 

- Two-stage with intercooler and 
economizer without IHX at 
evaporator exit: 3.25 

 

- +21% (in relation to two-stage with 
intercooler without IHX) 

- +15.2% (in relation to two-stage 
with intercooler and IHX at 
evaporator exit)  

Cecchinato 
et al. (2009) 

T, O - Two-stage 
compression 
system with 
intercooler and 
economizer (split-
cycle) with IHX at 
evaporator exit 

- Two-stage 
compression 
system with 
intercooler and 
open flash tank 
with IHX at 
evaporator exit 

Two-stage 
compression 
system with 
intercooler and 
IHX at evaporator 
exit 

tO=4, -10,  
-30ºC 

tenv=25 to 35ºC At tenv=30ºC: 
- Split-cycle: 

o tO=4ºC:  3.70 
o tO=-10ºC: 2.57 
o tO=-30ºC: 1.72 

- Open flash tank: 
o tO=4ºC: 3.68 
o tO=-10ºC: 2.56 
o tO=-30ºC: 1.72 

At tenv=30ºC: 
- Split-cycle: 

o tO=4ºC:  +9.5% 
o tO=-10ºC: +12.7% 
o tO=-30ºC: +19.4% 

- Open flash tank: 
o tO=4ºC: +8.9% 
o tO=-10ºC: +12.3% 
o tO=-30ºC: +19.4% 

Wang et al. 
(2011) 

T, E, 
O 

Two-stage 
compression system 
with closed flash 
tank 

Two-stage 
compression 
system with gas-
cooler at the low 
compression 
discharge 

tw,O,in= 7 to 
17ºC (E)  

tgc,out= 15 to 
25ºC (E) 

Exact conditions not provided, see 
reference 

Exact increments not provided, see 
reference 

Zhang et al. 
(2016) 

T, O Two-stage 
compression cycle 

Two-stage 
compression cycle 

tO=-10 to 10ºC tgc,out= 35 to 50ºC At tO=5ºC and tgc,out=40ºC: 2.76 
 

At tO=5ºC, tgc,out=40ºC: 
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with closed flash 
tank 

with intercooler 
and throttling 
valve or expander 

- +6.5% in relation to cycle with 
throttling valve: 

- -15.5% in relation to cycle with 
expander (ηs,exp=40%) 

- -30.0% in relation to cycle with 
expander (ηs,exp=80%) 
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Table 6. Research quantifying the influence of the integrated mechanical subcooler in CO2 refrigeration systems 

Authors Chara

cter 

Analysed system Base system Evaporation 

conditions 

Heat rejection 

conditions 

COP measured / predicted max ΔCOP in relation to base 

system (%) 

Cecchinato 
et al. (2009) 

T, O Single-stage cycle 
with integrated 
mechanical 
subcooler 

Single-stage cycle 
without IHX 

tO=4, -10,  
-30ºC 

tenv=25 to 35ºC At tenv=30ºC: 
o tO=4ºC:  3.72 
o tO=-10ºC: 2.37 
o tO=-30ºC: 1.33 

At tenv=30ºC: 
o tO=4ºC:  +16.3% 
o tO=-10ºC: +17.3% 
o tO=-30ºC: +25.5% 

Gullo and 
Cortella 
(2016) 

T, O Single-stage cycle 
with integrated 
mechanical 
subcooler 

Single-stage cycle 
with parallel 
compressor 

tO=-10ºC tenv=30 to 42ºC Not provided o tenv=30ºC:  +2.8% 
o tenv=34ºC:  +4.4% 
o tenv=38ºC:  +4.5% 
o tenv=42ºC:  +5.5% 

T=Theoretical, E= Experimental, O= optimized cycle 
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Table 7. Research quantifying the influence of the dedicated mechanical subcooling system in CO2 refrigeration cycles 

Authors Chara

cter 

Analysed system Base system Evaporation 

conditions 

Heat rejection 

conditions 

COP measured / predicted max ΔCOP in relation to base 

system (%) 

Hafner A. 
and 
Hemmingse
n A. K. 
(2015) 

T 

 

R-290 DMS 
single-stage 
compression 
system with flash-
tank and IHX. 
(Capacity of DMS 
limited to 30% of 
CO2 cycle) 

R-404A direct 
expansion plant 
and 
Standard CO2 
booster 

Commercial 
refrigeration at 

medium 
temperature 

(value not 
provided) 

tenv=-15 to 43ºC At tenv=27.5ºC: 3.0 
 

- +15.4% in relation to CO2 
standard booster. 

- +6.0% in relation to R-404A 
system 

Llopis et al. 
(2015a) 

T R-290 DMS single-
stage and double-
stage cycles (SUB 
limited to 7.5K) 

CO2 single-stage 
and double-stage 
cycles without 
subcooling 

tO=-30, -5, 5ºC tenv=20 to 35ºC At tenv=30ºC, SUB=7.5K: 
o tO=-30ºC:  1.36 
o tO=-5ºC: 2.38 
o tO=5ºC: 3.48 

At tenv=30ºC, SUB=7.5K: 
o tO=-30ºC:  +18.4% 
o tO=-5ºC:  +17.9% 
o tO=5ºC: +12.3% 

Gullo et al. 
(2016) 

T R-290 DMS CO2 
booster system with 
flash gas valve for 
supermarket 
applications 
(SUBmax= 7 and 
15K) 

Conventional CO2 
booster system 
with flash gas 
valve for 
supermarket 
applications 

MT: tO=-10ºC, 
QO=97kW 

 
LT: tO=-35ºC, 

QO=18kW 

tenv=0 to 40ºC At tenv=30ºC, 1.46 At tenv=30ºC, +32.7% 

Dai et al. 
(2017a) 

T, O R-152a DMS single-
stage cycle 

 tO=-30, -5, 5ºC tenv=20 to 40ºC At tO=0ºC, tenv=30ºC: 2.85 At tO=0ºC, tenv=30ºC: +25.3% 

Purohit et al. 
(2017) 

T, O R-290 DMS CO2 
booster system with 
flash gas valve for 
supermarket 
applications 

CO2 booster 
system with 
parallel 
compression for 
supermarket 
applications 

MT: tO=-10ºC, 
QO=120kW 

 
LT: tO=-35ºC, 

QO=25kW 

tenv=0 to 45ºC At tenv=30ºC, 1.9 At tenv=30ºC, 4.4% 
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Dai et al. 
(2018) 

T, O DMS with zeotropic 
mixtures with CO2 
single-stage cycle 
and single throttling 
process 

CO2 single-stage 
cycle and single 
throttling process 

tO=-40 to 10ºC tenv=20 to 40ºC At tO=-5ºC, tenv=35ºC, for 
R32/R1234ze(Z) at 60/40 by mass: 
2.303 

At tO=-5ºC, tenv=35ºC, for 
R32/R1234ze(Z) at 60/40 by mass: 
38.1% 

Nebot-
Andrés et al. 
(2016) 

E R1234yf DMS CO2 
single-stage plant 
with two-stage 
throttling 

CO2 single-stage 
plant with two-
stage throttling 
without IHX 

tO= 0ºC tw,gc,in=30.2 and 
40ºC 

 At tw,gc,in=30.2ºC: 2.37 
 At tw,gc,in=40.0ºC: 1.68 

 At tw,gc,in=30.2ºC: 22.8% 
 At tw,gc,in=40.0ºC: 27.3% 

Llopis et al. 
(2016a) 

E, O R1234yf DMS CO2 
single-stage plant 
with two-stage 
throttling 

CO2 single-stage 
plant with two-
stage throttling 
without IHX 

tO=-10, 0ºC tw,gc,in=20.0, 30.2 
and 40.0ºC 

 At tO=0ºC: 2.85, 2.35, 1.67 at 
tw,gc,in=24.0, 30.2, 40.0ºC resp. 

 At tO=-10ºC: 2.04, 1.78, 1.27 at 
tw,gc,in=24.0, 30.2, 40.0ºC resp. 

 

 At tO=0ºC: 10.9, 22.1, 26.1% at 
tw,gc,in=24.0, 30.2, 40.0ºC resp. 

 At tO=-10ºC: 6.9, 24.1, 30.3% at 
tw,gc,in=24.0, 30.2, 40.0ºC resp. 

Sánchez et 
al. (2016) 

E, O R600a DMS CO2 
single-stage plant 
with two-stage 
throttling with 
hermetic 
compressors 

CO2 single-stage 
plant with two-
stage throttling 
with hermetic 
compressors, with 
and without IHX 

tO=-10ºC tw,gc,in=30 and 
35ºC 

At tO=-10ºC and tw,gc,in=35ºC: 1.62 At tO=-10ºC and tw,gc,in=35ºC: 
 20.0% base cycle without 

IHX 
 9.5% base cycle with IHX 

Beshr et al. 
(2016) and 
Bush et al. 
(2017) 

E R134a DMS CO2 
booster system with 
open flash tank for 
supermarket 
application with two 
evaporating levels 

CO2 booster 
system with open 
flash tank for 
supermarket 
application with 
two evaporating 
levels 

not provided tenv=8 to 40ºC At tenv=29ºC: 1.99 (combined COP) At tenv=29ºC: 33.5% 

T=Theoretical, E= Experimental, O= optimized cycle 
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Table 8. Research quantifying the influence of the thermoelectric subcooling system in CO2 refrigeration cycles 

Authors Chara

cter 

Analysed system Base system Evaporation 

conditions 

Heat rejection 

conditions 

COP measured / predicted max ΔCOP in relation to base 

system (%) 

Schoenfield 
et al. (2008) 
Schoenfield 
et al. (2012) 

E, O 
Single-stage CO2 
cycle with single 
expansion, with 
thermoelectric 
subcooler with R22 
thermosyphon 

Single-stage CO2 
cycle with single 
expansion without 
IHX 

tO=7.2ºC tenv=35ºC 2.51  +3.3% at maximum COP 
 -2.1% at maximum capacity 

Sarkar 
(2013) 

T, O Single-stage CO2 
cycle with single 
expansion, with 
thermoelectric 
subcooler 

Single-stage CO2 
cycle with single 
expansion without 
IHX 

tO=-15, -5 and 
5ºC 

tgc,out=30 to 50ºC At tO=5ºC and tgc,out=40ºC: 2.801 At tO=5ºC and tgc,out=40ºC: 16.1% 

Yazawa et 
al. (2015) 
Yazawa et 
al. (2016) 

T, O Single-stage CO2 
cycle with single 
expansion, with 
thermoelectric 
subcooler 

Single-stage CO2 
cycle with single 
expansion without 
IHX 

tO=10ºC tgc,out=40ºC 2.39 +22.6% 

Dai et al. 
(2017b) 

T, O Single-stage CO2 
cycle with expander 
before receiver and 
thermoelectric 
subcooler 

Single-stage CO2 
cycle with 
expander before 
receiver (others 
considered) 

tO=-35 to 15ºC tgc,out=30 to 45ºC At tO=5ºC and tgc,out=35ºC: 3.42 At tO=5ºC and tgc,out=35ºC: 12.1% 

Jamali et al. 
(2017) 

T, O Single-stage CO2 
cycle with two-stage 
thermoelectric 
modules in 
subcooler and gas-
cooler 

Single-stage CO2 
cycle with single 
expansion without 
IHX 

tO=-10 to 10ºC tgc,out=35 to 50ºC At tO=5ºC and tgc,out=40ºC: 3.06 At tO=5ºC and tgc,out=40ºC: 15.9% 

 

 


