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Abstract

I propose a spatial-mode demultiplexing (SPADE)measurement scheme for the far-field imaging of

spatially incoherent optical sources. For any object too small to be resolved by direct imaging under

the diffraction limit, I show that SPADE can estimate its second or highermomentsmuchmore

precisely than direct imaging can fundamentally do in the presence of photon shot noise. I also prove

that SPADE can approach the optimal precision allowed by quantummechanics in estimating the

location and scale parameters of a subdiffraction object. Realizable with far-field linear optics and

photon counting, SPADE is expected tofind applications in both fluorescencemicroscopy and

astronomy.

1. Introduction

Recent research, initiated by our group [1–7], has shown that far-field linear opticalmethods can significantly

improve the resolution of two equally bright incoherent optical point sources with sub-Rayleigh separations [1–

15], overcoming previously established statistical limits [16–19]. The rapid experimental demonstrations [12–

15] have heightened the promise of our approach. An open problem, of fundamental interest in optics and

monumental importance to astronomy and fluorescencemicroscopy, is whether these results can be generalized

for an arbitrary distribution of incoherent sources. Here I take amajor step towards solving the problemby

proposing a generalized spatial-mode demultiplexing (SPADE)measurement scheme and proving its

superiority over direct imaging via a statistical analysis.

The use of coherent optical processing to improve the lateral resolution of incoherent imaging has thus far

received onlymodest attention, as prior proposals [13, 20–25] either did not demonstrate any substantial

improvement or neglected the important effect of noise. Using quantumoptics and parameter estimation

theory, here I show that, for any object too small to be resolved by diffraction-limited direct imaging, SPADE can

estimate its second or highermomentsmuchmore precisely than direct imaging can fundamentally do in the

presence of photon shot noise.Moreover, I prove that SPADE can approach the optimal precision allowed by

quantummechanics in estimating the location and scale parameters of a subdiffraction object. Given the

usefulness ofmoments in identifying the size and shape of an object [26], the proposed scheme, realizable with

far-field linear optics and photon counting, should provide amajor boost to incoherent imaging applications

that are limited by diffraction and photon shot noise, including not only fluorescencemicroscopy [27–30] and

space-based telescopes [31] but alsomodern ground-based telescopes [32–35].

This paper is organized as follows. Section 2 introduces the background theory of quantumoptics and

parameter estimation for incoherent imaging. Section 3 describes the SPADE scheme for general imaging.

Section 4 presents themost important results of this paper, namely, a comparison between the statistical

performances of direct imaging and SPADE in the subdiffraction regime, showing the possibility of giant

precision enhancements formoment estimation, while appendix justifies an approximationmade in section 4 in

more detail. Section 5 presents a numerical example to illustrate the theory, comparing the errors in estimating
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the first and secondmoments of subdiffraction objects using direct imaging and SPADE. Section 6 proves that

SPADE is close to the quantumprecision limits to location and scale estimation in the subdiffraction regime.

Section 7 discusses other practical and open issues.

2. Background formalism

2.1.Quantumoptics

I beginwith the quantum formalism established in [1] to ensure correct physics. The quantum state of thermal

light withM temporalmodes and a bandwidthmuch smaller than the center frequency can bewritten as rÄM ,

where

( ) ( ) ( )  r r r= - + + O1 , 2.10 1
2

 is the average photon number permode assumed to be1 [36, 37], ∣ ∣r = ñávac vac0 is the vacuum state, r1 is
the one-photon state with a densitymatrix equal to themutual coherence function, and ( )O 2 denotes second-

order terms, which are neglected hereafter. It is standard to assume that the fields from incoherent objects, such

as stellar orfluorescent emitters, are spatially uncorrelated at the source [37]. In a diffraction-limited imaging

system, thefields then propagate as waves; theVanCittert-Zernike theorem is themost venerable consequence

[37]. At the image plane of a conventional lens-based two-dimensional imaging system in the paraxial regime

[37, 38], this implies

( )∣ ∣ ∣ ( )∣ ( )ò òr y y y y= ñá ñ = - ñR R r r R rFd , d , 2.2R R R1
2 2

where ( )=R X Y, is the object-plane position, the notation ( )¼u u, ,1 2 denotes a column vector, ( )RF is the

source intensity distributionwith normalization ( )ò =R RFd 12 , ∣ ( )∣†ñ = ñr ra vac is a one-photon position

eigenket on the image plane at position ( )=r x y, with [ ( ) ( )] ( )† d¢ = - ¢r r r ra a, 2 [39], and ( )y r is thefield

point-spread function (PSF) of the imaging system.Without loss of generality, the image-plane position vector r

has been scaledwith respect to themagnification to follow the same scale as R [38]. For convenience, I also

normalize the position vectors with respect to thewidth of the PSF tomake themdimensionless.

Consider the processing andmeasurement of the image-plane field by linear optics and photon counting.

The counting distribution for each ρ can be expressed as ∣ ∣rá ¼ ¼ñn n n n, , , ,0 1 0 1 , where

∣ ( ! )∣
†¼ñ =  ñ=

¥n n b n, , vacj j
n

j0 1 0
j , ( ) ( )*ò fº r r rb adj j

2 , ( )f rj is the opticalmode function that is projected

to the jth output, and [ ] ( ) ( )† *ò f f d= =r r rb b, dj k j k jk
2 .With the negligence ofmultiphoton coincidences, the

relevant projections are {∣ ∣ }fñ ñvac , j , with ∣ ∣ ∣ ( )∣† òf fñ º ¼ = ¼ ñ = ñ = ñr r rn b0, , 1, , 0 vac dj j j j
2 . The zero-

photon probability becomes -1 and the probability of one photon being detected in the jthmode becomes

( )p j , where

( ) ∣ ∣ ( )∣ ∣ ∣ ( )òf r f f yº á ñ = á ñR Rp j Fd 2.3Rj j j1
2 2

is the one-photon distribution. A generalization of themeasurementmodel using the concept of positive

operator-valuedmeasures is possible [1, 3] but not needed here.

For example, direct imaging can be idealized as ameasurement of the position of each photon, leading to an

expected image given by

( ) ∣ ∣ ( )∣ ( )∣ ( )òr yº á ñ = -r r r R R r Rf Fd , 2.41
2 2

which is a basic result in statistical optics [37, 38].While equation (2.4) suggests that, similar to the coherent-

imaging formalism, the PSF acts as a low-pass filter in the spatial frequency domain [38], the effect ofmore

general optical processing according to equation (2.3) ismore subtle and offers surprising advantages, as

demonstrated by recent work [1–15] and elaborated in this paper.

OverM temporalmodes, the probability distribution of photon numbers ( )= ¼m m m, ,0 1 detected in the

respective opticalmodes becomes

( ) ( ∣ ) ( ) ( ) å=P m m L L , 2.5
L

where ( ) L is the binomial distribution for detecting Lphotons overM trials with single-trial success probability
 and ( ∣ ) ! [ ( )] ! d= åm L L p j mL m j

m
j, j j

j is themultinomial distribution ofm given L total photons [40].

The average photon number in allmodes becomes ºN M .Taking the limit of   0 while holdingN

constant, ( ) L becomes PoissonwithmeanN, and ( ) ( ) [ ( )] ! - P m N Np j mexp j
m

j
j , which is thewidely

used Poissonmodel of photon counting for incoherent sources at optical frequencies [3, 18, 27–31, 36].

2
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2.2. Parameter estimation

The central goal of imaging is to infer unknownproperties of the source distribution ( )RF from the

measurement outcomem. Here I frame it as a parameter estimation problem, defining ( )q q q= ¼, ,1 2 as a

column vector of unknown parameters and assuming the source distribution ( ∣ )qRF to be a function of θ.

Denote an estimator as ( )q m and its error covariancematrix as

( ) ( ∣ )[ ( ) ][ ( ) ] q q q q q qS = å - -mn m m n nP m m mm . For any unbiased estimator ( ( ) ( ∣ )q q qå =m P mm ), the
Cramér-Rao bound (CRB) is given by [40, 41]

( ) ( ) ( ) ( )q q qS º -JCRB , 2.61

where ( )qJ is the Fisher informationmatrix and thematrix inequality implies thatS - -J 1 is positive-
semidefinite, or equivalently ( ) S - -u J u 01 for any real vector u. Assuming themodel given by

equation (2.5) and a knownN, it can be shown [3] that

( )
( ∣ )

( ∣ ) ( ∣ )
( )åq

q
q
q

q
q

=
¶
¶

¶
¶

mn
m n

J N
p j

p j p j1
, 2.7

j

which is awell known expression [16–18, 28, 30, 36]. For example, the direct-imaging information, given

equation (2.4) and the limit ( ∣ ) ( ∣ )q q r rp j d f2 , is

( )
( ∣ )

( ∣ ) ( ∣ )
( )( ) òq

q
q
q

q
q

=
¶
¶

¶
¶mn

m n
r

r

r r
J N

f

f f
d

1
. 2.8direct 2

For largeN, themaximum-likelihood estimator is asymptotically normal withmean θ and covariance

( ) ( )q qS = -J 1 , even though itmay be biased forfiniteN [40, 41]. Bayesian andminimax generalizations of the

CRB for any biased or unbiased estimator are possible [5, 41] but not considered here as they offer qualitatively

similar conclusions. The Fisher information is nowadays regarded as the standard precisionmeasure in

incoherent imaging research, especially influorescencemicroscopy [18, 28–30], where photon shot noise is the

dominant noise source and a proper statistical analysis is essential.

Apart from theCRB, another useful property of the Fisher information is the data-processing inequality

[42, 43], whichmandates that, once themeasurement ismade, no further processing of the data can increase the

information. For example, direct imagingwith large pixels can bemodeled as integrations of photon counts over

groups of infinitesimally small pixels, so the information can never exceed equation (2.8).More generally, the

data-processing inequality rules out the possibility of improving the information using any processing that

applies to the direct-imaging intensity, such as the proposal byWalker et al for incoherent imaging in [20], even

if the processing is donewith optics. Hence, as argued byTham et al [14], coherent processing that is sensitive to

the phase of the field is the only way to improve upon equation (2.8). The information for any coherent

processing andmeasurement is in turn limited by quantumupper bounds in terms of r1 [1, 3, 6, 43–46].

3. Spatial-mode demultiplexing

SPADE is a technique previously proposed for the purpose of superresolving the separation between two

incoherent point sources [1, 6, 7, 9, 13–15]. I now ask how SPADE can be generalized for the imaging of an

arbitrary source distribution. Consider the transverse-electromagnetic (TEM) basis {∣ ( ) }ñ = Îq q q q; ,x y
2

[47], where

∣ ( )∣ ( )ò fñ = ñq r r rd , 3.1q
2

( )
( ) ( )

! !
( )f

p
º -

+⎛

⎝
⎜

⎞

⎠
⎟r

x y

q q

x yHe He

2
exp

4
, 3.2q

q q

x y

2 2
x y

and Heq is theHermite polynomial [48, 49]. Assuming aGaussian PSF given by ( ) ( )y f=r r00 , which is a

common assumption influorescencemicroscopy [28, 30], ∣y ñR is a coherent state [50], and the one-photon

densitymatrix in the TEMbasis becomes

( ∣ ) ∣ ( )∣ ( )q r q¢ º á ¢ñq q q qg , 3.31

( ) ( ∣ ) ( )( )ò q= ¢ - + + ¢ + ¢
q q R RC F e X Y, d , 3.4X Y q q q q2 4 x x y y

2 2

where

( )
! !

∣ ∣ ! ! ! ( )
∣ ∣

¢ º
¢

º + º
+ ¢

q q
q q

q qC q q q q,
1

2
, , . 3.5

q q x y x y1
1

3
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To investigate the imaging capability of SPADEmeasurements, define

( ) ( ∣ ) ( )( )òq qQ ºm
m m- +R RF e X Yd , 3.6X Y2 4 X Y

2 2

with ( )m m m= ,X Y , leading to a linear parameterization of g given by

( ∣ ) ( ) ( )q¢ = ¢ Q + ¢q q q qg C, , . 3.7q q

Notice that eachQm is amoment of the source distribution filtered by aGaussian. In particular, if the object is
much smaller than the PSFwidth, theGaussian can be neglected, andQm becomes amoment of the source
distribution itself. This subdiffraction regime is of central interest to superresolution imaging and, as shown in

section 4, also a regime inwhich direct imaging performs relatively poorly. Since a distribution is uniquely

determined by itsmoments [51], ( ∣ ) [ ( ) ]q - +RF X Yexp 42 2 and therefore ( ∣ )qRF can be reconstructed given

themoments, at least in principle. Note also that the object-moment orderm is nontrivially related to the order

of thematrix element viam = + ¢q q , which is a peculiar feature of incoherent imaging.

Ameasurement in the TEMbasis yields

( ∣ ) ( ) ( )( ) q = Qq q qp C , , 3.8q
TEM

2

which is sensitive only tomoments with even mX and mY , as also recognized by Yang et al in [13]. This

measurement is realized by demultiplexing the image-plane optical field in terms of the TEMbasis via linear

optics before photon counting for eachmode and can be implemented bymanymethods,most commonly

found in optical communications [1, 6, 15, 52–54]. To access the othermoments, consider interferometry

between twoTEMmodes that implements the projections

∣ (∣ ∣ ) ∣ (∣ ∣ ) ( )+ñ º ñ + ¢ñ - ñ º ñ - ¢ñq q q q
1

2
,

1

2
. 3.9

This two-channel interferometric TEM (iTEM)measurement leads to

( ∣ ) ( ) ( )

( ∣ ) ( ) ( ) ( )

( )

( )

q b

q b

+ = ¢ + ¢ Q

- = ¢ - ¢ Q

¢
+ ¢

¢
+ ¢

q q q q

q q q q

p C

p C

, , ,

, , , 3.10

q q
q q

q q
q q

,

,

( ) [ ( ) ( ) ] ( )b ¢ º Q + ¢ ¢ Q ¢q q q q q qC C,
1

2
, , . 3.11q q2 2

The dependence onQ + ¢q q is themain interest here, as it allows one to access anymoment parameter.
Formultiparameter estimation and general imaging,multiple TEMand iTEMmeasurements are needed.

To be specific, table 1 lists a set of schemes that can be used together to estimate all themoment parameters,

whilefigure 1 shows a graphical representation of the schemes in the ( )q q,x y space. Neighboringmodes are used

in the proposed iTEM schemes because theymaximize the Fisher information, as shown later in section 4. The

bases in different schemes are incompatible with one another, so the photons have to be rationed among the 7

schemes, by applying the different schemes sequentially through reprogrammable interferometers or spatial-

lightmodulators [15, 52–54] for example.

4. Statistical analysis

4.1.Direct imaging

Although the proposed SPADEmethod can in principle perform general imaging, its complexity would not be

justifiable if it could not offer any significant advantage over direct imaging. To compare their statistical

performances, consider first direct imagingwith aGaussian PSF. Expanding ∣ ( )∣y -r R 2 in a Taylor series, I

obtain

Table 1.A list ofmeasurement schemes, their projections, and the orders ( )m m m= ,X Y of the

moment parametersQm to which they are sensitive.

Scheme Projections qx qy mX mY

TEM ∣ ñq   even even

iTEM1 [∣ ∣ ( ) ]ñ  + ñq q 1, 0 2 even  ¼1, 5, even

iTEM2 [∣ ∣ ( ) ]ñ  + ñq q 0, 1 2  even even ¼1, 5,

iTEM3 [∣ ∣ ( ) ]ñ  + - ñq q 1, 1 2  odd odd ¼1, 5,

iTEM4 [∣ ∣ ( ) ]ñ  + ñq q 1, 0 2 odd  ¼3, 7, even

iTEM5 [∣ ∣ ( ) ]ñ  + ñq q 0, 1 2  odd even ¼3, 7,

iTEM6 [∣ ∣ ( ) ]ñ  + - ñq q 1, 1 2  even odd ¼3, 7,

4
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( ∣ ) ∣ ( )∣ ( ) ( )åq f q= +
m

m m

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

r r rf D1 , 4.100
2

( )
( ) ( )

!
( )

m
ºm

m m
rD

x yHe He
, 4.2X Y

in terms of themoment parameters defined as

( ∣ ) ( )òq qºm m mR RF X Yd . 4.32 X Y

In terms of this parameterization, the Fisher information becomes

∣ ( )∣
( ) ( )

( )
( )( ) ò å

f
q

=
+mn
m n

h h h
r r

r r

r
J N

D D

D
d

1
. 4.4direct 2

00
2

Assumenow that the support of the source distribution is centered at the origin and has amaximumwidthΔ

much smaller than the PSFwidth. Since the spatial dimensions have been normalizedwith respect to the PSF

width, the PSFwidth is 1 in the dimensionless unit, and the assumption can be expressed as

( )D 1, 4.5

Figure 1.Each dot corresponds to a TEMmode in the ( )q q,x y space, and each line connecting two dots denotes an interferometer

between twomodes in an iTEM scheme. The bracketed numbers are the orders ( )m m,X Y of themoment parameters towhich the
projections are sensitive. The unconnected dots in some of the iTEM schemes denote the rest of themodes in a complete basis, which
can bemeasured simultaneously to provide extra information.

5
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which defines the subdiffraction regime. The parameters are then bounded by

∣ ∣ ( )
∣ ∣

q
D

m

m
⎜ ⎟
⎛

⎝

⎞

⎠2
, 4.6

1

and the image is so blurred that it resembles the TEM00mode rather than the object, viz.,

( ∣ ) ∣ ( )∣ [ ( )]q f= + Dr rf O100
2 .Writing the denominator in equation (4.4) as ( )+ DO1 and applying the

orthogonality ofHermite polynomials [48, 49], I obtain

!
[ ( )] ( )( )

m
d= + Dmn mnJ

N
O , 4.7direct

!
[ ( )] ( )( ) m

= + Dmm
N

OCRB 1 . 4.8direct

This is a significant result in its own right, as it establishes a fundamental limit to superresolution algorithms for

shot-noise-limited direct imaging [20, 55–57], generalizing the earlier results for two sources [16–18] and

establishing that, at least for aGaussian PSF, themoments are a natural, approximately orthogonal [58] set of

parameters for subdiffraction objects.

4.2. SPADE

To investigate the performance of SPADE formoment estimation, note that, in the subdiffraction regime,

equation (3.6) can be expressed as

( ) ( )∣ ∣qQ = + Dm m
m +O , 4.921

where ( )∣ ∣Dm +O 21 is a linear combination ofmoments that are at least two orders abovem and thereforemuch

smaller than qm. ApproximatingQmwith qm greatly simplifies the analysis below; appendix contains amore
detailed justification of this approximation. For the TEM scheme, taking qQ =q q2 2 in equation (3.8)makes the
informationmatrix diagonal, with the nonzero elements given by

( )
( )( )

( )

m
q

= =mm
q q

qJ
N C ,

, 2 , 4.10
q

TEM
TEM

2

where ( )N TEM is the average photon number available to the TEM scheme. The relevant CRB components are

hence

( )
( )( )

( )
m

q
= =mm

q q
q

N C
CRB

,
, 2 . 4.11

qTEM 2

TEM

Defining the photon count of the qth channel as mq with expected value ( ∣ )( ) ( ) qqN pTEM TEM , it is straightforward
to show that the estimator

( )
( )

( )
q =

q q

m

N C ,
4.12q

q
2 TEM

is unbiased and achieves the error given by equation (4.11) under the assumption qQ =q q2 2 .
A precision enhancement factor can be defined as the ratio of equations (4.8) to (4.11), viz.,

!

( )!
( )

( )

( )

( )

∣ ∣

m
m q

»mm

mm
m

m

N

N

CRB

CRB 2 2
. 4.13

direct

TEM

TEM

1

Apart from a factor ( )N NTEM determined by the different photon numbers detectable in eachmethod, the
important point is that the factor scales inversely with ( )∣ ∣q = Dm

mO 1 , so the enhancement is enormous in the
D 1 subdiffraction regime. The prefactor in equation (4.13) also increases with increasingm.
To investigate the errors in estimating the othermoments via the iTEM schemes, assume qQ =+ ¢ + ¢q q q q in

equations (3.10). The dependence of equations (3.10) on q + ¢q q is themain interest, while I treat ( )b ¢q q, as an

unknownnuisance parameter [59]; the TEM scheme can offer additional information about ( )b ¢q q, via q q2

and q ¢q2 but it is insignificant and neglected here to simplify the analysis. The informationmatrix with respect to

{ ( )}q b ¢+ ¢ q q, ,q q is block-diagonal and consists of a series of two-by-twomatrices, each of which can be

determined from equations (3.10) for two parameters ( ( ))q b ¢+ ¢ q q, ,q q and is given by

( ) ( )

( ) ( ) ( )

( ) ( )
( )

( )
( )

b q

b q

q b
=

¢ - ¢

¢ ¢ - ¢

- ¢ ¢
¢

+ ¢

+ ¢

+ ¢

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

q q q q

q q q q q q

q q q q
J

N

C

C C

C

2

, ,

, , ,

, ,
, 4.14q q

q q

q q

q q

,
iTEM

2 2 2

2 2

2

where ( )N iTEM is the average photon number available to the iTEMscheme. TheCRB component with respect

to q + ¢q q is hence obtained by taking the inverse of equation (4.14) and extracting the relevant term; the result is

6
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( )

( )
( )( )

( )
m

b
=

¢
¢

= + ¢mm
q q

q q
q q

N C
CRB

,

2 ,
, . 4.15iTEM

iTEM 2

Defining the two photon counts of the ( )¢q q, iTEMchannels as ( )
+

¢m q q, and ( )
-

¢m q q, with expected values

( ∣ )( ) ( ) q+¢N p q qiTEM , and ( ∣ )( ) ( ) q-¢N p q qiTEM , , respectively, it can be shown that the estimator

( )
( )

( ) ( )

( )
q =

-
¢

+ ¢
+

¢
-

¢

q q

m m

N C2 ,
4.16q q

q q q q, ,

iTEM

is unbiased and achieves the error given by equation (4.15) under the assumption qQ =+ ¢ + ¢q q q q . The iTEM

schemes can also offer information about q q2 and q ¢q2 via the background parameter ( )b ¢q q, , but the additional
information is inconsequential and neglected here.

An enhancement factor can again be expressed as

!

!( )! ( )
( )

( )

( )

( )

∣ ∣

m
m mb

»
- -

mm

mm
m - q q q q

N

N

CRB

CRB 2 ,
. 4.17

direct

iTEM

iTEM

2 11

With the background parameter ( )mb -q q, on the order of [∣ ∣ ∣ ( ) ∣ ]D m-q qmin 2 , 21 1 , both b1 and the

! [ !( )!]m m -q q coefficient can bemaximized by choosing q to be as close tom 2 as possible. This justifies the

pairing of neighboringmodes in the iTEMschemes listed in figure 1 and table 1.With iTEM1, iTEM2, iTEM4,

and iTEM5, ∣ ∣m 1 is odd, and

( ) ( )∣ ∣b = Dm -O . 4.1811

With iTEM3 and iTEM6, ∣ ∣m 1 is even, and

( ) ( )∣ ∣b = DmO . 4.191

The enhancements, being inversely proportional toβ, can again be substantial for highermoments. The only

exception is the estimation of the firstmoments q10 and q01, for which the right-hand side of equation (4.17)

becomes ( )N NiTEM and the iTEM schemes offer no advantage.

These results can be comparedwith [1, 6] for the special case of two equally bright point sources. If the origin

of the image plane is alignedwith their centroid and their separation along theX direction is d, q = d 420
2 , and a

reparameterization leads to a transformed Fisher information ( )( ) »d Nd 8direct 2 and ( )( ) »d N 4TEM for

the estimation of d, in accordancewith the results in [1, 6] to the leading order of d. The experiments reported in

[13–15] serve as demonstrations of the proposed scheme in this special case.

4.3. Elementary explanation

The enhancements offered by SPADE can be understood by considering the signal-to-noise ratio (SNR) of a

measurement with Poisson statistics. Suppose for simplicity that themean count of an output can bewritten as

( ∣ )q q= +Np j A B, which consists of a signal component qA and a backgroundB. The variance is q +A B, so

the SNR can be expressed as ( ) ( )q q +A A B2 . Tomaximize it, the backgroundB should beminimized to reduce

the variance. For direct imaging, the background according to equation (4.1) is dominated by the TEM00mode,

whereas each output of SPADE is able tofilter out thatmode as well as other irrelevant low-ordermodes to

minimize the backgroundwithout compromising the signal. Towit, equation (3.8) for TEMmeasurements has

no background, while equations (3.10) for iTEMalso have low backgrounds in the subdiffraction regime. The

Fisher information given by equation (2.7) is simply amore rigorous statistical tool that formalizes the SNR

concept and provides error bounds; reducing the background likewise improves the information by reducing

the denominator in equation (2.7).

In this respect, the proposed scheme seems towork in a similar way to nulling interferometry for exoplanet

detection [60]. The nullingwas proposed there for the special purpose of blocking the glare of starlight, however,

and there had not been any prior statistical study of nulling for subdiffraction objects tomy knowledge. The

surprise here is that coherent processing in the far field can vastly improve general incoherent imaging even in

the subdiffraction regime and in the presence of photon shot noise, without the need tomanipulate the sources

as in prior superresolutionmicroscopicmethods [61–66] or detect evanescent waves via lossy or unrealistic

materials [67, 68].

5.Numerical demonstration

Here I present a numerical study to illustrate the proposal and confirm the theory. Assume an object that

consists of 5 equally bright point sources with randompositionswithin the square  - X0.3 0.3 and

 - Y0.3 0.3. The average photon number is assumed to be = ´N 5 10 000 in total. Figure 2 shows an

example of the generated source positions and a direct imagewith pixel size d d = ´x y 0.1 0.1 and Poisson
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noise. I focus on the estimation of the first and secondmoments of the source distribution given by

{ ( ) ( ) ( ) ( ) ( )}mq =m; 1, 0 , 0, 1 , 2, 0 , 0, 2 , 1, 1 . For direct imaging, I use the estimator

! ( ) ( ) mq = åm m r rD m Nj j j , where ( )rm j is the photon count at a pixel positioned at rj. It can be shown that, in

the small-pixel limit, this estimator is unbiased and approaches theCRB given by equation (4.8) for D 1.

For SPADE, I consider only the TEM00, TEM10, andTEM01modes, and the photons in all the othermodes

are discarded. As illustrated infigure 3, the iTEM1, iTEM2, and iTEM3 schemes suffice to estimate the

parameters of interest. Table 2 lists the projections, and figure 4 plots the spatial wave functions for the

projections. The light is assumed to be split equally among the three schemes, leading to 9 outputs;figure 5

shows a sample of the photon counts drawn fromPoisson statistics. For the estimators, I use equations (4.12)

and (4.16). Comparedwith the large number of pixels in direct imaging, the compressive nature of SPADE for

moment estimation is an additional advantage.

Figure 6 plots the numerically computedmean-square errors (MSEs) for 100 randomly generated objects

versus true parameters in log–log scale. Each error value for a given object is computed by averaging the squared

difference between the estimator and the true parameter over 500 samples of Poissonian outputs. For

Figure 2.Thewhite crosses denote the 5 randomly generated source positions. The background image is a direct imagewith pixel size
= ´x yd d 0.1 0.1 (normalizedwith respect to the PSFwidth) and Poisson noise; the average photon number is = ´N 5 10 000 in

total.

Figure 3.Agraphical representation of the iTEM1, iTEM2, and iTEM3 schemes involving the three TEMmodes to bemeasured. Each
line denotes an interferometer between twomodes, and each unconnected dot denotes a TEMmode to bemeasured. Themodes are
also denoted by the parameters qm towhich they are sensitive.

Table 2.The projections for the SPADEmeasurement scheme depicted in
figure 3. ∣ ñ0, 0 corresponds to the TEM00mode, ∣ ñ1, 0 corresponds to the
TEM10mode, and ∣ ñ0, 1 corresponds to the TEM01mode.

iTEM1 iTEM2 iTEM3

(∣ ∣ )ñ + ñ0, 0 1, 0 2 (∣ ∣ )ñ + ñ0, 0 0, 1 2 (∣ ∣ )ñ + ñ1, 0 0, 1 2

(∣ ∣ )ñ - ñ0, 0 1, 0 2 (∣ ∣ )ñ - ñ0, 0 0, 1 2 (∣ ∣ )ñ - ñ1, 0 0, 1 2

∣ ñ0, 1 ∣ ñ1, 0 ∣ ñ0, 0

8
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Figure 4.The spatial wave functions ∣fá ñr j for the projections listed in table 2. x and y are image-plane coordinates normalizedwith

respect to the PSFwidth and the color code corresponds to amplitudes of normalizedwave functions.

Figure 5.A sample of the simulated photon counts fromSPADE. The order of thematrix elements follows table 2 andfigure 4.Note
how the counts for the antisymmetricmodes aremuch lower as a result offiltering out the lower-ordermodes. As argued in section 4.3,
such dark ports enable a higher SNRby reducing the backgroundwithout compromising the signal.
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comparison, figure 6 also plots theCRBs given by equations (4.8), (4.11), and (4.15), assuming qQ =m m and

neglecting the ( )DO term in equation (4.8). A few observations can bemade:

1. As shown by the plots in the first row offigure 6, SPADE is 3 timesworse than direct imaging at estimating the

firstmoments. This is because SPADEuses only 1/3of the available photons to estimate eachfirstmoment.

2. The theory suggests that the advantage of SPADE starts with the second moments, and indeed the other

plots show that SPADE is substantiallymore precise at estimating them, even though SPADEuses only a

fraction of the available photons to estimate eachmoment. This enhancement is a generalization of the

recent results on two sources [1–6, 8, 9, 12–15].

3. The errors are all remarkably tight to the CRBs, despite the simplicity of the estimators and the

approximations in the bounds. In particular, the excellent performance of the SPADE estimator in the

subdiffraction regime justifies its assumption of qQ =m m.

6.Quantum limits

In the diffraction-unlimited regime, it is not difficult to prove that direct imaging achieves the highest Fisher

information allowed byquantummechanics. To beprecise, that regime can be defined as one inwhich thePSF is

Figure 6. Simulated errors for SPADE and direct imaging versus certain parameters of interest in log–log scale. The lines are the CRBs
given by equations (4.8), (4.11), and (4.15), assuming qQ =m m and neglecting the ( )DO term in equation (4.8). Recall that all lengths
are normalizedwith respect to the PSFwidthσ, so, in real units, thefirstmoments q10 and q01 are in units ofσ, theirMSEs are in units
of s2, the secondmoments q20, q02, q11, ( ) ( )b q q= +10, 01 820 02 are in units of s2, and theirMSEs are in units of s4.
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so sharp relative to the source distribution that{∣ ( )}y ñ ÎR F; suppR can be approximated as theorthogonal

position basis{∣ }ñr . r1 becomes diagonal in that basis, and the quantumFisher information [1, 3, 43–46] is equal

to the direct-imaging informationgiven by equation (2.8). The physics in the opposite subdiffraction regime is

entirely different, however, as diffraction causes{∣ }y ñR to have significant overlapswithone another, andmore

judiciousmeasurements canbetter dealwith the resulting indistinguishability, as demonstrated in sections 4 and 5.

I nowprove that SPADE is in fact near-quantum-optimal in estimating location and scale parameters of a

source distribution in the subdiffraction regime. Suppose that the distribution has the form

( ∣ ) ( ( ∣ )) ( )xq q=R RF F , 6.1

such that θ parameterizes a coordinate transformation ( ∣ )x q=R R , and the transformation leads to a reference

measure ( )xF0 that is independent of θ. Taking R as a column vector, I can rewrite equation (2.2) as

( ) (∣ ∣) ( )r q y y= ñá , 6.2R R1 0

∣ ∣ ( )( ∣ )y yñ = ñx q-e , 6.3R
k Ri

0

where (·) ( )(·) ò x xº Fd0 0 and k is themomentumoperator in a column vector. I can nowuse the quantum

upper bound on the Fisher information [1, 43, 46] and the convexity of the quantumFisher information [69, 70]

to prove that the Fisher information for anymeasurement is bounded as

( ) ( ( )) ˜ ( ) [ (∣ ∣)] ( )  q r q q y yº ñáJ K K N K , 6.4R R1 0

whereK is the quantumFisher information proposed byHelstrom [44]. For the pure state,K can be computed

analytically to give

(∣ ∣)
( ∣ )

∣ ∣
( ∣ )

( )


x x
y y

q
q

y y
q
q

ñá =
¶
¶

á D D ñ
¶
¶m n

R
k k

R
K 4 , 6.5R R 0 0

∣ ∣ ( )y yD º - á ñk k k , 6.60 0

leading to

˜ ( ∣ ) ( ∣ )
( )


 x xq

q
q
q

=
¶
¶

¶
¶

mn
m n

⎡

⎣
⎢

⎤

⎦
⎥

R R
K N 6.70

for the gaussianPSF. For example, a locationparameter canbe expressed as ( )x q= -R , 0 . Equation (6.7) thengives

˜ ( )=K N . 6.8

This can be attained by either direct imaging or iTEM1 in the subdiffraction regime.

The advantage of SPADE starts with the secondmoments, which are particularly relevant to scale estimation.

Let xq=R , which results in

˜ ( ) ( ) x x=K N . 6.90

For the TEMmeasurement, on the other hand,

( ∣ )
! !

( )( ) q = - -
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟qp e

Q

q
e

Q

q
, 6.10Q X

q

x

Q Y

q

y

TEM
0

X

x

Y

y

( )
q x q x

º ºQ Q
4

,
4

. 6.11X
X

Y
Y

2 2 2 2

Defining

¯ ( ∣ ) ( )( ) å q
q x

x
º =

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟q q qp

4
, 6.12

q

X

Y

TEM
2

0

2

2

( ¯)( ¯) ( ∣ ) ( )( )å qº - -V q q q q qp 6.13
q

TEM

( ) ( )q
x

x
q= +

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ O

4

0

0
, 6.14

X

Y

2

0

2

2
4

and using the lower bound by Stein et al [71], I obtain

¯ ¯
( ) ( )( )


  x x

q q
¶
¶

¶
¶

-q
V

q
J N N , 6.15TEM 1

0

which approaches the quantum limit given by equation (6.9) for q  0. The argument can bemademore

precise if the formof ( )xF0 is known, as the extended convexity of the quantumFisher information can be used
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to obtain a tighter upper bound [70, 72], while the ( )qO 4 term in equation (6.14) can be computed to obtain an

explicit lower bound for any θ.

7.Discussion

Thoughpromising, the giant precision enhancements offered by SPADEdonot imply unlimited imaging

resolution forfinite photonnumbers. Thehighermoments are stillmoredifficult to estimate evenwith SPADE in
termsof the fractional error,which is ( )∣ ∣q~ = Dmm m

mO NCRB 12 1 for even ∣ ∣m 1 and ( )∣ ∣Dm +O N1 11 for odd

∣ ∣m 1,meaning thatmore photons are needed to attain a desirable fractional error for higher-ordermoments.

Intuitively, this is because of the inherent inefficiency of subdiffraction objects to couple to higher-ordermodes,

and the need to accumulate enoughphotons in thosemodes to achieve an acceptable SNR.A related issue is the

reconstructionof the full source distribution,which requires allmoments in principle. Afinite number of

moments cannot determine the distributionuniquely by themselves [51], although awide range of regularization

methods, such asmaximumentropy andbasis pursuit, are available formore specific scenarios [51, 55, 57, 73, 74].

Despite these limitations, the fact remains that direct imaging is an even poorer choice ofmeasurement for

subdiffraction objects and SPADE can extractmuchmore information, simply from the farfield. For example,

the size and shape of a star, a planetary system, a galaxy, or afluorophore cluster that is poorly resolved under

direct imaging can be identifiedmuchmore accurately through the estimation of the second or highermoments

by SPADE. Alternatively, SPADE can be used to reach a desirable precisionwith far fewer photons or amuch

smaller aperture, enhancing the speed or reducing the size of the imaging system for themore special purposes.

In view of the statistical analysis in [2, 4, 6], the image-inversion interferometers proposed in [2, 4, 6, 23–25] are

expected to be similarly useful for estimating the secondmoments. For larger objects, scanning in themanner of

confocalmicroscopy [27] or adaptive alignment [1] should be helpful.

Manyopenproblems remain; chief among themare the incorporationof prior information, generalizations for

non-GaussianPSFs, the derivationofmore general quantum limits, the possibility of evenbettermeasurements, and

experimental implementations.Thequantumoptimality of SPADE for general imaging is in particular an interesting

question.Thesedauntingproblemsmaybe attackedbymore advancedmethods inquantummetrology [43–46, 75–

78], quantumstate tomography [79–81], compressed sensing [55–57, 81], andphotonics design [52–54].
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Appendix. Nuisance parameters

Instead of assuming qQ =m m as in section 4, I consider here the exact relation given by equation (3.6), which can
be expressed as

( )
( ) ( )q

q q
Q = - - - ¼m m

m m+ +

4 4
A1

2,0 0,2

For the TEM scheme, this implies that each qth channel contains information about not only q q2 but also the
higher-ordermoments. If I assume that each qth channel is used to estimate only q q2 , however, then the higher-
ordermoments act only as nuisance parameters [59] to the estimation of q q2 . This is a conservative assumption,
as the data-processing inequality [42, 43] implies that neglecting outputs can only reduce the information, but

the assumption alsomeans that I do not need to consider any channel with order lower than q to compute the

CRBwith respect to q q2 , simplifying the analysis below.
Given the above assumption, I can compute the informationmatrix with respect to the parameters

( )( ) ( )q q q ¼+ +, , ,q q q2 2 2,0 2 0,2 by considering only the qth and higher-order channels; the result is

( )( )

( )
( )

( )

( )
( )

( ) ( )
( ) ( )

  

a h
h g

=

¼

¼ º
+

+ + +
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⎝

⎜
⎜
⎜

⎞
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⎟
⎟
⎟

⎛

⎝
⎜

⎞

⎠
⎟J

J J

J J N , A2

q q q q

q q q q

TEM

2 ,2
TEM

2 ,2 2,0
TEM

2 2,0 ,2
TEM

2 2,0 ,2 2,0
TEM TEM

where ( )a = Qq qC , q2 and ( )∣ ∣h = D-O q2 1 are determined only by the qth channel, while ( )( ∣ ∣ )g = D- +O q2 21

ismainly determined by the higher-order channels. TheCRBwith respect to q q2 becomes [59]
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( ) ( )( )

( )

a h g h= - - -

N
CRB

1
. A3q q2 ,2

TEM

TEM
1 1

The key here is that ( )∣ ∣hg h = D- - +O q1 2 21 is smaller than ( )∣ ∣a = D-O q2 1 by two orders ofΔ, so

[ ( )] ( )( )

( )a
= + D

N
OCRB

1
1 A4q q2 ,2

TEM

TEM
2

( )
[ ( )] ( )

( )
=

Q
+ D

q qN C
O

,
1 A5

q2

TEM
2

( )
[ ( )] ( )

( )

q
= + D

q qN C
O

,
1 , A6

q2

TEM
2

which is consistent with equation (4.11).

An intuitive way of understanding this result is to rewrite equation (A1) as

( )
( ) ( )q

q q
= Q + + + ¼m m

m m+ +

4 4
, A7

2,0 0,2

which implies that the total error in qm consists of the error inQm as well as the errors in the higher-order
moments. The higher-ordermoments can be estimatedmuchmore accurately via the higher-order channels, so

the effect of their uncertainties on the estimation of qm is negligible. A similar exercise can be done for the iTEM
schemes, with similar results.

In practice, such a careful treatment of the nuisance parameters is unlikely to be necessary in the

subdiffraction regime, as the numerical analysis in section 5 shows that excellent results can be obtained simply

by taking qQ =m m without any correction.
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