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Abstract The dynamical behavior of a single-degree-
of-freedom system that experiences friction-induced
vibrations is studied with particular interest on the pos-
sibility of the so-called hard effect of a subcritical Hopf
bifurcation, using a velocity weakening–strengthening
friction law. The bifurcation diagram of the system is
numerically evaluated using as bifurcation parameter
the velocity of the belt. Analytical results are provided
using standard linear stability analysis and nonlinear
stability analysis to large perturbations. The former per-
mits to identify the lowest belt velocity (vlw) at which
the full sliding solution is stable, the latter allows to
estimate a priori the highest belt velocity at which large
amplitude stick–slip vibrations exist. Together the two
boundaries [vlw, vup] define the range where two equi-
librium solutions coexist, i.e., a stable full sliding solu-
tion and a stable stick–slip limit cycle. The model is
used to fit recent experimental observations.
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1 Introduction

Subcritical as well as supercritical Hopf bifurcations
are often encountered in different engineering applica-
tions, e.g., aeroelastic response of airfoils with struc-
tural nonlinearities [1,2], dynamics of ball joints [3],
brake squeal [4]. Engineers are generally more con-
cerned about subcritical (hard) bifurcations as a small
perturbation around the equilibrium position can lead
the system to large amplitude vibration states, which
the structure may not tolerate [5]. A number of authors
have studied the “Mass-on-moving-Belt” model (“MB
model” in the following), Tondl [6], Hetzler et al. [7],
Hetzler [8], Won and Chung [9], Nayfeh and Mook
[10], Mitropolskii and Van Dao [11], Popp [12], Popp
et al. [13], Hinrichs et al. [14], Andreaus and Casini
[15], Awrejcewicz and Holicke [16], Awrejcewicz et
al. [17], which present various types of analysis of
a mass-on-belt system with various kinds of friction
laws, and provide in some cases, analytical expres-
sions for the change between stick–slip and pure-slip
oscillations. Many authors have attempted to use fast
vibrations which in some respects seems to transform
classical Coulomb friction into viscous-like damp-
ing ([5,18]). Most often, supercritical bifurcations are
found, namely where the system undergoes a smooth
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transition to a limit cycle (generally involving stick–
slip) when the control parameter is varied.

In [19] Hoffmann studied the effect of LuGre type
friction law [20] on the stability of the classical MB
model. It was shown that rate-dependent effects act
against the destabilizing effect of the velocity decay-
ing friction characteristic. The reader is referred to the
review by Awrejcewicz and Olejnik [21] where the
dynamical behavior of different lumped mechanical
systems (see also [22]) with various friction laws has
been investigated.

Hetzler et al. [7] (see also [23]) studied the dynamic
behavior of the MB model using different friction
characteristics, (exponential and polynomial decay-
ing). They assumed a weakly nonlinear behavior and
used a first-order averagingmethod to find approximate
solutions. It was shown that the exponential decay-
ing leads to subcritical Hopf bifurcation while, using a
cubic polynomial friction law, the dynamical behavior
(subcritical/supercritical) depends on the friction law
parameters [7].

Also in [8] Hetzler showed that adding a Coulomb
frictional damping to the self-excited MB model leads
to an “imperfect” Hopf bifurcation scenario where it
does not make sense to ask for stability of the steady
state but rather one should seek for stability to a certain
level of perturbation.

Recently, Papangelo et al. [24] have found local-
ized vibration states in a self-excited chain of mechan-
ical oscillators weakly elastically coupled, which lead
to the so-called snaking bifurcations in the bifurcation
diagram. A key feature of the system was that, if iso-
lated from the structure, each nonlinear oscillator expe-
riences a subcritical Hopf bifurcation in a certain range
of the control parameter (yielding bistability1). How-
ever, Papangelo et al. [24], adopted a polynomial non-
linearity quite remote from a real friction law. Here,
perhaps with an eye to the classical Stribeck curve, for
theMBmodel we propose an exponentially weakening
and linearly strengthening friction law. We show that
this friction model yields to bistability thus vibration
localization phenomena are expected as in Papangelo
et al. [24] if those oscillators were coupled together.

Hoffmann [25] showed that even with a 2-DOF
model, but using the Coulomb friction model with

1 “In a dynamical system, bistability means the system has
two stable equilibrium states.” From: Wikipedia (https://en.
wikipedia.org/wiki/Bistability).

Fig. 1 Mass-on-moving-belt model (MB model)

a static (μst) and dynamic (μd) friction coefficient
(μst > μd), bistability can be obtained. For the given
set of parameters Hoffmann [25] showed that at μd =
0.4 the usually called “mode coupling instability” takes
place and the system becomes (linearly) unstable under
small oscillations. What is particularly interesting for
us is that if μst/μd > 1 a stick–slip limit cycle exists
even in the range where the steady sliding state is lin-
early stable.

Saha et al. [26] studied the MB model (see Fig. 1)
with the aim to control friction-induced oscillations
using a time-delay feedback force. They also introduce
two different friction models for the dependence of the
frictional force on the sliding speed: one exponentially
decaying, the other with polynomial decay. They carry
out the analysis using themethod ofmultiple scales in a
quite elaborate manner limited to the full sliding case.
Interestingly, they show that the bifurcation is super-
critical for polynomially decaying and subcritical for
exponentially decaying friction law. This confirms that
the choice of the shape of the friction law is in a sense
a delicate point.

Recently Saha et al. [27] published experimental
results of a mass-on-moving-belt model test rig (see
Fig. 1). These results are very instructive in general,
since they clearly show a bifurcation diagram with
a subcritical Hopf bifurcation in a single-degree-of-
freedom model. Saha et al. [27] plot the friction law
obtained frommeasurementswhich surprisingly shows
very large hysteretic effects, both during the slip and
the “stick” state (even if talking about a proper “stick
state” becomes difficult, cfr. their Fig. 6). On the other
hand, we notice that they use a sample of mild steel on
a belt of silicon rubber, thus viscoelastic effects (maybe
thermal effects) are at play.

Velocity weakening–strengthening behavior of the
friction force with the relative velocity has been
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Table 1 Values of static coefficient of friction, kinetic coefficient of friction and the ratio μst/μd. From Rabinowicz [38]

Pair # Material 1 Material 2 μst μd μst/μd

1 Copper Mild steel 0.46 0.31 1.484

2 Lead Mild steel 0.72 0.47 1.532

3 Mild steel Copper 0.54 0.39 1.385

4 Mild steel Titanium 0.63 0.45 1.4

5 Mild steel Zinc 0.65 0.47 1.383

Table 2 Data for the static coefficient of friction, kinetic coefficient of friction, and their ratio μst/μd reordered and taken from the list
compiled by the late Roy Beardmore using a variety of handbooks listed in his web site

Pair # Material 1 Material 2 μst μd μst/μd

1 Cast iron Cast iron 1.1 0.15 7.33

2 Zinc Cast iron 0.85 0.21 4.05

3 Copper Cast iron 1.05 0.29 3.62

4 Glass Glass 0.95 0.4 2.38

5 Steel (hard) Steel (hard) 0.78 0.42 1.86

6 Steel (mild) Steel (mild) 0.74 0.57 1.30

7 Steel (mild) Lead 0.95 0.95 1.00

8 Aluminum Aluminum 1.2 1.4 0.86

http://www.roymech.co.uk/Useful_Tables/Tribology/co_of_frict.htm#coef

observed for different materials in dry (see [28]) and
lubricated condition (see [29–34]). It has been shown
that the dynamical behavior can be highly influenced by
the strengthening branch of the friction curve ([35–37])
thus we will consider a friction law with an exponen-
tial decay plus a linear strengthening which will also
give a good fit of the experimental data from Saha et
al. [27]. In Tables 1 and 2 typical values of μst, μd and
μst/μd are reported for a given couple of materials.
The data are taken from reliable sources and show that
μst/μd can be easily greater than 2. In the next para-
graphs we will show how the dynamical behavior of
our model (particularly the bistability region) can be
highly affected by μst/μd.

Finally, in the last paragraph, we will use our model
to qualitatively fit Saha et al. [27] experimental results.

2 The mass-on-moving-belt model

2.1 The model

The model is constituted by a linear oscillator of mass
m, stiffness k, linear damping coefficient c, (see Fig. 1)

which is placed on a frictional belt driven at a constant
velocity vd. The dynamical equilibrium equation of the
mass is

m
..
x + c

.
x + kx = F (1)

with{
F = −Nμ (vrel) sign (vrel) vrel �= 0
|F | < μstN vrel = 0

(2)

where x (t),
.
x (t),

..
x (t) are, respectively, the displace-

ment, velocity and acceleration of the mass, F is the
friction force, N is the normal contact force, μ (vrel) is
the friction coefficient which is a function of the rel-
ative velocity vrel = .

x − vd and sign(•) is the sign
function.

Friction between the mass and the belt is described
using a velocity weakening–strengthening friction law
of the relative velocity vrel

μ (vrel) = μd + (μst − μd) exp

(
−|vrel|

v0

)
+ μv

|vrel|
v0

(3)

where v0 is a reference velocity, μv is a constant,
μ (0) = μst and μ (vrel → +∞) = μd. Notice that
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a steeper weakening (strengthening) of the friction law
behavior is obtained for small v0 (large μv).

We define the following quantities

ξ = c
2
√
km

x0 = N
k ωn =

√
k
m τ = ωnt (4)

and make all displacements dimensionless using x0.
Substituting d

dt = ωn
d
dτ the dynamical equilibrium

Eq. (1) is rewritten as
..

x̃ + 2ξ
.

x̃ + x̃ = F̃ (5)

where a tilde superposed indicates a dimensionless
quantity, and derivatives are made with respect to the
dimensionless time τ .

2.2 Linear stability analysis

Assume to linearize the system about the static equi-
librium position x̃e = μ (̃vrel) = μ (−ṽd) and write
x̃ (τ ) = x̃e + ỹ (τ ) where ỹ (τ ) is a small perturbation( .

ỹ (τ ) < ṽd

)
. Substituting, x̃ (τ ) in (5) one obtains

..

ỹ + 2

(
ξ + 1

2
μ′ (̃vd)

)
.

ỹ + ỹ = 0 (6)

..

ỹ + 2T
.

ỹ + ỹ = 0 (7)

whereμ′ (̃vd) = dμ(̃vrel)
d ṽrel

∣∣∣̃
vrel=ṽd

and T =
(
ξ + μ′ (̃vd)

2

)
.

Equation (7) is a linear second-orderODE, thus its solu-
tion can be written in exponential form y (t) = Yeλt ,
with in generalλ ∈ C. Solving the eigenvalues problem
we obtain

λ1,2 = −T ±
√
T 2 − 1 (8)

The equilibrium is

T ≤ −1 −1 < T < 0 T = 0 0 < T < 1 T ≥ 1

Unstable
node

Unstable
focus

Center Stable
focus

Stable
node

The condition for linear stability is T > 0 which
translates into the condition

β = −μ′ (̃vd)
2ξ

< 1 (9)

Putting β = 1 and using (3) one obtain an equation for
ṽlw which is the threshold above which steady sliding

is stable (vrel > 0)

ṽlw = ṽ0 ln

(
μst − μd

2ξ ṽ0 + μv

)

The linear strengthening coefficient has to be μv >

−2ξ ṽ0, otherwise the overall damping would be nega-
tive. On the other hand ifμv exceed (μst − μd)−2ξ ṽ0
then ṽlw = 0 and steady sliding will be stable for any
driving velocity.

3 Stability to large amplitude perturbations

In this section we investigate the stability of the SS
solution against non-infinitesimal perturbations. Let us
approximate the system response to be harmonic slid-

ing x = A cos (ωt + φ) + xe,
·
x = −Aω sin (ωt + φ)

about an equilibrium full sliding position, without
reaching stick. The energy dissipated by the viscous
damper Ev is

Ev =
∫ 2π

0
c
( ·
x
)2 dτ

ω
= πωcA2 (10)

and depends on the amplitude squared. The total
amount of energy dissipated by dry friction is ET

f

ET
f =

∫ 2π

0
Nμ (vrel) sign (vrel)

( ·
x − vd

) dτ

ω
(11)

which is clearly constituted by two contributions: one
“mean” contribution due to the sliding at v = vd and
the other from the oscillation x (t). Notice that themean
sliding term is purely dissipative. For defining a stabil-
ity criterion to high amplitude perturbations only the
contribution Ef due to the oscillation around the equi-
librium position is considered which is

Ef = −N

ω

∫ 2π

0
μ (vrel)

·
xdτ (12)

where we use the condition
·
x < vd. The frictional

dissipated energy is

Ef = 2πN A

[
μv

Aω

2v0
− (μs − μd) exp

(
−vd

v0

)

IB

(
1,

Aω

v0

)]
(13)

where IB
(
1, Aω

v0

)
is themodifiedBessel function of the

first kind, in Mathematica BesselI[n,z]. Notice that the
weakening part of the friction law feeds energy into the
system, while the strengthening part acts like a further
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viscous damping which dissipate energy. The stabil-
ity condition to large perturbations is obtained impos-
ing that the overall frictional energy provided by the
velocity weakening friction law is less than the energy
dissipated by the damper in a cycle, thus

−Ef

Ev
=

2N (μs − μd) exp
(
− vd

v0

)
IB

(
1, Aω

v0

)
ωcA

−μvN

v0c
< 1 (14)

which permits a simple determination of the amplitude
threshold. The stability condition (14) in dimensionless
form reads
−Ef

Ev
= μd

ξ
√
1 − ξ2 Ã

(
μs

μd
− 1

)

exp

(
− ṽd

ṽ0

)
IB

(
1,

Ã
√
1 − ξ2

ṽ0

)
− μv

2ξ ṽ0
< 1 (15)

wherewe estimate ω
ωn


 √
1 − ξ2. Notice that in deriv-

ing the energy “provided” by the friction law we made

the hypothesis
·
x −vd < 0, thus the criterion (14) holds

up to the critical point where Aω = vd, then the stick
phase will come into play. This allows to estimate an
upper bound of validity for the criterion (14) “vup” that
is obtained imposing in (14) −Ef

Ev
= 1 and Aω = vd.

3.1 A numerical example

In this paragraph a numerical example is presented
where the equation of motion of the mass (5) is solved
using the built-in MATLAB time integration solver
ode23t, which integrate the system equations using the
trapezoidal rulewith a “free” interpolant, has no numer-
ical damping and is recommended for moderately stiff
problem. The friction force is implemented using the
switchmodel which defines a narrow band of vanishing
relative velocity where the stick equations are solved
and makes the problem not stiff (the reader is referred
to [39] for more details). We assumed that the mass
sticks to the belt if |̃vrel| < 10−4.

For a numerical example assume ξ = 0.05 and the
following parameter for the exponential decaying fric-
tion law (3).

μd = 0.5; μst
μd

= 2; ṽ0 = 0.5;
μv = [−0.03, 0, 0.02, 0.05]

(16)

Imposing β = 1 in (9) and using (14), with −Ef
Ev

= 1

and Ã = ṽd, the lower (upper) boundary is computed

0 0.5 1 1.5 2 2.5 3 3.5 4

vrel

0

0.2

0.4

0.6

0.8

1

F
(v

re
l)

Friction law
vlw

vup

μv

Fig. 2 Weakening–strengthening friction law with μd = 0.5,
μst
μd

= 2, ṽ0 = 0.5, ξ = 0.05 and μv = [−0.03, 0, 0.02, 0.05].

The red square (circle) indicate ṽlw
(̃
vup

)
. (Color figure online)

0 0.5 1 1.5 2 2.5 3

vd

0

0.5

1

1.5

2

A

increasing vd
decreasing vd
ULC
full criterion

v
lw

v
up

bistable
region

Stable LC

Stable SS

Unstable LC

Fig. 3 Bifurcation diagram for the MB model, limit cycle
amplitude versus the driving velocity (dimensionless form). The
equilibrium solutions are obtained increasing (blue circles) and
decreasing (red triangles) the driving velocity ṽd. The gray
squares represent unstable limit cycle obtained solving the ODE
backwards in time. The results are coincident with the full cri-
terion line (solid blue line) as it exactly represents the situation
−Ef/Ev = 1 (see 14). (Color figure online)

ṽlw
(̃
vup

)
. In Fig. 2 the friction law is reported: the

bistable region is expected for values of the driving
velocity ṽd in between the two boundaries ṽlw and ṽup
which are labeled, respectively, with a square and a cir-
cle. Notice that exponentially decaying friction laws
with μv = 0 are commonly used in the literature for
example for break squeal analysis [40]. On the other
hand Bar-Sinai et al. [28] showed experimental obser-
vations of velocity weakening–strengthening friction
in various materials, thus we will focus on the case
μv ≥ 0.

In Fig. 3 the bifurcation diagram for theMBmodel is
shownwhere the dimensionless amplitude of the vibra-
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Fig. 4 (a–b–c)
displacement x̃(τ ) as a
function of time τ in
dimensionless form for
driving velocity ṽd = 1.5,
and friction law parameters
as in Fig. 3 but with μv = 0.
Respectively, a stick–slip
LC, b ULC (backward time
integration), c SS state. On
the right panel the phase
plot is shown. (Color figure
online)
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tion is plotted against the driving velocity in dimen-
sionless form with μv = 0. Notice that Steady Slid-
ing solutions (“SS”) have Ã = 0. The equilibrium
solutions are obtained increasing (blue circles) and
decreasing (red triangles) the driving velocity ṽd. A
bistable zone is found for ṽlw < ṽd < ṽup as expected,
where Limit Cycles (“LC”) and SS solutions coexists.
In between the two stable solutions the gray squares
represent Unstable Limit Cycles (“ULC”) that have
been obtained solving the ODE backwards in time.
Notice that those solutions match almost perfectly the
equation −Ef

Ev
= 1, that is the stability criterion (14,

blue solid line) when one imposes a perfect balance
between the energy supplied and dissipated in the sys-
tem. The solution is unstable as a small perturba-
tion leads either on the stick–slip LC or on the SS
solution.

Figure 4 reports on the left side (a–b–c) time integra-
tion results for ṽd = 1.5,while on the right the solutions
are reported together in the phase plane. Respectively,
Fig. 4a represents the case of stick–slip LC, Fig. 4b
refers to the ULC (full sliding solution) and Fig. 4c
shows a case where vibrations are damped down up to
the steady sliding state. The unstable limit cycle divides
the phase plane into twobasins of attraction: every solu-
tion initialized outside theULCends up in the stick–slip
LC, otherwise SS is obtained. Belowwe summarize the
possible dynamical behavior of the mass as a function
of the driving velocity:

⎧⎨
⎩

ṽd < ṽlw, LC
ṽlw < ṽd < ṽup, SS-LC
ṽd > ṽup, SS

(17)

Figure 5 shows the curves of ṽlw (Fig. 5a) and(̃
vup − ṽlw

)
(Fig. 5b) plotted against ṽ0 for different

μs/μd = [1.4 − 5] and for ξ = 0.05, μd = 0.5 and
μv = 0. The lower boundary ṽlw vanishes for both
very small and high ṽ0 [panel (a)]. In the limit, the first
case would be the classical Coulomb friction model
with two friction coefficients μs > μd, while, due
to very slow decreasing of μs(vrel), the second case
would be in the limit of infinite ṽ0 the Coulomb fric-
tion model with just one friction coefficient. In both
cases ṽlw = 0 and even a small viscous damping will
make steady sliding always stable, at any driving veloc-
ity provided ξ > 0. In between those two limit cases
ṽlw as well as

(̃
vup − ṽlw

)
reaches a maximum value.

Figure 5b shows that the width of the bistability region
vanishes only for high ṽ0 (thus in the limit of Coulomb
friction with one friction coefficient), while even at
very small ṽ0

(
e.g., ṽ0 
 10−3

)
, awell-defined bistable

zone exists, even if of small size (Fig. 6). This agrees
with [41] which found a subcritical bifurcation in a
MB model even with the classical Coulomb friction
model with a sharp jump from μs to μd. It is shown
that higher the ratio μs/μd the stronger is the depen-
dence of

(̃
vup − ṽlw

)
on ṽ0.
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Fig. 5 a ṽlw and b(̃
vup − ṽlw

)
plotted against

ṽ0 for ξ = 0.05, μd = 0.5,
μv = 0, and μs/μd =
[1.4, 2.3, 3.2, 4.1, 5]
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)
plotted against

ṽ0 for
μd = 0.5, μs/μd = 2,
ξ = 0.05 and μv =
[0, 0.01, 0.025, 0.07, 0.12]
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4 Comparison with experimental results

Recently Saha et al. [27] performed an experimental
investigation on a MB model and found experimen-
tally that in their set up the bifurcation is a subcritical
Hopf bifurcation where a bistable region exists. The
test rig is constituted of a spring–mass system where
a rectangular block made of mild steel slides on a sil-
icone rubber belt. In [27] all the necessary parameters
that characterize the experimental test rig are provided

m = 0.39 kg, k = 6.62 × 103 N/m,

c = 1.15 Ns/m, (18)

which leads to ξ = 0.0113. The experimentally mea-
sured friction force obtained by Saha et al. [27] is
reported in Fig. 7 with red circles. Notice that there
is not any “stick phase” while a hysteresis loop appears
to dominate the zone of small relative velocity. The
hysteresis phenomena also exist in the slip phase but
are less important. Clearly, a weakening–strengthening
friction law as the one considered in this work can
not be able to reproduce such a behavior, particularly
because Saha et al. [27] reported the overall friction
force, without any information about the normal load,
which makes it impossible to retrieve the actual fric-
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0 200 400 600 800 1000 1200

vr [mm/s]
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1
F
(v

d
)

N

Fitted - Exp data
All Exp data
VWS
VW

Fig. 7 Friction force F (vrel) /N versus the relative velocity as
reported in Saha et al. [27] (red circles). Black stars indicate
the points considered in the fitting with the exponential decaying
friction lawwith (blue dashed line) and without (black solid line)
the strengthening term. (Color figure online)

tion coefficient at the interface. In fact Saha et al. [27]
admit that the measured oscillations were modulated
by external unwanted factors, such as: joint in the belt,
nonuniform surface properties of the belt, flexibility
of the belt and vibration of the supporting structure.
Being aware of those limitations, we try to use our
model and compare with those experiments, which are
quite rare in the literature, with the aim to reproduce
at least a the same dynamical behavior experimentally
observed.

For estimating the parameters of the friction model
(3) we neglect the hysteretic loop of the friction law
close to vrel ∼ 0, instead we consider only the points

indicated in Fig. 7 with black stars. Here the results of
two friction curves are considered, respectively, with
(Fig. 7, blue dashed curve, “VWS” friction law in the
following) andwithout (Fig. 7, black solid curve, “VW”
friction law in the following) linear strengthening. As
there were no information about the normal load mag-
nitude, we arbitrarily assume N = 30N which led to a
reasonable set of parameters (eg. μst, μd) for both VW
and VWS friction laws:

VW: μd = 0.48 μst = 1 μv = 0 ṽ0 = 0.057
VWS: μd = 0.38 μst = 1 μv = 0.009 ṽ0 = 0.08

(19)

In Fig. 8a–b the bifurcation diagram reported in
Saha et al. [27] is shown in dimensionless notation
(red squares), where the vibration amplitude is reported
against the driving velocity. Notice that there is no
SS state measured in the experiment, but more pre-
cisely a limit cycle of small amplitude. The authors
explain in [27] this is due to modulation of the normal
load (which in the MB model is assumed constant).
Figure 8a reports the numerical results obtained by
sequential continuation from the right to the left and
viceversa using the exponential decaying friction law
without strengthening. Although the upper and lower
limit do not match exactly the vibration amplitude of
the stick–slip LC is quantitatively predict by the MB
model. Notice that any other choice of the normal load
N would just rescale the bifurcation diagram without
affecting its shape. Figure 8b reports the numerical

Fig. 8 Bifurcation diagram,
amplitude versus driving
velocity. Experimental
results from Saha et al. [27]
red squares, numerical
results obtained by
sequential continuation
from the right to the left and
viceversa (blue circles). The
panels (a, b) report,
respectively, the results
obtained with the VW and
VWS friction law. (Color
figure online)
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results obtained when the effect of linear strengthening
is taken into account in the friction law. Even though
the friction law seems to fit better the experimental
measured friction law (Fig. 7, dashed line) the results
in term of bifurcation diagram are poorer. Those dis-
crepancies could arise from the modulation of the nor-
mal load, but unfortunately we do not have quantita-
tive information about it, thus we can not make fur-
ther improvements in this direction. The results surely
show that the in such a system the dynamical behav-
ior is very sensitive to the exact shape of the friction
law.

5 Conclusions

The dynamical behavior of a single-degree-of-freedom
system (the classical mass-on-moving-belt model) has
been studied, focusing on the possibility of the so-
called hard effect of a subcritical Hopf bifurcation,
using a velocity weakening–strengthening friction law
μ (vrel). It has been shown that in the range of driv-
ing velocity ṽlw < ṽd < ṽup two stable solutions
coexist, one in steady sliding, the other as a stick–
slip limit cycle. Linear stability analysis provides ṽlw
while a stability analysis to large perturbations pro-
vides the upper boundary ṽup. For a given μs/μd very
sharp decaying of the friction coefficient to the dynamic
value does not eliminate the bistable region, while if the
decaying is slow enough the bistability region shrinks
and only the steady sliding state survives. Introducing
the strengthening branch has little effect on ṽlw, but
strongly decreases ṽup, reducing the bistability region.
In the last paragraphwe used ourmodel to fit the experi-
mental results providedbySaha et al. [27]. Itwas shown
that the vibration amplitude at a given velocity of the
belt seems to correlatewellwith experiments, neverthe-
less the width of the bistability region is very sensitive
to the shape of the friction law.
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