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Abstract

An interpolation technique with the capability of local
shape control for meshes of arbitrary topology is presented.
The interpolation is a progressive process which iteratively
updates the given mesh, through a two-phase Doo-Sabin
subdivision scheme, until a control mesh whose limit sur-
face interpolates the given mesh is reached. For each it-
eration of the progression, the two-phase scheme works by
first applying a modified Doo-Sabin subdivision to the input
mesh and then applying the regular Doo-Sabin subdivision
to the resulting mesh. The modified Doo-Sabin subdivision
carries a parameter for each face of the input mesh. These
parameters provide required freedom to adjust the interpo-
lating subdivision surface at the user’s command. Local
shape control is possible. It is proved that the progres-
sive interpolation process converges for any parameters be-
tween0 and 1. Therefore, this is a well-defined process.
The progressive interpolation process satisfies both the lo-
cal and global properties. Hence, the new technique can
handle meshes of any size and is very faithful and efficient.
Test cases that show the effectiveness of the new technique
are included.

1. Introduction

Subdivision surfaces are becoming popular in areas such
as computer animation, geometric modeling, and computer
games, because of their capability in representing any com-
plex shape with only one surface. A subdivision surface is
generated by repeatedly refining (subdividing) a given con-

trol mesh until a limit surface is reached. Therefore, a sub-
division surface is determined by the subdivision scheme.
Subdivision schemes in general fall into two categories:ap-
proximating schemesand interpolating schemes. An ap-
proximating scheme generates a smooth limit surface that
approximates the original mesh. Catmull-Clark subdivi-
sion scheme [1], Doo-Sabin subdivision scheme [4] and
Loop subdivision scheme [13] are typical approximating
schemes. An interpolating scheme generates a smooth limit
surface that interpolates the original mesh. The famous but-
terfly subdivision method [5] and its modified version [21],
and Kobbelt’s subdivision scheme for quadrilateral meshes
[8] are interpolating subdivision schemes.

Interpolation is a frequently used technique in shape
modeling and design. The idea is to construct a surface to
interpolate the vertices of a given mesh (sometimes also the
derivatives or normals at the vertices) so that the shape of
the surface, guided by the mesh, would be close to the shape
that we want to design or model. Traditional interpolation
techniques can not handle design or modeling of objects
with complicated topology because of restriction imposed
by the rectangular domains of the surface representations.
One usually needs to decompose the objects into several
components and perform interpolation on these components
separately. Subdivision surfaces do not have such a restric-
tion. Therefore, interpolation using subdivision surfaces is
a more promising design and modeling technique.

An intuitive approach to interpolate using subdivision
surfaces is simply performing an interpolating subdivision
scheme such as [21] or [8] on the given mesh. In this
approach, new vertices are defined as local affine combi-
nations of nearby vertices only. Therefore, this approach
possesses properties of a local method and, consequently,



can handle meshes with large number of vertices. How-
ever, since no vertex is ever moved once it is computed, any
distortion in the early stage of the subdivision will persist.
This makes interpolating subdivision very sensitive to irreg-
ularity in the given mesh. In addition, it is difficult for this
approach to interpolate normals or derivatives.

A less intuitive approach is to use approximating subdi-
vision schemes in the construction of the interpolating sur-
faces. This approach is a global method because it needs
to solve a global system of linear equations to find con-
trol mesh of the interpolating surface [16][7]. Therefore,it
can reproduce the shape of the data mesh faithfully, but can
not handle meshes with large number of vertices. To avoid
solving a large system of linear equations, several alterna-
tives have been proposed such as quasi-interpolation [12],
similarity based interpolation [9] and two-phase subdivision
scheme [19]. However, a subdivision based interpolation
method that has the advantages of both a local method and
a global method is not available yet.

In this paper, we present a new subdivision based inter-
polation technique with the capability of local shape con-
trol for meshes of arbitrary topology. The construction of
the interpolating subdivsion surface is through a progres-
sive process which iteratively upgrading the vertices of the
given mesh, through a two-phase Doo-Sabin subdivision
scheme, until a control mesh whose limit surface interpo-
lates the given mesh is reached. For each iteration of the
progression, the two-phase scheme works by first applying
a modified Doo-Sabin subdivision to the input mesh and
then applying the regular Doo-Sabin subdivision to the re-
sulting mesh. The modified Doo-Sabin subdivision carries
a parameter for each face of the input mesh. These param-
eters provide required freedom to adjust the interpolating
subdivision surface at the user’s command. Local shape
control is possible. It is proved that the progressive inter-
polation process converges for any parameters between0
and1. Therefore, this is a well-defined process. The limit
of the progressive process has a global form while the ver-
tex upgrading process is a local operation. Therefore the
progressive interpolation process enjoys advantages of both
a local method and a global method. Test cases show that
the new technique is indeed faithful and efficient and can
handle meshes of any size.

The remaining part of the paper is arranged as follows.
The new two-phase Doo-Sabin subdivision scheme is in-
troduced in Section 2. A progressive interpolation process
whose updating step is built on top of this scheme is in-
troduced in Section 3. Convergence of the progressive in-
terpolation process is proved in Section 4. Implementation
issues and test results are discussed and presented in section
5. Concluding remarks are given in Section 6.

2. Two-phase Doo-Sabin Subdivision Scheme

Given a control meshM0 with arbitrary topology, a Doo-
Sabin subdivision surface is generated by iteratively refin-
ing the control mesh until a smooth limit surface is reached
[4]. The limit surface is called a subdivision surface be-
cause the mesh refining process is a generalization of the
quadratic B-spline surface subdivision scheme. Therefore,
Doo-Sabin subdivision surfaces include quadratic B-spline
surfaces as special cases.

If M i is the resulting mesh after thei-th refinement step,
the i + 1-st refinement step is performed as follows. For
each faceF = V1V2 . . .Vf in M i, a new vertexV

′

i is
generated for each old vertex of the faceVi through the
following formula:

V
′

i =

f
∑

j=1

αijVj i = 1, 2, . . . , f ;

whereαij are defined as follows:

αij =







f+5
4f i = j

3+2 cos
(

2(i−j)π/f
)

4f i 6= j

The new vertices are then connected to form faces of the
new meshM i+1 using the following rules.

1. New vertices generated for each face are connected to
form anF-face;

2. New vertices generated along an old edge of the mesh
M i are connected to form anE-face;

3. New vertices generated around an old vertex ofM i are
connected to form aV-face.

The valence of each new vertex is four. But side numbers
of new faces are usually different (except that E-faces which
are always quadrilaterals). However, once a face is created,
all the F-faces subsequently created within that face will
always have the same number of sides. An important prop-
erty of the new faces is, the centroid of each new face lies
on the limit surface. This property is frequently used in the
construction of an interpolating Doo-Sabin subdivision sur-
face.

Typical subdivision based interpolation techniques do
not provide the user with the option of shape control. To add
freedom for shape control, we propose a two-step scheme
for Doo-Sabin subdivision. A two-step scheme for Catmull-
Clark subdivision was first used in [3] to design an always
working interpolation method, where a single parameter
λ was introduced in the first subdivision step. The two-
step Doo-Sabin subdivision scheme to be introduced here is
more general and has the ability of local shape control. The



new subdivision scheme carries a shape parameter for each
face in its first subdivision step. These parameters provide
the required freedom in shape control at the user’s com-
mand. Assume the faces of the meshM0 are ordered from
1 to |F |. For each faceF = V1V2 . . .Vf of M i, a new
vertexV

′

i is also generated for each old vertex of the face
Vi. However, the generation of the new vertices depends
on a parameter assigned to that face as follows.

V
′

i = λVi + (1 − λ)A (1)

whereλ is a parameter between0 and1, andA is the cen-
troid of the face:A = 1

f (V1 + V2 + . . . + Vf ). F-Faces,

E-face, and V-faces ofM1 are then created following the
same rules as those specified above. Once the new mesh
M1 is created, phase-one subdivision is done. We then per-
form regular Doo-Sabin subdivision on the new meshM1

iteratively to generate a limit surface. The surfaces in figure
1 are generated using the new two-phase scheme. The limit
surface would resemble the initial mesh closely if shape pa-
rameters attached to the faces of the initial mesh are close
to 1.

3. Progressive interpolation

Given a rectangular meshM0 to be interpolated. By
viewingM0 as the control mesh of a B-spline surface, one
can compute the distances between vertices ofM0 and cor-
responding points on the B-spline surface. If these distances
are added to the vertices ofM0, one gets a new meshM1

whose B-spline surface is closer to the vertices ofM0. By
computing distances between vertices ofM0 and the corre-
sponding points on the B-spline surface ofM1, and adding
these distances to the vertices ofM1, one gets a new mesh
M2 whose B-spline surface is even closer to the vertices
of M0. Iteratively repeat this process, one gets a sequence
of meshesM i whose corresponding B-spline surfaces con-
verge to a limit surface that interpolatesM0. This is the
basic idea ofprogressive interpolationoriginally proposed
for B-splines [10, 17]. An attempt to use this technique to
interpolate meshes with arbitrary topology using Loop sub-
division surfaces was recently made in [14]. However, it
couldn’t prove convergence of the corresponding progres-
sive process. In the following, we present a progressive in-
terpolation technique for Doo-Sabin subdivision surfaces.
The vertex upgrading process is driven by the two-phase
subdivision scheme defined in the previous section. There-
fore, a user can control the shape of the interpolating sur-
face by adjusting values of the shape parameters carried by
phase-one subdivision. Proof of convergence of the pro-
gressive process is given in the next section.

Give an initial meshM0 with arbitrary topology, by per-
forming a phase-one Doo-Sabin subdivision onM0, one

gets a new meshM1. For each vertexV of M0, there is
a correspondingV-facein M1. The centroid of the V-face
lies on the limit surface ofM1. Hence, centroids of the
V-faces can serve as limit points ofM0’s vertices. Figure
2 shows the neighborhood ofV. V hasn adjacent edges
and faces. The adjacent edge points are denotedE1, E2,
. . . , En. Vertices in thei-th face are denotedFi

1, F
i
2, . . . ,

F
i
fi−3 wherefi is the number of vertices in thei-th face.

W
′

i denotes the new vertex in thei-th face after one subdi-
vision that is corresponding toV. ThenW

′

1, W
′

2, . . . ,W
′

n

are the vertices of the V-face corresponding to the vertexV.
The limit point ofV can be computed as follows.

V
∞ =

1

n

n
∑

i=1

W
′

i

From eq. (1), we can expandV ∞ as follows.

V
∞ =

1

n

n
∑

i=1

W
′

i

=
1

n

n
∑

i=1

(λi +
1 − λi

fi
)V

+
1

n

n
∑

i=1

(
1 − λi

fi
+

1 − λi−1

fi−1
)Ei

+
1

n

n
∑

i=1

fi−3
∑

j=1

1 − λi

fi
F

i
j (2)

In general, letMk be the resulting mesh after thek-th
iteration, andSk the limit surface of the two-phase Doo-
Sabin subdivision process. For each vertexV

k of Mk, first
compute the corresponding limit pointV

∞ onS
k by equa-

tion (2). Then computeDk, the difference between the ver-
texV

0 in the initial mesh andV∞.

D
k = V

0 − V
∞ (3)

This distance is then added to the vertexV
k to get the new

vertexVk+1 for Mk+1.

V
k+1 = V

k + D
k

As the iteration proceeds, the updated mesh converges
to a mesh whose limit surface interpolates the initial mesh.
The computation of limit points is the key operation in each
iteration. This computation process, according to eq. (2),
is direct and is a local operation. Thus the progressive in-
terpolation process has the advantages of a local method,
like the ability to handle large meshes. On the other hand,
since the limit of the modified meshes is a global system, the
progressive interpolation process also has the advantagesof
a global method. Hence the new progressive interpolation



(a) (b) (c) (d)

Figure 1. Limit surfaces with different shape parameters for two-phase Doo-Sabin subdivision
scheme: (a) the initial mesh; (b) limit surface with all shape parameters set to 0.8; (c) limit sur-
face with all shape parameters set to 0.4; (d) limit surface with the shape parameters of the upper
part set to 0.8 and others to 0.4.

Figure 2. Neighborhood of vertex V



process has the advantages of both a local method and a
global method. We next show that the new progressive in-
terpolation process converges as long as the shape param-
eters are between0 and 1. Hence, this is a well-defined
process.

4. Convergence of the Progressive Interpola-
tion Method

From equation (2) and equation (3), we have the follow-
ing relationship betweenDk andD

k−1.

D
k = V

0 − V
∞

= V
0 −

1

n

n
∑

i=1

(

(λi +
(1 − λi)

fi
)Vk

+
(1 − λi)

fi
(Ek

i + E
k
i+1)

+
(1 − λi)

fi

fi−3
∑

j=1

(Fi
j)

k

)

= D
k−1 −

1

n

n
∑

i=1

(

(λi +
(1 − λi)

fi
)Dk−1

+
(1 − λi)

fi
(Dk−1

Ei
+ D

k−1
Ei+1

)

+
(1 − λi)

fi

fi−3
∑

j=1

D
k−1
F

i
j

)

(4)

Eq. (4) can be put in a compact matrix form as follows.

[

D
k
1 ,Dk

2 , . . . ,Dk
m

]T
= (I − B)











D
k−1
1

D
k−1
2
...

D
k−1
m











= (I − B)k











D
0
1

D
0
2

...
D

0
m











wherem is the number of vertices in the given mesh,I is
an identity matrix andB is anm × m matrix

B =

[

Bij

ni

]m

i,j=1

with

Bi,j =



























































∑ni

k=1(λk + (1−λk)
fk

), i = j

(1−λk

fk
+ 1−λk−1

fk−1
), Vj is the kth Edge

point of Vi

1−λk

fk
, Vj is a vertex of the kth

Face of Vi

0, otherwise
(5)

Each row of matrixB is computed from the eq. (2).B is
the matrix used for computing the limit points on the limit
surface.B can be decomposed as the product of a diagonal
matrixΣ and a symmetric matrixS as follows

B = ΣS

where

Σ =











1
n1

0 . . . 0

0 1
n2

. . . 0
...

. . .
0 1

nm











and
S = [Bij ]

m
i,j=1

with Bi, defined in (5). Note that the relationship between
two edge vertices or two face vertices is symmetric. Hence,
it is easy to see thatS is symmetric. Actually,S is positive
definite.

Proposition 1 The matrixS is positive definite ifλi ∈
(0, 1), i = 1, 2, . . . , |F |.

Proof: Consider the quadratic form of the matrixS:

f(X) = XT SX

If f(X) > 0 for any nonzeroX , then the symmetric matrix
S is positive definite. From eq. (2), face point in thej-th
face surroundingV has coefficient1−λj

fj
and edge point of

V has coefficient1−λj

fj
+

1−λj−1

fj−1
when the edge is shared

by the j-th face and the(j − 1)-st face. Note that these
coefficients depend on the face only. Then we have

f(X) =
∑

all faces

1 − λj

fj
(V1 + V2 + . . . + Vfj

)2

+
∑

all vertices

(

n
∑

i=1

λi)V
2

Since the parameterλj for each face is between0 and1,
1−λj

fj
> 0 and

∑n
i=1 λi > 0 always hold. Thusf(X) > 0



holds for anyX 6= 0. Hence, the matrixS is always
positive definite if shape parameter for each face is in
(0, 1).

The diagonal matrixΣ is obviously symmetric positive
definite. Then the fact that the eigenvalues ofB are positive
follows from the following lemma.

Lemma 1 Eigenvalues of the product of positive definite
matrices are positive.

The proof of Lemma 1 follows immediately from the fact
that if P andQ are square matrices of the same dimension,
then PQ and QP have the same eigenvalues (see, e.g.,
[15], p.14).

Convergence of the progressive process can be proven
easily now.

Proposition 2 The progressive interpolation process
driven by the two-phase Doo-Sabin subdivision scheme is
convergent ifλi ∈ (0, 1)(i = 1, 2, . . . , |F |).

Proof: First, it is clear that‖B‖∞ = 1. Thus every eigen-
valueµ of B satisfies|µ| ≤ 1. We also know that the eigen-
values ofB are positive. Therefore, the eigenvalues ofB

satisfy the condition0 < µ ≤ 1. But then the eigenval-
ues ofI − B, 1 − µ, satisfy0 ≤ 1 − µ < 1. Hence the
progressive interpolation process is convergent.

5. Results

The parameters carried by phase-one subdivision pro-
vide the freedoms to control the shape of the interpolating
surface. These parameters act as a tension parameter when
their values are close to1. Therefore the shape of the inter-
polating surface resembles that of the given mesh when the
shape parameters are close to1. Figure 3(b) shows an ex-
ample with shape parameter set to0.8 for each face. The re-
sulting interpolating surface is visually very pleasing when
the shape parameters are around0.5. Figure 3(c) shows an
example with shape parameter set to0.4 for each face. With
two-phase subdivision, local shape control is also possible.
Figure 3(d) shows an example where shape parameters of
the four faces defining the north angle are set as 0.8 with all
the other shape parameters set to 0.5. At the same time, the
progressive interpolation process is very efficient and can
handle large meshes easily because only local affine oper-
ations are required in each iteration. Our test cases show
that the progressive interpolation process indeed converges
quickly.

Several examples are presented in the following figures,
showing both the given mesh and the resulting interpolating

surfaces in each case. We use relative error, instead of ab-
solute error, to define the threshold in stopping the iteration.
The threshold is set to 0.01% of the bounding box diagonal
of the initial mesh in all the test cases. Table 1 gives the
comprehensive data of these examples.

6. Concluding Remarks

A novel progressive interpolation process driven by
a two-phase Doo-Sabin subdivision scheme is presented.
Phase-one subdivision of the two-phase scheme carries a
shape parameter for each face of the given mesh. There-
fore, in addition to having the advantages of both a local
method and a global method, this technique also allows a
user to control the shape of the interpolating surface inter-
actively. Actually, since the shape parameters are indepen-
dently defined, shape control can be done both locally and
globally. The progressive interpolation process converges
for shape parameters between0 and1. So we finally have
a well-defined subdivision driven progressive interpolation
process with the capability of both global and local shape
control. Currently, the presented technique is designed for
closed meshes only. A future research direction is to con-
sider this technique for open meshes.
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