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Abstract trol mesh until a limit surface is reached. Therefore, a sub-
division surface is determined by the subdivision scheme.
An interpolation technique with the capability of local Subdivision schemes in general fall into two categorégs:
shape control for meshes of arbitrary topology is presented proximating schemeand interpolating schemes An ap-
The interpolation is a progressive process which iterdjive  proximating scheme generates a smooth limit surface that
updates the given mesh, through a two-phase Doo-Sabirapproximates the original mesh. Catmull-Clark subdivi-
subdivision scheme, until a control mesh whose limit sur- sion scheme [1], Doo-Sabin subdivision scheme [4] and
face interpolates the given mesh is reached. For each it- Loop subdivision scheme [13] are typical approximating
eration of the progression, the two-phase scheme works byschemes. An interpolating scheme generates a smooth limit
first applying a modified Doo-Sabin subdivision to the input surface that interpolates the original mesh. The famous but
mesh and then applying the regular Doo-Sabin subdivision terfly subdivision method [5] and its modified version [21],
to the resulting mesh. The modified Doo-Sabin subdivisionand Kobbelt's subdivision scheme for quadrilateral meshes
carries a parameter for each face of the input mesh. These[8] are interpolating subdivision schemes.
parameters provide required freedom to adjust the interpo-  Interpolation is a frequently used technique in shape
lating subdivision surface at the user's command. Local modeling and design. The idea is to construct a surface to
shape control is possible. It is proved that the progres- interpolate the vertices of a given mesh (sometimes also the
sive interpolation process converges for any parameters be derivatives or normals at the vertices) so that the shape of
tween( and 1. Therefore, this is a well-defined process. the surface, guided by the mesh, would be close to the shape
The progressive interpolation process satisfies both the lo that we want to design or model. Traditional interpolation
cal and global properties. Hence, the new technique can techniques can not handle design or modeling of objects
handle meshes of any size and is very faithful and efficientwith complicated topology because of restriction imposed
Test cases that show the effectiveness of the new techniquey the rectangular domains of the surface representations.
are included. One usually needs to decompose the objects into several
components and perform interpolation on these components
separately. Subdivision surfaces do not have such a restric
tion. Therefore, interpolation using subdivision suriaie
a more promising design and modeling technique.
An intuitive approach to interpolate using subdivision
Subdivision surfaces are becoming popular in areas suctsurfaces is simply performing an interpolating subdivisio
as computer animation, geometric modeling, and computerscheme such as [21] or [8] on the given mesh. In this
games, because of their capability in representing any com-approach, new vertices are defined as local affine combi-
plex shape with only one surface. A subdivision surface is nations of nearby vertices only. Therefore, this approach
generated by repeatedly refining (subdividing) a given con- possesses properties of a local method and, consequently,

1. Introduction



can handle meshes with large number of vertices. How- 2. Two-phase Doo-Sabin Subdivision Scheme
ever, since no vertex is ever moved once it is computed, any

distortion in the early stage of the subdivision will petsis Given a control mesh/° with arbitrary topology, a Doo-

This makes interpolating subdivision very sensitive tedi Sabin subdivision surface is generated by iteratively refin

ularity in the given mesh. In addition, it is difficult for #ii  ing the control mesh until a smooth limit surface is reached

approach to interpolate normals or derivatives. [4]. The limit surface is called a subdivision surface be-

o ) o _ cause the mesh refining process is a generalization of the

A less intuitive approach is to use approximating subdi- gadratic B-spline surface subdivision scheme. Therefore

vision schemes in the construction of the interpolating sur poo-sabin subdivision surfaces include quadratic B-gplin

faces. This approach is a global method because it needgfaces as special cases.

to solve a global system of linear equations to find con- |t 5/i s the resulting mesh after thieth refinement step,

trol mesh of the interpolating surface [16][7]. Therefdte, the; 1 1-st refinement step is performed as follows. For

can reproduce the shape of the data mesh faithfully, but cang5ch facer — V1 V,...Vyin M, anew vertexvg is

not handle meshes with large number of vertices. To aVOidgenerated for each old vertex of the fave through the

solving a large system of linear equations, several alterna fq|owing formula:

tives have been proposed such as quasi-interpolation [12],

similarity based interpolation [9] and two-phase subdidris ) !

scheme [19]. However, a subdivision based interpolation V, = Zaijvj i=1,2,...,f;

method that has the advantages of both a local method and j=1

a global method is not available yet. .
g y whereo;; are defined as follows:

In this paper, we present a new subdivision based inter-

. : . - f45 .
polation technique with the capability of local shape con- o af t=J
trol for meshes of arbitrary topology. The construction of Yij =\ 3+2cos (2i-i)m/f) i

: ; e : i J
the interpolating subdivsion surface is through a progres-

sive process which iteratively upgrading the vertices ef th The new vertices are then connected to form faces of the
given mesh, through a two-phase Doo-Sabin subdivisionnew meshzi+! using the following rules.

scheme, until a control mesh whose limit surface interpo-
lates the given mesh is reached. For each iteration of the 1. New vertices generated for each face are connected to
progression, the two-phase scheme works by first applying form anF-faceg
a modified Doo-Sabin subdivision to the input mesh and
then applying the regular Doo-Sabin subdivision to the re-
sulting mesh. The modified Doo-Sabin subdivision carries
a parameter for each face of the input mesh. These param- 3 New vertices generated around an old vertek/Gfare
eters provide required freedom to adjust the interpolating connected to form ¥-face
subdivision surface at the user's command. Local shape
control is possible. It is proved that the progressive inter The valence of each new vertex is four. But side numbers
polation process converges for any parameters between 0f new faces are usually different (except that E-faces lwhic
and1. Therefore, this is a well-defined process. The limit are always quadrilaterals). However, once a face is created
of the progressive process has a global form while the ver-all the F-faces subsequently created within that face will
tex upgrading process is a local operation. Therefore thealways have the same number of sides. An important prop-
progressive interpolation process enjoys advantagestbf bo erty of the new faces is, the centroid of each new face lies
a local method and a global method. Test cases show tha@n the limit surface. This property is frequently used in the
the new technique is indeed faithful and efficient and can construction of an interpolating Doo-Sabin subdivision su
handle meshes of any size. face.
Typical subdivision based interpolation techniques do

The remaining part of the paper is arranged as follows. not provide the user with the option of shape control. To add
The new two-phase Doo-Sabin subdivision scheme is in-freedom for shape control, we propose a two-step scheme
troduced in Section 2. A progressive interpolation processfor Doo-Sabin subdivision. A two-step scheme for Catmull-
whose updating step is built on top of this scheme is in- Clark subdivision was first used in [3] to design an always
troduced in Section 3. Convergence of the progressive in-working interpolation method, where a single parameter
terpolation process is proved in Section 4. Implementation A was introduced in the first subdivision step. The two-
issues and test results are discussed and presented ansecti step Doo-Sabin subdivision scheme to be introduced here is
5. Concluding remarks are given in Section 6. more general and has the ability of local shape control. The

2. New vertices generated along an old edge of the mesh
M are connected to form d&-face



new subdivision scheme carries a shape parameter for eachets a new mesh/'. For each verte® of MY, there is
face in its first subdivision step. These parameters providea correspondinyy-facein M'. The centroid of the V-face
the required freedom in shape control at the user’s com-lies on the limit surface of\/!. Hence, centroids of the
mand. Assume the faces of the megit are ordered from  V-faces can serve as limit points 8%'s vertices. Figure
1to |F|. For each fac& = V;V,...V; of M‘, anew 2 shows the neighborhood &f. V hasn adjacent edges
vertexV; is also generated for each old vertex of the face and faces. The adjacent edge points are denBigdEs,
V. However, the generation of the new vertices depends. .., E;. Vertices in thei-th face are denoteB, F5, ...,

on a parameter assigned to that face as follows. F’ _, where f; is the number of vertices in theth face.
, W, denotes the new vertex in thgh face after one subdi-
Vi=AV,+(1-1A (1) vision that s corresponding td. ThenW’, W, ..., W/,

are the vertices of the V-face corresponding to the veévtex

where) is a parameter betwe@nand1, andA is the cen- The limit point of V' can be computed as follows.

troid of the face:A = %(Vl +Va+...+ Vy). F-Faces,

E-face, and V-faces al/! are then created following the 1 ,
same rules as those specified above. Once the new mesh Ve = n Zwi
M is created, phase-one subdivision is done. We then per- =1
form regular Doo-Sabin subdivision on the new mash From eq. (1), we can expand™ as follows.
iteratively to generate a limit surface. The surfaces inrégu
1 are generated using the new two-phase scheme. The limit 1™ ,
surface would resemble the initial mesh closely if shape pa- Ve = o Z W;
rameters attached to the faces of the initial mesh are close =1
to 1. 1< -\
n i=1 ()\l " f7 )V
3. Progressive interpolation TS VR
4= ( 7 + ‘ i—1 )Ez
Given a rectangular mesh/® to be interpolated. By nm Jia
viewing M° as the control mesh of a B-spline surface, one 1 fiz3 - i
can compute the distances between vertice&/fand cor- +- 7 Fj (2)
responding points on the B-spline surface. If these digtanc i=1j=1 "

are added to the vertices 81°, one gets a new mesh/'!
whose B-spline surface is closer to the verticedff. By
computing distances between vertices\o? and the corre-
sponding points on the B-spline surfaceMdf', and adding
these distances to the verticesidf', one gets a new mesh
M? whose B-spline surface is even closer to the vertices
of MY. lteratively repeat this process, one gets a s;equencée
of meshes\/* whose corresponding B-spline surfaces con-
verge to a limit surface that interpolat@¢®. This is the
basic idea oprogressive interpolatiowriginally proposed s gistance is then added to the veriék to get the new
for B-splines [10, 17]. An attempt to use this technique t0 \artexVk+1 for ArF+1.
interpolate meshes with arbitrary topology using Loop sub-
division surfaces was recently made in [14]. However, it Vit — vk L Dk
couldn’t prove convergence of the corresponding progres-
sive process. In the following, we present a progressive in-  As the iteration proceeds, the updated mesh converges
terpolation technique for Doo-Sabin subdivision surfaces to a mesh whose limit surface interpolates the initial mesh.
The vertex upgrading process is driven by the two-phaseThe computation of limit points is the key operation in each
subdivision scheme defined in the previous section. There-teration. This computation process, according to eq. (2),
fore, a user can control the shape of the interpolating sur-is direct and is a local operation. Thus the progressive in-
face by adjusting values of the shape parameters carried byerpolation process has the advantages of a local method,
phase-one subdivision. Proof of convergence of the pro-like the ability to handle large meshes. On the other hand,
gressive process is given in the next section. since the limit of the modified meshes is a global system, the
Give an initial mesh\/° with arbitrary topology, by per-  progressive interpolation process also has the advantdges
forming a phase-one Doo-Sabin subdivision bf?, one a global method. Hence the new progressive interpolation

In general, letM* be the resulting mesh after tfieth
iteration, andS* the limit surface of the two-phase Doo-
Sabin subdivision process. For each veR&kof M*, first
compute the corresponding limit poikt> on S* by equa-
tion (2). Then comput®”, the difference between the ver-
x V7 in the initial mesh and/°°.

D¥ =V0 - v 3)
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Figure 1. Limit surfaces with different shape parameters for two-phase Doo-Sabin subdivision
scheme: (@) the initial mesh; (b) limit surface with all shape parameters set to 0.8; (c) limit sur-
face with all shape parameters set to 0.4; (d) limit surface with the shape parameters of the upper

part set to 0.8 and others to 0.4.
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Figure 2. Neighborhood of vertex V



process has the advantages of both a local method and avith

global method. We next show that the new progressive in-

terpolation process converges as long as the shape param-

eters are betweet and 1.
process.

Hence, this is a well-defined

4. Convergence of the Progressive Interpola-
tion Method

From equation (2) and equation (3), we have the follow-
ing relationship betweeP” andD*~!

(4)

Eqg. (4) can be put in a compact matrix form as follows.

D!
Dkfl
Dlﬁn]T _ 2

[DF, D5, ..., (I - B)

wherem is the number of vertices in the given meghis
an identity matrix and3 is anm x m matrix

o-[2]

Uz

m

ij=1

n; 1—Ag . .
b O+ 22 i =

1—X
( k+fk7

. V,isthe k" Edge
j
point of V;

1—Xp
Tk

, Vjisawvertex of the k'"
Faceof V;

0, otherwise
(5)
Each row of matrixB is computed from the eq. (2B is
the matrix used for computing the limit points on the limit
surface.B can be decomposed as the product of a diagonal

matrix X and a symmetric matri¥ as follows

B=Y5

where

n% 0 0

0 = 0

Y = .

(') 1
and

S = [Byl;-,

with B; defined in (5). Note that the relationship between
two edge vertices or two face vertices is symmetric. Hence,
it is easy to see thaf is symmetric. ActuallyS is positive
definite.

Proposition 1 The matrix.S is positive definite if\; €
0,1), i =1,2,...,|F|.

Proof: Consider the quadratic form of the mati§x
f(X)

If f(X) > 0forany nonzeroX, then the symmetric matrix
S is positive definite. From eq. (2), face point in theh
face surrounding/ has coefﬁmeml— and edge point of
V has coefﬂmentl— + = AJ : when the edge is shared

by the j-th face and the{] — 1) -st face. Note that these
coefficients depend on the face only. Then we have

5 1)

4 J(V1+V2+...
all faces fi

+ Z (zn: Ai)V?

all vertices i=1

=XTsx

f(X) +ij)2

Since the parametey; for each face is betweehand1,
% > 0andY." , A\; > 0 always hold. Thug'(X) > 0



holds for anyX # 0. Hence, the matrixS is always surfaces in each case. We use relative error, instead of ab-
positive definite if shape parameter for each face is in solute error, to define the threshold in stopping the iterati
(0,1). The threshold is set to 0.01% of the bounding box diagonal
of the initial mesh in all the test cases. Table 1 gives the
The diagonal matrix: is obviously symmetric positive  comprehensive data of these examples.
definite. Then the fact that the eigenvalue®ddre positive

follows from the following lemma. 6. Concluding Remarks

A novel progressive interpolation process driven by
a two-phase Doo-Sabin subdivision scheme is presented.
Phase-one subdivision of the two-phase scheme carries a
shape parameter for each face of the given mesh. There-
' fore, in addition to having the advantages of both a local
method and a global method, this technique also allows a
user to control the shape of the interpolating surface-inter
. actively. Actually, since the shape parameters are indepen
Qonvergence of the progressive process can be proveraemly defined, shape control can be done both locally and
easily now. globally. The progressive interpolation process converge
for shape parameters betwe@and1. So we finally have
Proposition 2 The progressive interpo|a’[ion process a well-defined subdivision driven progressive interpolati

driven by the two-phase Doo-Sabin subdivision scheme ispProcess with the capability of both global and local shape
convergentif\; € (0,1)(i = 1,2,...,|F|). control. Currently, the presented technique is designed fo

closed meshes only. A future research direction is to con-
sider this technique for open meshes.

Lemmal Eigenvalues of the product of positive definite
matrices are positive.

The proof of Lemma 1 follows immediately from the fact
that if P and@ are square matrices of the same dimension
then PQ and QP have the same eigenvalues (see, e.g
[15], p.14).

Proof: First, it is clear that| B||. = 1. Thus every eigen-
valuep, of B satisfiegu| < 1. We also know that the eigen-
values of B are positive. Therefore, the eigenvaluesif

satisfy the conditiord < p < 1. But then the eigenval-
ues ofl — B, 1 — u, satisfy0 < 1 — u < 1. Hence the

progressive interpolation process is convergent.
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that the progressive interpolation process indeed comgerg sign1978, 10(6):356-360.
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Figure 3. Interpolating surfaces with different shape paramters using two-phase Doo-Sabin subdi-
vision scheme: (a) given mesh; (b) interpolating surface with all shape parameters set to 0.8; (c)
interpolating surface with all shape parameters set to 0.4; (d) interpolating surface with local shape
control: shape parameters of the upper part set to 0.8 and others to 0.4.
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Figure 4. Interpolating surfaces with different shape paramters using two-phase scheme for Doo-
Sabin subdivision: (a) given mesh; (b) interpolating surface with all shape parameters set to 0.85; (c)
interpolating surface with all shape parameters set to 0.4; (d) interpolating surface with local shape
control: shape parameters of the bottom part set to 0.85 and others to 0.4.
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Figure 5. Interpolating surfaces with different shape paramters using two-phase Doo-Sabin subdi-
vision scheme: (a) given mesh; (b) interpolating surface with all shape parameters set to 0.85; (c)
interpolating surface with all shape parameters set to 0.5; (d) interpolating surface with local shape
control: shape parameters of the upper part set to 0.85 and others to 0.5.

Figure 6. (a) given mesh; (b) interpolating surface with all shape parameters set to 0.85; (c) interpo-
lating surface with all shape parameters set to 0.5.
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Figure 7. (a) given mesh; (b) interpolating surface with all shape parameters set to 0.85; (c) interpo-
lating surface with all shape parameters set to 0.5.
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Figure 8. (a) given mesh; (b) interpolating surface with all shape parameters set to 0.85; (c) interpo-
lating surface with all shape parameters set to 0.5.



Table 1. Progressive iterative interpolation: test results.

Figures| # of vertices| # of iterations| Max Error | Ave Error
4(b) 520 4 3.48051e-00§ 2.39273e-007
4(c) 520 15 1.06938e-005 1.04466e-006
4(d) 520 8 8.51077e-00§ 9.14787e-007
5(b) 314 4 0.0147411 | 0.0047881
5(c) 314 10 0.0160123 | 0.00624637
5(d) 314 10 0.0160123 | 0.00386015
6(b) 956 4 5.43858e-00§ 1.42327e-006
6(c) 956 10 6.23132e-006 1.60614e-006
7(b) 1590 4 5.69258e-00§ 1.02823e-006
7(c) 1590 10 6.37943e-006 1.20608e-006
8(b) 1200 4 6.00313e-006 1.46748e-006
8(c) 1200 10 6.85102e-006 1.68769e-006
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