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CHAPTER 1
GENERAL PROPERTIES OF SEMIGROUPS

Definition 1.1. The ordered pair (S,%) is a semi-

~group iff S is a set and % is an associative binary operation
(multiplication)} on S.

Notatiqn. A semigroup (S,*) will ordinarily be
referred to by the set S, with the multiplication understood.
In other words, if (a,b)e SXS, then #[(a,b)] = a%b = ab.

The proof of the following proposition is found on p. 4

of Introduction to Semigroups, by Mario Petrich.

Proposition 1.2. Every semigroup S satisfies the

general associative law.

Proof. If {a,}_, &6, then define
ai8,ccra, = al(az('.~(én_1an)-'-)). If aeS and a is the
product of one element alsS, then a = aqp, and the product
does not depend on the positioning of parentheses. Now
suppose the general associative law holds for all products
of r elements, where r<n. If a is the product of n elements

of §, then there exists rez’, 1<r <mn, such that

a =_(alaz'"ar)(ar+1ar+2---an)

1}

[a (8, a )] (8, " a)

= ajl(ay+-a)(a,, - +a))]



al(az.-oar.ar+1---an)

= a,a," A,
Thus by induction, S satisfies the general associative law,
and so all parentheses may be omitted from products of ele-
ments of a semigroup.

Definition 1.3. A nonempty subset T of a semigroup S

is a subsemigroup of S iff T is closed under the operation
on S (if a,beT, then abeT).

Thus a subsemigroup T of a semigroup S, along with the
multiplication of S, is itself a semigroup since associa-
tivity is inherited from S.

Definition 1.4. A semigroup S is generated by a subset

G of § iff every element of S can be expressed as the product
of elements of G.

Definition 1.5. A semigroup S is cyclic iff there

exists aeS such that S is generated by {al.

Definition 1.6. If A is a nonempty subset of a semi-

~group S, then the subsemigroup of S generated by
1 - & 8 i - + + 3
A is {ala2 a IaieA, 1<ig<n; neZ*}, where 27 is the
set of all positive integers.
Lemma 1.7. If A is a nonempty subset of a semigroup S,
then the subsemigroup of S generated by A is the intersection

of all subsemigroups of S containing A.

.n
Proof. Let T = { I ail nez”; ajeh, 1gi<nl}, and let
_ i=1

{6 },ep = (G subsemigroup of S | A€Gl.
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n
If T a; e T, then a.e A for each i, 1<i<n. Therefore,
i=1

since A€G, for all ael, then for each i, 1l<izsn, a. Gy for

all qel.
n n
Therefore, I a.eGy for all oel, so that I ae (1 Ga .
i i e
i=1 1=1 ael
Thus T ﬁ{#)Gd. However, T itself is a subsemigroup of S
acl :

and obviously contains A, Therefore, T E{Gd}aer’ so that

QGm.g T, and hence T = QI‘G&“

Definition 1.8. A nonempty subset T of a semigroup S

is a left ideal of § iff acS, beT imply abeT. T is a right
ideal of S iff aeS, beT imply baeT. T is a two-sided ideal
(or simply an ideal) of § iff T is both a left and right
ideal of S. T is a proper ideal of S iff T is an ideal of
S and T # S.

Notation. If'{Ai}?=l is a collection of nonempty sub-
sets of a semigroup S, thén

Ajhg oAy = {ai-a2---anLaieAi, 1<i<n}.
Lf Ai
If A

It

{a}, then AlAZ"'Ai~la‘Ai+1"'An = AIAZ."An'

= w» & s = = n—_— LA
1= Az = An A, then A AIAZ An. In general,

no distinction will be made between an element a of a semi-

group S and the singleton set {a}.

In view of this notation, a nonempty subset T of a
semigroup S is: (i) a subsemigroup of S iff TZQET, (ii) a
left ideal of S iff STET, (iii) a right ideal of S iff
TSET, (iv) an ideal of § iff STUTSET. Also, if A is a
nonempty subset of S, then the subsemigroup of S generated

by A is A",
i=1



Lemma 1.9. Each of the collections (a) of all left
ideals, (b) all right ideals, (c) all ideals of a semigroup
S is closed under (i) arbitrary intersection, if nonempty,
(ii) arbitrary unign. Also, the collection of all ideals
is closed under finite intersection.

Proof. Part I: Let {G } _, be a collection of left

ideals of a semigroup S such that fm\Ga # 6. If xe8,
aeA

y@:()Ga, then y€G, for each aeA. Since Gy, is a left ideal
aEA

of S, then xve G& for each aeA, so that xye fﬁ\Ga. There-
oEA

fore rﬂ\Gu is a left ideal of S. Similarly, if {G,} ‘A is
ach ' aE

a collection of right ideals (or ideals) of S such that

fWGa # ¢, then rWGq is a right ideal (or ideal) of S.
aeA aeA

Part II; If {G@}aeA 1s a collection of left ideals

of 8, then for each aeA, Gy # ¢, so that (J Gy # ¢. Further-

acA
more, 1f xg$ and yf:LJGa, then there exists geA such that
' aeA
veG,. Therefore xy e G, S JG,, and so LJG. is a left
Sl B v o
acA acl

ideal of S. Similarly, if {G@}aaA is a collection of right
ideals (qr ideals) of S, then LJGa is a right ideal (or
ideal) of S. aeh

Part IIT: TIf A and B are ideals of a semigroup S,
then A # ¢ and B # ¢, so there exist xeA, yeB. Therefore
Xy ¢A and xy e B, so that XyeAf\B and thus ANB # ¢. Further-
more, if peAMNB and qeS, then peA and peB. Therefore

pq,qp € A and pq,qp € B, so that pq,qp e AMNB. Thus ANB is



is an ideal of S. Now suppose that if {A.}k is a

1 i=]

k .
collection of ideals in S, then Ai is an ideal in S.

i=1
Therefore, if {Ai}k+i is a collection of ideals of S, then

12

k k+1 k
A, is an ideal of S. But then YA, = MANA is an
! i .l S | k+1
is] i=1 i=1

ideal of S since the case for two ideals was already proven.

Therefore, by induction, for each nezZ®, if {Ai}?ﬂl is a
n
collection of ideals of S, then f—\Ai is an ideal of S.
i=1
Definition 1.10. If S is a semigroup, ASS, and A # ¢,

then the left ideal generated by A is Ly =M{T left ideal of
SIASET}. A left ideal of S generated by a singleton subset
{a} of § is the principal left ideal of S generated by a,
and will be denqted by L{a). Corresponding definitions are
yalid fqr right ideals with notation RA,R(a), and ideals with
nqtation JA,J(a).

Lemma 1.11. If S is a semigroup and acS, then
(1) L(a) = {a}USa, (2) R(a) = {a}lJtaS, and
(3] J(a) = {ayJaStUsSalJsas.

Proof. Part I: Let‘{Ga}qu be the collection of all

left ideals of S containing a, so that L(a) = i;lGa.

(1) Since acGa for each aeA, then aEJZAGu = L{a), so that

{al€L(a). (ii) Since L(a) is a left ideal of § and acl(a),

then for each xeS, xael(a) so that SasL(a). Therefore,
by (i), (ii), {alWSaSL(a).
Let xeS, ye{alVUSa, so that either y = a or y = ka for

some ke§.



(i) If y
(ii) If y

a, then xy = xaeSa<{a}U Sa,

ka, then xy = x(ka) = (xk)acSa&{a}l Sa,
since xkeS.

Therefore {a}lUSa is a left ideal of S and contains a,
M Co
el "<{alUsa.

Part II: Similarly, R(a) = {a}UaS.

50 that'{a}kJSag{Gq}qu; and so L(a) =

Part III: Let'{Hq}d!EA be the collection of all ideais
of S containing a, so that J(a) = i:lHq.
(i) Since agHy for each aeA, then asJ:LHa = J(a), so
that {a} & J(a).
(ii) Since J(a) is an ideal of S and aeJ(a), then for
each xe§, axeJ(a) and xaeJ(a), so that aS€J(a) and Sa€J(a).
(1i1) Also, if x,yeS, then xaeJ(a) since J(a) is a left
ideal, and so Xay = (xa)yeJ(a) since J(a) is a right ideal.
T_h_erefo.re, SaS€J(a). Thus by (i)-(iii),
{alUSatlsasSsas & J(a).
If xe$, ye{alUSallastSaS, then either vy = a, yeSa,
yeaS, or yeSaS.

(i) If y = a, then xy = xacSa and yx = axeaS, so that

1

xy, yxe{atlUsalUasUsas.
(ii) If yeSa, then.y = ka for some keS. Therefore,
xy = x(ka) = (Xk)aeSa, since xkeS, and yx = kaxeSaS, so
that xy,yxe{a}USalJaSUsasS.
{iii) If yeaS, then y = ak for some keS. Therefore,
xy = xakeSaS and yx = (ak)x = a({kx)ea$, since kxeS, so that

xy,yxe{atUsalUaSUsas.
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(iv) If yeSaS, then y = paq for some p,qeS. Therefore,

xy = x(paq) = &kp)aeSaS since xpeS, and
yx = (paq)x = pa(qx) £SaS since qxe€$, so that
xy,yxel{all) sallasUSas.

Thus, by (i)-(iv), {atlUsalUasUsasS is an ideal of S
and contains a, so that‘{a}LJSaLJaSLJSaSe‘{Ha}uaA, and so
J(a) = Qf‘d < {a}USaUaSUsas.

Definition 1.12. A semigroup S is left (right)} simple

iff § is the oniy left (right) ideal of S. § is simple iff
S is the only ideal of S.

Lemma 1.13. A semigroup S is left simple 1ff Sa = §

for all acS. A semigroup S is right simple iff aS = S for
all aeS. A semigroup S is simple iff SaS = § for all aeS.

Prqqf. Part I: Suppose S is left simple and aeS.

If peS and qeSa, then q = ka for some keS, and so
pq = p(ka) = (pk)aeSa since pkeS. Therefore, Sa is a
left ideal of S so that Sa = S since S is left simple.
Thus Sa = S for all aeS.

Suppose Sa = S for all aeS. If G is a left ideal of
S, then G # ¢ so that there exists aeG. Therefore,
§ = Sa=SGEG (since G is a left ideal) € S, so that G = §.
Thus S is left simple.

Part II; Similarly, S is right simple iff aS = § for
all aegS.

Part III: Suppose S is simple and aeS. If peS, qeSaS,

then q = kat for some k,teS. Therefore



[0}
il

pq = p(kat) (pk)at €SaS since pk €S, and

1

qp ® (kat)p = ka(tp) £SaS since tp €S. Thus SaS is an
ideal of S, and so SaS = S since S is simple.

Suppose SaS = S for all aeS. If G is an ideal of §,
then G # ¢ so there exists acG. Therefore if x,ye S, then
xa €G and so xay = (xa)y €G. Thus S = SaS€GES so that

G =S, and so S is simple.

Definition 1.14. The intersection of all ideals of a

semigroup S, if nonempty, is the kernel of S.

Lemma 1.15. If K is a simple ideal of a semigroup S,

then K is the kernel of S.

Proof. Suppose K is a simple ideal of a semigroup S.
If G is any ideal of S, then KNG is an ideal of S by
lemma 1.9, Since KMNGEK, then KNG = K since K is simple.
Therefore K = KNGEG for each ideal G of S, so that
KSN{G|G is an ideal of S}. But Ke {¢[G:iisan ideal of S},
and so M{G|G is an ideal in S} € K, Thus K = M{G|G is
an ideal of S} = kernel of S, since K # ¢.

Definition 1.16. Let S be a semigroup and let deS.

An element e of S is: (i) a left identity of d iff ed = d,
(1i) a right identity of d iff de = d, (iii) a two=sided
identity (or simply an identity) of d iff e is both a left
and a right identity of d. Furthermore, e is a left (right)
identity of § iff e is a left (right) identity of every
element of §; and e is a two-sided identity (or simply an

identity) of S iff e is both a left and a right identity of S.



Definition 1.17. An element z of a semigroup S is a

left zero of S iff zx = 2z for all xeS; z is a right zero of
S iff xz = z for all x¢S; z is a two-sided zero (or simply
a zero) of S iff z is both a left and a right zero of §.

Definition 1.18. If S is a semigroup with zero z, then

an element p of S is a zero divisor of § iff p # z and there
exists qeS such that q # z and either pg = 7 Or qp = Zz.
thation; If § is a semigrpup, an identity 1 may be
adjoined to S by defining x1 = 1x = x for all XS, Similarly,
a zero 0 may be adjoined to S by defining x0 = 0x = 0 for all
xeS, Let S1 be the semigroup S with 1 adjoined, and let S0
be S with_ﬂ‘adjoined. Thus, according to this notation, if
S is a semigrqup and aeS, then L(a) ¢‘Sla, R{a) = as!

J(a) = stasl,

, and

Lemma 1.19. If a semigroup S has an identity, then the

identity is unique.

Proof. Suppose e and u are identities for a semigroup
S, Then e = eu since u is a right identity, and eu = u
since e is a left identity. Thus e = u and the identity is
unique.

Lemma 1.20. If a semigroup S has a zero, then the zero

is unique.
" Proof. Suppose z and w are zeros of a semigroup S.
Then z = zw since z is a left zero, and zw = w since w is a

right zero. Thus z = w and the zero element is unique.
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'thatignJ If A and B are sets; then (i) A\B =]{xeA|xiB},
(ii) |A| = cardinality of A, and (iii) if S is a semigroup
with 0, then §%* = S\{0}. Notice that $* is a semigroup iff
S has no zero divisors.

Definition 1.21. A semigroup S in which every element

is a left (right) zero is a left (right) zero semigroup. A
semigroﬁp S with zero 0 is a zero semigroup iff ab = 0 for
all abeS. A semigroup S with zero 0 is 0-simple iff

SZ # {0} and S has no nonzero proper ideals. Thus S is
O-simple iff S is not a zero semigroup, and the only ideals
in S are {0} and §S.

pefinition 1.22Z. Elements p and q of a semigroup S

commute iff pq = qp.

Definition 1.23., The center of a semigroup S is

C(S) E'{aeS[aX = xa for all xeS}.

- Definition 1.24., A semigroup S is commutative iff

C(S) = S.

Definition 1.25. An element x of a semigroup S is
2

idempotent iff x X.

Definition 1.26. A semigroup S is idempotent iff every

element of S is idempotent.

Definition 1.27. A semilattice is a commutative idem-

potent semigroup.

Definition 1.28. A subgroup G of a semigroup S is a sub-

semigroup of S which is also a group.
The proof of the following proposition is found on p. 10

of Tntroduction to Semigroups, by Mario Petrich.
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Proposition 1.29. If e 1is an idempotént element of a

semigroup S, then

{aeS|la = ea = ae, e = ab = ba for some beS}

1

Ge

{aeSla £eSNSe, e eaSNSal

is the greatest subgroup of S having e as its identity.

Proof. Let e be an idempotént element of a semigroup S,
and let Ge = {aeSla = ea = ae, e = ab = ba for some beS}.

Part I: If p eGe, then p = epe eS and p = pe €8Se, so
that p eeSMNSe. Similarly e = pqe pS and e = gpe Sp for some
qeS, so that eepSMSp. Therefore, pe{acS|aceSNSe, ecaSNSal,
and so GeEQ{aES[ae eSMSe, ec aSMNSal. Now if
pelacS|aceSNSe, eeaSNSal, then there exist x,y,z,we S

such that p = ex = ye and ¢ = pz = wp. Since p = ex, then

il
It

e(ex) = (ee)x

]

ep ex = p, and since p = ye then

L
i
il
il

pe = (yele = y(ee) = ye = p. Therefore p = ep = pe. Fur-

thermore, eze = (wp)ze = w(pz)e = wee = we, so that

eze = (ee)ze = e(eze) = e(we) = ewe, and so eze = ewe.

il

Define q = eze = ewee S. Therefore,

e = ee = (pz)e = p{ze) = (pe)(ze) = p(eze) = pq and .
e = ee = e(wp) = (ew)p = (ew)(ep) = (ewe)p = qp, so :
that e = pq = qp for qeS. Thus pe Ge, and so

{aeS|a e eSMNSe, eeaSMNSal=G,. Therefore

I

G, = {acS|a = ea = ae, e = ab = ba for some beS}

{aeS|a €eSMNSe, e caSNSal,

I
fl

Part IT: (i} If a,b eGe, then a =ae=ea, b be eb,

and there exist P,qeS such that e = ap = pa = bhqg qb.
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Therefore ab = (ea)b = e(ab) and ab = a(be) = (ab)e, so that

ab = e(ab) = (ab)e. Also, since P,q €S, then gpe S. There-

It

fore (ab)(qp) = [a(bp)lp = (ae)p
(ap) (ab) = q[(pa)b] = q(eb) = gb

e = (ab) (qp) = (qp)(ab) and abe G,. Thus Ge 1s closed under

ap = e and

e, so that

the multiplication of §S.

(ii) Ge inherits associativity from §.

(1ii) Since e is idempotent, then e = ee = ce satisfies
both equations in the definition of Ge, and so e G,. Further-
more, e is identity for Ge by the definition of Ge -

(iv) If aeGg, then ae = ea = a and e = ab = ba for
some beS, and so ebeec S. Since ebe = e{ebe) = (ebe)e and
e = (ebe}a = a(ebe) for ac$, then ebez:Ge and is inverse
for a. Thus G, is a group with e as its identity.

Part III: Let G be any subgroup of S containing e as
its identity. If peG, then p = pe = ep and there exists
qeGE S such that e = pg = qp, and so peG,. Therefore G =Gg
and $0 Gg 1s the largest subgroup of S having e as its iden-

tity.

Definition 1.30, If S is a semigroup with identity e,
then Go is the group of units of S, and the elements of Gg
are the invertible elements of §.

~Lemma 1.31. An element x of a semigroup S with identity

Is invertible iff xS = Sx = §.
Proof. Let S be a semigroup with identity e. If xeS§

is invertible, then X = Xe = ex and e = xy = yx for some yeS.



13
Therefore, for each peS, p = pe = p(yx) = (py)xeSx and
P = ep = (xy)p = x(yp)exS, so that S €Sx and SE€xS. How-
ever, for each at§, axeS and xat€S, so that Sx€S and xS €S,
Therefore xS = Sx = §. Conversely, suppose xS = Sx = §.
Since e is the identity for S, then S = e§ = Se, so that
Xe§ = §MS = eSMNSe. Also, ecS = SAS = xSNSx, so that
xe{aeS|aceSMNSe, ecaSMNSal = G, and thus x is invertible.

Definition 1.32. An element p of a semigroup S is

regular iff there exists xeS such that p = PXp.

Definition 1.33. A semigroup S 1s regular iff each

element of S is regular.

Definition 1.34. Let S be a semigroup and let p,xeS.

Then x is an inverse of p iff p = pxp and x = xpx.

Theorem 1.35. In a semigroup S, each regular element p

has an inverse which is also regular. Conversely, if an ele-
ment p of S has an inverse, then both p and its inverse are
regular.

Proof. If peS is Tegular, then there exists xeS such

that p = pxp. Therefore xpxe$, p{xpx)p

(pxp)xp = pxp = p,

i
fl

and (xpx)p (xpx) = x{pxp) (xpx) = xp(xpx) = x(pxp)x

Thus xpx is inverse for P, and since (xpx)p{xpx)} = xpx for

XpX.

peS, then xpx is regular. Conversely, if pP,XxeS and x is

an inverse of p, then P = pxp and x = xpx, so that P and x

are regular,

Definition 1.36. The order of a finite semigroup S is

the number of its elements. If S is not finite, then S is
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of infinite order. A semigroup of order one is a trivial
semigroup.

Definition 1.37. The order of an element x of a semi-

~group S is the order of the cyclic subsemigroup of S generated
by x.

Definition 1.38. A semigroup S is periodic iff each

element of S is of finite order.
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CHAPTER II

RELATIONS AND FUNCTIONS ON A SEMIGROUP

Definition 2.1. A binary relation p on a set S is a

subset of SXS. An alternate notation for (x,y)ep will be
xpy, in which case x is said to be p -related to y. A binary
relation ¢ on a set S will ordinarily be referred to simply
as a relation on S.

Definition 2.2. A relation p on a set S is:

(1) reflexive iff (x,X)ep,

(ii) symmetric iff (x,y)ep implies {(v,x)ep,

(1ii) antisymmetric iff (x,y),(y,x)eo implies x = y, and

(iv) transitive 1iff (x,y),(y,z)ep implies (x,z)ep for
all x,y,zeS.

Definition 2.3. A relation p on a set S is an equiva-

lence relation on S iff o is reflexive, symmetric, and transi-
tive.

Definition 2.4. 1If p is an equivalence relation on a

set 3, then the disjoint equivalence classes formed by p on S
are p-classes, and the o-class containing an element x of S
will be denoted by X .

Definition 2.5. The equivalence relation p on a set §

defined by [x,y)eﬁ)iff x =y for each x,yeS is the equality

relation on $§ and will be denoted by e,

16
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Definition 2.6. The equivalence relation 0 on a set S

defined by (x,y)e p for each x,yeS is the universal relation
on S and will be denoted by w_. Notice that we, = SXS.

Definition 2.7. An equivalence relation p on a set S

is proper iff o # P

Definition 2.8. A relation o on a set S is a partial

ordering of S iff p is reflexive, antisymmetric, and transi-
tive.

Notation. A partial ordering for a set S will normally
be denoted by <; (x,y)e< will be denoted by x<vy; (§,%), or
simply S, will be called a partially ordered set.

Definition 2.9. If (5,<) is a partially ordered set and

B £S5, then peS is an upper bound of B iff b<p for each beB.
Similarly, p is a lower bound of B iff p<b for each beB.

Definition 2.10. If (5,2) is a partially ordered set

and B € 8§, then peS is a least upper bound of B iff (i) p is
an upper bound Qf B, and (ii) if qeS is an upper bound of B,
then p<q. Similarly, p is a greatest lower bound of B iff
(1} p is a lower bound of B, and (ii) if q is a lower bound
ofB,ﬂwnqip.
NOtatiQn. The least upper bound and greatest lower

bound of a subset B of a partially ordered set (§,<) will be
denoted by lubB and glh, respectively.

Definition 2.11. A partially ordered set (5,<) is a

lower semilattice iff for each x,yeS there exists qeS such that
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q = glb {x,y}. (8,<) is an upper semilattice iff for each
X,y€S there exists peS such that p = 1lub {x,y}.

Definition 2.12. A partial ordering < on a set S is a

linear ordering on S iff either x<y or y<x for each x,yeS.
In such a case, (§,<) is called a linearly ordered set, or
simply a chain.

~Definition 2.13. If ($,<) is a partially ordered set

and peS, then: (i) p is the least element of S iff p<x for
each xeS, (ii} p is the greatest element of S iff x<p for
each x €S, (iii) p is a minimal element of & iff xZ p implies
X = p for each xe$, and (iv) p is a maximal element of § iff
p'ix:implies X = p for each xeS§.

Notation. If S is a semigroup then E, will denote the
set of all idempotent elements of § together with the binary
relation < defined by e< f iff e = ef = fe,

~Lemma 2.14. If S is a semigroup, then E, is a partially

ordered set.

‘EEQQ§, If eeE_, then e = ee = ee so that e<e and (Es,i)
is reflexive. If e,feE, such that e<f and f<e, then e =ef =fe
and f = fe = ef so that e = ef = f and (Es,j) is antisymmetric.

if e,f,geES such that e <f and f<g, then e = ef = fe and

f = fg = gf so that e = ef = e(fg) = (ef)g = eg and

il

e = fe (gf)e = g(fe) = ge. Therefore e = eg = ge so that
e <g and (Es,i) is transitive.
The following proposition will give some insight into

the relationship between the concepts of lower (and upper)
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semilattice (a partially ordered set) and a semilattice (a

commutative, idempotent semigroup).

Proposition 2.15., If S is a semilattice, then ES =S
1s a lower semilattice with glb{x,y} = xy. Conversely, if
T is a lower semilattice, then (T,%) is a semilattice, where
X*y = glb{x,y} for all x,yseT.

Proof. If S is a semilattice then E, = 5. Therefore,

if x,yeES then xy = xxy (since S is idempotent) = xyx (since
S is commutative), and so xy<x. Similarly, xy = xyy = yxy
0 that xy< y and thus xy is a lower bound for {x,y}. Now
if p is a lower bound for {x,y} then p<x and p<y so that

P =Ppx = xp and p = py = yp. Therefore p = pp = (px)(py) =
(pp) (xy) = p(xy) = (xy)p, so that p<xy and xy = glbix,y}.
Conversely, if T is a lower semilattice, then define the
multiplication # on T by x#y = glb{x,y} for all x,yeT. If
x,yeT, then since T is a semilattice, there exists peT such
that p = glb{x,y} = xsy. Therefore x#yeT and so % is a
binary relation on T. If x,y,zeT then (xay)sz = glb{ glbix,y} z}
so that (k*yJ*z:gglb{x,y} and (x#y)#z< z, Therefore
(x#y)%z< x, (xs«y)#z<y, and (x#y}#z <z, so that (x#y)#z is

a lower bound for {x,y,z}. Now if p is a lower bound for
{x,y,z}, then p is a lower bound for {x,y} and for {z}, so
that p< glb{x,y} and p<z. Therefore p is a lower bound for

{glb{x,y},z}, and so p<glb {gib{x,y},z}

il

(x*y)*z. Thus
glbix,y,z}, so

1

(X#y)*z = glb{x,¥,z}. Similarly, x#*(y#z)

that (x4y)xz = x%(¥*2) and T is associative under %. Since T
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iszl]gwerfmmibjtice’then T is partially ordered, so that X<x
for each xe T and thus x is a lower bound for {x,x}. Also,
if b is a lower bound for {x,x}, then b <x, so that
x = glb{x,x} = x#x and (T,*) is idempotent. Finally, if
x,yeT, then x#y = glb{x,y} = glb{y,x} = y#x, and so (T,#) is
commutative.,, Thus (T,#%#) is a semilattice.

Definition 2.16. An equivalence relation p on a semi-

group S is a left congruence on S iff (a,b)e p implies
(ca,cb)e ¢ for all a,b,ceS; p is a right congruence on S
iff (a,b)e p implies (ac,bc)ep for all a,b,ceS; p is a con-
~gruence on S iff p is both a left and a right congruence
on S. A (left or right) congruence p on a semigroup S is
proper iff 0 is proper as an equivalence relation.

Lemma 2.17. An equivalence relation p on a semigroup S

is a congruence iff (w,x)ep and (y,z)k p imply (wy,xz}e p.

Proof. If p is a congruence on S and W,X,¥,ZES such
that (w,x)e p and (y,z)e p, then (wy,xy)e p since p is a
right congruence and (Xy,xz)s P since p is a left congruence.
Therefore (wy,kz)e p since p 1is transitive. Conversely, if
(w,x)e P and (y,z)e p imply (wy,xz)e p, then let (a,b)e p.
For each ce§, (c,c)e p since p is reflexive. Therefore
(ca,cb)e p and (ac,bc)e g, and so p is a congruence on S,

This lemma leads to the following cohcept of a quotient

semigroup.

"Definitiqn‘2;18. Let p be a congruence on a semigroup S,

and let S/p be.the'cqllection of disjoint ©-classes. Let =
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be the binary relation on S/p defined by (xb)*(yp) = (xy)p
for all X5y € S/p. Then (S/p,#) is the quotient semigroup
of S relative to the congruence p.

Observe that if X5sYg € S/o then (xp)(yp) =_(xy)ps S/p
since xy €S, so that multiplication in S/p is closed. Fur-
thermore, if x ,y ,z €S/p, then [(Xp](yp)](zp) = (XY)p(Zp) =
[lxydel, = [x(yz2)l, = (x)(r2), = () 1y )(z )], so that
multiplicatiqn in S/p is associative. Thus S/p with the
operatiqn defined above is indeed a semigroup. In fact,
the concept of quotient semigroup with respect to a congruence
is a generalization of the notion of quotient group with res-
pect to a normal subgroup. The following theorem expresses
- this fact.

-~ Theorem 2.19. If N is a normal subgroup of a group G,

then there exists a congruence p on G such that G/p = G/N.
Conversely, if p is a congruence on a group G, then there
ekists a normal subgroup N of G such that G/N = G/p.

Proof. If N is a normal subgroup of G, then define the

relation p on G by (x,y) e p iff xN = yN for all x,ye G.

Since xN = xN for each XeG, then (k,x)e p and so p is reflexive.
If Cx,y)e p, then xN = yN. Therefore yN = xN, so that (v,x)ep
and e is symmetric. If (x,y),(y,z)e p then xN = yN and

yN = zN, so that xN = zN, (x,z) € p, and p is transitive.
Furthermore, if (w,x) €0 and (y,z) € p, then wN = xN and

yN =2zN, Therefore (wy)N = (wN)(yN) = (xN)(zN) = (x2)N, so

that (Wy,kz)e p and P is a congruence on G. Thus G/ p is
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the quotient semigroup whose elements are the disjoint o-
classes. To verify that G/p = G/N, notice that the definition
of p states that if x,y e G, then x and y are in the same
p-class iff x and y are in the same left coset of N. Indeed,

if a€G, then a, = {xeG| (x,a)e e} = {xeG|xN = aN} = aN, so

P
that the p-classes and left cosets of N coincide. Therefore,
if a,b €G, then a, = aN, Bp = bN, and (ab]p = (ab)N, so that
(ap)(bp) = (ab)p = (ab)N = (aN)(bN). Thus each p-class cor-
responds tq an identical (set-wise) left coset, each left
coset corresponds to an identical p-class, and the product of
two p-classes is the same as the product of the corresponding
left cosets, so that G/p = G/N. Conversely, if p is a con-
gruence on a group G, then p partitions G into disjoint
p-classes. Therefore, if 1 is the identity for G, then

1p # ¢ since 1 Elp. Also, if x,y Elp, then (x,1)ep and

(y,1) ep, so that (1,y)ep by symmetry. Thus (x,y) =
(x+1,1y) = (x,1}(1,y)ep. However, since (y*i y"%)e o3

then (xy~ ,1) = (xy~' ,yy™') = G,y)(y™,y"') e . Therefore
I

Xy slp and 50'1p is a subgroup of G. Now if xeG and aelp,
.1 -1 -1
then a, = 1 . Theref X = X = 1 =
0 0 refore (xax )p .xpap 5 xp po
. - , .
(xIx™ )p =llp, so that xax~! slp and 1p is normal in G. For

each aeG, if x:ealp, then there exists y‘glp such that x = ay.

Therefore X, = (ay)p =8y, = aplp = (al)p = a,, so that Xed,
O - . = - =
and alp Sa. For each xaap, xp a, _(al)p aplp, so that
S TS o -1 - - = (51 =
a " x =a_ X =a a1 = (a-! a 1 = 1 =
(a'x), = &) xg =2t (al) = (ad a) 1= (aTla) 1

= 1. Theref "1y < al_.
1plp Klp, Therefore a™'x elp, so that xs:a]b and a, alp
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Thus alp = a5, and the left cosets of 1p coincide with the
p-classes. Furthermore, for each a,b G, since (ab)1p= (ab)p,
then (alp)(b]p)= (ab)1p=(ab]p = (ap](bp), so that the product
of cosets in G/lp is identical (set-wise) to the product of
the corresponding p-classes in G/p, and so G/lp = G/p.

Before the next notion is introduced, it should be
pointed out that the intersection of any collection of con-
gruences on a semigroup S is also a congruence on S. This
fact is stated in the following lemma,

Lemma 2,20. If'{p } i's a collection of congruences

on a semigroup S, then (j(g is a congruence on S.
acA ¥

Proof. If xe$ then (x,x)e P, for each me A, so that

(x,x)e:f"\p and fﬁ\p is reflexive. If (x,y)e fﬁ\p , then
oA & agp @ acA @

(x,¥) ¢ Py for each acA. Therefore (y,x) ¢ b, for each ae A,

so that (y,x)e fﬁ\p and fﬁ\p is symmetric. If

ocA ach &
(x,7), (v,2)¢ flp , then (X,Y)ep and (y,z)e p, for each
Qe

% €A, Therefore (x,z)e¢ Oy for each g¢ A, so that (x, Z)afﬂ\g},

oe
and ) by is transitive. Finally, if (w,x), (v,2)e M 0,
agh agA @

then (w,x) e Py and (y,z)e Py for each ge A. Therefore

(wy,xz) € 0, for each g e A, so that (wy,xz)e M and
. ash *

M 0, 15 a congruence on S.

(xeA - ks + 3 - -
Definition 2.21. If p is a binary relation on a semi-

group S, then the congruence on S generated by p is the
intersection of all congruences on § containing p.

Definition 2.22, If S and T are semigroups, then a

function f mapping S into T is a homomorphism of S into T iff

f(x)-£(y) = f(xy) for each x,y ¢S. A function £f:5+T is an
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embedding of S into T iff f is a one-to-one homomorphism,
and S is said to be embeddable in T. The semigroup T is a
homomorphic image of § iff there exists a homomorphism of §
onto T. A function £:S T is an isomorphism of S onto T iff
f is a one-to-one onto homomorphism, in which case S and T
are said to be isomorphic, written S = T. A function f:85+8
is an endomorphism iff f is a homomorphism, and f:S+ S is
an automorphism iff f is an isomorphism.

thatidn: If £ is a function from a set A into a set B,

then the domain A of f will be depoted by Df,'and the range
B of f will be denoted by Re.

Lemma 2.23 (Fundamental Theorem of Semigroup Homomor -

phisms). If f is a homomorphism of a semigroup S into a
semigroup T, then the relation p on S defined by (a,b)ep iff
f(a) = £(b) for all a,be§ is a gongruence on S and S/p 2= £(S).
Conversely, if p is a congruence on a semigroup S, then the
function £:S+S/p defined by f(a) = a, for each ae S is a home-
morphism of S onto S/p.

Proof. Let f be a homomorphism from a semigroup S into
a semigroup T. Define the relation pon S by (a,b)ep iff
f(a) = £(b) for all a,beS. Since f(x) = f(x) for each xe¢ S,
then (x,x)e p and p is reflexive. If (x,¥)e p then f(x) = f§),
so that f(y) = f(x). Therefore (y»x)ep and p is symmetric.
If (x,¥), (yy2z) ep then £(x) = £(y) and f(y) = f(z), so that
fx) = £(2), (x,z)e p, and p is transitive. If (w,x), (¥,2) ep
then f(w) = f(x) and f(y) = £(z), so that
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E(wy) = f(w) - £(y) = f(x)-£{z) = f(xz), and thus p 1s a con-
gruence on S by lemma 2.17. Now define g:S/p ~ £(S) by
glag) = £(a) for all a; eS/p. If (x,y)e g then xec S/p, and
so there exists agS such that x = ap. Therefore y = g(x) =
glag) = f(a)e £(8), and so g = S/p X £(S). If a,beS such
that ap = bp, then (a,b) ep, so that f(a) = £(b). Thus
g(ay) =_g(bp), and so g is a well-defined function. If
a,be S such that‘g[ap) =_g(bp), then f(a) = £(b). Therefore
(a,b) € p, so that a, = bp and g is one-to-one. If x ef(S)
then there exists ae§ such that x = f(a). Since acS, then
apE:S/p, 50 that‘g[ap) = f(a) = x, and so g 1s onto. Finally,
if as bp eS/p, then_g(apbo)=.g[(ab]p] = f(ab) = f(a)-f(b) =
kgCQp]}g(pr, so that g is a homomorphism. Thus g:S/p + £(S)
is an is~-omqrphism' and S/p &==f(S).

Conversely, if p is a congruence on a semigroup S, then
define f:S~+S/p by f(a) = a, fqr all aeS. If (x,y)e f, then
xeS, so that y = f(x) = ;'cp €S/p and £ S8 X S/p. If a,bes
such that a = b, then (a,b) ep since p is reflexive, There-
fore a =_bp, so that f(a) = f(b), and thus f is a well-defined
functiqn, If yeS/p, then there exists xeS such that y = X
Since xeS, then f(x) = X, =Y, and so f is onto. Finally, if
a,b €S, then f(ab) =,(ab)p =.(ap)e(bp) = f(a)-f(b), so that
f is a homomqrphism.

Definition 2.24. If f is a homomorphism of a semigroup $

into a semigroup T, then the congruence p on S defined by
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(a,b) e p iff f(a) = £(b) for all a,be 8 is called the con-
gruence on S induced by f.

Definition 2.25. If o is a congruence on a semigroup S,

then the homomorphism £:5+3/p of S onto S/p defined by
f(a) -—«.ap for all aeS is called the natural homomorphism of
S onto S/p.

Lemma 2.26. Let p be a congruence on a semigroup S.
For each congruence o on § containing p, define a binary
relation o” on S/p by [xp, yp) ea” iff (x,y)ea for all
X,y €S. Then the mapping f defined by f(e}) = a” is a one-
to-one, order preserving mapping of the set of aill congruences
on S containing p onto the set of all congruences on S/p.

Proof. Let p be a congruence on a semigroup S. Define
A = {a|a is a congruence on S and p = 4}. For each aeA,
define o~ on S/p by (xp, yp)E(x’ iff (x,y)e 0. Define
B = {a"faeA}, and define the mapping £:A~>B by £(3) = a”
for all weA. Define P = {§|§ is a congruence on S/p}. The
first objective will be to show that the set B of all images
of elements of A under f is actually the same as P,

Part I: If o” ¢B then there exists acA such that
a” = f(a), Now if X, eS/p then xeS, so that (x,x) ea,
Thﬂrefore (xp, Xp) ea” and so a” is reflexive. If Xps Yo €S/p
such that (xp, yp)e 0", then (x,y) ea. Thus (y,x)ea, so
that (yp, Xp)e o” and o is symmetric. If Xé’)B’ Zye S/p
such that Cxp, yp] eo” and (yp, zp) gaf, then (x,y)e o and
(y,z) o, Therefqre (x,z)ea, so that (xp, zp)s a” and qf

is transitive. Finally, if Wos X505 Vg zpe:S/p such that
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(wp5 xp) emf and (yp,-ng euf, then (w,x)}e a and (y,z)e a.
Iherefore (Wy,kz)e o, so that

(wp'yp, X, zp) = ((_Wy)p, (xz)p) e,

Thus a” is a congruence on S/p, so that Ot'_ €P and B= P.
Conversely, if 6e¢P, then § is a congruence on S/p, Define
Aon S by (x,y)er iff (xp,yp
then X, €S/p. Therefore (x,, Xp) €6, so that (x,x)eX and A

Jed for all x,yeS. If xe$

is reflexive. If (x,y) €)X then (x ) €d. Thus (yp,xp) €d,

0’ Yp
so that (y,x)e A and A is symmetric. If (x,¥), (y,z)e i,
then (xp, yb-)e § and (yp, zp'J € 6. Therefore (xp, zp)e §,

so that (x,z) e A and A is transitive. Furthermore, if

(w,x), (y,z)e r, then (_wp, xp)e ¢ and (}rp, zp.)e §. Therefore

((N}f)p, ('_xz)p) = _(_wpy » X,z )ed, so that (wy, xz)e A and

P PP
A iIs a congruence on S. Finally, if X,y €S such that

(x,y) ep, then X, =¥ Thus (x;,y,) = (xgsx,) € 8, so that

o
[x,yj €A and p= A. Therefore ) is a congruence on S comn-
taining p, and so there exists oeA such that A = o. Since
[kp,yp) ed 1ff (X,y)eX = a, then § = 0" ¢3B, so that P< B,
This concludes that B = P = {8|6 is a congruence on S/p}.

Part II: Now if (x,y) e f, then xeA. Therefore
f[éc]_ = x“ ¢B, so that f‘..?:AX B. If 415 0y €A such that
Ay = 0g, then (ap, bp)a mi iff (a,b) e % = o, iff (ap,bp)saé .
Therefore ui =,a£, so that f(ul) =;f(a2) and £ is a well-
defined function., TIf Gy, %, €A such that f(ul) = f(uz),
then a; = @5. Thus ‘(a,b) e oy iff (ay, b)) eaj = a5 iff

(a,b) adz, so that %) = a, and £ is one-to-one. If a”¢ B,
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then by definition of B there exists geA such that f(a) = d‘,
$0 thﬁt f is onte. Finally, suppose @1, QZ;.A such that
apeag. M (a,b)efla)) = o, then (a,b) o) < ay,
so that (ap,bp)g aé = f(uzl and f preserves the order of A
and B relative to set containment.

Definition 2.27., If A is a set, then the function iA
on A defined by i,(x) = x for all xeA is the identity func-

tion on A.

Definition 2.28. If f is a function and ¢ # A S Df,

then £lA = {(x,y) e f|xeA}. Thus £]A is a function from the
subset A of D¢ into Re so that flA(x) = f(x) for each

. = [~

XEDflA A-—-Df.

Definition 2.29. If A is a set, then 2*, called the

power set of A, will denote the collection of all subsets
of A.

Definition 2.30. A transformation on a set A is a

function f:A~+A from A into A.
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CHAPTER III

SUMMARY OF GENERAL PROPERTIES, EXAMPLES,
AND THE EMBEDDING THEOREM

Example 3.1. The set T(A) of all transformations on a

nonempty set A under the operation o of composition of func-
tions is a semigroup.

Egggﬁ. If A is nonempty, then the identity mapping
iA:A-+A is an element of T(A), and so T(A) is nonempty.
Furthermore, if f,g,h eT(A), then f:A+A and g:A*A. There-
fgre fog:A ~A, so that foge T(A). Finally, for each xeA,
[fo(goh}] (x) = £f[(gch) (x)1 = £lgh(x))] = (fog) (h(x)] =
[ (fog)oh] (x), so that fo(goh) = (fog)oh. Therefore T(A)
is associative under composition of functions and is thus
a semigroup.

" Example 3.2. Under the operation © of composition of

functions, the collection K(A) of all constant transformations
in 7(A) is a left zero subsemigroup of T(A), where A #.¢.

Proof. Since A # ¢, then there exists peA. Therefore
_the function f:A +A defined by £(x) = p for all xeA is an
element of XK(A), so that K(A) # ¢. Furthermore, if £,geK(A),
then there exists p,qe A such that f(X) = p and g(x) = q for
all x e A. Thﬁrefqre, fog(x) =_f[g(k)] = f(q) = p = f(x)} for
all xeA, so that fog = fe K(a). Associativity in K(A) is

30
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inherited from T (A). Since it is obvious that K(A) € t(A),
then K(A) iIs a subsein_i‘group of t(A). However, since it has
already been sh:o_wn that fog = £ for each f,ge K(A), then
K(A) is a left zero subsemigroup of t(A).

' 'Eicamp-le‘- 3.3, If A# ¢, then K(A) is an ideal of T (A).

Proof. If f eK(A) and get(A), then there exists pe A
such that f(ﬁc) = p for all x eA. However, since pe A, then
there exists qe A such that g{(p) = q. Therefore, for all
xed, (£og)(x) = f[g(x)] = p since g(x)e A, and so
f og eK(A). Also, for all xeA, (gof)(x) = glf(x)] = g(p)=q,
and so go £ eK(A). Thus K(A) is an ideal in T(A).

Lemma 3.4. Let M,:.Nst, and let A be a set such that
IAl = N; then B = {fet(A) || £(A)] < M} is an ideal of T(A).

" Proof, If feB and ge T(A), then there exists M X N,
such that |f(A)| = M. Therefore, there exists {ai}l‘itl <= A
such that for all xe A, f(x)e'{ai}liqzl. If x €A, then
(f og)(x) = _f[g(x)]e‘{ai}}i&r_l since g(x) €A. Therefore
| (fog)(A})] £ M <N, so that fogeB. Furthermore, if x€e A,
then (go £)(x) = g[f(x)] = g(ai);vﬁ for some i, i £ 1 2 M.
Therefore, (go £f)(x)¢€ _{g(ai] }1\521 for all x€ A, so that
|(g of)(A)| <M< N and gof €B. Finally, since Al = N> 0,
then there exists p eA. Therefore, the function f:A-+A
defined by f(x) = p for all x €A is an element of B, since
|£(A)| = 1 and Nez™ imply |£(A)| < N. Thus B # ¢, and so
B is an ideal qf T(A).
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- Theorem 3.5. If t(A) is the semigroup of transforma-

tions on a nonempty set A and ge 1 (A), then aT(A) = T(A)
iff 1 (A)a = ffA] iff a:A~+ A is onto.

~Proof. TIf o€ T(A) such that a:A+A is onto and B¢ T(A),
then f.o_r each y B (A) there eicists a unique xyeA such that
oq(;;cy.l =Yy. Let I'e1(A) such that T(x) = Xg (x) for each x¢ A,
Ther'efore, ‘fer all xeA, aoT(x) = a[l(x)] = « [xB CX')] = B(x),
$0 that 8 = w ol'e at(A) and T(A) € at(A). Since aT(A) € T(A)
as well, then at(A) = 7(4).

If o et(A) such that o t(A) = T(A), then there exists
Fet(A) such that ool = -iA' Therefore, for each y ¢ A there
exists I'(y) € A such that a[I'(y)] = aoI(y) = iA(yJ = y, and
50 oA~ A is onto.

If aeT(A) such that a:A~+A is onto and Be T(A), then
fq,r each y e A there exists a unique Xy €A such that Ot(xy) =y,
so that ;"cy =097 (y). Let TeT(A) such that T(y) = 8la™! (y)]
for each yeA, Notice that since a:A+ A is onto, then o is
Qne«tOeqne, so that o '(y) is unique and T is indeed a func-
t;i;en on A, Th_e,refore, for all xeA, Toa(x) = I'la(x)] =
8 [a(x)]) = B(x), so that 8= Toact(A)a. Thus
T(A) & f(A)a, and so T(A)e = 1(A).

Finally, if o et(A) such that T(A)a = 1(A), then
there exists T e T(A) such that I'oa = iA’ which is one-to-
one. The.re.fq.re Pisg one-to-one as well. Now if ye A, then
x =T(yleA. Thus T'[a(x)] = Toa(x) = 1,(x) = x =T(y), so

that o(x) = y and 0:A+A is onto.
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Theorem 3.6. If A is a nonempty set, then:

() E (g = foet@xea™ (x) or o '(x) = ¢ for all
X e A},

(2} if o EET(A)’ then.Ga = {fe t(A)[f is regular and
o = fof ' = £},

(3) if &, ©E_(p)» then o <Biff a(A) S B(A) and
6"1@(]_ <= or,”lo:;d[x) fqr all x eA,

(4) if acT(A), then o is a left zero of T(A) iff o
1s a constant function,

{(5) t(A) has no right zeros,

(6) the kernel of T(A) is the collection of all constant
functions, or left zeros, of T(A), and

(7] T(A) is regular.

2_1_‘9__9__f_ Part I: Let o et(A) such that for each xe A,

either X gq *(x) or o '(x) = ¢. If xeA, then y = a(x)e A,
so that xeq '(y). Since o '(y) # ¢, then ye o '(y), and so
aly) = y. Therefore o oa(x) = ala(x)] = aly) = y = a(x),
for each xce A, s0 that woo = ‘c'x and o is idempotent.

Conversely, if o is an idempqtent of T(A), then aoa = a,
If x €A such that dml(x) # ¢, then there exists ye &—1(x),
so that «(y} = x. Therefore a(x) = oc[dc(y]] = qo0aly) =
d(y) = x, and 50 xea '(x). Thus g is idempotent in t(A)
iff either x ga”l(x) or anlﬁx) = ¢ for all xe A, so that
ET(A) = {q er(ﬂ)lxe:dql(x) or o '(x) = ¢ for all xeAl}.

Part‘lr: Furthermore, if ue:ETEA), then the corres-

ponding maximal subgroup of t(A) is
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G, ={fet(A)|[f=a0f="Ffoq, g = fog=gof for some
get(M)} = {fer(A)|f = foq

1l

fol(gof) = fogof for
some,ggf(}\), and o = fog = gofl.

However, if f,g e 1(A) such that f

fl

fogof, then f is
regular and the inverse for £ is £ ' = gof 0g by theorem 1.35.
Therefore f of ™ * = f o(gof og) = (fog)o(fog) = acas= o,
and £ ' of = (gofog)o £ = (g 0f)0(gof) = aoa = a, so that
ch = {fet(A) |f is regular and o = fof ' = £l £},

Part III: By lemma 2.14, the partial order L for ET(A)

is defined by o < B iff a = aof = Boa for all g,8 E'E;r(A)‘
If o = Boa, then for each xe A, a(x) = Booa(x) = Bla(x)]e B(A),
so that o(A) € 8(A).

anversely, 1f a(A) & g(A), then g(x)e B(A) for each
X €A, 50 that there exists pegA such that B{p) = a(x). There-
fore goalx) = glalx)] = 68(P)] = 80 8(p) = 8(p) = a(x) for
each xg¢A, so that oy = g.

Now if o = q 0B, then let xe A and let ae 8 '(x) if
8“1@\:) # ¢, so that B(a) = x. Therefore ala) = aoB(a) =
alB8(a)] = a(x), so that a g0 *[a(x)] and thus g l(x)= 0o a(x).
Als-q'.,. if g7 (x) = ¢, then 8 '(x) € a™ ! oa(x).

Conversely, if B Mx) = ot oa(x) for each xe A, then
x € 8 '[8(x)] € 0"} 0a[B(x)]. Therefore a(x) = ao o oofB(x) ]
= ol (®x)] = g o B(x) for each xe A, so that ¢ = a 0B, Thus for
each a,8 eErp)» @SB iff o = 00f = Boa iff B (x)Sabag

er all xe A and a(A) € 8(A).
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.Part IV_: , If A is a constant ‘function in t (A), then
th;e'rg exists ke’:A such th.at a(x) = k fqr all x €A, Therefore,
if 8 et(A) then BQCJ e A fqr all xe A, so that %0 B(x) =
alg(X)] = k=g ). Thus Q0B =g for each B et (A), so that
o Ls a left zeio of T (A). |
anverﬁsely, 1f a et (A) is not a constant function, then
there eXist's. a,b,k,y,eA such that a # b, x # ¥, %(a) = x, and
d(]_)‘)_ = ¥. If B8e1(A) such that 8(a) = b, then a 0B(a) =
al8(a)] = a(d) =y # x = a(a). Therefore oB # a, so that o
Is not a left zero qf T (A).
Part V: If |A|> 1, then let ae T(A) and let ac A, so
that b = g(a) ¢ A. Since [A] > 1, then there exists ce A
such that ¢ # b. Define Be T(A) such that B(x) = ¢ for all
z'ch_.. Th,e.refo_re Boa(a) = Bla(a)] = B(b) = c # b =o0a(a), so
that oo # a. Thus no element o€ T(A) is a right zero of T(A).
Part VI: Lemma 3.4 established that {a e T(A) Hoa(A) |<n
for some n eZ*}is a collection of ideals in T(A). Define
Jy = {a eT(A),-]@[A_)I < n} for each nez*, Therefore, if
K =N{G|G is an ideal of t(A)}is the kernel of T(A), then

KEMI <7

1+ Now if G is an ideal of T(A) and o eJ
n=1 n

1°
then o is a constant function, and so there exists pe A such
that a(x) = p for all xeA. Therefore, if B¢ G, then aoBe G
since G is an ideal. Ho_wever, since B(X) € A for each xeA,

then o ¢ B(x) = d[.ﬁ(x,)] =p = d(_x), s0 that a= a0 0B eG. Thus

if _d,e:Jl, then deG, so that .Jl & G. Since Jl < G for each
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ideal G of T (4), then J € M{G|G is an ideal of T(A)} =
Therefore chzJi =K, so that K = Jl‘ Thus the kernel K
of T(AJ is the collection of all constant functlons, or left
zeros, of T(A).

Part VIT: 1f fe t(A), then for each vef(A), £ (y) # ¢,
and so there exists aye £71 (y). Define |
a, if ye £(A)
get(A) by g(y) = {y_
y if y ¢ £(A) for each ye A.
Therefore, for all xeA, fogof(x) = f(g[f(x)]) = fag(yy)
(since £(x) e f(A))

n

£(x) (since af(x) € £'[£(x)1), so that
f=1~fogof. Thus £ is regular for each fe t(A}, and so
f[Al is regular.

Theorem 3,7, Every infinite cyclic semigroup is iso-

mqrphic to the semigroup of positive integers under addition.
Proof. Let S be an infinite cyclic semigroup with

- generator ac §. Therefore, for each x eS8, there exists

nel® such that a® = X. Define f:Z*~+S by f(n) = a® for

all neZ¥. If (p,q)ef, then pez*, so that q=f(p)=de S

and £ € z*Xs. 1f m,n € 2% such that m = n, then a" = %,

so that £(m) = £(n) and £ is well defined. If m,nez* such

that £(m) = f(n), then a™ = 30, Assuming that m # n, then

eifther m >n or m<n. If m >n, then consider {a } =1 <= S.

Since ae$S is a generator for S, then S = {al}1 1L1{3m+k}k,1

If k = 1, then a™'K = a1 = aMgl = gB.,1 - al*l, Slnce

‘am+l | n+18 {a }

for k = 1. Now assume that for k - 1 e, a m+k- 1e {al}T 1°

fl

+
n & m, then n + 1 < m, so that a™ k.
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Therefore, there exists pezt, 1< P £ m, such that am+k-l=éa
m+k am+k-1+l _ am+k~1 -al = aP -al ap+1

Thus a = . Since
l1<ps<m,then 2<p+1<m+ 1. If 2<p+ 1< m, then
a™k . ap+1e'{al}?=l. If p+1=m+ 1, then by previous
results, am+k = ap+1= £n+1€ {al}m . Therefore, by mathema-

i=1

tical induction, for each k YA am+ke {al}?=l, so that

(@™ e aln

i1 Thus § = {al}?=l, and so S is finite.

Similarly, if m < n, then S is finite. Therefore, by contra-
diction, if f(m) = f(n), then m = n for all m,n€ 2%, so that
£ is one-to-one. If xeS, then there exists ne Z* such that

a® = x. Therefore f(n)

a = X, and so f is onto. Finally,

a™ oo gl a = £f(m) - £(n), so that

if myneZ™, then f(m+n)
f is a homomorphism. Thus f:Z*+S is an isomorphism and
S=1*,

Example 3.8. The property of cyclic is not hereditary

to subsemigroups of a cyclic semigroup.

Proof. The semigroup (Z*,+) of positive integers under
addition is cyclic with generator 1. Now K # Z+\{I}EE z*
and if myneK, then m > 1 and n > 1. Thereforem + n > p > 1,

so that m + nez*\ {1}

. p +
K and K is a subsemigroup of Zz*. How-
ever, K is not cyclic since 2 generates only even positive

integers and no integer that exceeds 2 can generate 2.

Theorem 3.9. If S is an infinite cyclic semigroup with
generator ae S, and fk:S-*S is the function defined by
fk(an)'= akn for all nez¥, then'{fk}kaz+ is the semigroup

of endomorphisms on S and is thus a subsemigroup of t(S).
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Proof. Since S is generated by ace S, then for each x¢ S,
there exists ne Z* such that x = a. If £:S+5S is a functioen,
then there exists ke Z* such that f(a) = ak. Therefore, if f
is also a homomorphism, then for each ne z*, f(a") = [f(a)]™ =
[ak]n = akn, so that f =-fk‘ Since fk is an endomorphism on
S for all kez*, then'{fk}kez+ is the semigroup of all endo-
morphisms on §.

Theorem 3.10. Every finite semigroup is periodic.

Proof. If S is a finite semigroup and x €S, then the
order of x is the order of the cyclic subsemigroup of §
generated by x, namely {x"|ne z*}. Therefore, since
{xMnez*t € S, then l<x>| = [{x"|nez*} < |s|, which is
finite. Thus x is of finite order, and so S is periodic.

The following example shows that the converse of this
theorem is false.

Example 3.11. Let S be the set of non-negative integers

and define multiplication on S by
xifx=1y
X-y=
0 if x # y.
Then S is periodic since [<x>| =1 for all x€ S, but S is not

finite.

Theorem 3.12. A semigroup S is a group iff S is both

left and right simple.
~Proof. If S is a group with identity e and P is a left
ideal in S, then P # ¢ so that there exists ae P, Therefore,

for all x ¢S, x = xe = x{a"ta) = (xa ')aeP, so that P = §.
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Similarly, if Q is a right ideal in S, then Q # ¢ so that
there exists be Q. Therefore, for all x€ 8§, x==ac=(bb"1)x =
b(b *x) €Q, so that Q = S. Thus S is the only left or right
ideal in S, and so S is both left and right simple. Con-
versely, suppose S is both left simple and right simple, and
let aeS. If peSa and qe S, then p = ka for some ke S.
Therefore qp = q(ka) = (qk)a €Sa since qke S, so that Sa is
a left ideal in S. Since § is left simple, then Sa = S,
Similarly, aS = S for each ae$S since § is right simple.
Therefore, if aeS = aS, then there exists es S such that
a = ae. But since eeS8 = Sa, then there exists y e S such
that e = ya. Furthermore, since e€S = eS, then there exists
z €5 such that e = ez. Therefore ee = (ya)(ez) = [y(ae)lz =
(ya)z = ez = e, so that e is idempotent in S. By proposi-
tion 1.29, e is the identity for the subgroup G, of §
defined by Gg = {a eS|aeeS/Se, e caSMNSa}. Since
a5 = Sa = § and eS = Se = S, then Gg = {ac S{acSNS,e ¢SNS} =
:{a eSlaeS, eeS} = S, and so S is the group Ge.

However, if § is a semigroup which is left simple or
right simple, but not both, then S will not be a group.

Example 3.13. Let S be a left zero semigroup such that

|S} >1, and let P be a left ideal in S. If xeS, yeP, then
x = Xy eP, so that S € P. Therefore P = S, and so S is left
simple. If there exists an identity element ec S, then there
also exists k €S such that k#e since |S] >1. Therefore

e *k=¢e# k since S is a left zero semigroup, so that e is
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not a left identity of k. This is a contradiction since e
is the identity for S. Therefore S contains no identity
element and thus cannot be a group.

Example 3.14. If (F,+,.) is a field, then (F,*) is a

zéro simple semigroup.

Proof. If (F,+, ) is a field, then (F,+) is a semi-
group with zero 0, the identity for +. Therefore, there
exists 1 e¢F such that x +1 = 1 +x = x for all xe F, and if
xeF\{ 0}, then there exists x "¢ F such that x-xt'= xt.x=1,
If J is a nonzero ideal in (F,-), then there exists peJ
such that p # 0. Therefore there exists ptef such that p-p4=
pt-p=1. If xeF, then x = x-1=x-(p"l.p)= x-pH-p €J
since peJ and J is an ideal in F, so that F & J. Therefore
J = F, and so (F,-) is zero simple.

The next two theorems will characterize specific types
of ideals in semigroups. Theorem 3.15 uses the notation S
for a semigroup S with adjoined identity 1 in order to
generalize lemma 1.11. Theorem 3.16 characterizes all left,
right, and two-sided ideals in zero semigroups and left
zero semigroups.

‘Theorem 3.15. If A is a nonempty subset of a semigroup
1

“ ] ol
S, then L, = AUSA = S°A, Ry

Iy = AUSAUAS USAS = stas’.

# AL AS = AS™, and

Proof. Part I: If {G@}aer is the collection of all left

ideals of S containing A, then LA.= f}Gu. Now for each ael,
QE

A €6G,, so that A EQFG& = L,. Also, since L, is a left
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ideal of § and AQLA, then xa & L, for each x€ §, atg A.

Therefore SA & Lys and so AUSAE LA'

1

If pe SlA then there exists xe& 8°, ye A such that p = Xy.

If x ¢ S then x = 1, so that p = Xy = ly = ye A. If xeS5,
then P = xy € SA. Therefore, if peslA, then p e AUSA, so
that SIA € AUSA.

Now A # ¢, so that there exists peA. Therefore
p=1p eSlA, and so SlA # ¢, Also, if x eS8 and ysSlA, then
there exist r eSl, t ¢ A such that y = rt. If r ¢ S then

1

r = 1, so that xy = x(rt) = x(1lt) = xte SA & S°A, and if

re S then xre S, so that xy = x(rt) = (xr)te SA e sia,

1 1

Therefore, if x€ S and y €S™A, then xye STA. Finally,

A = {ajae A} = {lala A} = {1}AEslA, so that sla is a 1eft

ideal of S containing A, Therefore there exists el such
1 1

that SA = Gg, and so L, = MCu g6, = sta. Thus
aeT
1, € S'A S AUSASL,, and so L, = AUSA = sta.
Part II: Similarly, if‘{Gm}aeB is the collection of all

right ideals of S containing A, then RA = AUJAS = ASl.

Part ITI: If'{Ga} is the collection of all ideals

oell

of S§ containing A, then JA = {16y, Now for each ae®,
aER
A<= G , so that A6, = J,. Also, if xe S and ac A,
o 0.el * A
then xa EJA and ax sJA since JA is an ideal of S containing

A, so that SA & JA and AS & JA' Furthermore, if xe SA & JA
and y 8, thenxy EJA since JA is an ideal of S. Therefore

SAS = (BA)S & Tps and so AUSAUASUSAS € JA'
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If p€SlA51, then there exist x,z ¢ Sl, y € A such that

p=xyz., Ifxg Sand z¢ S, then x = 1 = z, so that

i

P=2xyz =1yl = ye AG AUSAUASUSAS, If xe¢S and z ¢ S,
then z = 1, so that p= xyz = xyl = xy ¢ SASAUSAUASU SAS.
If x¢ S and 2e S, then x = 1, so that p = xyz = 1lyz =
yze AS € AUSAUASUSAS. 1If xe8 and ze¢S, then

p = xyzeSAS € AUSAUASUSAS. Therefore if p e SSAS, then

p e AUSAUASUSAS, so that sias! & AUSAUASUSAS.
Now A # ¢ and A = {1}A{1} € s'as!, so that stas! #
and A & SlAS]‘. Furthermore, if xe S and ve SlASI, then

1 1

there exist p,qeS~, ae A such that y = pag. Now xpe S& S

whether peS or p = 1, and qxe S € sl whether qeS or q = 1.

Therefore xy = x(paq) = (xplaqe SlAsl

pa {qx) ESIASI, and so S1

and yx = (pag)x =

Ast is an ideal of S containing A.

Hence there exists Bef such that SlAS1 = G%, so that

3y = )6y € 6, = stast. Thus

3, € slasle ausausausas € J
and so J, = AUSAUASUSAS = stasl,

A’

Theorem 3.16., If S is a zero semigroup, then the left,

right, and two-sided ideals of S are those subsets of §
containing the zero. If S is a left zero semigroup, then S
is a left simple (and thus simple), while any nonempty sub-
set of § is a right ideal of S.

Proof. Part I: If S is a zero semigroup with zero 0,
then ab = 0 for each a,beS. Therefore, if A and B are non-

empty subsets of S, then
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AB = {ablacA,be B} = {0jacA,be B} = {0}.
Thus {L€S|L is a left ideal of S} = {L € S|SL €1 # o} =
{LES|{0} € L} ={L€S5|0ekL}, {RE S|R is a right ideal of S} =
{R € S|0¢R} similarly, and so {J € S|J is an ideal of S} =
{L=s[0eL}N{RES|0eR} = {J €5]0eJ}. Therefore, the
left, right, and two-sided ideals of S coincide and are exactly
those subsets of S containing 0.
Part II: If S is a left zero semigroup, then ab = a for
each a,b eS. Therefore, if A and B are nonempty subsets of S,
then AB = {abjaeA,beB} = {alaeA,be B} = A, Thus
{L € S|L is a left ideal of S} = {LE S|SLE L # ¢} =
{L< S8|SE L} = {8}, so that S is left simple. Furthermore,
{R € S[R is a right ideal of S} = {(RE S|RSER # ¢} =
{RESIRER# ¢} = {RES|R # ¢}, so that any nonempty
subset of S is a right ideal of S. Therefore, {J € S|J is
an ideal of 8} = {SIN{RES|R # ¢} = {S}, so that S is simple.

Definition 3.17. A subset T of Z* is an interval in Z*

iff when x,z eT, x <y < 2z, and y ¢Z%, then vy eT.

Theorem 3.18. If Z* is the semigroup of positive inte-

~gers with multiplication defined by xy = max{x,y} for each
x,yeZ*, then {{neZ%n > k}|keZ*} is the collection of all
ideals in Z*., Furthermore, the congruences on Z¥ consist
of all partitions of Z% each of whose elements are intervals
in Z¥.

Proof. Part I: Let keZ* and define P = {ne 2*|n > k}.

Now PE Z* and P # ¢ since keP. If xeP and yeZ*, then
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x > k, so that xy = max{x,y} > x> k, and yx= max{y,x}>x>k.
Therefore xy eP and yx e P, so that P is an ideal of Z%.
Conversely, if P is an ideal of Z*, then P € Z% such
that P # ¢. Since Z* is well-ordered, there exists ke?P

such that k < t for all teP. Therefore, if ne Z* such that

n > k, then n = max{n,k} = nke P since P is an ideal, so

that {neZ%|n » k} € P. However, since k < t for all teP,
then n ¢ P for all neZ% such that n < k, and so P ={ne 7> k.
Therefore, P is an ideal in Z* iff there exists k £Z% such
that P = {ne2¥|n 2 k}, so that {{neZ¥|n > k}|ke2*} is the
collection of all ideals in Z%.

Part II: Let P be a partition of Z¥ each of whose
elements are intervals in Z*. Since P is a partition of Z%,
then P identifies an equivalence relation p on Z¥, with the
elements of P as the p-classes. Thus each p-class is an
interval in Z*. If w,x,y,zeZ", such that (w,x)ep and
(y,z) ep, then Wb = X

and Yo = 2 If Wy = Yo then

P pe
Wo = X5 =¥ = Zg, and so w,X,y,zZ € Wy . Therefore wy =IIBX{W,Y}5Wp
and xz = max{x,z} €Wy, S0 that (wy,xz) ep. However, if w, # Yoo
then w # y, so that w < y or w > y. Without loss of generality,

assume w < y. Since each p-class is an interval in Z%, then

a <b for each aewy, bey,. Therefore, since w and

o~ %p
Yo = Zps then W,X €W, and v,z €Ygs SO that w < ¥y and x < z.

Thus wy = max{w,y} = y ey,, and xz = max{x,z} = z €2, = Yp»
so that (wy,xz) € p. Similarly, if w > y, then (wy,xz)¢ p,

so that p is a congruence on 7.
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Conversely, if p is a congruence on z*, then let aeZ”,
and consider a,. Assume that there exist x,y,z ¢ 2¥ such

that x,zea, and X £ y < z, but y ¢ a,. Therefore x £y

P

and v # z, so that x < y < z. Since x,zea., then (x,z}ep.

pl
However, (v,y)ep, since p 1is reflexive, so that (xy,zy)e p.

Thus (y,z) = (max{x,y}, max{z,y}) = (xy,zy)e p, so that

Yo = Zp = 35 This is a contradiction, since y ¢ a There-

0

fore, for each aeZ*, if xeca, and ze a,, then ye a, for all
& ©

p
y ¢ 2% such that x < y £ z, and so each p-class is an interval
in 2%,

Theorem 3.19. Every equivalence relation is a con-

gruence in: (1) a zero semigroup, (2) a left zero semigroup,
{3) a right zero semigroup, (4) a semilattice of order 2.

Proof. Part I: Let S be a zero semigroup with zero 0,
and let p be an equivalence relation on S. If (a,b)e o
and (c,d) €p, then (ac,bd) = (0,0)ep since p is reflexive,
and so ¢ is a congruence on S.

Part II: Let S be a left zero semigroup, and let p
be an equivalence relation on S. If (a,b)e p and (c,d)e p,
then (ac,bd)} = (a,b)e p, and so p is a congruence on S.

Part III: Let S be a right zero semigroup, and let o
be an equivalence relation on S. If (a,b)ep and (c,d)e p,
then (ac,bd) = (c¢,d)e p, and so p is a congruence on S.

Part IV: If S ={a,b} is a semilattice of order 2, and
P 1s an equivalence relation on S, then either p = S X S,
or p = {(a,a), (b,b)}. Ifp = SXS, thenp is a congruence
on §. If p= {{a,a), (b,b)}, then
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1. (a,a)#x(a,a) = (aa,aa) = (a,a) £p,
(bb,bb) = (b,b) ep,
5. (a,a)#(b,b) = (ab,ab) ¢ {(a,a),(b,b)} = p, and
4. (b,b)x(a,a) = (ba,ba)

2. (b,b)®(b,b)

(ab,ab)e p by part 3.
Therefore (wy,kz) = (w,x)x(y,z)e p for all (w,x),(y,2)e p,
so that p is a congruence on S. Thus every equivalence
relation on S is a congruence on §.

Theorem 3.20. The set of all congruences on a semi-

~group S containing a fixed congruence on S is a lattice under
set inclusion (an upper and a lower semilattice).

Proof. Let p be a congruence on a semigroup S, and let
A b c - -
{pa}uaA e the set of all congruences on § ontaining o

Thus'{pa}asA # ¢, since p E{pa}aeA' Let‘{pai }-‘: {p }ueA’

and define T S {p } . by T = {p lp, is an upper bound of

o, P . 13+ Now SXS is a congruence on S containing p, and
12 2

so SXSe {p } A+ Furthermore, Py, & SXS and oq, = SXs,
so that SXS is an upper bound of {p P o, }. Therefore

SXSeT, and so T # ¢. BylwmaZJO, r}fﬁlsa
P €

congruence on S. Also, since p o for all ge A, then
P Da

p & M Pe = B, so that B é{pa}ui;A. Furthermore, since

pueT
M o
Po, € 0, andng for allp eT, 1:he1f1;eﬂml"-‘,;-:p€T o = B
amipu fﬂ\ Py = B, so that g is an upper bound for

T o €T
for‘{pm P, }. PFinally, if Py, is an upper bound of {p qx}

then p sT, and so B = fﬁj Py c:p . Therefore R = Iub {p 30y .
QET [ Oy 2
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Now since Py, and Py, are congruences on S, then by
1 2 ‘
lemma 2.20, A = Po N oy, is a congruence on S. Therefore,
’ 1 2
since p & pd’l and p,ﬁpqz , then p « Pa, N Py, = A, so that
Ae{p }asA Furthermore, A =.pa1(\ Pa,

< %4, and

A o= pocln Po, & 9&2, so that A is a lower bound for {pa 0y }
Finally, if pd is a lower bound for {pa »Pa, }, then

Py, < pdl and Pa, S p%, so that Pa, € pmlf'\poLZ = A. There-
fore‘ A= glb.{pql ,paz} .

- ’ ’ a -
Thus if {pm1 paz} ”‘{p&}qu’ then there exist

3 5 E{pu}asA such that g =.1Ub{pa g, } and ) = glb{pa Py, }.
Hence {pa}de is both an upper and a lower semllattlce, and

is thus a lattice.

Lemma 3.21. If (R,+,:) is a ring and (S,%) is a semi-
~group, then let RS = {£:8-+R|]f‘1(R\{0})[< o}. Define + and
on RS by (£ + g)(y) = £(y) + g(y), and

CE - 23k) = 35 f(a)g®), for all ye S. Then (RS,+ - )
(0,8)eSXS
a*R = vy

is a ring, called the semigroup ring of R by §.
- Proof. Let f,g,heRS.
(1) If (a,b)e f * g, then ag S and b = (f + g}(a) =
f(a) + g(a) eR, since f{a),g(a)e R. Therefore f + g < SXR.
(ii) If a,be S such that a
gla) = g(b), so that (f + g)(a)
(£ + g)(b).

(i1i) Since f,g e RS, then there exist integers M> 0

"

b, then f(a) = £(b) and
fla) + g(a) = £(b) + g(b)

and N 2 0 such that £ (R\(0}) = {x,}" , €8 and
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- . . N . i
gl (R\{p}) = {Yi}iFl.E §. For each i, 1 < i <N, let
= that fy.). . = (x.)0N Th ‘f i f
Y "'XM*i’ S0 a {Yi}i=1 ‘{Xi}i=M+1' erefore, 1

' - M+N M N
X ES\{xi}izl, then x é‘{xi}i=lL){yi}i=l, so that f(x) = 0
and g(x) = 0. Thus (f + g)(x) = f(x) + g(x) =0+ 0 =0,

so that (£ + )7 (R\{0}) € {x;}joqs and so

[C£ + T R\ION| < [ixpdtay] = 1o Uiy <
I{xi}§=1| + |{yi}§=l] =M+ N < o, Thus + is a closed binary
operation on RS.

(iv) For each xeS, [(f *+ g) + h](x) = (£ ¥g)(x) + h{x) =
[£(x) + g(x)] + h(x) = £(x) + [g(x) + h(x} ] = £(x) + [E+h)&)] =
[f+ (g + h)](x), so that (£ + g) + h = £ + (g + h) and
(RS, + )1is associative.

(v) For each x¢§, (f + g)(x) = £(x) + g(x) = g(x)+f@ =
(g + £)(x), so that £ + g = g + £, and RS is commutative under
L

(vi) If z:S+R is defined by z(x) = 0 for all xe¢ S, then
z e RS, since |z '(R\{0})]| = 0 < w. Therefore, for each
f eRS, (f + z)(k] = f(x) + z(x) = f(x) + 0 = £(x) for all
x€S, so that £ + z = £. Furthermore, z + £ = £ since RS is
commutative under +, so that z is the identity for +.,

(vii) Since f ¢RS, then define f:S+R by F(x) = -f(x)
for all xe S. Therefore £(x) = 0 iff -f(x) = 0 iff f(x) = 0,
so that [ (RVM01)] = |[£ '(R\{0})| < =, and feRS. Further-
more, (E.+ £)(x) =‘f(x) + f(x) = -f(x) + £(x) = 0 = z(x) for
all x ¢S. Therefore, for each f g RS, there exists fe RS such

that £ + =f+ £ =z,
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(viii) If (a,b)e f * g, then aec S and

= g@ = & £f(a) - g(p).
(OL:B)ESXS
o g=d

However, if (a,8)€ SXS such that q#8 = a, then ge S and
BeS, so that f(o) eR and g(g)e R, and so f(g) * g(B)e R.
Furthermore, since [f™'(R\{0})|< = and |g *(R\{0} )] < w,
then [{(a,B8)e SXS|a*8 = a and f(a)-g(B) # 0}/ < w, so that
b= I f£(a)'g(B) eR. Therefore £ - g € SXR.

(,B8)eSX S
ow-B =3

(ix) If a,be$ such that a = b, then a#f = a iff axB = b
for all (o,B) e SXS. Therefore,

(f +gl@ = 1 fla)-gB) = = f£(q)° g(B) = (£ - g)(b).
(a,8)eS XS (a,B8)eS XS
G*B a a*8=b

(x) Since f,g e RS, then there exist integers M> 0 and
N 20 such that £ ' (R\{0}) =‘{xi}l\f=1 €S and g ' (R\{0})
'{yl}fﬂ € S. Therefore, if ace S\{xi}liwzl, then f£{u) = 0, so
that £(0)"g(8) = 0°g(8) = 0. Similarly, if ses\y, 3y,

then g(8) = 0, so that fla)-g(B) = f(a) 0 = 0. Thus, if ye S

such that (f - g)(y) = = f(oc) g(B) # 0, then there exists
(a,B)eS
&*B“Y

¢ #T € (x, 1 1)( y; N =1 Such that (£ ' g)(y) = 3 f(a)-g(p).
Loas 1= (a,B)eT
Since l{x }M 1] M and I{y }N 1| = N, then

[ {x. } X {y } | = so that |
i i=1 MN
lcf-grltR\{O})leP Sty X i 1P o)« 2 (Ph <

i=1
Therefore -+ is a closed blnary operation on RS.
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(xi) For allyeS, [(£-@-hl(V = 2 [(£-@(]-[h(8) =

(OL,B)&ZSXS
O*E =y
Py PO B IO
(0,81eSXS (A6)}eSKS
a¥*p=y A% & o
Z [fm g(cs) h(g)] = § [f(a) gu) h(§)] =
§,8)eS X (osx,6)eSX
#B=Y a* A%y
5 [f(a)-( s [gm-h(a)])}
( ,8)eS XS (A,8) SXS
axB=y A%G=R
T (@)1 [(g - B = [f- (g « h)Y](y).
(0,B)eSX S
axf= =y

Therefore, (f - g} - h = £ « (g - h), so that (RS, ) is

associative.
(xii) For all v €S, [f » (g + h)1(y) =
z [f(ch] [(g + R)(B)] = & £(a)-[g(B)+h(B)] =
(o,B)eS (0,8)eSXS
a*B=Y akB=y
Z ([f(a) g(B)]+[£f(a}+h(B)]) = I f(a)-g(B)+ £ f(o)-h(®=
(a,B8}eS X {(a.,B)eS XS (a,B)eS XS
o% B=y axB=Y axp=y

[(£ " ()] + (£ - ()] = [(£ - g + (f - B)](). There-
fore, £ + (g *+ h) = (£ - g) + (£ -+ h). Similarly, for all
Yes, [(£f+ g) - hly) z [(i; g)(a)l-h(g) =

(0(.,8)51
o *B =y
[f(oc)+g(oa.)]"h(6) = I ([f(aJ h(g)I+[g(a)"h(R)]) =
(@,8)eSX (0 ,2)eSXS
af=y o *B =y
L f(g)-h(Bg)+ I g(ao)-h(B fh)GE)]+ [(g«h =
e ik B m’% sDLSXé) [( (v)I1+ [(g-h)(y)]
axB= Y oEBE= Y

[(£ - h) + (g - B)](y). Therefore (f + g) -h= (f-h)+(g-h),
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so that - distributes over + from the left and right in RS,
and thus (RS,+, +} is a ring. In view of this lemma, the
following example and theorem are introduced.

Example 3.22. If (R,*,*) is a ring, then (R,*) is a

semigroup, called the multiplicative semigroup of R,

Embedding Theorem 3.23. Every semigroup is isomorphic

to a subsemigroup of the multiplicative semigroup of some
ring.

Proof. Let (S,x) be a semigroup, let (Z,+,+) be the
ring of integers, and let (ZS8,+, - ) be the semigroup ring
of Z by 8. Define 6:5S+ZS by 6(a) = £:S~+Z, where
£(x) = {1 ifx=a for all ae S,

0 if x # a, for all xe S
(1) If (a,b)e 8, then ac S, so that b = 8(a) = £:S+1Z,

where f(x) = {1 if x = a for all xeS. Now if (p,q) e f,
0 if x # a,

then peS and q = £f(p)e {1,0} € Z, so that £ = §X 7. Also,
1f peS and reS such that p = r, then either p=aorp#a.
If p=a, then v = p = a, so that f(p) = £(a) = 1, and

f(x) f(a) =1 = £(p). Ifp # a, thenr = p # a, so that
£(p)
then £(p) = f(r). Therefore £:S+2 is a well-defined func-

H)

H

0, and £(r) = 0 = £(p). In either case, if p = T,

tion. Furthermore, [f '(Z\{0})] = [{a}| = 1 < », and so
b = g(a) = feZS. Thus, if (a,b) €6, then ac § and be 8,
so that 8 € §$X 28,

(i) If pe S and q €S such that p = q, then 6(p)= £:85+12,

where £(x) = {1t X =P .n9 4(q) = gi5 oz,
0 if x # p,
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where g(x) = {1 Moxo=q If x = p, thenx = q, and so
0 if x # q. ‘

£x) = 1 =g(x). Ifx#p=gq, then x # q, so that

£(x) = 0 = g(x). Therefore £(x) = g(x) for all xe S, so

that g(p) = £ = g = 5(q), and so ¢:S+2S is well-defined.
(i11) If a ¢S and beS such that a # b, then

6(a) = £:8+Z7 and 9(b) = g:S+Z, where f(x) = lif x=a
0 if x # a

and g(x) = {1 if x =b for all xe S. Therefore f(a) 1,

0ifx # b

i

but g(a) 0 since a # b, so that 6(a)

1]

f#g=28(b). Thus

@ iIs one-to-one.

(iv) If ae8 and be S, then 6(ab) = f:S+2Z, 06(a) = g:8+ 17,
and 6(b) = h:S+Z, where f(x) = 1if x = ab
| 0 if x # ab,
g(Xl = {1 if x = a and h(x) = 1Lifx =0 Therefore
0 if x # a, 0 if x # b.
6@ - 0(b) = (g « h):S+2Z. Now
(g - h)(ab) = 1 gx):h(y) = g(a)*h(b) + £ g(x)-h(y)
(x,y) eSXS (x,y)eSX s\ {(a,b)y.
X#y=ab x*y=ab

However, for all (x,y)s;SXES\{(a,b)}, either x # a or y # b,
Therefore either g(x) = 0 or h(y) = 0, so that g(x)-h{y) = 0.

Thus (g- h)(ab) = g(a)-h(b) + I gx):h(y) =
(x,y)eS X 5\{(a,b)}
X*xy=ab
11 + z (0} =1 +0 = 1= f(ab). Furthermore,
(x,y)eS Xs\{(a,m)}
Xxy=ab

if p # ab, then £(p) = 0 and {(X,y) ¢ SX S|xxy=p}eSXs\i@,b}.
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Thus (g ~ h)(p) = & (x)*h(y) = T gx):.h(y) =0,
' & @ [x,y)aéx S d - (x,y)eSX S\{(a b)}
| X&Y=D “
since g(x)+h(y) = 0 for all (x,y) eSXS\{ (a,b)} as before,
$Q that (g - h][p) = f(p). Therefore (g h)(ab) = £(ab)

and (g - h)(p) = ,f(p) for all pe S \{ab}, so that

(g * h)(p) = £(p) for all peS. Henceo(a) *68(b) =g + h =
f = g(ab), so that 9 is a homomorphism, and thus an embedding.
Since §:5 +0(S) is onto as well, then S==6(S).

Since 6:5+ 28, then ©(S) € LS, and 6 (8) is nbnempty
since § is nonempty. Furthermore, if ge 0 (S) and he 6 (S),
then there exist aeS and be$ such that 6(a) = g and
@ (b) = h. Since 6 is a homomorphism, then g * h = 6(a) -6(b) =
8 (ah) €6 (8) since abe S. Finally, if f,g,he 6(S), then there
ekist a,b,ce8 such that 6(a) = £,6(b) = g, and 0 (c) =
S§ince 0 is a homomorphism, then (£ . g) - h = [6(a) - 6(b)] " 8(c)=
6 (ab) + 6(c) = ¢[(ab)c] = e[a(bc)] = 6(a) - 8 (bc) =
6(a) - [6(B) *6(c)] = f - (g » h). Therefore (6(S), ) is
associative, and is thus a subsemigroup of (ZS, ). Thus
SZ=0(S), where 6(3) is a subsemigroup of the multiplicative
semigrqup (ZS, - ) .of the ring (ZS, +, * ).

Unfortunately, it is not true that every semigroup is
isomorphic to the multiplicative semigroup of some ring. The
following example verifies this statement.

Example 3.24. Let § be any semigroup which contains no

~zere, If (R,+,*) is a ring, then there exists 0e R such that

0x = x*0 = 0 for all x eR. If S is isomorphic to the
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multiplicative semigroup (R,*) of (R,+,¢), then there
exists an i;s-qmqrphism iR 8§, so .that- z = £(0)e 8. Now
for each‘y~as; there exists xeR such that f(x) = Yy, since
f is onto, Therefore, zy = £(0) f(x) = £(0-x) = £(0) = z,
and yz = f£(x)f(0) = £(x+0) = £(0) = Z, 50 that z is a zero
for S; This is a contradiction since S has no zero, and so

§ cannot be isomorphic to (R, *).
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CHAPTER IV
SUBDIRECTLY TRREDUCIBLE SEMIGROUPS

Definition 4.1. If'{Sd}ueA is a nonempty collection of

nonempty sets, then the Cartesian product of'{Su}aeA is

 {f:Ar+l_’Sa|de]€ S, for each a e A}, and will be denoted by
ach

T §,. If xe I Sy» then x(a) is the ath component (or
ach acA

ceoordinate) of x and will be denoted by X, - For each aeA,

the function na:ugASu-*-Sq defined by wu[x) = x, for all

xe I S, is the ath projection map of T S, onto the ath
aceh aghA

factor set S .
Lemma 4.2, Let‘{sa}aeA be a nonempty collection of

semigroups and let S = I § . Define multiplication on S
GEA

as follows: if xe S and ye§, then xy = z, where Zy = XY,
for all aeA. Then § is a semigroup, called the direct pro-

duct of‘{Sa}aaA.

Proof. If xeS and yeS, then X, €S, and y_ ¢ S, for

all o €A, so that z = X,V & Sa and z = xye S, If x,y,z¢eS$,

o
then Xq’yd’%xs:sd for all aeA, so that (xdyd)za‘= Xy (Vg 240

Therefore (xy]d§1=‘(§ayd]zd = xa(ydzq) = xa(yz)d for all

56
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@aA, so that (Xy)z = x(yz). Thus multiplication in S is

associative, and so § is a semigroup.

Lemma 4.3, 'rf'{Sd}deA 1s a nonempty collection of
semigreups and § = T S‘; thenw :8S+S is an onto homomor-

| . T 4eA O o o
phism for each geA.

' Pmcf, If geA and (x,y) €Mg s then xe S and

=@ (x] = = x(i i .

Y n’gﬁxl X, x(R) ¢ SB’ and so Te S SXSB If ae §
and b ¢ § such that a = b, then a, = ba for eachacA, so that
ws(a)-f ag ﬁ,b@
functien from § to SB'

=_ﬂg(b). Therefore, L is a well-defined

Let x ESB. Since Sa is a semigroup for each aeA, and

thus nonempty, then select aas:Su for each ae A, where 8 = X.

Define a e§ such that a(y) = a, for all g¢eA, so that

we(a] = a = x, and thus Tg is ento.

B
If ae¢S and b eS8, then WB(ab) = (ab)B = an8= ﬂg(aw%(bL
so that Tg 1s a homomorphism.

Definition 4.4. Let'{Sm}O‘EA be a collection of non-

trivial semigroups. A semigroup S is a subdirect product of
| iff t ' senmi 1

{Sa}aeA 1ff there exists a subsemigroup T erueASa such that
T (T) = soz. for all geA and ST,

~Definition 4.5. A nontrivial semigroup S is subdirectly

irreducible iff whenever $ is the subdirect product of semi-
groups {S } and T is a subsemigroup of T S  such that

: o oeA . : qed &

S==T, then there exists 8cA such that nB:T-+SB is an iso-

morphism.
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Definition 4.6. If ¢ is a congruence on a semigroup S

and x,y €S, then o separates x and y iff Xy ¥ Yy (or,
equivalently, (x,y) ¢ o).

Definition 4.7. A collection I of congruences on a

semigroup S separates elements of S iff whenever X,y€S§
such that x # y, then there exists o €I such that X, # Vo -
Lemma 4.8. If I is a collection of congruences on a

semigroup S, then I separates elements of S iff No = € s
i)
the equality relation on S.

Proof. If I separates elements of S and X,y €S such

that (x,v)¢ €
such that x  # y;, so that (x,y)¢ ¢ and thus (x,y) ¢ MNo.
gelX
By contrapositive, if (x,y) ¢ (1g,then (x,v} € €, so that
ae

» then x # y. Therefore, there exists oel

f“g:g;es. Furthermore, if x,y e S such that (x,y)e €ca
ge

X = y. Therefore, (x,y) = (x,x)e o for each o £, so that

then

(x,y) € M and e &= Mo. Hence Mo-= € -
oe % oek oel
Conversely, suppose (o= ¢ . If X,y €S8, such that

(S
geX
x # vy, then (x,y) ¢ e, = (ﬁg. Therefore, there exists oel
oe
such that (x,y) ¢ o, so that X, # Y5+ Thus I separates ele-
ments of ' S.

Definition 4.9, If‘{Sa}OeaA 1s a collection of semigroups

and BeA, then the congruence ¢ on T Sy defined by (x,y) eo
acA
iff WB(X) = WB(Y) for all x,y e T Sy 1s the congruence on
acA
S i .
aZA o induced by g
Theorem 4.10. If a semigroup S is a subdirect product

of semigroups {Sa}asA’ then the set {Ua}aeA of congruences
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on S induced by the projection mappings {ﬁa}agA separates
elements of S, Conversely, if {Uu}asA is a set of congruences
on S, all different from the universal relation, which
separates elements of S, then S is a subdirect product of
the semigroups‘{S/ﬁu}ueA.

Proof. If S is a subdirect product of {Sa} then

aeA’

there exists T & I Sy such that S=T and ﬂu(T) = S, for
aeA

all aeA., If xeT and y eT such that x # v, then there exists
B e A such that Xg # Y and so ws(x) # WB(Y). Therefore,
(x,v) ¢ Gg» SO that XGB # yGB, and thus {Ga}uEA separates
elements of S.

Conversely, if {cu} is a set of congruences on a

OEA
semigroup S and {Ua}aeA separates elements of S, then

No. . . o
aeA ® = &g by lemma 4.8. Define 8.S+-ugASk&by 6(x) = x,
where i& = Xy for all aeA,

o

If (p,qle 0, then pe$S and q = 6(p) = P, where

4y = ?& = Dy for all a eA, Therefore, qe I S/Ua’ and so
o acp

s X HAS/G&' Moreover, if xe§S and ye S such that x = vy,
oE

then [8(x)], = X, = X5 = Yo, (since x=y) =y, = [8(y)],
for all aeA. Therefore, 6(x) = 8(y), and so & is a well-
defined function.

If xe$ and ye S such that x # y, then there exists
B € A such that XGB # ¥, since {Ua}aaA separates elements of
S. Therefore, [e(x)}B = Xg = XGB # yOB = ?B = [B(y)]B, SO
that 6(x) # 6(y), and hence 6 is one-to-one.
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If ze6(S), then there exists xe¢ S such that 6(x) = z,
and so 6:S+6(S) is onto.

If xe8 and ye$S, then [e(xy)]Ob = (i?ja = (xy)GOL =
(xda)(yba) = (i&)(?§)={WﬁLxmﬁﬂh for all a e A. Therefore,
6 (xy) = [6(x)][6(y})] for each X,y€S5, so that 9:5+6(S8) is
an isomorphism, and S== 8‘(8) .

Now if y ¢ 6(S) and z €6 (S), then there exist ae$S and
b €S such that 6(a) = y and 6(b) = z. Since aeS and be S
imply abesS, then yz = [8(a)]{p(b)] = 6 (ab) & 8(S).

Furthermore, since § is associative, then S/oa is

assoclative for each a e A, Therefore, I S/Ga is associa=

aeh
tive, and since 6(S) & I S/0 » then 6(S) is associative.
agA o
Hence, 6(S) is a subsemigroup of I S/cu.
aeA

Finally, if acA and x; ¢ §/0,, then x€ S, and so
o

O(x)e 8(S). Furthermore, ﬂu[e(x)] = [e(x)]a = i& = Xg .
o

Therefore, wa:G(S)+'S/Gu is onto for each o€ A, and so S is
a subdirect product of {S/Ga}aeA'
Lemma 4.11. The homomorphic image of a commutative or

idempotent semigroup is a commutative or idempotent semi-
group, respectively.

Proof. Let (S,*) be a semigroup, (T,%) a binary system,
and £:8 T a homomorphism. If xef(S) and ye £(S), then
there exists ae S and be$S such that f(a) = x and £(b) = y.
Therefore, xxy = f(a)xf(b) = f(a-b) € £(S) since a*bes. If

ze £(8) also, then there exists c €S such that f(c) = z.
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Therefore, (xxy)xz = [f(a)xf(b)]=f(c)

li

f(a-b)#f(c) =
f[(a-b)+c] = fla-(b-c)] = f(a)*f(b-c)

[}

fla)x[f(b)=f(c)] =
x%(yxz), and so (£(S),*) is a semigroup. If (S,+) is com-
mutative, then xxy = f£(a)*f(b) = f(a'b) = £(b-a} = f(b)xf(a)=
y#x, so that (£(S),*) 1s commutative. If (S8,-) is idempo-
tent, then xsx = f(a)xf(a) = f(a-a) = f(a) = x, so that
(£(8),%) is idempotent.

Theorem 4.12. The following conditions on a nontrivial

semigroup S are equivalent: (i) S is subdirectly irredu-
cible, (ii) the intersection of any collection of proper
congruences on S is a proper congruence on S, and (iii) S
has a least proper congruence.

Proof. Suppose S is subdirectly irreducible. If

.{Gu}aaA is a collection of proper congruences on S such that

JZL(& = € then {GQ}GEA separates elements of S by lemma 4.8.
Therefore, $ is the subdirect product of {S/Ga}asA by
theorem 4.10, so that there exists an embedding 8: S+ T ST

aeA
such that $£=0(S). Now for each agh, o # €. Therefore,

if ge A, then there exist xe 8 and ye S, X # vy, such that

GK;YIE:GB, and so X, =Yg - Furthermore, since SZ£96(S)
o | 8 B - i

and x # y, then X = o(x) # 6(y) = y. However, WB(X) = Xg =

x  =y. =7y, =m.(y). Therefore, for each o e A, there

og o9g BB

exist X €6(S) and ¥ £6(S) such that x # y but ﬂu(f) = ﬂq(?),

so that wa:e(81-+8/cu is not one-to-one. Thus wa:e(5)+ S/Ga

is not an isomorphism for each o eA, and so S is not sub-
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directly irreducible. Since this contradicts the hypothesis,

then f\va # €4, so that () 0, is a proper congruence on S
acA agA

by lemma 2.20.

Suppose that the intersection of any collection of
proper congruences on S is a proper congruence on S. IfP
is the collection of all proper congruences on S, then P # ¢

since SXSe?P., Therefore, (lf‘is a proper congruence on S
CE

by hypothesis. Furthermore, if p is any proper congruence
on S, then peP, so that ) ogp. Thus o is a least
oeP geP
proper congruence on S.
Suppose there exists a least proper congruence o on S.
If § is not subdirectly irreducible, then there exists a

collection {Sa}ueA of semigroups such that Sis the subdirect

product of {Su}usA by the embedding ste-agASa, but

ﬂm:G(S)+ Su is not an isomorphism for each aeA, where

s==6(S) & I S, . Since wa[e(S)] = 8, for each o € A, then
aEA

ﬁu!6(5)+ § is an onto homomorphism for each a¢ A by lemma
4,3, Therefore, since L is not an isomorphism, then 7, is
not one-to-one for each o eA. Let {om}me A be the collec-
tion of congruences induced on 8(S) by {WG}QEA. For each

o e A, there exist X,y €6(S) such that X # ¥, but ﬂu(E) =
wu(§ﬁ since T 1is not one-to-one. Therefore, (X,y) €0, SO
that a, # Ee(S) since X # vy, and so Ty is a proper congruence

on 6(S) for each o eA. However, since S is the subdirect

product of {Su}aeA’ then {Gu}ue.A separates elements of 6(8)
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by theorem 4.10, so that Nog = €q S by lemma 4.8. There-
ach @ (8)

fore, since o is a least proper congruence on 9 (S}, then

coe({)o =¢ .
aeh & 0(S)

This is a contradiction, and so S is subdirectly irreducible.

0= o, for each a ¢ A, so that ¢

o 8 (S)

Corollary 4.13. A semigroup S is a subdirect product

of semigroups {Su}aeA iff there exists an onto homomorphism
fu:S-**SOt for each a € A, and the family {pa}aeA of congruences
induced by {fa}aeA separates elements of §S.

Proof. If S is a subdirect product of {s,} then

oeEA?

there exists a subsemigroup T of I S, such that S=T and
oEA

wa(T) = Sa for each o €A. Therefore, there exists an iso-
morphism 6:5+T such that T = 8(S). Since 9:S+T and
ﬂu:T-+Sa are onto homomorphisms for each o e A, then

Tl 6:S-+Sq is an onto homomorphism for each a € A. Let
'{pu}ueA and‘{oa}aeA be the families of congruences induced
on S and 6(S) by {m,° e}aeA and {WG}QEA’ respectively.
Therefore, if x ¢S and ye S such that x # y, then 8x)# of)
since 8is one-to-one. S:‘ane'{dm}oﬁEA separates elements of
6(S) by theorem 4.10, then there exists B €A such that
(6(x),8(y)) ¢ Ogs SO that mMg® 6(x) # Mg ° g(y), and hence
(x,y) ¢ o g - Thus T, ° e:S-+Sa is an onto homomorphism for

each o eA, and'{pa} separates elements of §S.

ae A
Conversely, suppose that fa:s+-8a is an onto homomor -
phism for each o ¢ A, and the family {pm}@EA of congruences

on S induced by‘{fa}ueA separates elements of S. Define



64

§:5 + HASOt by [e(x)]u = fm(x) for each x¢S8, ae A, If
ae

(p,q)e 6, then peS and 4y = [e(p)]a = fu(p)e %x for each

oe A, so that qe T S _, and so 8 € S X I S, Furthermore,
achA ¥ aeA

if xS and ye S such that x = y, then [e(x]]a = fm(x) =
fu(y) = [e(y)]Ot for each e A since fu is well-defined, so
that 6(x) = 6(y). Therefore, 6is well-defined. If x¢3S

and y €S such that 6(x) = 8(y), then fq(x) = [e(x)]a =
[e(y)a] = fu(y) for each a ¢ A. Therefore, (x,y) ¢ Py, for
each o ¢ A, so that x = y since {pa}ueA separates elements of
S. Hence 8 is one-to-one, If xe$S and yeS, then

lo(xy)], = £ (xy) = [£,()1[£,(10] = [6(x)]1, [8(y)], for
each a € A, so that ¢(xy) = [6(x)]{6(y)], and so 8§ is a

homomorphism. Thus 6:8S - I S  is an embedding, so that
ael
S=p(S) = 1 Sa‘ Furthermore, since S is a semigroup and
ae A
££6(S), then 6(S) is a semigroup by lemma 4.11, and thus
a subsemigroup of 1 Sqq Finally, let B cA and let z¢ SS'
aeA

Since fB:S-tSB is onto, then there exists xe S such that

fB(x) = 2z, Now 8(x)e 6(S), and WB[B(x)] = [6(x)]B = fs(x)= Z.
Therefore, na:e(S]+ Su is onto for each ae A, so that

wa[BCS)] = §,. Thus S is the subdirect product of {Sa}aaA‘
Corollary 4.14. If a semigroup S is a subdirect product

of semigroups {Su}asA’ and Sa is a subdirect product of semi-
groups {Su’B}BEA for each a e A, then S is a subdirect
o

product of {Sa’s}aaA,BsA&‘
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Proof. If S is a subdirect product of'{Su}aEA, then
there exists an onto homomorphism fa:S-*Sa for each ae A,

and the collection {pa}ueA of congruences on S induced by

{f }

o qep Separates elements of S by corollary 4.13. Further-

more, S is a subdirect product of {Sm,B}BEAu for eachacA,
so that if aeA, then there exists an onto homomorphism

gOL,B:ESOL'*SO“B for each Be:Au, and the collection

{GG,B}BEAa of congruences on S  induced by {g&,B}BEAa

separates elements of Sa'
If aeA and B eA,, then fa:S->Sa and ga,B:Su%‘Sa,B’ S0
that gu,Bqu:S +S&,B' Since fa and ga,B are onto homomor-

phisms, then gy Bofa is an onto homomorphism, and thus
]

induces a congruence Yo g On S. Furthermore, if xe S and

B
2
y €8 such that x # y, then there exists o, & A such that

(x,y) # pao since {pa}aeA separates elements of S. There-

fore, fao(x)szsao and fao(Y) €Sy such that fqo(x) # fao(Y)’

o]

and so there exists g,e A, such that (fuo(x)»fﬁ;(yj)¢ .

<o

Bo

o
since {Ga,S}BeAa separates elements of Su for each a A,

Therefore, gao’BOOfao(x) = gao,Bo{f“o(X)] # guo,Bo[fao(Y)] =
gdo,Boofuo(Y)’ so that (x,y) ¢ Y&o,ﬁc' Thus

ga,Bofa:S_*Su,B is an onto homomorphism for each aeA aﬂdBeAa,
and the collection'{YG,B}GEA’BEAQ of congruences on S induced

by {ga,8°fa}aeA,BeA& separates elements of S, so that S is

the subdirect product of {Sa,B}aeA,BeAu by corollary 4.13.
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The proof of the following theorem is found on p. 24 of

Introduction to Semigroups, by Mario Petrich.

Theorem 4.15. Every semigroup is a subdirect product

of subdirectly irreducible semigroups.
Proof. If S is a semigroup, ae¢ S, and be S such that
a # b, then define M(a,b) = {p congruence on S|p separates
a and b}. Therefore, M(a,b) # ¢ since € € M(a,b). Let T be

a chain in M(a,b), and define » = {J p & SXS. If xeS$§,
pel

then (x,x) ep for each p eT, so that (x,x)e {J o = A and A
pel

is reflexive. If xe$S and v ¢$ such that (x,y)& A, then

there exists p eT such that (x,y)eop. Therefore,

(v, x)ep = UI‘p = X, and so A is symmetric. If x,y,zeS$§
pe

such that (x,y)e X and (y,z)e A, then there exist Pq el
and 0, &1, such that (x,y)e Py and (v,z) ¢ PR Since T is a
chain, then either Py P, oOT P& pq- If SR = P05 then

(x,y) e P and (y,z) Ep,, so that (x,z)e Py & Lﬂp = X; and
OE

if Py <= Py, then (x,y) €0y and (y,z) €py, so that

(x,z) ¢ pig; Lép = A. Therefore, if (x,y)e X and (y,z)e A,
pE

then (x,z)e A, and so A is an equivalence relation on §S.

If (w,x)e A and (y,z)}e X, then there exists Pz e and PyE T
such that (w,x) e p; and (y,z) ep,. As before, either Pz Py
0T Py & P3 since T is a chain, If Pz S 0y, then (w,k) €0y

and (y,z)e Pg» SO that (wy,xz) e og € L)‘p = X; and if
pel

0y = 075 then (w,x) ¢ Oz and (y,z)e Pzs SO that
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(wy, xz)e QSE;IJTp = A. Thus A is a congruence on S.
pe
Furthermore, since p separates a and b for each pel, then

(a,b) ¢ p for each p €T, so that (a,b) ¢ U p = A. There-
pel

fore, A separates a and b, and so A eM(a,b). Obviously,

p s Urp = A for each pel', so that A is an upper bound for
pE

I'. Thus every chain I' in M(a,b) has an upper bound A e M(a,b),
so that M(a,b) has a maximal element ¢(a,b) by Zorn's Lemma.
Hence, for each (x,y)e SXS such that x # y, there exists a
maximal congruence o(X,y) on S which separates x and y.

Define A = {o(x,y)|x €S, yeS, x # y}, so that A is a family
of congruences on S which separates elements of S. There-

fore, S is a subdirect product of semigroups‘{S/G(X y)}c(x y)e A
3 ¥

by theorem 4.10.
Now if ae8 and b eS such that a # b, then define

P = {p congruence on S|o(a,b) € p}. For each p € P, define

-~

p” on S/U(a,b) by (ﬁﬂa,b)f Yc(a,b)JS p” iff (x,y)ep, for

all xe8, yeS. Define P’= {p“|p ¢P}. By lemma 2.26,
f£:P~P” defined by f(p) = o~ for all peP is a one-to-one,

order-preserving function, with f(o(a,b)) = ¢ There-

5/o(a,b)
fore, if p ¢P such that o(a,b) € p, then p # o(a,b), so that

p” = £(p) # f(o(a,b)) = , since f is one-to-one.

8S/o-(a,b)

Thus f:P\{o(a,b)} =+ P’\{es/ , b)}’ so that
o(a,

f:{p congruence on S|o(a,b) « p} +

}.

{p” congruence on 8/0( b)]p} # ES/
a5 9(a,b)
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Define a = {1p , o = N
peP\{o(a,b)} p’aP”\{eS’ .
/o (a,b)
Since f is one-to-one, then
£la) = £f[No I =M £ = ) ol = a”
peP\{o (a,b)} oeP\{o(a,b)} p cP \{es }
/s (a,b)

However, if p ¢ P\{o(a,b)}, then o(a,b) & p, so that p does
not separate a and b, since o(a,b) is maximal. Thus a, = bp,
and so (a,b) € p. Therefore, (a,b) ep for all pe P\{c(a,b)},
so that (a,b)e N} p = a. Hence o does not separate a

peP\{o{a,b)}
and b, so that o # o(a,b). However, o(a,b) e p for all
0o e P\{o(a,b)}, so that o(a,b) = N 0 = a, Thus

peP\{o(a,b)}
o(a,b} € o, so that o eP\{o(a,b)}, and so
AT = f(a)eP‘\{eS F.
p’eP‘\{sS /o (a,b)
/(a,b)

Therefore, the intersection «” of all proper congruences p”~

on S/o(a,b) is a proper congruence on S/o(a,b)’ so that
S/o(a,b) is subdirectly irreducible by theorem 4.12., Thus

S is a subdirect product of'{S/g(X , where S/G(X

}
»¥) o (x,y)eA »Y)
is subdirectly irreducible for each o(x,y) €A.

Corollary 4.16. Every commutative or idempotent semi-

group is a subdirect product of subdirectly irreducible com-
mutative or idempotent semigroups, respectively.
Proof. If § is a semigroup, then § is a subdirect

product of subdirectly irreducible semigroups'{Sm}meA by
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theorem 4.15, By corollary 4.13, there exists a collection
{fa}aeA such that £ :8+S 1is a homomorphism of S onto S,
for each o ¢ A. Therefore, fa(S) = Su for each o« ¢ A, so that
Sa is a homomorphic image of S for each a € A. Thus if S
is commutative or idempotent, then Sa is commutative or
idempotent, respectively, by lemma 4.11.

The following theorem characterizes all subdirectly
irreducible finite abelian groups.

Theorem 4.17. TIf G is a finite abelian group, then G

is subdirectly irreducible iff G is cyclic and there exist
peZ’ and nez’ such that p is prime and |G| = p".
Proof. Suppose G is cyclic, p eZ+, and ne Z° such that

p is a prime and |G| = p”. Since G is cyclic, then there

1i

exists ae G such that G = <a>, the subgroup generated by {al.

Case I: Suppose n 1. If H is a subgroup of G,
then H is also cyclic, so that there exists xeH such that
H=<x>, If x=-e, the identity for G, then H = <x> = {e}.
If x # e, then x is a generator for G, since G is of prime
order, so that H = <x>= G. Thus the only nontrivial normal
subgroup (and hence proper congruence, by theorem 2.19) of
G is G itself. Therefore, G is the least proper congruence
on G, and so G is subdirectly irreducible by theorem 4.12.
Case II: Suppose n >1., By Sylow's theorem, there
exists a normal subgroup H of <a> such that |H| = p. If
meZ and a® = e, then m > p" since |<a>| = p™. However,

H ¢ {e}, and so there exists a" e<a>\ie} = {ai}?nil such
1=
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that awE:H, where w < pn-l < pIl < m. Thus if m ¢ 2% and
a® = e, then there exists w e2” such that w < m and a%e H.
By contrapositive, if m is the smallest positive integer
such that ame:H, then a™ # e. Since H is of prime order,
then any non-identity element of H is a generator for H.
Therefore, H = <a™ =‘{(am)i}?=1, where 1 < im < p" for all
i, 1 < i< p. Since |<a™]| = |H| = p, then a"™P = (am)p = €.

-1 Then mp > p?. Let g be the least

Assume that m > p
positive integer in {1,2,--:,p} such that mq > p™. Therefore
there exists te Z' and rE:Z+, 0 < r <m, such that mq =
tpIl +r, Ifr=20,

t t
" = (P = ()7 -

n
then mq = tpn, so that m = E%— and

e. However, a" # e, so that r # 0,

and so 0 < v < m. Since mq = tpIl

_tpl n "t -
Now a"d = (am)q e H since a"e H, and a . (ap ) =e t -

—tph —tph
e eH. Therefore, af = a™ T . a™.a tp¥ e H, where

0 < r <m., This is a contradiction, since m is the smallest

positive integer such that a"c H. Thus m £ pn»l, so that
mp < pn*lp = p". Furthermore, |<a™| = |H| = p, so that
a™ = ¢. However, |<a>| = p™, so that p® is the smallest

n
positive integer such that af = e, and so mp > pn. There-

- n-1
fore, mp = pn, so that m = pn 1, and so H = <a™s =<3aP >.

n-1
Thus <aP > is the unique normal subgroup of <a> of order p.
Now if D is a normal subgroup of <a>, then |D| divides
|<a>| by Lagrange's theorem. Therefore, [D| divides p" so

that |D| a.pt for some teZ, 0 < t < n. Furthermore, if D
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is nontrivial, the pt = |D| > 1, so that 1 < t < n. Thus
D has a normal subgroup C such that [C| = p by Sylow's theorem.
But then C is a normal subgroup of <a>. Since <apn"1> is
the unique normal subgroup of <a> of order p, then

n-1
<aP" "> = CE D. Therefore, if D is any nontrivial normal

n-1 n-1
subgroup of <a>, then <a? > <€ D. Hence <aP > is the

least nontrivial normal subgroup of <a> = G, so that there
corresponds a least proper congruence on G by theorem 2.19,
and so G is subdirectly irreducible by theorem 4.12.
Conversely, suppose G is a subdirectly irreducible
finite abelian group with identity e. If G is not of order
pn, where p is prime and n.eZ+, then there exist distinct
primes p and q such that p divides |G| and q divides |G].
By Cauchy's theorem, there exist normal subgroups H and K of
G such that |H| = p and |[K| = q. Since H and K are of prime
order, then H and K are cyclic, and so there exist ac G and
b eG such that H = <a> and K = <b>. Now eeHf VK. However,
if there exists x eHf)K such that x # e, then x is a gen-
erator for H and K. Therefore, H = <x> = K, and so
p = [H| = [K|] = q. This is a contradiction since p and q
are distinct primes, so that HM K = {e}, and so {H,K} is a
collection of nontrivial normal subgroups of G whose inter-
section is the trivial normal subgroup {e} of G. Hence, there
exists a collection of corresponding proper congruences on G
whose intersection is the improper congruence €; on G, and

so G 1s not subdirectly irreducible by theorem 4.12. Since
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this contradicts the original hypothesis, then |G| = pn,
where p is a prime and n.gZ+.

If Q is a subdirectly irreducible finite abelian group
and |q| = p'

Now assume that for each i eZ+, 1 £1i <£k-1, if Q is a sub-

» then Q is of prime order, and so Q is cyclic.

directly irreducible finite abelian group and {Q| = pi, then
Q 1s eyclic. Let Q be a subdirectly irreducible finite
abelian group such that |Q| = pk. Define H = {xP|xe Q},

so that H& Q. Define £:Q »H by f(x) = xP for each xe Q.
Since Q # ¢, then there exists xeQ, so that f(x) = xFe H.
Therefore, (x,xp) ef, and so £ # ¢. Moreover, if (x,y)e f,
then xeQ and y = f(x) = xPe H, so that f < QXH., Further-
more, if x €Q and y e Q such that x = y, then f(x) = xP =

yp = £(y), and so f is a well-defined function. If zeH,
then there exists xe Q such that z = xP = f(x), so that f is
onto H. Finally, if xe¢ Q and ye Q, then f(xy) = (xy)p =
xpyp (since Q is abelian) = f(x) f(y). Therefore, £:Q +H

is a well-defined, onto homomorphism, and so H = £(Q) is a
group since Q is a group. Hence, H is a subgroup of G.
Furthermore, since Q is subdirectly irreducible and |Q] = pk,
then Q has a least proper congruence, and so there exists a
corresponding unique nontrivial normal subgroup T of Q such
that |T] = p. Since T is of prime order, then any non-
identity element of T is a generator for T. Since |T| = p,
then f(x) = x¥ = e for all x€T, so that T€ ker(f). Assume

there exists X:EQ\T such that xe ker(f). Therefore
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xP = £(x) = e, so that |<x>| < p. Since |Q| = pk, then

|<x>| divides pk, so that either |[<x>| = 1 or |<x>| = p. If
l<x>| = 1, then <x> = {e}, so that x = ee T, This is a con-
tradiction since x eQ\T. Therefore, |<x>| = p. Since

Xe<x> but x ¢ T, then <x> # T, Furthermore, <x> is a
normal subgroup of Q since Q is abelian. Thus <x> and T are
distinct normal subgroups of Q of order p. However, this is
also a contradiction since T is the unique normal subgroup
of Q of order p. Therefore, if xe Q\T, then x ¢ ker(f),

so that ker(f) = T. Hence T = ker(f). Since f:Q+H is an
onto homomorphism, then HZ2Q/ker(f) by the fundamental
theorem of group hombmorphisms, so that

k
H = fo/kere)] = fa/m) = = B < gt

Assume that H is not subdirectly irreducible, so that there
exists a collection {pa}ueA of proper congruences on H such

that ) Pu = €p- Therefore, there exists a collection
aeh

{Ba}ueA of corresponding nontrival normal subgroups of H

such that (B, = {e} by theorem 2.19. However, since B, is
aeh

a nontrivial subgroup of H for each aeA, and H is a subgroup
of Q, then {Ba}aeA is a collection of nontrivial subgroups
of Q. Purthermore, By 1s normal in Q for all o e A since Q

is abelian. Therefore, since fjiBa = {e}, then there exists
oeA
a collection {Ua}aeA of corresponding proper congruences on
Q such that N Oy = EQ by theorem 2.19, and so Q is not sub-
oeA

directly irreducible. This contradicts the hypothesis, and
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so H is subdirectly irreducible. Since |H| = pknl, then

H is cyclic by hypothesis. Therefore, there exists xe Q

such that xPe H and <&> = H, so that |<xP>]| = H{|#'pk_1, and

k k"'l k
so xP = xP)P = e. Since |<x>| divides {Q} = p~, then
there exists teZ, 0 < t < k, such that |<x>| = pt. If
t <k, then t-1< k-1, and so pt-l< pk'l. Therefore, since

t t-1

|<xp>1 = pk-l, then x? = (xP)P # e. This is a contra-
diction, since [<x>| = pt, and so t = k. Hence |< x>| = pk =

|Q|, so that <x> = Q, and so Q is cyclic. Therefore, by
mathematical induction, if Q is a subdirectly irreducible
finite abelian group, p is a prime, meZ', and |Q| = p",

then Q is cyclic. Thus, since G is a subdirectly irreducible
finite abelian group and |G| = p”, where p is a prime and

n eZ+, then G is cyclic.

Theorem 4.18. A zero semigroup is subdirectly irre-

ducible iff |S| = 2.

Proof. Suppose S is a subdirectly irreducible zero
semigroup with zero 0. If |S| # 2, then either [S| = 1 or
[s| > 3. If |S| = 1, then there does not exist a proper con-
gruence on S, and so S is not subdirectly irreducible. This
is a contradiction, and so |S| # 1. If |S| > 3, then there
exists aeS and beS such that a # 0, b # 0, and a # b.
Define relations p and vy on S by

< = {{x} for each x e S\{a,0}
L {a,0} for each xe {a,0}
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and

_ {{x} for each x € S\{b,0}
XY {{b,ﬂ} for each x e {b,0}.
Since p partitions S, then ¢ induces an equivalence relation
on §. Furthermore, if w,x,y,z e S such that (w,x}ep and
(y,z) e p, then (wy,xz) = (0,0)e p, and so p is a congruence
on S. Similarly, y is also a congruence on 5. Now
o\g = {(2a,0),(0,a)} and y\gg = {(b,0),(0,b)}}. Sincea# b
and a # 0, then (a,0) ¢ y\es and (O,a)ﬁw\gs, so that
Cp\gs)f\(y\gs) = ¢, and thus pfy = e,. Hence, o and ¥y
are proper congruences on S whose intersection is an improper
congruence on S, and so S is not subdirectly irreducible.
This contradicts the hypothesis, so that |S| < 3. Therefore,
since |S| # 1 and |S| <3, then |5 = 2.
Conversely, if |S| = 2, then the universal relation
W = 8X S is the only proper congruence on S, and is thus
the least proper congruence on S. Therefore, S is subdirectly

irreducible by theorem 4.12,

Lemma 4.19. Every cyclic semigroup S with zero z 1is

finite., Furthermore, if N is the smallest positive integer t

t

such that a~ = z, where <a> = S, then |S| = N.

Proof. Since S is cyclic, then there exists aec S such

that <a> = §. If z is the zero for S, then ze <a>, and so

. +

there exists ne¢Z such that a™ = z. For each m> n, m-n>0,
- + - -

so that a" Me §. Therefore, a™ = g (m-n) a. g™ ! =

z-a" ™ =z, so that [S{ < n, and thus § is finite.
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Define B = {x e:Z+|aX = z}, so that B # ¢ since ne B,
Since 2% is well-ordered, then there exists a least element
N of B. Therefore, a" = z for each m>N, so that |S§| < N.
Assume that there exist i ez’ and je z* such that
1<i< j<Nand al = aJ. Since N is the least element
of B and i<j, then j # N, Hence, 1 < 1 < j < N, so
that N-j> 0 and NI, Therefore,
s = gV = aj+N—j _ N-j _ ai_ aN-J ai+N-j _ aN«(j—i),
and so N-(j-i) e B. However, j >i, so that j-i> 0, and
N-(j-i) < N. This is a contradiction, since N is the least
element of B. Therefore, if i€ z¥ and je Z+, such that
1<1i<N,1<3jZ2N,andi#j, then ai # aj, and so |S] = N.

Theorem 4.20. Every nontrivial cyclic semigroup with

zero is subdirectly irreducible.
Proof. Let S be a nontrivial cyclic semigroup with
zero z; then there exists ae S such that <a> = S. By

lemma 4.19, S is finite, and if n is the smallest positive

t

integer t such that a° = z, then [S]| = n, so that

1 2 n'l,an}.

S ={a ,a",*+,a Define p on S by

. {{al}, 1<i<n-2
p

{an"l,an}, n-1 < i < n.
Since p partitions S, then p induces an equivalence relation

en §, Suppose al,aJ,ak,am g8 such that (al,aJ)s p, and

(3k;am]e p. Ifl<i<n-2and 1l <k <n-2, then'{ai} =

a;:;'ag = {a’} and {ak} = a§: = %jl =" {a™}. Therefore,
i=3and k =m, so that i + k = j + m. Hence, ata® =
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i+k j+m

_ j.m ik
a = a = a

a , and so (a"a", ajam)e p since p is
reflexive, If i > n-1, then j > n-1 since (al,aj)e p.

Since k > 1 and m > 1, then i+k>n and j+m>n, so that
Jam, and hence (alak

Similarly, if k>n-1, then (alak, ajam)szp. Thus pis a

ik _ _i+k _j+m
aa = = a

a = 7 = a ,ajamje p.

congruence on S. Furthermore, since n-1<n, and n is the

t

least positive integer t such that a~ = z, then an‘_l £z =a".

n-1

. n .
Therefore, since (a ,@ ) ep, then p is a proper congruence

on S. Note that p = € Lj{[an-l, an), (an, anﬂl)}. Now if
v is any proper congruence on S, then there exist ice 2% and

hj eZ" such that 1 < i < j < n and (al,aj)e p. Since

i<j<n, then i < n-1, If i = n-1, then j = n, since i< j.

Therefore, since (aan)S'Y, then (an_l, an)e‘y, and so

(an an~1

(an-l

other hand, if i < n-1, then n-1- i>0, so that a

and hence (an—1~1’ gh-1-1

) ey since vy is symmetric. Hence, ELE Y,

, adey, and (a“, annl)e Y, so that p< y. On the

n-l-le s,

} ey since y is reflexive. Since

(a*,a’) ey as well, then (an—l, an"1+3_1) = (alanﬂ’iaﬁffbljsy.

However, j-i »0 since i<j, so that n-1+j-i> n-1, and hence

n-1+j-i _ n

n-1+j-i>n. Therefore, a Z = a , so that

n—l, a™ = (an_l, an_1+3"1)€ v, and so (a", annl)e Y,

(a
. . . . n-1 n

since y 1is symmetric. Since ELS Y, (a , @ Jey, and

(a®, andl)e vy, then p< vy as before. Thus p is a proper

congruence on S, and if vy is any proper congruence on S,

then p < y. Hence p is the least proper congruence on S, and

s0 S is subdirectly irreducible.
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Lemma 4.21. Let S be a nontrivial semigroup with

zero 0. If N is an ideal of S, and p is the equivalence

relation on S defined by

X =

{N for each xe N
P

{x} for each xe S\N,
then p is a congruence on S with Op = N. Conversely, if p
is a congruence on S, then 0p is an ideal of 8§.

Proof. Suppose N is an ideal of S and define p on S
by

X =

{N for each xg N
p

{x} for each xe S\N.

Since p partitions S, then p defines an equivalence relation
on S. If w,x,y,zeS such that (w,x)e p and (y,z)e p, then
w_ = x_ and Yo = Z, If w¢ Nand y ¢ N, then {w} = w_ = x

Y % P P D
and {y} =y = Zys SO that x = w and z = y. Therefore,

P

wy = xz, and so (wy,xz) ep. If weN, then N = w_ = X,, SO

p

that xe N as well. Therefore, wye N and xze N since N is

an ideal, so that (wy)p = N = (xz)p, and thus (wy,xz)e p.

Similarly, if y e N, then (wy,xz) ep. Hence, in any case, if

(w,x) ep and (y,z) e p, then (wy,xz)ep, and so p is a con-

gruence on S. Furthermore, since N is an ideal in S, then

there exists xe N, so that 0 = O0xeN, and thus q3= N.
Conversely, if p is a congruence on S, then let xe¢ S and

ye Op, so that (y,0) e p. Since (x,x)e p also, then

(xy,0) = (xy,x0) ep and (yx,0) = (yx,0x)e o. Therefore,

Xy eOp and yx e Op, and so Op is an ideal in S.
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Definition 4.22. The congruence p on S defined in

lemma 4.21 is the congruence on S induced by the ideal N.

Definition 4.23. An ideal N of a semigroup S is

degenerate iff |N| = 1; N is nondegenerate iff [N| > 1.

Corollary 4.24., If N is a nondegenerate ideal of a semi-

group S with zero 0, then the congruence p on S induced by N
is a proper congruence.

Proof. Since N is an ideal of S, then 0e N. However,
N # {0} since N is nondegenerate, and so there exists
ae S\{0} such that {0,a} & N. Therefore, if p is the con-
~gruence on S induced by N, then 0p = N = 2, Hence (0,a)e p,
while 0 # a since aeS\{0}, and so p # ¢_. Thus, p is a
proper congruence on S.

Theorem 4,25. If S is a semigroup with zero 0 such

: that:- (1) there exists a least nondegenerate ideal of §,
and tZ) Op is a nondegenerate ideal of S whenever p is a
proper congruence on §, then S is subdirectly irreducible.
Proof. Let N be the least nondegenerate ideal of S.
By corollary 4.24, N induces a proper congruence p on S

defined by

N for each xe N
x =
{x} Ffor each xe S\N.

If y is any proper congruence on S, then UY is a nondegenerate
ideal of S by hypothesis, and so N’EEUY. If (a,b)e p\es,
then a # b, and so {a} # {b}. Since a, = b , then a, # {al

p’
and bp # {b}, so that a, = bp = N. Hence ae N& OY and
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beN& OY’ so that a, = bY = O’Y’ and thus (a,b)ey. There-
fore, if (a,b)e p\g;, then (a,b)e v, so that p\asfg Y.

Since eSS Y as well, then p = € U [p\es) & yv. Thus p is
the least proper congruence on S, and so S is subdirectly
irreducible.

It so happens that the converse of theorem 4.25 is false.
This is a consequence of the fact that the converse of

corollary 4.24 is false, as shown by the following example.

Example 4.26. Let S = {0,1,2} be the semigroup of

integers modulg 3 with modular multiplication. Define o

on S by lp = 25 = {1,2}; 0p = {0}. Then p is the least
proper congruence on S, and so S is subdirectly irreducible.
However, although p is a proper congruence on S, 0, = {0}

is a degenerate ideal of S. However, the following somewhat

weaker result is true.

Theorem 4.27. Let S be a subdirectly irreducible semi-

group with zero 0. If'.Op is a nondegenerate ideal of S
whenever p is a proper congruence on S, then there exists
a least nondegenerate ideal of S.

Proof. Since S is subdirectly irreducible, then there
exists a least proper congruence p on S. By hypothesis, 0p
is a nondegenerate ideal of §. If N is any nondegenerate
ideal of S, then 0e N. By corollary 4.24, N induces a proper
congruence y on S defined by

N for each xe N

X
L {x} for each xe S\N,
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and so pgeyY. Therefore, if a ¢ Op, then (a,0)ep =y, so
that aY = OY = N since 0 ¢ N, and thus ae N. Hence Op‘_:_ N,
and so Op is the least nondegenerate ideal of S.

Corollary 4.28. If S is a semigroup with zero 0 in

which Op is a nondegenerate ideal of S whenever p is a proper
congruence on S, then S is subdirectly irreducible iff S has
a least nondegenerate ideal.

Proof. Suppose S has a least nondegenerate ideal.
Since 0p is a nondegenerate ideal of S whenever p is a proper
congruence on S, then the hypothesis of theorem 4.25 is
satisfied, and so S is subdirectly irreducible.

Conversely, suppose S is subdirectly irreducible.
Since Up is a nondegenerate ideal of S whenever p is a
pfoper congruence on S, it follows that S has a least non-

degenerate ideal by theorem 4.27.
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