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SUBDIRECTLY IRREDUCIBLE 

AND CONGRUENCE DISTRIBUTIVE Q-LATTICES 

I. C H A J D A , M . K O T R L E , Olomouc 

(Received February 13, 1992) 

By a q-lattice (see [3]) we mean an algebra A = (A\ V, A) with two binary opera

tions satisfying the following identities: 

(associativity): a V (6 V c) = (a V 6) V c, a A (6 A c) = (a A 6) A c, 
(commutativity): a V 6 = 6Va, aA6 = 6Aa, 
(weak absorption): a V (a A 6) = a V a, a A (a V 6) = a A a, 
(weak idempotence): a V (6 V 6) = a V 6, a A (6 A 6) = a A 6, 
(equalization): aV a = a Aa. 

A (/-lattice 4̂ is called distributive if it satisfies the distributive identity 

a V (6 A c) = (a V 6) A (a V c) 

for each a, 6, c from A A (/-lattice A is bounded if there exist elements 0 and 1 of A 
such that 

a A 0 -= 0 and a V l = l 

for each a G A. 

An element a of a g-lattice A is called an idempoteni if a V a = a (and, by 
equalization, also a A a = a). The set of all idempotents of J4 is called the skeleton 
of A. It is clear that the skeleton of A is a sub-o-lattice of A which is the maximal 
sublattice contained in A. 

A non-singleton subset C of a g-lattice A is called a cell of A if a,b £ C implies 
a V a = 6 V 6 and C is a maximal subset of A with respect to this property. 

Evidently, a g-lattice A is a lattice if and only if it has no cell, i.e. if A is equal to 
its skeleton. Every cell C of A has just one idempotent. 
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Evidently, every cell D of a g-lattice A is a sub-g-lattice of A. If A is a cell, then 

the skeleton of A is a singleton. 

Distributive and/or bounded g-lattices were investigated in [4]. Let us notice that 

the distributive identity is equivalent to its dual; on the other hand, the foregoing 

identities for 0 and 1 do not imply a V 0 = a and 1 A a = a but only the weaker laws 

a V 0 = a V a and a A 1 = a A a. 

By the foregoing definitions, the class of all distributive g-lattices as well as the 

class of all bounded distributive lattices form varieties. Therefore, it makes sense 

to look for Si-members of these varieties. Although (/-lattices look rather similar 

to lattices, these varieties have another number of Si-members than the variety of 

(bounded) distributive lattices. 

Theorem 1. Tiie variety D of all distributive q-lattices has exactly two non-trivial 

Si-members, namely those visualized in Fig. 1 as B and C. 

i 

0 І 
B 

Fig.l 

Before proceeding to proof, let us remark that every g-lattice A = (A] V, A) can 

be viewed as a quasiordered set (A\Q), where the quasiorder Q on A is induced by 

V (or A) as follows (see e.g. [3], [4]): 

(a,6)GQ i f faV6 = 6v6 

(or, equivalently, (a, 6) E Q iff a A 6 = a A a). Henceforth, we can visualize this 

quasiorder Q in the diagrams of g-lattices by oriented arrows; i. e. (a, 6) E Q iff there 

exists an oriented path from a to 6 consisting of arrows. 

P r o o f of Theorem 1. Since both B and C are two-element (/-lattices, they 

are subdirectly irreducible. Hence it remains to prove that any other non-trivial 

distributive g-lattice A different from H, C is subdirectly reducible. 

(i) If A has no cell, then A is a lattice. In the case of A -̂  H, A is subdirectly 

reducible by [2]. 

(ii) Let D be a cell of A. 

(a) Let A contain an element a £ D. Denote by d the idempotent of D and 

Al = A-(D-{d}). 
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Then A\ and D are sub-a-lattices of A and cardA i > 1, card D > 1. Introduce a 

mapping a : A —• .Ai x D by the rule 

a (x ) = (x, d) for x 6 -4 - (D - {d}), 

a (x) = (d, x) for x £ D. 

It is clear that a is an injection and pr ja (A ) = A\> pr2a(A) = D. Prove that a is a 

homomorphism: 

if x G A\, y G D, then 

a (x V y) = a (x V d) = (x V d, d) , 

a (x ) V a(y) = (x, d) V (d, y) = (x V d, d); 

if x , y G -4i, then 

a (x V y) = (x V y,d) = (x, d) V (y, d) = a (x) V a(y); 

if x, y G D, then 

a (x V y) = a(d) = (d, d) = (d, x) V (d, y) = a (x) V a(y) . 

Dually this can be shown for the meet. Hence A is subdirectly reducible. 

(b) Suppose A = D. If A -/ C, there exist elements a, 6 of D such that 

a T- 6 7- d 7- a. Put .Ai = A - {6} and A2 = {d ,6} . Thus cardA i > 1, cardyl2 > 1. 

Introduce a mapping a : .A —• .Ai x A2 as follows: 

a (x ) = (x,d) for x G -4i, 

a (x ) = (d, x) for x G -42 . 

Evidently, a is an injection and prxa(A) = Ai, pr 2 a(A ) = J42 . Prove that a is a 

homomorphism: 

if x G -4i, y G -42, then 

a(x\Jy)=a(d) = (d,d), 

a(x) V a(y) = (x, d) V (d, y) = (d, d) ; 

if x , y G -4i, then 

a (x V y) = a(d) = (d, d) = (x, d) V (y, d) = a (x) V a(y); 

if x , y G -42 then 

a (x V y) = a(d) = (d, d) = (d, x) V (d, y) = a (x ) V a(y) . 

Dually this can be done for A, i.e. A is a subdirect product of A\, A2. • 
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T h e o r e m 2. The class of all bounded distributive q-lattices with 0 / 1 has exactly 

three nontrivial Si-members, namely B (in Fig. I), C\, C2 (in Fig. 2). 

Cг 

1 

0 6 

C2 

Fig.2 

P r o o f . As was already mentioned, B is subdirectly irreducible. Since the 

lattices of congruences not collapsing 0 and 1 of C\, C2 are three-element chains, see 

Fig. 3, also C\, C2 are subdirectly irreducible in this class. 

91 

C o n d = 40(1,6) 

ÒU) 

0(0, c) à =ConC2 

Fig.З 

We have to prove that if A is a bounded distributive a-lattice different from B, 

C\, C2 then A is subdirectly reducible in this class. 

(A) If A has no cell than this was done by G. Birkhoff in [2]. 

(B) If A has at least two cells, say D\, D2, then clearly D\ C\ D2 = 0. Put 

6 i = D\ x Dx Uw, 6 2 = D2 x D2 Uu; 

where u) denotes the identity relation on A. It can be easily shown that © i , © 2 

are congruences on A and ©i fl © 2 = CJ; thus, by the Birkhoff Theorem [2], A is 

subdirectly reducible. 

(C) It remains to deal with the case when A has just one cell D. 

(i) Suppose that the skeleton of A contains just two elements, namely 0 and 

1. Let 0 G D. Since A is not isomorphic with C 2 , it means that D contains at least 

two non-idempotent elements a, 6, i.e. a -^ 0 9- b ^ a. We can put 

A\ = { 0 , l , a } , A2 = A-{a}. 

It is easy to see t h a t both A\, A2 are bounded distributive (/-lattices (moreover, 

A\ ~ C2). Define a : A —» A\ x A2 as follows: 

a(0) = (0 ,0) , a ( l ) = ( l , l ) , 

a(a) = (a,0)\ 

a ( x ) = (0, x) for x G D, x / a. 
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We can see that a is an injection and pr2a(A) = Ai, pr2a(A) = A2. It remains to 
prove that a is a homomorphism. It is almost evident in the case z,y £ A\ that 
a(z V y) = a(z) V a(y) and a(z Ay) = a(z) A a(y), and analogously for z,y £ A2. 

Suppose z £ A\ — A2) y E A2 — A\. Then z = a and y £ D, y ^ a, y ^ 0. We have 

a(z) V a(y) = a(a) V a(y) = (a, 0) V (0, x) = (0, 0), 

a(zVy) = a(0) = (0,0) and 

a(z) A a(y) = (a, 0) A (0, x) = (0,0) = a(0) = a(z A y). 

Consequently, .A is isomorphic to a subdirect product of A\, A2. 

(ii) If the skeleton of A contains just two elements (0 and 1) and 1 E D, where 
D is the unique cell of A, the proof is dual to that of (i). 

(iii) Let the skeleton of A have more than two elements. We have three cases: 

(a) Suppose there exists an idempotent d E A with 0 ^ d -j-- 1 and d E D. 
Put 

A\ = {x; (x, d) E Q} and A2 = {x; (d, x) E Q} 

for the induced quasiorder Q. Define a : A —• A\ x A2 as follows: 

a(x) = (x Ad,xV d) for x ^ D and 

a(x) = (x, x) for x £ D. 

Since x £ D is an idempotent of A (because A has just one cell D), it is easy to 
verify that a is an injective homomorphism satisfying \>T\a(A) = A\, pr2a(A) = A2, 

thus .A is isomorphic to a subdirect product of A\, A2. 

(b) Suppose there exists an idempotent d E A with 0 ^ d ^ 1 and 0 G D . 
Put 

^ ! = {*;(*,<*) € 0 } , ^ 2 = {*;(<*,*) € Q } 

and introduce a mapping a : .A —* Ai x A2 by 

a(x) = (x A rf, x V a1) for x £ D, 

a(x) = (xjrf) for x E D. 

We can easily verify that a is an injective homomorphism with prta(.A) = A{ (i = 
1,2), thus A is a subdirect product of A\, A2. 

(c) The last case with d £ A, 0 ^ rf ^ 1, I € D is dual to (b), only a is 
defined for x £ D by a(x) = (a1, x). • 
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Corol lary. Every non-trivial distributive q-Iattice A is a subdirect product of q-

lattices B and C. Every bounded distributive q-Iattice A with 0 ^- 1 is a subdirect 

product of q-Iattices B, C\, C 2 . 

It is well-known than for any lattice L, the congruence lattice Con L is distributive, 

see e.g. [1]. We can ask if a similar result is also valid for g-lattices. It is easy to 

show tha t the answer is negative in the general case. More precisely, we can s tate 

L e m m a . Let C be a q-Iattice which is a cell. Then Con C ~ Un, where n = card C 

and I I n is the partition lattice of the set of cardinality n. 

The proof is trivial since every equivalence on C is a congruence. 

T h e o r e m 3 . Let A be a q-Iattice which has just one n-element cell C, let S be 

the skeleton of A. Then Conyl ~ n n x Con S. 

P r o o f , (a) If 0 i G Con S and 0 2 £ Con C ^ l l „ and d is the only idempotent 

of C (i.e. {d} = SC\ C ) , then clearly 

0 ! U 0 2 U {[rf]01 U [rf]02}2 £ Con A. 

(b) I f 0 € C o n A , put 0! = 0 f l 5 2 , e2 = Qr)C2. 

Evidently, 0 = ©i U 0 2 U {[J ] 0 l U [d]e2}
2. Hence each 0 £ Con A is of the above 

mentioned form, i.e. it is uniquely determined by some 0 i £ Con S and 0 2 £ Con C, 

i.e. the mapping 

/ i : 0 - + ( 0 2 , 0 i ) 

is a bijection of Con A onto n n x Con S. It is easy to show that h is an isomorphism. 

a 

T h e o r e m 4. For a q-Iattice A, the congruence lattice Con A is distributive if and 

only if A contains at most one cell with at most 2 elements. Con A is modular if and 

only if A contains at most one cell with at most 3 elements. 

P r o o f . If A has no cell, then A is a lattice and Con A is distributive, see [1]. 

If A contains jus t one n-element cell then, by Theorem 3, Con A ~ n n x Con 5 , 

where S is the skeleton of A. However, n n is distributive if and only if n ^ 2, n n is 

modular if and only if n ^ 3 (see e.g. Ex. 5 of Par. 9, Ch. IV in [1]). Since Con 5 is 

distributive, we arrive at the statement. 
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On the contrary, suppose A has at least two cells Ci, C2. Let a,- be an idempotent 

of d and 61 £ Ci, 61 ^ ai, 62 € C2, 62 ^ a2. Then clearly (a,,a2) = (6, V 62) V 
(6, V 62), i.e. 

9(a i , a 2 )C0(6 i , 6 2 ) . 

But (61,62) ^ 0 ( a i , a 2 ) , i.e. 0 (a i ,a 2 ) ? 6(6i,62) . 

(i) If ai < a2 then the congruences 

e (a i ,6 , ) , 0 (a i ,a 2 ) , 0(6i,62), 0(ai,6O A 0(ai ,a 2 ) , 0(ai ,6i) V0(61 (62) 

form a sublattice of Con A isomorphic to N5, see Figs. 4 and 5. 

\ 'í&=£Л /&=>>) / Í Ŕ > ) 

\*ýz3£>h) \J^z^j \ k t > ) \ J . _ 
0(a i ,a 2 ) 0(61,62) 0(ai ,62) O(a2,6i) 

(ai,6i) (a2,62) 
Fig.4 

(a ь 60 

(ai ,60V (6,,62) 

(6 Ь 6 2 ) 

(ai,a 2) 

0(ai,6i) A0(ai,a 2 ) 

Fig. 5 

(ii) If ai || a2, then the congruences 

G(aiialAa2), 6(ai,a 2 ) , 0(&i,&2), 

* = ©(&i, <*i A a2) V 6(6 2 , ax V a2), 

$_^V0(&i .& 2 ) 
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form a sublattice of Con A isomorphic with N5 again, see Figs. 6 and 7. D 

aţ-V~ą2 

(ai ,ai Л a 2 ) (aua2) 

(lь*2jt::;;;" 

Ф = (bi, ax Л a 2 ) V (62, ai V a 2) 

Fig.6 

( 6 ь a i Л a 2 ) 

Ф 

6(61,6-) 

e(ai,a2) 

e ( o i , a i Л a 2) 

Fig.7 
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