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Abstract

I propose a spatial-mode demultiplexing (SPADE) measurement scheme for the far-field imaging of
spatially incoherent optical sources. For any object too small to be resolved by direct imaging under
the diffraction limit, I show that SPADE can estimate its second or higher moments much more
precisely than direct imaging can fundamentally do in the presence of photon shot noise. I also prove
that SPADE can approach the optimal precision allowed by quantum mechanics in estimating the
location and scale parameters of a subdiffraction object. Realizable with far-field linear optics and
photon counting, SPADE is expected to find applications in both fluorescence microscopy and
astronomy.

1. Introduction

Recent research, initiated by our group [1-7], has shown that far-field linear optical methods can significantly
improve the resolution of two equally bright incoherent optical point sources with sub-Rayleigh separations [ 1-
15], overcoming previously established statistical limits [ 16—19]. The rapid experimental demonstrations [12—
15] have heightened the promise of our approach. An open problem, of fundamental interest in optics and
monumental importance to astronomy and fluorescence microscopy, is whether these results can be generalized
for an arbitrary distribution of incoherent sources. Here I take a major step towards solving the problem by
proposing a generalized spatial-mode demultiplexing (SPADE) measurement scheme and proving its
superiority over direct imaging via a statistical analysis.

The use of coherent optical processing to improve the lateral resolution of incoherent imaging has thus far
received only modest attention, as prior proposals [13, 20-25] either did not demonstrate any substantial
improvement or neglected the important effect of noise. Using quantum optics and parameter estimation
theory, here I show that, for any object too small to be resolved by diffraction-limited direct imaging, SPADE can
estimate its second or higher moments much more precisely than direct imaging can fundamentally do in the
presence of photon shot noise. Moreover, I prove that SPADE can approach the optimal precision allowed by
quantum mechanics in estimating the location and scale parameters of a subdiffraction object. Given the
usefulness of moments in identifying the size and shape of an object [26], the proposed scheme, realizable with
far-field linear optics and photon counting, should provide a major boost to incoherent imaging applications
that are limited by diffraction and photon shot noise, including not only fluorescence microscopy [27-30] and
space-based telescopes [31] but also modern ground-based telescopes [32—35].

This paper is organized as follows. Section 2 introduces the background theory of quantum optics and
parameter estimation for incoherent imaging. Section 3 describes the SPADE scheme for general imaging.
Section 4 presents the most important results of this paper, namely, a comparison between the statistical
performances of direct imaging and SPADE in the subdiffraction regime, showing the possibility of giant
precision enhancements for moment estimation, while appendix justifies an approximation made in section 4 in
more detail. Section 5 presents a numerical example to illustrate the theory, comparing the errors in estimating
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the first and second moments of subdiffraction objects using direct imaging and SPADE. Section 6 proves that
SPADE is close to the quantum precision limits to location and scale estimation in the subdiffraction regime.
Section 7 discusses other practical and open issues.

2. Background formalism

2.1. Quantum optics

I begin with the quantum formalism established in [1] to ensure correct physics. The quantum state of thermal
light with M temporal modes and a bandwidth much smaller than the center frequency can be written as p®,
where

p=(—e)py+ ep, + O(e), @.1)

€ is the average photon number per mode assumed to be <1[36, 371, p, = |vac) (vac|is the vacuum state, p, is
the one-photon state with a density matrix equal to the mutual coherence function, and O (¢2) denotes second-
order terms, which are neglected hereafter. It is standard to assume that the fields from incoherent objects, such
as stellar or fluorescent emitters, are spatially uncorrelated at the source [37]. In a diffraction-limited imaging
system, the fields then propagate as waves; the Van Cittert-Zernike theorem is the most venerable consequence
[37]. At the image plane of a conventional lens-based two-dimensional imaging system in the paraxial regime
[37,38], this implies

pr= [[ERE @) (U, ww) = [ — B, @2

where R = (X, Y) is the object-plane position, the notation (1, u,, ...) denotes a column vector, F (R) is the
source intensity distribution with normalization f d’RF (R) = 1,|r) = a(r)|vac)is a one-photon position
eigenket on the image plane at position r = (x, y) with [a(r), a' (+")] = §2(r — r') [39], and ¢/ (r) is the field
point-spread function (PSF) of the imaging system. Without loss of generality, the image-plane position vector r
has been scaled with respect to the magnification to follow the same scale as R [38]. For convenience, I also
normalize the position vectors with respect to the width of the PSF to make them dimensionless.

Consider the processing and measurement of the image-plane field by linear optics and photon counting.

The counting distribution for each p can be expressed as (g, n, ...|p|#o, 1y, ...), where
|ng, ny, ...) = (H]‘?C:‘O b;mj / Inj!)|vac), b = fdzrqS;’f(r)a (r), ¢;(r) is the optical mode function that is projected

to the jth output, and [b;, b,j 1= f d2r¢>;'f(r) ¢y (r) = 6. With the negligence of multiphoton coincidences, the

relevant projections are {|vac), |¢]> 1, with |¢]> =00,...,n,=1,...,0) = b]Tlvac> = fdzrqu (r)|r). The zero-
photon probability becomes 1 — ¢ and the probability of one photon being detected in the jth mode becomes
ep (j), where

() = (9lolo) = [ERERI(Glm) P 23)

is the one-photon distribution. A generalization of the measurement model using the concept of positive
operator-valued measures is possible [ 1, 3] but not needed here.

For example, direct imaging can be idealized as a measurement of the position of each photon, leading to an
expected image given by

f @) = (rplr) = [ERE@ W~ BP, 4

which is a basic result in statistical optics [37, 38]. While equation (2.4) suggests that, similar to the coherent-
imaging formalism, the PSF acts as a low-pass filter in the spatial frequency domain [38], the effect of more
general optical processing according to equation (2.3) is more subtle and offers surprising advantages, as
demonstrated by recent work [1-15] and elaborated in this paper.

Over M temporal modes, the probability distribution of photon numbers m = (my, my, ...) detected in the
respective optical modes becomes

P(m) = > M(m|L)B(L), (2.5)
L

where B(L) is the binomial distribution for detecting L photons over M trials with single-trial success probability
€ and M(m|L) = 6L,z]_ m; L! Hj [p()HI™ / m; ! is the multinomial distribution of m given L total photons [40].
The average photon number in all modes becomes N = Me. Taking the limit of ¢ — 0 while holding N
constant, B(L) becomes Poisson with mean N, and P (i) — exp(—N) Hj [Np(]™i /mj !, which is the widely
used Poisson model of photon counting for incoherent sources at optical frequencies [3, 18, 27-31, 36].

2
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2.2. Parameter estimation

The central goal of imaging is to infer unknown properties of the source distribution F (R) from the
measurement outcome . Here I frame it as a parameter estimation problem, defining § = (0,, 6, ...) asa
column vector of unknown parameters and assuming the source distribution F (R|) to be a function of .
Denote an estimator as 0 (m) and its error covariance matrix as

X (0) =32, P(m|0) [éu (m) — 6,1 [0, (m) — 6,]. For any unbiased estimator (3_,, 0 (m)P (m|f) = 0), the
Cramér-Rao bound (CRB) is given by [40, 41]

S(6) > CRB() = J~(0), (2.6)

where J () is the Fisher information matrix and the matrix inequality implies that > — J~!is positive-
semidefinite, or equivalently u" (X — J~!)u > 0 for any real vector u. Assuming the model given by
equation (2.5) and a known N, it can be shown [3] that

1 9p(jl0) 9p(jlo)

Juw (@) = N> — (2.7)
which is a well known expression [16-18, 28, 30, 36]. For example, the direct-imaging information, given
equation (2.4) and the limit p(j|0) — drf (r]0), is

]l(;i/irect)(e) _ Nfdzr 1 af (rla) (9][ (rle) ] (2.8)

fo) 06, 96,

For large N, the maximum-likelihood estimator is asymptotically normal with mean 6 and covariance

¥(0) = J~1(0), even though it may be biased for finite N [40, 41]. Bayesian and minimax generalizations of the
CRB for any biased or unbiased estimator are possible [5, 41] but not considered here as they offer qualitatively
similar conclusions. The Fisher information is nowadays regarded as the standard precision measure in
incoherent imaging research, especially in fluorescence microscopy [18, 28-30], where photon shot noise is the
dominant noise source and a proper statistical analysis is essential.

Apart from the CRB, another useful property of the Fisher information is the data-processing inequality
[42,43], which mandates that, once the measurement is made, no further processing of the data can increase the
information. For example, direct imaging with large pixels can be modeled as integrations of photon counts over
groups of infinitesimally small pixels, so the information can never exceed equation (2.8). More generally, the
data-processing inequality rules out the possibility of improving the information using any processing that
applies to the direct-imaging intensity, such as the proposal by Walker et al for incoherent imaging in [20], even
if the processing is done with optics. Hence, as argued by Tham et al [14], coherent processing that is sensitive to
the phase of the field is the only way to improve upon equation (2.8). The information for any coherent
processing and measurement is in turn limited by quantum upper bounds in terms of p, [1, 3, 6, 43—46].

3. Spatial-mode demultiplexing

SPADE is a technique previously proposed for the purpose of superresolving the separation between two
incoherent point sources [1, 6, 7,9, 13—15]. I now ask how SPADE can be generalized for the imaging of an
arbitrary source distribution. Consider the transverse-electromagnetic (TEM) basis {|q); ¢ = (4, q,) €N 2}
[47], where

lg) = fd2r¢q(r)lr>, (3.1)
Heqx(x)Heqy(y) ( x2 + yz)
—exp - b

/27rqx!qy! 4

and He, is the Hermite polynomial [48, 49]. Assuming a Gaussian PSF given by v (r) = ¢ (r), whichisa
common assumption in fluorescence microscopy [28, 30], |1/r) is a coherent state [50], and the one-photon
density matrix in the TEM basis becomes

¢,(r) = (3.2)

g(q, 9'19) = (qlp,(0)|q") (3.3)
~C@q q) f PRF (R|9) e~ X>+Y) /ax 9+ ya,+4), (3.4)
where
N — 1 _ = | = g |
Cq, 9) = zlqﬂ,llw, lqh = q, + 9, q'=4q.'q, (3.5)
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Table 1. Alist of measurement schemes, their projections, and the orders gt = (11, fty) of the
moment parameters ©), to which they are sensitive.

Scheme Projections qx qay Iy Iy
TEM l9) N N even even
iTEM1 lq) £1q9 + (1, 0)1/V2 even N 1,5, ... even
iTEM2 llq) % Iq + (0, D)1/~2 N even even L5, ...
iTEM3 lg) = 1g + (1, —D)1/V2 N odd odd L5, ...
iTEM4 lg) = 1q + (1, 0)1/V2 odd N 3,7, ... even
iTEMS5 lq) = g + 0, D)1/~2 N odd even 3,7, ...
iTEM6 lg) £1q + 1, —D)1/V2 N even odd 3,7, ...

To investigate the imaging capability of SPADE measurements, define
0,(0) = f PRF (R|0) e X>+Y) /45y, (3.6)

with it = (uy, fty),leadingto alinear parameterization of g given by
2(q, 9'10) = C(q, 9)04+4"- (3.7)

Notice that each 6, is a moment of the source distribution filtered by a Gaussian. In particular, if the object is
much smaller than the PSF width, the Gaussian can be neglected, and ©,, becomes a moment of the source
distribution itself. This subdiffraction regime is of central interest to superresolution imaging and, as shown in
section 4, also a regime in which direct imaging performs relatively poorly. Since a distribution is uniquely
determined by its moments [51], F (R|@)exp[—(X? + Y?2)/4]and therefore F (R|6) can be reconstructed given
the moments, at least in principle. Note also that the object-moment order g is nontrivially related to the order
of the matrix element via t = q + q’, which is a peculiar feature of incoherent imaging.

A measurement in the TEM basis yields

pTEM (g10) = C(q, 9)O2g» (3.8)

which is sensitive only to moments with even yi, and p,, as also recognized by Yang et al in [13]. This
measurement is realized by demultiplexing the image-plane optical field in terms of the TEM basis via linear
optics before photon counting for each mode and can be implemented by many methods, most commonly
found in optical communications [1, 6, 15, 52—54]. To access the other moments, consider interferometry
between two TEM modes that implements the projections

1 1
+)=—(q) + 1) —)=—=Iq — la). 3.9
|+) ﬁ(|q> la’) ) ﬁ(lq> la’) (3.9)
This two-channel interferometric TEM (iTEM) measurement leads to

PP (+10) = 6(g 4) + C@, 41Oy
p*"(~10)= 5@, 4) — C(@ 4)6y1q> (2.10)

1
B, q) = E[C(q, 9) 0,5 + C(q'5 )01 (3.11)

The dependence on ©, ; is the main interest here, as it allows one to access any moment parameter.

For multiparameter estimation and general imaging, multiple TEM and iTEM measurements are needed.
To be specific, table 1 lists a set of schemes that can be used together to estimate all the moment parameters,
while figure 1 shows a graphical representation of the schemes in the (g, q,) space. Neighboring modes are used
in the proposed iTEM schemes because they maximize the Fisher information, as shown later in section 4. The
bases in different schemes are incompatible with one another, so the photons have to be rationed among the 7
schemes, by applying the different schemes sequentially through reprogrammable interferometers or spatial-
light modulators [15, 52—54] for example.

4, Statistical analysis

4.1. Directimaging

Although the proposed SPADE method can in principle perform general imaging, its complexity would not be
justifiable if it could not offer any significant advantage over direct imaging. To compare their statistical
performances, consider first direct imaging with a Gaussian PSF. Expanding |¢) (r — R)[? in a Taylor series, I
obtain
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068) o(26) o(46) o(66)
03 ]3‘ QSd 33‘

04) _(24) (44) (64)
02 ]Qd 22d 32d

02) d??) ‘42 ‘62

03 3 23 33 OSI I I I 03\&:\%\&;\
(14) (54) (25)  N(45) Q(65)
o—0

02 12 22 32 120 220 32 120 220 32
(12) (52)

01 2O 3® oif 1] 21 31' 01 .\
10) (50) l lé) .(l

o®7® 20' 3 10 207 30 10 20 30

ITEM1 |TEAA2 ITEM3

03 13 23 33 13 23 33 13 23 33
® (34) o ®
. 120 22 32 02 02 2 2 2
. (32) 03j (43) (63) . (33 (53
01 31 01 31
(30) -
00 10 20 30 00 10. 20. 30. OO. 10. 20. 30.

ITEM4 ITEMS ITEM6

Figure 1. Each dot corresponds toa TEM mode in the (q,, g,) space, and each line connecting two dots denotes an interferometer
between two modes in an iTEM scheme. The bracketed numbers are the orders i1y, ) of the moment parameters to which the
projections are sensitive. The unconnected dots in some of the iTEM schemes denote the rest of the modes in a complete basis, which
can be measured simultaneously to provide extra information.

f0) = I¢00(r)lz[l + > D, (r)6, } 4.1)
"
DM (r) = W’ (4‘2)

in terms of the moment parameters defined as
0, = f &RF (R|0) XY Py, (4.3)
In terms of this parameterization, the Fisher information becomes

. D, (r)D,(r)
(direct) _ d2 2 ”L—.
Jiw l‘f oo™ L+ Y, Dy(0)6,

Assume now that the support of the source distribution is centered at the origin and has a maximum width A
much smaller than the PSF width. Since the spatial dimensions have been normalized with respect to the PSF
width, the PSF width is 1 in the dimensionless unit, and the assumption can be expressed as

A<, (4.5)

(4.4)
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which defines the subdiffraction regime. The parameters are then bounded by

|l
10 < (%) , 4.6)

and the image is so blurred that it resembles the TEM, mode rather than the object, viz.,
f(r10) = |y (1P [1 + O(A)]. Writing the denominator in equation (4.4)as 1 + O (A) and applying the
orthogonality of Hermite polynomials [48, 49], I obtain

- N

]I(;:Brect) — E[(SW + 0(A)], (4.7)
. |

CRB{I = £201 + O(A)]. (4.8)

This is a significant result in its own right, as it establishes a fundamental limit to superresolution algorithms for
shot-noise-limited direct imaging [20, 55-57], generalizing the earlier results for two sources [16—18] and
establishing that, at least for a Gaussian PSF, the moments are a natural, approximately orthogonal [58] set of
parameters for subdiffraction objects.

4.2.SPADE
To investigate the performance of SPADE for moment estimation, note that, in the subdiffraction regime,
equation (3.6) can be expressed as

O, = 6, + O(AFhT2), (4.9)

where O (Al#h+2) is a linear combination of moments that are at least two orders above u and therefore much
smaller than 6,. Approximating ©),, with ¢, greatly simplifies the analysis below; appendix contains a more
detailed justification of this approximation. For the TEM scheme, taking ©,, = 0,, in equation (3.8) makes the
information matrix diagonal, with the nonzero elements given by

](TEM) _ N (TEM)C(‘I) q)

Py P un=2q, (4.10)
2q

where NTM) is the average photon number available to the TEM scheme. The relevant CRB components are
hence
024

(TEM) __ _
CRBMu = Wc(q,q); n = 2q. (4.11)

Defining the photon count of the gth channel as m, with expected value NTEMp(TEM) (g16), it is straightforward
to show that the estimator

< mq

brg = NG (4.12)
is unbiased and achieves the error given by equation (4.11) under the assumption ©,4 = 0.
A precision enhancement factor can be defined as the ratio of equations (4.8) to (4.11), viz.,
CRBUIrect)  \y(TEM) !
CENENPY ol (4.13)

CRBIE™ ~ N 2#h(u/2)1,

Apart from a factor N(TEM) /N determined by the different photon numbers detectable in each method, the
important point is that the factor scales inversely with , = O (Al#h), so the enhancement is enormous in the
A < 1subdiffraction regime. The prefactor in equation (4.13) also increases with increasing p.

To investigate the errors in estimating the other moments via the iTEM schemes, assume O, o+ = 0,1 4 in
equations (3.10). The dependence of equations (3.10) on 6, o is the main interest, while I treat 3(q, ') asan
unknown nuisance parameter [59]; the TEM scheme can offer additional information about 3 (q, q') via 6,
and 6,4 butitis insignificant and neglected here to simplify the analysis. The information matrix with respect to
{04+q> B(q, q') } is block-diagonal and consists of a series of two-by-two matrices, each of which can be
determined from equations (3.10) for two parameters (6, 4> 3(q, 4')) and is given by

Ja _ 2N GTEM) 8(q, 4)C*(q, q) — C*(q, 4')04+q
324, q9) - Cq g\~ C@ a0y B4

where NUTEM) is the average photon number available to the iTEM scheme. The CRB component with respect
to 61 ¢ is hence obtained by taking the inverse of equation (4.14) and extracting the relevant term; the result is

(4.14)

6
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(GTEM) __ B(q, q9) _
CRBy,, " = INTBOCE (g ) n=q+4q. (4.15)

Defining the two photon counts of the (g, ¢') iTEM channels as 7%1” and m 4" with expected values
NGTEM) @) (4 19) and NGTEM)p@4) (—|9), respectively, it can be shown that the estimator

mff"q’) _ mi’”/)

Oprg = ———— 4.16
T ANGTWC (g, ) (19

is unbiased and achieves the error given by equation (4.15) under the assumption ©y, o = 6, 4. The iTEM
schemes can also offer information about 6,4 and 6, via the background parameter 3 (q, q’), but the additional
information is inconsequential and neglected here.

An enhancement factor can again be expressed as

CRBdrec)  \TEM) !
CRB N 22 igl(u — )15, p— )

(4.17)

With the background parameter 3 (g, i — q) on the order of A™nl124b:12(=Dh] both 1/3 and the

©!/1q! (i — q)!] coefficient can be maximized by choosing q to be as close to /2 as possible. This justifies the
pairing of neighboring modes in the iTEM schemes listed in figure 1 and table 1. With iTEM1, iTEM2, iTEM4,
and iTEM5, | ), is odd, and

B = O(Al#h—T), (4.18)
WithiTEM3 and iTEMS, | |, is even, and
B = O(Alkh), (4.19)

The enhancements, being inversely proportional to 3, can again be substantial for higher moments. The only
exception is the estimation of the first moments 6y, and 6y, for which the right-hand side of equation (4.17)
becomes NUTEM) /N and the iTEM schemes offer no advantage.

These results can be compared with [ 1, 6] for the special case of two equally bright point sources. If the origin
of the image plane is aligned with their centroid and their separation along the X direction is d, 6,y = d*/4,and a
reparameterization leads to a transformed Fisher information 7Y (d) ~ Nd?/8 and JTEM)(d) ~ N /4 for
the estimation of d, in accordance with the results in [1, 6] to the leading order of d. The experiments reported in
[13—15] serve as demonstrations of the proposed scheme in this special case.

4.3. Elementary explanation

The enhancements offered by SPADE can be understood by considering the signal-to-noise ratio (SNR) of a
measurement with Poisson statistics. Suppose for simplicity that the mean count of an output can be written as
Np(jl#) = A8 + B, which consists of a signal component Af and a background B. The varianceis A6 + B, so
the SNR can be expressed as (A0)?/ (A6 + B). To maximize it, the background B should be minimized to reduce
the variance. For direct imaging, the background according to equation (4.1) is dominated by the TEM, mode,
whereas each output of SPADE is able to filter out that mode as well as other irrelevant low-order modes to
minimize the background without compromising the signal. To wit, equation (3.8) for TEM measurements has
no background, while equations (3.10) for iTEM also have low backgrounds in the subdiffraction regime. The
Fisher information given by equation (2.7) is simply a more rigorous statistical tool that formalizes the SNR
concept and provides error bounds; reducing the background likewise improves the information by reducing
the denominator in equation (2.7).

In this respect, the proposed scheme seems to work in a similar way to nulling interferometry for exoplanet
detection [60]. The nulling was proposed there for the special purpose of blocking the glare of starlight, however,
and there had not been any prior statistical study of nulling for subdiffraction objects to my knowledge. The
surprise here is that coherent processing in the far field can vastly improve general incoherent imaging even in
the subdiffraction regime and in the presence of photon shot noise, without the need to manipulate the sources
as in prior superresolution microscopic methods [61-66] or detect evanescent waves via lossy or unrealistic
materials [67, 68].

5. Numerical demonstration

Here I present a numerical study to illustrate the proposal and confirm the theory. Assume an object that
consists of 5 equally bright point sources with random positions within the square —0.3 < X < 0.3and
—0.3 < Y < 0.3. The average photon number is assumed tobe N = 5 x 10 000 in total. Figure 2 shows an
example of the generated source positions and a direct image with pixel size 6xéy = 0.1 x 0.1 and Poisson

7
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790

4 32 0 2 4
@€

Figure 2. The white crosses denote the 5 randomly generated source positions. The background image is a direct image with pixel size
dxdy = 0.1 x 0.1 (normalized with respect to the PSF width) and Poisson noise; the average photon numberis N = 5 x 10 000 in
total.

0o2
TEMo, @ TEM o TEM,, ;
] 11
010 Yon 020
TEM o, @@ TEM,, TEM,, @ TEM,, TEM,, @ TEM 0
iTEM1 iTEM2 iTEM3

Figure 3. A graphical representation of the iTEM1, iTEM2, and iTEM3 schemes involving the three TEM modes to be measured. Each
line denotes an interferometer between two modes, and each unconnected dot denotes a TEM mode to be measured. The modes are
also denoted by the parameters 6§, to which they are sensitive.

Table 2. The projections for the SPADE measurement scheme depicted in
figure 3. |0, 0) corresponds to the TEMy, mode, |1, 0) corresponds to the
TEM,omode, and |0, 1) corresponds to the TEM,; mode.

iTEM1 iTEM2 iTEM3

(10, 0) + 11, 0))/V2 (10, 0) + 10, 1)) /2 (11, 0) +10, 1)) /V2
(10, 0) — 11, 0))/V2 (10, 0) =10, 1)) /V2 (11, 0) = 10, 1))/V2
[0, 1) I1, 0) 10, 0)

noise. I focus on the estimation of the first and second moments of the source distribution given by
{0 1 = (1, 0), (0, 1), (2, 0), (0, 2), (1, 1) }. For direct imaging, I use the estimator
9“ = !> Dy (rym(r)) / N, where m (r;) is the photon count at a pixel positioned at r;. It can be shown that, in
the small-pixel limit, this estimator is unbiased and approaches the CRB given by equation (4.8) for A < 1.
For SPADE, I consider only the TEMy, TEM 4, and TEM; modes, and the photons in all the other modes
are discarded. As illustrated in figure 3, the iTEM1, iTEM2, and iTEM3 schemes suffice to estimate the
parameters of interest. Table 2 lists the projections, and figure 4 plots the spatial wave functions for the
projections. The light is assumed to be split equally among the three schemes, leading to 9 outputs; figure 5
shows a sample of the photon counts drawn from Poisson statistics. For the estimators, I use equations (4.12)
and (4.16). Compared with the large number of pixels in direct imaging, the compressive nature of SPADE for
moment estimation is an additional advantage.
Figure 6 plots the numerically computed mean-square errors (MSEs) for 100 randomly generated objects
versus true parameters in log—log scale. Each error value for a given object is computed by averaging the squared
difference between the estimator and the true parameter over 500 samples of Poissonian outputs. For
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iTEMI1 1ITEM2 1 iTEM3

4 0 4

4 0 4
0.4
0.2
0
-0.2
-0.4

4 0 4

T

Figure 4. The spatial wave functions (r¢;) for the projections listed in table 2. x and y are image-plane coordinates normalized with
respect to the PSF width and the color code corresponds to amplitudes of normalized wave functions.

x10%

1.5

iTEM

Figure 5. A sample of the simulated photon counts from SPADE. The order of the matrix elements follows table 2 and figure 4. Note
how the counts for the antisymmetric modes are much lower as a result of filtering out the lower-order modes. As argued in section 4.3,
such dark ports enable a higher SNR by reducing the background without compromising the signal.
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Figure 6. Simulated errors for SPADE and direct imaging versus certain parameters of interest in log—log scale. The lines are the CRBs
given by equations (4.8), (4.11), and (4.15), assuming ©,, = 6, and neglecting the O (A) term in equation (4.8). Recall that all lengths
are normalized with respect to the PSF width o, so, in real units, the first moments 6y and 6y, are in units of o, their MSEs are in units
of o2, the second moments 6, 0y, 011, 3(10, 01) = (09 + 6y,) /8 are in units of o2, and their MSEs are in units of o4.

comparison, figure 6 also plots the CRBs given by equations (4.8), (4.11), and (4.15), assuming ©,, = 6, and
neglecting the O (A) term in equation (4.8). A few observations can be made:

1. As shown by the plots in the first row of figure 6, SPADE is 3 times worse than direct imaging at estimating the
first moments. This is because SPADE uses only 1/3 of the available photons to estimate each first moment.

2. The theory suggests that the advantage of SPADE starts with the second moments, and indeed the other
plots show that SPADE is substantially more precise at estimating them, even though SPADE uses only a
fraction of the available photons to estimate each moment. This enhancement is a generalization of the

recent results on two sources [1-6, 8,9, 12—15].
3.The errors are all remarkably tight to the CRBs, despite the simplicity of the estimators and the
approximations in the bounds. In particular, the excellent performance of the SPADE estimator in the

subdiffraction regime justifies its assumption of €, = 0,.

6. Quantum limits

In the diffraction-unlimited regime, it is not difficult to prove that direct imaging achieves the highest Fisher
information allowed by quantum mechanics. To be precise, that regime can be defined as one in which the PSF is
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so sharp relative to the source distribution that {|1g); R € supp(F) } can be approximated as the orthogonal
position basis {|r) }. p, becomes diagonal in that basis, and the quantum Fisher information [1, 3, 43—46] is equal
to the direct-imaging information given by equation (2.8). The physics in the opposite subdiffraction regime is
entirely different, however, as diffraction causes {|t/g) } to have significant overlaps with one another, and more
judicious measurements can better deal with the resulting indistinguishability, as demonstrated in sections 4 and 5.

I now prove that SPADE is in fact near-quantum-optimal in estimating location and scale parameters of a
source distribution in the subdiffraction regime. Suppose that the distribution has the form

F(R|0) = F(R(&]9)), (6.1)

such that 6 parameterizes a coordinate transformation R = R (&|6), and the transformation leads to a reference
measure Fy(£) thatis independent of §. Taking R as a column vector, I can rewrite equation (2.2) as

p1(0) = Eo(lYVr) (¥rl)s (6.2)
|or) = e kK RED|yg), (6.3)

where Eq(-) = f d&F, (£)(-) and k is the momentum operator in a column vector. I can now use the quantum
upper bound on the Fisher information [1, 43, 46] and the convexity of the quantum Fisher information [69, 70]
to prove that the Fisher information for any measurement is bounded as

J(0) < K(p,(9)) < K(0) = NEo[K (|¢or) (¥rD], (6.4)

where Kis the quantum Fisher information proposed by Helstrom [44]. For the pure state, K can be computed
analytically to give

LOR (€0) OR(ElY)

_ T
K (Iybr) (¢rl) = 29, (Yol AkAK ' [tho) 26, (6.5)
Ak =k — (tholk[to), (6.6)
leading to
R = NEO[@RT(&@) 8R(£|9)] 67)
29, 06,

for the gaussian PSF. For example, a location parameter can be expressedas R = £ — (6, 0). Equation (6.7) then gives
K =N. (6.8)

This can be attained by either direct imaging or iTEM1 in the subdiffraction regime.
The advantage of SPADE starts with the second moments, which are particularly relevant to scale estimation.
Let R = 6¢, which resultsin

K = NE((£'¢). (6.9
For the TEM measurement, on the other hand,
(TEM) _ L O S gy
P (ql0) = B e X —=e % ——|, (6.10)
q, q,!
92@( 92@
= R = . 6.11
Qx 1 Qy 1 (6.11)
Defining
~ TEM 0 §§(
a=> g™ qlo) = —Bo| ;| (6.12)
q 4 \&
V=3 - 9@ — 9 pT(qlo) (6.13)
q
0> (& 0
=—TIy |+ 00, (6.14)
4 o &
and using the lower bound by Stein ez al [71], I obtain
9q" . 04
(TEM) > NZ2_y-122 _, NE,(£'¢), 6.15
J 20 20 0(§'8) (6.15)

which approaches the quantum limit given by equation (6.9) for § — 0. The argument can be made more
precise if the form of Fy (§) is known, as the extended convexity of the quantum Fisher information can be used
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to obtain a tighter upper bound [70, 72], while the O (#*) term in equation (6.14) can be computed to obtain an
explicit lower bound for any 6.

7. Discussion

Though promising, the giant precision enhancements offered by SPADE do not imply unlimited imaging
resolution for finite photon numbers. The higher moments are still more difficult to estimate even with SPADE in
terms of the fractional error, which is ~CRB,,,, / Hi =1 / O (N Al#hy for even || and 1/0 (N Al#h+1) for odd

| )1, meaning that more photons are needed to attain a desirable fractional error for higher-order moments.
Intuitively, this is because of the inherent inefficiency of subdiffraction objects to couple to higher-order modes,
and the need to accumulate enough photons in those modes to achieve an acceptable SNR. A related issue is the
reconstruction of the full source distribution, which requires all moments in principle. A finite number of
moments cannot determine the distribution uniquely by themselves [51], although a wide range of regularization
methods, such as maximum entropy and basis pursuit, are available for more specific scenarios [51, 55, 57, 73, 74].

Despite these limitations, the fact remains that direct imaging is an even poorer choice of measurement for
subdiffraction objects and SPADE can extract much more information, simply from the far field. For example,
the size and shape of a star, a planetary system, a galaxy, or a fluorophore cluster that is poorly resolved under
direct imaging can be identified much more accurately through the estimation of the second or higher moments
by SPADE. Alternatively, SPADE can be used to reach a desirable precision with far fewer photons or a much
smaller aperture, enhancing the speed or reducing the size of the imaging system for the more special purposes.
In view of the statistical analysis in [2, 4, 6], the image-inversion interferometers proposed in [2, 4, 6, 23-25] are
expected to be similarly useful for estimating the second moments. For larger objects, scanning in the manner of
confocal microscopy [27] or adaptive alignment [ 1] should be helpful.

Many open problems remain; chief among them are the incorporation of prior information, generalizations for
non-Gaussian PSFs, the derivation of more general quantum limits, the possibility of even better measurements, and
experimental implementations. The quantum optimality of SPADE for general imaging is in particular an interesting
question. These daunting problems may be attacked by more advanced methods in quantum metrology [43—46, 75—
78], quantum state tomography [79-81], compressed sensing [55-57, 81], and photonics design [52-54].
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Appendix. Nuisance parameters

Instead of assuming ©,, = 0, as in section 4, I consider here the exact relation given by equation (3.6), which can
be expressed as

Our0)  Outr02)
O, =0, — "*4 - ‘”4 — .. (A1)

For the TEM scheme, this implies that each gth channel contains information about not only 6, but also the
higher-order moments. If I assume that each gth channel is used to estimate only 6,4, however, then the higher-
order moments act only as nuisance parameters [59] to the estimation of £,,. This is a conservative assumption,
as the data-processing inequality [42, 43] implies that neglecting outputs can only reduce the information, but
the assumption also means that I do not need to consider any channel with order lower than q to compute the
CRB with respect to 6,4, simplifying the analysis below.

Given the above assumption, I can compute the information matrix with respect to the parameters
(O2gs O2g+2,0) Prg+0,2)» ---) by considering only the gth and higher-order channels; the result is

JCTEM) JCTEM)
2q,2q 29,29+(2,0) T
JOEM) — JCTEM) J(TEM) = NTEM QT | (A2)
29+(2,0,2q | /29+(,0),2q+2,0) - nly

where a = C(q, q)/©24and 1) = O (A219h) are determined only by the qth channel, while v = O (A Cl4h+2))
is mainly determined by the higher-order channels. The CRB with respect to ¢, becomes [59]
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1
CRBYy2’ = gy (@ — 777 )7 (A3)
The key here is that 7y~'n" = O (A 219h+2) is smaller than ov = O (A 219h) by two orders of A, so
1
(TEM) _ 2
CRB(Y = —— (1 + O] (Ad)
Osq i
[1 + O(AY] (A5)

~ NTWNC (g, g)

brq
=——1 1+ 0(?)], A6
NTBIC (g @) (&) (A6)
which is consistent with equation (4.11).
An intuitive way of understanding this result is to rewrite equation (A1) as

O = O, + O 1(2’0) L +4(°’2) N (A7)
which implies that the total error in 6, consists of the error in ©),, as well as the errors in the higher-order
moments. The higher-order moments can be estimated much more accurately via the higher-order channels, so
the effect of their uncertainties on the estimation of 6, is negligible. A similar exercise can be done for the iTEM
schemes, with similar results.

In practice, such a careful treatment of the nuisance parameters is unlikely to be necessary in the
subdiffraction regime, as the numerical analysis in section 5 shows that excellent results can be obtained simply
bytaking ©,, = 6, withoutany correction.
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