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Abstract
Let X ,Y be complex Banach spaces. Let L(X ,Y ) be the space of bounded operators.
An important aspect of understanding differentiability is to study the subdifferential
of the norm at a point, say x ∈ X , this is the set, { f ∈ X∗ : ‖ f ‖ = 1 , f (x) = ‖x‖}.
See page 7 in Deville et al. (Pitman Monographs and Surveys in Pure and Applied
Mathematics. 64. Harlow: Longman Scientific and Technical. New York: John Wiley
and Sons, Inc. 1993). Motivated by recent results of Singla (Singla in Linear Alg.
Appl. 629:208–218, 2021) in the context of Hilbert spaces, for T ∈ L(X ,Y ), we
determine the subdifferential of the operator norm at T , ∂T = {� ∈ L(X ,Y )∗ :
�(T ) = ‖T ‖ , ‖�‖ = 1}. Our approach is based on the ‘position’ of the space of
compact operators and the Calkin norm of T . Our ideas give a unified approach and
extend several results from Singla (Linear Alg. Appl. 629:208–218, 2021) to the case
of �p-spaces for 1 < p < ∞. We also investigate the converse, using the structure
of the subdifferential set to decide when the Calkin norm is a strict contraction. As
an application of these ideas, we partially solve the open problem of relating the
subdifferential of the operator norm at a compact operator T to that of T (x0), where
x0 is a unit vector where T attains its norm.
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1 Introduction

Let X ,Y be complex Banach spaces. An interesting problem in operator theory is
to determine standard Banach space theoretic sets in L(X ,Y ), based on geometric
properties of X ,Y and their duals.
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Let X1 denote the closed unit ball and let ∂eX∗
1 be the set of extreme points of the

dual unit ball. In the context of dual spaces, closure operation is always with respect to
the weak∗-topology. For notational simplicity, we call the subdifferential of the norm
at a vector x , ∂x = { f ∈ X∗ : ‖ f ‖ = 1, f (x) = ‖x‖}, as the subdifferential set, with
the vector under consideration appearing in the subscript . This notation is consistent
with [2]. Study of these sets in various categories of Banach spaces has long history
(an extensive bibliography is available in [3]) and we only quote the results of Taylor
and Werner (see [4] and [5]) to illustrate.

For y ∈ X , the relation to the directional derivative of the norm at x is given by the
formula (see [6] and [1], pages 7,8)

limt→0+
‖x + t y‖ − ‖x‖

t
= sup{re( f (y)) : f ∈ ∂x }.

We recall that ∂x is an extreme, weak∗-closed convex subset of X∗
1 ( called a face,

see [7] for basic convexity theory) and therefore the set of extreme points, ∂e(∂x ) =
∂x ∩ ∂eX∗

1 . Thus we can replace the functionals in the formula by extreme points.
The idea now is to replace the functionals in the RHS set by those coming from an
appropriate subspace of X , where the extreme functionals have specific description.
Note that the limit on LHS is independent of this manipulation, which is the prime
motivation of this approach.

For x∗∗ ∈ X∗∗, y∗ ∈ Y ∗, x∗∗ ⊗ y∗ denotes the functional (x∗∗ ⊗ y∗)(T ) =
x∗∗(T ∗(y∗)). We recall from [8] (Theorem VI.1.3) that for any subspace J of com-
pact operators K(X ,Y ) , ∂e J ∗

1 ⊂ {x∗∗ ⊗ y∗ : x∗∗ ∈ ∂eX∗∗
1 , y∗ ∈ ∂eY ∗

1 } and
equality holds if J also contains all finite rank operators. For A ∈ L(X ,Y ), such
that d(A,K(X ,Y )) < 1, our main result is to determine ∂A depending on the position
of the space of compact operators.

We recall from Chapter I of [8], that a closed subspace J ⊂ X is said to be a
M-ideal, if there is a linear projection P : X∗ → X∗ such that ker(P) = J⊥ and
‖x∗‖ = ‖P(x∗)‖ + ‖x∗ − P(x∗)‖ for all x∗ ∈ X∗. When this happens, functionals
in J ∗ have unique norm-preserving extension in X∗ and J ∗ is canonically identified
with the range of P so that X∗ = J⊥ ⊕

1 J
∗, consequently ∂eX∗

1 = ∂e J ∗
1 ∪ ∂e J⊥

1 .
See [8] for examples ofM-ideals from function spaces, Banach algebras and spaces

of operators. In particular Chapter VI deals with examples where K(X ,Y ) is a M-
ideal in L(X ,Y ), which includes, K(�p) in L(�p) for 1 < p < ∞ and K(X , c0) is a
M-ideal in L(X , c0) as well as

⊕
∞ X , for any Banach space X . Note also M-ideals

in C∗-algebras are precisely closed two-sided ideals. This explains the overlap with
[2] and gives possible extensions of the results there beyondC∗-algebras. See also [3].

We investigate conditions on X ,Y whichwill allow us to determine theCalkin norm
(i.e., the quotient norm of L(X ,Y )/K(X ,Y )) of an operator, knowing the behaviour
of the subdifferential set. We show that under the general conditions assumed here, if
0 is not a weak∗ accumulation point of ∂eX∗∗

1 , ∂eY ∗
1 , then the Calkin norm indeed

gets determined.
Since the subdifferential set ∂x can be used to evaluate the limit, for y ∈ X ,

limt→0+ ‖x+t y‖−‖x‖
t , a natural question is, when X is canonically embedded in its

bidual X∗∗, if one can replace y in the above formula, by τ ∈ X∗∗, while retaining ∂x
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Subdifferential set of an operator 893

in the RHS? We partially answer this, using the notion of point of norm-weak upper
semi-continuity of the preduality map on X∗∗ (see the preamble before Proposition
11).

We also show that for the special classes of compact operatorsK(X ,Y ), when they
form a M-ideal in L(X ,Y ) and L(X ,Y ) is the bidual ofK(X ,Y ) (for example, when
X and Y are �p-spaces, 1 < p < ∞), the subdifferential continues to behave well in
all higher even order duals of K(X ,Y ).

Another interesting problem is to relate the subdifferential of the operator norm at
T to that of T (x0), where x0 is a point where T attains its norm. Using some recent
work from [9], we give conditions when this can be solved for a T ∈ K(X ,Y ), for a
reflexive space X , J ⊂ Y is a M-ideal.

For a compact Hausdorff space�, letC(�, Y ) be the space of Y -valued continuous
functions, equipped with the supremum norm. For ω ∈ �, y∗ ∈ Y ∗, δ(ω) ⊗ y∗
denotes the functional (δ(ω) ⊗ y∗)( f ) = y∗( f (w)). For a M-ideal J ⊂ Y and
f ∈ C(�,Y ), if ∂ f = CO{δ(ω)⊗ y∗ : y∗( f (ω)) = ‖ f ‖, ω ∈ � , y∗ ∈ ∂e J ∗

1 }, (here
and elsewhere, CO stands for the convex hull of the set in {.}), when 0 is not a weak∗-
closed accumulation point of ∂eY ∗

1 , there is a ω0 ∈ � such that ‖ f (ω0)‖ = ‖ f ‖ and
∂ f (ω0) = CO{y∗ ∈ ∂e J ∗

1 : y∗( f (ω0)) = ‖ f ‖}.

2 Geometry of the subdifferential set

We first give a general form of Theorem 1.4 from [2] (see also the Zbl review by this
author). Let J ⊂ X be a closed subspace. We note that if x ∈ J , then relative to J ,
∂x = CO{ f ∈ ∂e J ∗

1 : f (x) = 1}, where the closure is in the weak∗-topology of J ∗.

Theorem 1 Let J ⊂ X be a M-ideal. Let x ∈ X be a unit vector such that d(x, J ) < 1.
Then ∂x = CO{ f ∈ ∂e J ∗

1 : f (x) = 1}. Here the closure is taken in the weak∗-
topology of X∗. In particular ∂x has the same description as when x ∈ J . Thus for
y ∈ X,

limt→0+
‖x + t y‖ − ‖x‖

t
= sup{re( f (y)) : f ∈ ∂e J

∗
1 , f (x) = 1}.

Proof Since J is a M-ideal, we have, X∗ = J ∗ ⊕
1 J

⊥. Thus if the set { f ∈ ∂e J ∗
1 :

f (x) = 1} is non-empty, then it is contained in ∂x .
Since ∂x is a weak∗-closed extreme convex subset of X∗

1 , we will show that any
extreme point g ∈ ∂x is in J ∗ . This completes the proof.

Since g ∈ ∂eX∗
1 , in view of decomposition of X∗, suppose g ∈ J⊥. Now g(x) = 1

implies d(x, J ) = 1. Therefore, g ∈ ∂e J ∗
1 . �

Remark 2 Since y is weak∗-continuous on J ∗, when ∂e J ∗
1 is weak∗-closed in the

weak∗-topology of J ∗, we have

limt→0+
‖x + t y‖ − ‖x‖

t
= re( f0(y))
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for some f0 ∈ ∂e J ∗
1 , f0(x) = 1. This in particular always happens (under the above

hypothesis) when ∂eX∗
1 is weak∗-closed.

The following corollary follows immediately from our specific knowledge of
extreme points of K(X ,Y )∗1.

Corollary 3 Let X ,Y be Banach spaces and let J ⊂ K(X ,Y ) ⊂ L(X ,Y ) be a M-
ideal inL(X ,Y ). For any A ∈ L(X ,Y ) such that d(A, J ) < 1, ∂A = CO{x∗∗ ⊗ y∗ ∈
∂e J ∗

1 : x∗∗(A∗(y∗)) = 1, x∗∗ ∈ ∂eX∗∗
1 , y∗ ∈ ∂eY ∗

1 }.
Remark 4 In particular we have A∗ attains its norm and hence so are all the adjoints
of higher order of A. More generally we note that if a B ∈ L(X ,Y ), is such that
B∗ attains its norm, then it attains it at an extreme point y∗ ∈ Y ∗

1 (see [10]). Since
‖B‖ = ‖B∗(y∗)‖, let x∗∗ ∈ ∂eX∗∗

1 be such that x∗∗(B∗(y∗)) = (x∗∗⊗y∗)(B) = ‖B‖.
Now if the J above contains all finite rank operators, x∗∗ ⊗ y∗ ∈ ∂e J ∗

1 . It may be
worth recalling here that the set of operators whose adjoint attains its norm is dense
in L(X ,Y ), see [11]. When X = Y = �p for 1 < p < ∞, J = K(�p), we have
for A ∈ L(�p) with d(A,K(�p)) < ‖A‖, ∂A = CO{x ⊗ y : A(x)(y) = ‖A‖, x ∈
�
p
1 , y ∈ �

q
1}, thus extending Theorem 1.4 from [2].

Let Z ⊂ Y be a closed subspace. The following proposition identifies subdiffer-
ential limits of vectors in X/Z . In what follows, by π : X → X/Z we denote the
quotient map.

Proposition 5 Let Z ⊂ Y ⊂ X be Banach spaces. Suppose Y is a M-ideal in X and
x ∈ X is such that d(x,Y ) < d(x, Z). Then for x ′ ∈ X,

limt→0+
‖π(x) + tπ(x ′)‖ − ‖π(x)‖

t
= sup{re( f (x ′)) : f ∈ ∂e(Y

∗ ∩ Z⊥)1 , f (x) = 1}.

Proof By Proposition I.1.7 in [8], we have that Y/Z is a M-ideal in X/Z . Hence
Z⊥ = Y⊥ ⊕

1(Y
∗ ∩ Z⊥). For any y ∈ Y , ‖π(x) − π(y)‖ = ‖π(x − y)‖ ≤ ‖x − y‖.

Thus d(π(x),Y/Z) ≤ d(x,Y ) < d(x, Z) = ‖π(x)‖. Now identifying (Y/Z)∗ =
Y ∗ ∩ Z⊥ ⊂ (X/Z)∗, the conclusion follows from Theorem 1. �

We next consider the question, suppose J is a M-ideal in X and the formula for ∂x
is valid, when is d(x, J ) < 1?. The following example illustrates how it can depend
on the choice of the M-ideal.

Example 6 Consider c0 ⊂ �∞, a well known example of a M-ideal (algebraic ideal) of
�∞. Let x ∈ �∞ be a unit vector,with all but finitelymany coordinates coming from the
unit circle 
, the rest from the open disc. Using the identification of �∞ = C(β(N)),
we see that ∂e(∂x ) ⊂ 
{δ(τ ) : τ ∈ β(N)}. Thus we get ∂x = CO{tδ(k) : k ∈ N , t =
x(k) , |x(k)| = 1}, where δ(τ ) is the Dirac measure. Clearly δ(k) ∈ ∂e(�

1 = c∗
0)1.

Now for the ideal J = {α ∈ �∞ : α(k) = 0 f or k wi th |x(k)| < 1}), J determines
∂x , as well as c0. However d(x, c0) = 1 and d(x, J ) < 1.
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Subdifferential set of an operator 895

We give two positive answers depending on the weak∗-closure of ∂e J ∗
1 in J ∗ and X∗.

Theorem 7 Suppose for X ,Y , J as in Theorem 1, Suppose ∂x = CO{ f ∈ ∂e J ∗
1 :

f (x) = 1}.
(1) Suppose 0 /∈ ∂e J ∗

1 , closure in the weak
∗-topology of J ∗.

(2) Suppose ∂e J ∗
1 ⊂ [0, 1]∂e J ∗

1 , closure taken on the weak∗-topology of X∗.

In either case, d(x, J ) < 1.

Proof To see this assuming 1), if d(x, J ) = 1, choose τ ∈ J⊥
1 ∩ ∂eX∗ such that

τ(x) = 1 . Since τ ∈ ∂x by Milman’s converse of the Krein-Milman theorem, τ ∈
{ f ∈ ∂e J ∗

1 : f (x) = 1}, closure in the weak∗-topology of X∗. Let { fα} be a net from
the set in RHS such that fα → τ in the weak∗-topology of X∗. Since τ(J ) = 0, we
get a contradiction. So d(x, J ) < 1.

Now suppose we have 2). Since τ ∈ ∂e J ∗
1 , for the net { fα} as in the proof of 1), we

get by hypothesis in 2), τ = λh for h ∈ ∂e J ∗
1 , λ ∈ [0, 1]. Since ‖τ‖ = 1 = ‖h‖, we

get λ = 1. Hence our claim follows as before. �
Remark 8 Examples of spaces that satisfy above extremal conditions include spaces
of the form { f ∈ C(�) : f (tα) = λα f (sα) f or all α ∈ �}. Here � is a compact
Hausdorff space, � is any index set,

{tα}α∈� , {sα}α∈� ⊂ � and {λα}α∈� ⊂ [−1, 1].

We next consider conditions specific to spaces of compact operators. We recall that
in the case of �p-spaces, 0 is a weak-accumulation point of the unit sphere.

Proposition 9 Suppose J ⊂ K(X ,Y ) ⊂ L(X ,Y ) is a M-ideal in L(X ,Y ) and it con-
tains all finite rank operators. Assume further, 0 is not a weak∗ extreme point of ∂eX∗∗

1
and ∂eY ∗

1 . Let A ∈ L(X ,Y ), ‖A‖ = 1 and ∂A = CO{x∗∗ ⊗ y∗ : x∗∗(A∗(y∗)) =
1 , x∗∗ ∈ ∂eX∗∗

1 , y∗ ∈ ∂eY ∗
1 }. Then d(A, J ) < 1.

Proof We will show that 0 /∈ ∂e J ∗
1 . If not, in view of the description of the extreme

points, we get two nets indexed by the same set, {x∗∗
α } ⊂ ∂eX∗∗

1 and {y∗
α} ⊂ ∂eY ∗

1
such that the functionals x∗∗

α ⊗ y∗
α → 0 in the weak∗-topology of J ∗. Using weak∗-

compactness, by going through appropriate subnets, if necessary, we may and do
assume that x∗∗

α → x∗∗ and y∗
α → y∗ in the weak∗-topology, for some x∗∗ �= 0 �= y∗.

For any T ∈ J , since T is compact, T ∗(y∗
α) → T ∗(y∗) in the norm. Consequently

x∗∗
α (T ∗(y∗

α)) → x∗∗(T ∗(y∗)). Therefore x∗∗
α ⊗ y∗

α → x∗∗ ⊗ y∗ in the weak∗-topology
of J ∗. So x∗∗ ⊗ y∗ = 0 on J . A contradiction since J contains all operators of rank
one. �

We next apply this to the situation when X is a M-ideal in the canonical embed-
ding, in its bidual X∗∗, the so called M-embedded spaces. See Chapter III of [8], for
examples among spaces of operators, particularly when for reflexive Banach spaces
X ,Y L(X ,Y ) is the canonical bidual of K(X ,Y ) (like in the case of Hilbert spaces
and �p-spaces).
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896 T. S. S. R. K. Rao

Proposition 10 Suppose X is a M-ideal in X∗∗. Let τ ∈ X∗∗ be such that d(τ, X) <

‖τ‖, then τ attains its norm. The set ∂τ has the same description in all higher odd
ordered duals of X.

Proof Since X is a M-ideal in X∗∗, the canonical projection � → �|X is a L-
projection, thus X∗∗∗ = X∗ ⊕

1 X
⊥ for the canonical embedding of X∗ in X∗∗∗. We

see that the hypothesis implies there is a g ∈ ∂eX∗
1 such that τ(g) = 1. The main

result of [12] says that under the hypothesis, X continues to be a M-ideal of all higher
even ordered duals of X . Hence the conclusion follows. �
Let X be canonically embedded in its bidual, X∗∗. Another interesting question is to
consider when the equality,

limt→0+
‖x + tτ‖ − ‖x‖

t
= sup{re(τ ( f )) : f ∈ ∂x }

holds for any τ ∈ X∗∗.
Our next proposition answers this question using the notion of the preduality

mapping on X∗∗ (see [13]). For x ∈ X considered as an element of X∗∗, we let
∂ ′
x = {τ ∈ X∗∗∗

1 : τ(x) = ‖τ‖}.
We recall that for a norm attaining functional � ∈ X∗∗, attaining its norm at

f0 ∈ X∗
1 is a point of norm-weak upper semi-continuity for the preduality map, if for

any weak neighbourhood V of 0 in X∗, there is a δ > 0 such that for any �′ ∈ X∗∗,
‖�′ − �‖ < δ, {g ∈ X∗

1 : �′(g) = ‖�′‖} ⊂ {h ∈ X∗
1 : �(h) = ‖�‖} + V . Part

of our next proposition is perhaps folklore, as we are unable to find a reference, we
include its easy proof. It is well known that any unitary in a C∗- algebra satisfies the
condition assumed in the following proposition.

Proposition 11 Let x ∈ X be a point of norm-weak upper semi-continuity for the
preduality mapping of X∗∗. Then

limt→0+
‖x + tτ‖ − ‖x‖

t
= sup{re(τ ( f )) : f ∈ ∂x }

for any τ ∈ X∗∗.

Proof It follows from Lemma 2.2 in [13] that the hypothesis implies ∂x is weak∗-
dense (in the weak∗-topology of X∗∗∗) in ∂ ′

x . Since τ is weak∗-continuous on X∗∗∗,
the conclusion follows. �
Remark 12 We note that if J ⊂ X is a M-ideal, then J need not be a M-ideal in X∗∗
( it is easy to see that in C([0, 1]), the ideal J = { f ∈ C([0, 1]) : f ([0, 1

2 ]) = 0} is
not an ideal in C([0, 1])∗∗).

3 Application

As an application of the previous set of ideas, we formulate the compact operator
version of the operator norm subdifferential problem and provide a partial solution.
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Let X be a reflexive Banach spaces and suppose Y has the metric approximation
property. Suppose J ⊂ Y be a M-ideal and let T ∈ K(X ,Y ) be such that ∂T =
CO{x⊗y∗ : y∗(T (x)) = (x⊗y∗)(T ) = ‖T ‖, x ∈ ∂eX1, y∗ ∈ ∂e J ∗

1 }. An interesting
question that arises from the previous section is that, when can one get a x0 ∈ ∂eX1
such that ‖T ‖ = ‖T (x0)‖ and ∂T (x0) = CO{y∗ ∈ ∂e J ∗

1 : y∗(T (x0)) = ‖T (x0)‖}.
Since Y and hence J have themetric approximation property, we have thatK(X , J )

is aM-ideal inK(X , Y ) (see [8]PropositionVI.3.1). Thus from the structure of extreme
points of the dual unit ball of spaces of compact operators, we see that the description
of ∂T , as before, is in terms of the extreme points of the dual unit ball of the M-ideal
K(X , J ).

In what follows we will be using a minimax formula for compact operators. This
author has recently proved ([9]), Theorem 1) the validity of this when J is a L1-predual
space (i.e., J ∗ is isometric to a L1(μ)-space, for example, the spaces considered in
Remark 8).

Theorem 13 Let X ,Y , J be as above. Assume that X is a separable space, 0 is not a
weak accumulation point of ∂eX1 and 0 is not a weak∗-accumulation point of ∂eY ∗

1
and suppose the compact operator T satisfies the minimax formula, d(T ,K(X , J )) =
sup{d(T (x), J ) : x ∈ X1}. If ∂T = CO{x ⊗ y∗ : (x ⊗ y∗)(T ) = ‖T ‖, x ∈
∂eX1 , y∗ ∈ ∂e J ∗

1 }, then there is a x0 ∈ ∂eX1 such that, ‖T ‖ = ‖T (x0)‖, ∂T (x0) =
CO{y∗ ∈ ∂eY ∗

1 : y∗(T (x0)) = ‖T (x0)‖}.
Proof Since X is reflexive and T is compact, let x0 ∈ ∂eX1 be such that ‖T ‖ =
‖T (x0)‖. SinceK(X , J ) is a M-ideal inK(X ,Y ), by our arguments given in the proof
of Proposition 9, and our hypothesis implies, d(T ,K(X , J )) < ‖T ‖. Now by the
minimax formula, d(T (x0), J ) < ‖T ‖ = ‖T (x0)‖. Now since J is a M-ideal, we get
the description for ∂T (x0). �
For a compact Hausdorff space �, let C(�, Y ) be the space of Y -valued continu-
ous functions, equipped with the supremum norm. The minimax formula above was
inspired by a classical result of Light and Cheney (see [14]), for a closed subspace
J ⊂ Y and f ∈ C(�,Y ),

d( f ,C(�, J )) = sup{d( f (w), J ) : w ∈ �}.

Analogous to the above theorem, if J is a M-ideal in Y , then C(�, J ) is a M-ideal in
C(�,Y ) (see [8]). The following corollary, which assumes these conditions, is now
easy to prove. For ω ∈ �, δ(ω) denotes the Dirac measure at ω.

Corollary 14 Suppose 0 is not a weak∗-accumulation point of ∂eY ∗
1 . Let f ∈ C(�,Y )

and suppose, ∂ f = CO{δ(ω) ⊗ y∗ : y∗( f (ω)) = ‖ f ‖ , ω ∈ � , y∗ ∈ ∂e J ∗
1 }. There

exists a ω0 ∈ � such that ‖ f ‖ = ‖ f (ω0)‖, ∂ f (ω0) = CO{y∗ ∈ ∂e J ∗
1 : y∗( f (ω0)) =

‖ f (ω0)‖}.
LetWC(�,Y ) denote the space of continuous functionswhenY is consideredwith the
weak topology, equippedwith the supremum norm.We recall that for f ∈ WC(�,Y ),
‖ f ‖ = Supω∈�,y∗∈∂eY ∗

1
|y∗( f (ω))|. Thus by an application of the separation theorem,
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898 T. S. S. R. K. Rao

WC(�,Y )∗1 = CO{δ(ω)⊗ y∗ : ω ∈ � , y∗ ∈ ∂eY ∗
1 }. Now suppose 0 is not a weak∗-

accumulation point of ∂eY ∗
1 , then as before we can conclude that for f ∈ WC(�,Y ),

if � ∈ ∂e(∂ f ), then � = δ(ω0) ⊗ y∗
0 for some ω0 ∈ �, y∗

0 ∈ ∂eY ∗
1 . In particular,

‖ f ‖ = ‖ f (ω0)‖. We do not know how to prove a version of Corollary 14 in this set
up.
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