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Abstract. The role of the interval subdivision selection rule is investigated in branch-and-bound
algorithms for global optimization. The class of rules that allow convergence for the model algorithm is

characterized, and it is shown that the four rules investigated satisfy the conditions of convergence. A

numerical study with a wide spectrum of test problems indicates that there are substantial di�erences
between the rules in terms of the required CPU time, the number of function and derivative evaluations

and space complexity, and two rules can provide substantial improvements in e�ciency.
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1. Introduction. Interval subdivision methods for global optimization [7, 21]

aim at providing reliable solutions to global optimization problems

min
x2X

f(x)(1)

where the objective function f : IRn ! IR is continuously di�erentiable, and X �

IRn
is an n-dimensional interval. In many cases, only the globally optimal solutions

are acceptable [4, 22], and the local minima are less important. No special problem

structure is required: only inclusion functions of the objective function and its gradient

are utilised [1]. Denote the set of compact intervals by II := f[a; b] j a � b; a; b 2 IRg

and the set of n-dimensional intervals (also called simply intervals or boxes) by IIn.

We call a function F : IIn ! II to be an inclusion function of f : IRn ! IR in X , if

x 2 Y implies f(x) 2 F (Y ) for each interval Y in X . In other words, f(X) � F (X),

where f(X) is the range of f(x) on X . The inclusion function of the gradient of f(x)

is denoted by F 0(X).

There are several ways to build an inclusion function for a given optimization

problem (e.g. by using the Lipschitz constant). Interval arithmetic [1, 6, 7, 21] is

a convenient tool for constructing the inclusion functions, and one can get those for

almost all functions that can be calculated by a �nite algorithm (i.e. not only for given

expressions).

It is assumed in the following that the inclusion functions have the isotonicity

property, i.e. X � Y implies F (X) � F (Y ), and that for all the inclusion functions

w(F (X i
))! 0 as w(X i

)! 0(2)

holds, where w(X) is the width of the interval X (w(X) = maxX �minX if X 2 II ,

and w(X) = max
n
i=1 w(Xi), if X 2 IIn).

The generality of the problem class and the modest requirement of the existence

of the inclusion functions stress the importance of each improvement in the e�ciency
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of the interval global optimization methods. After studying the e�ects of some accel-

erating tools [5], the present paper investigates the role of the selection of the interval

subdivision direction.

2. Model algorithm and subdivision direction selection rules. First we

give a simple model algorithm that has the most important common features of the

interval subdivision methods for global optimization (cf. [2, 3, 5, 6, 7, 16, 21, 22]).

No local search procedure is included. The Newton-like steps are also not built in,

since these would need the inclusion of the Hessian. On the other hand, the cut-o�

and monotonicity tests are applied, because their usage does not require additional

information on the problem. It would not make sense to skip these tests. Although

cross-e�ects of the direction selection rules and the skipped steps are possible, the

investigation of their numerical implication is subject of an other study.

The model algorithm is as follows:

Step 0 Set Y = X , and y = minF (X). Initialize the list L = ((Y; y)) and the

cut-o� level z = maxF (X).

Step 1 Choose a coordinate direction k 2 f1; 2; : : : ; ng.

Step 2 Bisect Y in direction k: Y = V 1 [ V 2
.

Step 3 Calculate F (V 1
) and F (V 2

), and set vi = min F (V i
) for i = 1; 2 and

z = minfz;maxF (V 1
);maxF (V 2

)g.

Step 4 Remove (Y; y) from the list L.

Step 5 Cut-o� test: discard the pair (V i; vi) if vi > z (where i 2 f1; 2g).

Step 6 Monotonicity test: discard the remaining pair (V i; vi) if 0 =2 F 0j(V
i
) for

any j 2 f1; 2; : : : ; ng, and i = 1; 2.

Step 7 Add the remaining pair(s) to the list L. If the list becomes empty, then

STOP.

Step 8 Denote the pair with the smallest second element by (Y; y).

Step 9 If the width of F (Y ) is less than ", then print F (Y ) and Y , STOP.

Step 10 Go to Step 1.

The interval Y , that is �rst set in Step 0, and then updated in Step 8, is called the

leading box, and the leading box of the iteration number s is denoted by Y s
. Notice

that the cut-o� test does not have any e�ect on the convergence of the algorithm, it

may just decrease the space complexity [5], the maximal length of list L.

The interval subdivision direction selection rule in Step 1 is the target of our

present study. In the following, we describe shortly the four rules discussed. All the

rules select a direction by using a merit function:

k := min

�
j j j 2 f1; 2; : : : ; ng and D(j) =

n
max
i=1

D(i)

�
(3)

where D(i) is determined by the given rule.

Rule A. First the interval width oriented rule was applied [16, 21, 24], this

chooses the coordinate direction with

D(i) := w(Xi):(4)

This rule was justi�ed by the idea that if the original interval is subdivided in a uniform

way, then the width of the actual subintervals goes the quickest to zero. It has also been

used for generating subdivision direction in other optimization procedures (e.g. [11]).
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The algorithm with Rule A is convergent both with and without the monotonicity test

(e.g. in [5] and in [21]). This rule allows a relatively simple analysis of the convergence

speed (as in [21], Chapter 3, Theorem 6). The usual de�nition of Rule A does not

specify one single coordinate direction if the maximum is achieved many times in (3).

That is why we take the smallest one. For the sake of brevity, we call this interval

subdivision direction selection rule in the sequel as Rule A.

Rule B. Hansen described an other rule (initiated by G. W. Walster) [7]. The

direct aim of this heuristic direction selection rule is to �nd the component for which

Wi = max
t2Xi

f (m(X1); : : : ; m(Xi�1); t;m(Xi+1); : : : ; m(Xn))

�min
t2Xi

f (m(X1); : : : ; m(Xi�1); t;m(Xi+1); : : : ; m(Xn))

is the largest (where m(Xi) = (minXi + maxXi)=2 is the midpoint of the interval

Xi). The factor Wi that should reect how much f varies as xi varies over Xi is then

approximated by w(F 0i(X))w(Xi). The latter is not an upper bound for Wi (cf. [7]

page 131 and Example 2 in Section 3 of the present paper), yet it can be useful as a

merit function.

The Rule B selects the coordinate direction, for which (3) holds with

D(i) := w(F 0i (X))w(Xi):(5)

It should be noted that the model algorithm represents only one way how Rule B was

applied in [7]. The subdivision was, e.g., carried out also for many directions in a

single iteration step.

Rule C. The next rule of our investigation was de�ned by Ratz [23]. The under-

lying idea was to minimize the width of the inclusion:

w(F (X)) = w(F (X)� F (m(X))) � w(F 0(X)(X �m(X))) =

nX
i=1

w
�
F 0i (X)(Xi�m(Xi))

�
:

Obviously, that component is to be chosen for which w(F 0i(X)(Xi � m(Xi))) is the

largest. Thus, Rule C can also be formulated with (3) and

D(i) := w(F 0i (X)(Xi�m(Xi))):(6)

The important di�erence between (5) and (6) is that in Rule C the width of the

multiplied intervals is maximized and not the multiplied widths of the respective

intervals (and these are in general not equal). After a short calculation, the right-hand

side of (6) can be written as maxfjminF 0i (X)j; jmaxF 0i (X)jgw(Xi) (cf. [1, 17, 21]).

This corresponds to the \maximum smear" (used as a direction selection merit function

solving systems of nonlinear equations [13]) for the case f : IRn ! IR.

It is easy to see that the Rules B and C give the same merit function value if

and only if either min F 0i (X) = 0 or maxF 0i (X) = 0. It is worth mentioning, that

maxfjminF 0i (X)j; jmaxF 0i (X)jg is the best possible estimation of the Lipschitz con-

stant of the (one-dimensional) function f(x) with �xed variables xj ; j = 1; 2; : : : ; i�
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A B

C D

Fig. 1. Remaining subintervals after 100 iteration steps of the model algorithm with

the direction selection rules A, B, C, and D for the Six-Hump-Camel-Back problem.

1; i + 1; : : : ; n for the current box X on the basis of the available inclusion function

information. This formulation shows how the model algorithm with the direction se-

lection rule C can be related to Lipschitzian partition methods for global optimization

[19, 20].

Rule D. The fourth rule is derivative-free like Rule A, and reects the machine

representation of the inclusion function F (X) (see [6]). It is again de�ned by (3) and

by

D(i) :=

(
w(Xi) if 0 2 Xi;

w(Xi)=minfjxij j xi 2 Xig otherwise:
(7)

This rule (called Rule D) may decrease the excess width w(F (X))�w(f(X)) of the

inclusion function that is caused in part by the oating point computer representation
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Fig. 2. Remaining subintervals after 10 iteration steps of the model algorithm with

the direction selection rules A, B, C, and D for the EX1 problem.

of real numbers. Consider the case when the component widths are of similar order,

and the absolute value of one component is dominant. The subdivision of the latter

component may result in a worse inclusion, since the raster points of the representable

numbers are sparser in this direction.

Typical distributions of subintervals are shown in Figure 1 for the discussed di-

rection selection rules A, B, C, and D, respectively. The Six-Hump-Camel-Back stan-

dard global optimization test problem [4, 21, 23] was solved with the model algorithm

(initial box [�2:0; 2:0]2). The �gures show the situations after 100 iterations. The

numbers of subintervals are 38, 31, 32 and 42, respectively. These �gures reect the

space complexity of the related procedures to a certain extent. The direction selection

rule A tends to form square-like boxes, while Rule D produces elongated intervals

as the magnitudes of the coordinates di�er. Rules B and C generate similar sets of
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subintervals reecting the utilised derivative information, too. The sets of subintervals

closely �t the respective level sets, and the di�erences are mainly due to the overes-

timating inclusion functions. Since the global minimizer points are in the remaining

subintervals, the uncertainty in the place of the global minimum has been deceased

substantially. Figure 1 shows little about the e�ciency of the involved algorithms |

it will be addressed in a later section.

A test problem, called EX1 has been constructed to show the di�erences caused by

the di�erent direction selection rules: the simple function 0:1((1� x1)
2
+ sin(10x1))+

(11� x2)
2
+ sin(10x2) is to be minimized on the initial box of [0:0; 2:0]� [10:0; 12:0].

The sine terms were added to inhibit a fast convergence due to the monotonicity

property. Figure 2 provides the sets of subintervals after just 10 iterations with the

respective model algorithms. The subboxes denoted by * are those selected for the

next subdivision, and the �gures in the subintervals indicate their age: the intervals

with 1 are the oldest among the remaining boxes. Rule A again tends to form square-

like boxes, while the others produce elongated subintervals. The direction preferred

by Rule D is di�erent from that chosen often by Rules B and C. Notice that the model

algorithm with Rule A was unable to delete a subinterval from the initial box, while

the greatest volume decreases were due to Rules B and C.

3. Convergence and the direction selection rules. For the next theoret-

ical study, we de�ne the sequence of intervals that can be produced by the model

algorithm, and we specify a property of the direction selection rules that can ensure

convergence for our algorithm. With the exception of Rule A [21], no similar conver-

gence investigation has been published.

Assume that the direction selection rules decide using exclusively the information

provided byX , F (X) and F 0(X) for the interval X to be subdivided. This assumption

is valid for Rules A to D. The strategy to utilize all information collected in earlier

iteration steps may increase the space complexity substantially.

Definition 3.1. We call an in�nite sequence of intervals (Y s
)
1

s=0 an in�nite

subdivision sequence of Y , if Y 0
= Y , and if for each nonnegative integer s the box

Y s+1 is given as Y s+1
j = Y s

j for j = 1; : : : ; i � 1; i + 1; : : : ; n, and either Y s+1
i =

[min Y s
i ; m(Y s

i )], or Y
s+1
i = [m(Y s

i );maxY
s
i ], where i is the direction selected by the

given rule with Y s, F (Y s
) and F 0(Y s

).

It is easy to see that if X is not discarded by the monotonicity test and " = 0, then

the set of leading boxes (Y s
)
1

s=0 contains at least one in�nite subdivision sequence.

The set (Y s
)
1

s=0 contains only in�nite subdivision sequences and �nite sequences of

subintervals that end with a box Y for which 0 =2 F 0j(Y ) for some j 2 f1; 2; : : : ; ng.

The latter �nite sequences do not a�ect the convergence of the procedure.

Definition 3.2. We call a direction selection rule balanced, if for all intervals X,

for all isotone inclusion functions F (X) and F 0(X) having property (2), and for each

in�nite subdivision sequence of X that is a subsequence of the leading boxes (Y s
)
1

s=0,

the sequence of directions generated by the given rule contains each k of the possible

directions 1; 2; : : : ; n for which w(Xk) > 0 an in�nite number of times.

The name of this property reects the fact that even though such rules do not

necessarily deliver the directions in a uniform way, yet for each direction the distance

between two appearances is a �nite number of iteration steps.

Denote the set of accumulation points of the sequence (Y s
)
1

s=0 by A, the global

minimum of f(x) on X by f�, and the set of global minimizer points of f(x) on X by
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X�
. Recall that the inclusion functions F (X) and F 0(X) are assumed to be isotone

and the property (2) holds for them. Set the stopping criterion parameter " to zero

for the sake of the convergence investigation.

The monotonicity test may discard subintervals containing global minimizer points

if they are on the boundary of X . Since the main point in the present study is

to investigate the impact of the direction selection rules on the convergence of the

model algorithm, we assume that there exists a stationary point x� 2 X for which

f(x�) = f�, and that w(X) > 0 (since otherwise the solution requires no search and

thus no subdivision).

Theorem 3.1. The model algorithm converges in the sense that lims!1 w(Y s
) =

0 if and only if the interval subdivision direction selection rule is balanced.

Proof. 1. Assume that the direction selection rule has the required property,

and the model algorithm produces the in�nite sequence of intervals (Y s
)
1

s=0 for a

global optimization problem given by X , F and F 0. The sequence (Y s
)
1

s=0 has to

contain at least one subsequence (Y sl)
1

l=0 which is an in�nite subdivision sequence of

Y . By construction, (Y s
)
1

s=0 contains a union of certain in�nite subdivision sequences,

and some additional boxes that belong to subdivision sequences that were terminated

by the monotonicity test. The latter boxes do not a�ect the value of lims!1 w(Y s
).

Now the property of balancedness holds for each in�nite subdivision sequence (Y sl)
1

l=0

incorporated in (Y s
)
1

s=0, and it implies liml!1 w(Y sl) = 0. Hence, we have proven

that lims!1 w(Y s
) = 0.

2. Assume now that there exists an in�nite subdivision sequence for the actual

direction selection rule such that an i 2 f1; 2; : : : ; ng with w(Xi) > 0 appears only a

�nite number of times in the generated sequence of directions. For such an i obviously

lims!1 w(Y s
i ) > 0, and thus lims!1 w(Y s

) > 0.

Theorem 3.2. Assume that the interval subdivision direction selection rule is

balanced. Then the model algorithm converges to global minimizer points in the sense

that lims!1 F (Y s
) = f�, A 6= ; and A � X�.

Proof. Having a stationary point x� 2 X with f(x�) = f�, 0 2 F 0i (Z) (i =

1; 2; : : : ; n) holds for each subinterval Z containing it. Such subintervals cannot be

deleted by the monotonicity test. Consequently, x� is in the union of the boxes in the

list L in each iteration. As (Y s
)
1

s=0 is then an in�nite sequence of intervals inside X ,

the set of accumulation points A cannot be empty. The inclusion property of F (X)

and the de�nition of the leading box imply that f� 2 F (Y s
) for each iteration number

s 2 f0; 1; : : :g.

Now lims!1 w(Y s
) = 0 according to Theorem 3.1. This equation and the property

(2) imply lims!1 w(F (Y s
)) = 0. With f� 2 F (Y s

) for each s = 0; 1; : : : we get

lims!1 F (Y s
) = f�, and thus also A � X�

.

One direction of the assertions of Theorem 3.1 and Theorem 3.2 is a generalization

of some convergence results in [21] for the model algorithm with the studied class of

direction selection rules.

The opposite direction of the statements in Theorem 3.2 is not always true: A 6= ;

e.g. holds also if the direction selection rule is not balanced. Notice also that f� 2

F (Y s
) was proven without using any special property of the direction selection rule.

Theorem 3.3. Assume that the model algorithm converges for a given problem

(1) to global minimizer points in the sense that lims!1 F (Y s
) = f�, and thus A � X�.

Then either the algorithm proceeds on the problem like an algorithm with a balanced

direction selection rule, or there exists a box X̂ � X such that f(x) = f� for all x 2 X̂,
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and w(X̂i) > 0, i 2 f1; 2; : : : ; ng for all coordinate directions that are selected only a

�nite number of times.

Proof. Assume that there exists no X̂ with the property de�ned in Theorem

3.3. Then w(F (Y )) � w(f(Y )) > 0 for all intervals Y � X with w(Y ) > 0 for

which there exists an x 2 Y such that f(x) = f�. Then lims!1 F (Y s
) = f�

implies lims!1 w(Y s
) = 0, and with Theorem 3.1 we obtain that each direction

i 2 f1; 2; : : : ; ng for which w(Xi) > 0 is selected an in�nite number of times.

The main result of Theorem 3.3 is that with the exception of problems for which a

box X̂ as de�ned above exists, the direction selection rule must be balanced to ensure

convergence to global minimizer points.

Corollary 3.4. The subdivision direction selection Rules A and D are balanced,

and thus the model algorithm converges to global minimizer points with each of these

rules.

Proof. Assume for Rules A and D that a global optimization problem is given by

X , F and F 0. Let (Y s
)
1

s=0 be an in�nite subdivision sequence of this problem, and let

i 2 f1; 2; : : : ; ng be a coordinate direction for which w(Xi) > 0.

Consider �rst the model algorithm with the direction selection Rule A. Then D(i)

is positive according to (4), and i is chosen as the next subdivision direction after

(blog2(max
n
j=1(w(Y

s
j ))=w(Y

s
i ))c + 1)

n�1
steps at the latest (b:c denotes the largest

integer that is not greater than the argument). This expression gives 1 if w(Y s
i ) is the

largest, and it is �nite for all compact intervals (with w(Y s
i ) > 0). Having i selected

as a subdivision direction after a �nite number of iteration steps, i must appear an

in�nite number of times for each in�nite subdivision sequence.

Consider now the model algorithm with Rule D, and assume again that a coordi-

nate direction i with w(Xi) > 0 is chosen only a �nite number of times. Then D(i) is

constant and positive (cf. (7)) after a �nite number of steps. Consider only that part

of the sequence (Y s
)
1

s=1, for which D(i) is constant and positive. Let j be another

index that is selected an in�nite number of times. Although D(j) is not necessarily

monotonously decreasing, D(j)! 0 for Y s
as s ! 1. Then there exists an s0 with

D(j) < D(i) for s > s0, and this is a contradiction.

Corollary 3.5. Either the subdivision direction selection Rules B and C choose

each direction i 2 f1; 2; : : : ; ng for which w(Xi) > 0 an in�nite number of times, and

thus the model algorithm converges to global minimizer points with each of these rules,

or the algorithm converges to a subinterval of X with a positive width that contains

only global minimizer points.

Proof. Assume again for Rules B and C that a global optimization problem is given

by X , F and F 0. Let (Y s
)
1

s=0 be an in�nite subdivision sequence of this problem, and

let i 2 f1; 2; : : : ; ng be a coordinate direction for which w(Xi) > 0.

Consider the model algorithm with the direction selection Rule B. Now D(i) =

0 means that w(F 0i(Y
s
)) = 0, i.e. either F 0i (Y

s
) 6= 0, and Y s

is discarded by the

monotonicity test, or F 0i (Y
s
) = 0, so that f(x) is independent of xi. In the latter case,

no subdivision is required with respect to i. Hence we can assume D(i) > 0 without

loss of generality. Assume that i is selected only a �nite number of times. Then w(Y s
i )

remains constant and positive after a �nite number of steps. Let j be another index

that is chosen an in�nite number of times. Then w(F 0i (Y
s
))w(Y s

i ) < w(F 0j(Y
s
))w(Y s

j ),

and with w(Y s
j )! 0 one obtains w(F 0i (Y

s
))! 0. Thus the global minimum f� must

be attained at each point of a result interval lim
1

s=0 Y
s
= Y �, since an interval Y s

with 0 =2 F 0i (Y
s
) would have been discarded by the monotonicity test. Thus either the
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algorithm converges to a subinterval of X that contains only global minimizer points,

or each direction is selected an in�nite number of times.

Now consider the model algorithm with the subdivision direction selection Rule

C, and assume that j is such a coordinate direction that is selected an in�nite number

of times. Then Y s
j � m(Y s

j ) converges to zero during the iteration. Having F 0j(Y
s
)

bounded and isotone, D(j) ! 0 as s ! 1. Now for each i 2 f1; 2; : : : ; ng for

which w(Xi) > 0, the merit function D(i) is nonnegative in the beginning. Then

D(i)! 0 for Y s; s! 1, and either the direction i is selected in�nitely many times,

or lim
1

s=1 F
0

i (Y
s
) = 0 because of w(Y s

i ) > 0 for each s. In the latter case each point of

the interval lim
1

s=0 Y
s
= Y � is a global minimizer point.

Example 1. We want to �nd global minimizer points of problem (1) with f(x) =

x21x
4
2 on the interval X = [0:0; 1:0]2. We use the range functions as inclusion functions,

so F (X) = f(X) = X2
1X

4
2 , F

0

1(X) = 2X1X
4
2 , and F 02(X) = 4X2

1X
3
2 . Using the direc-

tion selection Rule C with the model algorithm, D(1) = w(F 01(Y
0
)(Y 0

1 �m(Y 0
1 ))) =

w([0:0; 2:0][�0:5; 0:5]) = w([�1:0; 1:0]) = 2 and D(2) = w(F 02(Y
0
)(Y 0

2 � m(Y 0
2 ))) =

w([0:0; 4:0][�0:5; 0:5]) = 4 for Y 0
= X . Thus the second coordinate is selected for sub-

division, and the next leading box is Y 1
= [0:0; 1:0]� [0:0; 0:5]. Y 1

yields D(1) = 0:125

and D(2) = 0:25. The procedure converges to the interval Y � = [0:0; 1:0]� [0:0; 0:0]

without a single subdivision in the �rst coordinate. According to the comment after

the de�nition of Rule C, the merit function values and the selected directions are the

same with Rule B, i.e. the same result interval is obtained by the inclusion of Rule B.

Example 2. Our algorithm with Rule B may become non-convergent if we remove

the monotonicity test. Consider e.g. the function f(x) = x1+x22. With F 01 = [1:0; 1:0],

Rule B chooses always direction k = 2 for all intervals with w(Xi) > 0; i = 1; 2. In

this case lims!1minF (Y s
) 6= lims!1maxF (Y s

), where Y s
is again the leading box

Y in the iteration number s. Although the probability to have this phenomenon in

real-life problems is small, yet it is worth to note this behavior that di�ers from those

of the other rules.

The aimed problem class is obviously too wide to allow meaningful theoretical

comparisons between the studied subdivision rules. The next section shows results of

extensive numerical testing.

4. Numerical experiences. The numerical tests were carried out on an IBM

RISC 6000-580 workstation, coded in Fortran-90 with an implemented interval arith-

metic package handling the outside rounding necessary for the inclusion functions. The

authors thank R. B. Kearfott and W. V. Walter for their kind help in providing the

interval arithmetic package [12] and the necessary modules. The inclusion functions

were produced by the natural interval extension that ful�ls the assumptions made in

Section 1: the isotonicity and property (2). In this straightforward way, to transform

a subroutine calculating a real function to the interval version, one simply has to write

a new statement to include the interval module, change the data types from real to

interval, and rename some function calls. This procedure is much simpler, quicker and

less error prone than the earlier one in FORTRAN-77, when all the operations were

transformed to function calls on new data structures. More sophisticated inclusion

functions (like in [10] or [21]) would result in better e�ciency �gures at the cost of

additional calculations or preliminary reformulations on the involved functions.

The inclusions for the gradients were calculated componentwise, and in this way

some of the component calculations could be skipped if the monotonicity test showed



Subdivision direction selection in interval methods for global optimization 931

that the objective function was monotonous in a variable. On the other hand, we

could not make use of the possible joint computations for many gradient components.

The code for the gradients was calculated symbolically, that is neither automatic nor

numerical di�erentiation was used. The e�ects of using alternative ways of the gradient

inclusion are the subject of a future study.

The stopping criterion parameter " was set to 0.01 in each test. The list L was

implemented as a simple array. The list was not fully ordered, the program just kept

track of the three �rst list members. This implementation can be e�cient for short

lists, while problems of large memory complexity require data structures like the AVL-

trees or other search trees [9, 11]. The implementation of the list can a�ect the required

CPU time, but not the number of objective function and derivative evaluations. The

memory complexity is invariant regarding the data structure in terms of the maximal

number of items to be saved, but the size of the data structure can be decreased using

the available information [11].

The numerical tests involved the set of standard global optimization problems

(de�nitions in [25], further numerical results in [4, 5, 10, 23]) and the set of test

problems studied in Hansen's book (descriptions in [7], additional test results in [10,

23]). In some cases, where slight alterations were found in the problem de�nitions

(in the expression or in the search region), the �rst published versions were chosen.

The test program and the related input �les can be found at ftp.jate.u-szeged.hu per

anonymous ftp in the directory /pub/math/optimization/article. Since the original

Schwefel 3.7 problem was very easy to solve, we multiplied the original objective

function by 10
4
. This change can be interpreted as solving the original problem with

" = 10
�6
.

These problems were completed by three new ones. The �rst one, called EX1 was

de�ned in Section 2. EX2 is a simpli�ed real life parameter estimation problem [8, 18]:

f(x) =

6X
i=1

�����fi �
 
x1 +

x2

!x3
i

� {

 
!ix4 �

x5

!x3
i

!!�����
2

;

where the fi-s are 5:0� 5:0{, 3:0� 2:0{, 2:0� {, 1:5� 0:5{, 1:2� 0:2{ and 1:1� 0:1{, and

!i = �i=20, for i = 1; 2; :::; 6. The initial interval is [0:0; 1:0]2� [1:1; 1:3]� [0:0; 1:0]2.

EX3 is a hard global optimization problem for stochastic algorithms [4]: f(x) =P
4

i=1 x
6
i (sin(1=xi)+2) if �

4
i=1xi 6= 0, and f(x) = 0 otherwise. The initial box for EX3

is [�2:0; 2:0]4.

4.1. Numerical test results. All the test problems were solved. The problem

names in the Tables reect the �rst de�nitions, Si stands for Shekel-i, Hi for Hartman-

i, GP for Goldstein-Price, SHCB for Six Hump Camel Back, RCOS for Branin RCOS,

RB for Rosenbrock, THCB for Three Hump Camel Back, Li for Levi No. i, and SCij

for Schwefel No. i.j.

Tables 1 to 4 contain the e�ciency measures provided solving the test problems.

The second column contains the dimension of the problem, and the e�ciency measures

obtained for Rules B, C and D are also expressed as percentages of the respective �gure

for Rule A. In the last lines, that computational e�ort is shown which is necessary to

solve the whole set of test problems, or to solve the subset of 6 problems with signi�cant

complexity (denoted by /sig.). The latter subset (problems H6, GP, L3, L5 SC12 and

EX2) required about 99% of the computational burden. The percentages in these lines

show how much e�ort is needed with the actual rule compared to the value by Rule A.
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This is the anticipated ratio of improvement (if smaller than 100%) solving a large set

of problems similar to the studied one. The average of the percentages (AoP) reects

the relative computational burden one can expect on a single problem if the given rule

is used instead of Rule A according to the statistical information provided by the set

of test problems.

Table 1 contains the CPU time values required for the test problems with the four

direction selection rules. The standard time unit (STU, 1000 evaluations of the non-

interval Shekel-5 function) was on the used workstation 0.0036 Sec. The large CPU

times measured in STU are in part due to the interval implementation (cf. [14]) and

the overhead of the list manipulation. The CPU values are in general proportional

to the number of objective function (NFE) and derivative evaluations (NDE). The

exceptions are the cases with high memory complexity.

According to the CPU times, Rules B and C are better choices than Rules A and

D. On the basis of the numerical study made, we can expect 7% and 6% improvements,

respectively, in the computation time if we use Rule B or C instead of Rule A, while

Rule D causes about a ninefold increase. Completing a large set of problems similar

to the test problems, Rule B needs 90% less, Rule C 91% less, and Rule D about

eleven times more CPU time. For the subset of hard test problems, similar tendencies

can be seen with larger di�erences on individual problems. The few bigger CPU time

values for the new rules in Table 1 are basically due to the larger number of objective

function and derivative evaluations.

Table 2 shows the number of objective function evaluations necessary to solve

the test problems. In practical applications, this measure together with the number

of derivative evaluations is more important than the required CPU time, because

the computation of the involved functions are usually longer than those of the test

problems (see e.g. [15, 22]). According to the test results, 7% improvement can be

expected if Rules B or C are applied instead of Rule A, and Rule D causes 102% higher

number of function evaluations. The sum of the numbers of function evaluations (and

also that of the derivatives) must be interpreted with care, because the complexities

of the test problems are di�erent. When a similar set of problems is to be solved, the

anticipated improvements are as high as 72% for Rule B and 74% for Rule C, while

Rule D means about �ve times more function evaluations. In the case of the subset

of hard test problems, the changes are �30%, �31% and +644% for a single problem,

and �72%, �74% and +426% for a similar set of problems.

Table 3 gives the number of partial derivative evaluations. As mentioned earlier,

the inclusions of the gradients were calculated componentwise, i.e. NFE multiplied by

the dimension of the problem is an upper bound on the NDE. There is a remarkable

stability in the NDE/(n NFE) values: they are between 80 and 99%, and the most

of them even lie between 85 and 95%. The only exception is the problem Schwefel

Nr. 1.2, for which this ratio is between 55 and 63%, with much larger di�erences

with the used direction selection rules as usual. The monotonicity test deletes those

subintervals on which the objective function proves to be monotonous, thus the ratio

of such subintervals compared to the total number of generated subintervals cannot

be high. This can be an explanation for the relative stability of the NDE/(n NFE)

values, since the number of derivative evaluations can then be less than n for the

deleted subintervals.

According to the test results, 7% improvement can be expected again if Rules B

or C are applied instead of Rule A. Rule D causes 98% more derivative evaluations.
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When a similar set of problems is to be solved, the anticipated improvements are

as high as 75% for Rule B and 77% for Rule C, while Rule D means about three

times more derivative evaluations. In the case of the subset of hard test problems,

the respective changes are �28%, �30% and +619% for a single problem, and �75%,

�77% and +221% for a similar set of problems.

Table 4 provides the minimal list lengths necessary to solve the test problems

with the given direction selection rules. The joint space complexity of the whole set

of test problems is characterized by the maximal value for a rule. Since the results are

identical for the subset of hard problems, this line is skipped for them.

According to the test results, a list of length 68 714 is enough to solve the set of test

problems with Rule A, while the list lengths for the other rules were 13 898, 12 855

and 486 382, respectively. These mean �80%, �81% and +608% di�erences. The

average list length required was 2 062 with Rule A, 640 with Rule B (�69%), 616 with

Rule C (�70%), and 15 645 with Rule D (+659%). The average of the percentages

were 101%, 103% and 234%, respectively. The di�erences in performance on the hard

problems were similar: the average list length was 13 278 with Rule A, 4 038 with Rule

B (30%), 3 876 with Rule C (29%), and 101 567 with Rule D (765%). The average of

the percentages for the hard problems were 93%, 95% and 954%, respectively.

Two dominant behaviors can be recognized mainly in Tables 2 and 3, but also in

a smaller extent in Tables 1 and 4. For about half of the test problems, the di�erences

caused by the changing the subdivision direction selection rules are moderate. In

a smaller subset of test problems, Rule B, and especially Rule C provide a much

more e�cient solution than Rule A, while Rule D is the worst in this sense. The

e�ects described in the previous paragraphs are even stronger for this second subset

of problems. The remaining test problems (about 10%) show various other patterns.

4.2. Statistical evaluation. We used the nonparametric Wilcoxon signed rank

test to study the e�ects of the algorithmic changes to the e�ciency measures CPU

time, number of objective function and derivative evaluations and space complexity.

The normality test failed for each group of data (columns A, B, C and D of the Tables

1 { 4, P = 0:05).

The changes in the required CPU time that occurred with the substitution of Rule

A by Rules B, C and D, respectively, are greater than would be expected by chance;

there are statistically signi�cant changes (P = 0:037, P = 0:044, and P = 0:012). The

di�erences between other pairs (e.g. Rule B vs. Rule C) are not signi�cant. That is,

just the substitutions of Rule A cause signi�cant changes in the CPU times.

Regarding the number of objective function evaluations, only the change due to

the padding Rule B by Rule C is not signi�cant (P = 0:406), all the others are

signi�cant. The same substitutions provide signi�cant di�erences in the number of

derivative evaluations, and the P value for the nonsigni�cant case (for Rules B and

C) is 0.587. In other words, the transition inside the pair Rule B and Rule C causes

no signi�cant di�erence in the NFE and NDE values, while each transition between

the other pairs provides a signi�cant change. No subdivision rule substitution caused

a signi�cant di�erence in the memory complexity.

The same statistical study was repeated for the smaller data set of the harder

problems. The only cases where statistically signi�cant di�erences could be found

(P = 0:031 for each) were the ones between Rules B and D; and between Rules C and

D in terms of the number of objective function evaluations.
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5. Summary and conclusions. Compared to stochastic methods, the interval

methods for global optimization are able to provide guarantied reliability solutions |

at the cost of sometimes substantially higher computational and space complexity. The

present study aimed to investigate the possibilities to improve the e�ciency while keep-

ing the reliability. A property of the interval subdivision rules (balanced) was de�ned

that ensures convergence for the studied model algorithm: both lims!1 w(Y s
) = 0,

and lims!1 F (Y s
) = f�. We showed that the opposite direction is also true with

some trivial exceptions. It was proved that Rules A and D are balanced, and thus

the related interval global optimization algorithms are convergent in both senses. For

some problems Rules B and C do not ful�l the requirements of balancedness, yet the

algorithms converge also in such cases to the global minimum, and the result sets are

positive width intervals the points of which are all global minimizers.

Summarizing the numerical experiences, we can conclude that Rules B, C, and

in certain cases also Rule D may be successful alternatives to Rule A. According

to our test results, Rule C is de�nitely the best choice as a direction selection rule,

closely followed by Rule B. The poor overall performance achieved with Rule D is

in part due to the fact that there are no huge di�erences in the magnitudes of the

variables in the set of test problems: neither in the initial intervals, nor in the global

minimizer point coordinates. With early recognition of the problem type, one can

save substantial amount of computational e�ort by using one of the latter rules. For

some problems, the application of a new rule can result in dramatic improvements in

the e�ciency measures | or they can even make it possible to solve a problem due to

decreased memory complexity. Some important features of the discussed algorithmic

improvements must be highlighted again: they do not require additional information

on the problems, and they provide those improvements on a very wide problem class.

REFERENCES

[1] G. Alefeld and J. Herzberger, Introduction to Interval Computations, Academic Press, New

York, 1983.

[2] H. P. Benson, On the convergence of two branch-and-bound algorithms for nonconvex program-

ming problems, J. Optim. Theory and Appl., 36 (1982), pp. 129{134.

[3] O. Caprani, H. Hansen and K. Madsen, Combining real and interval methods for global

optimization, Paper presented at the SCAN-93 Conference in Vienna, 1993.
[4] T. Csendes, Nonlinear parameter estimation by global optimization | e�ciency and reliability,

Acta Cybernetica, 8 (1988), pp. 361{370.

[5] T. Csendes and J. Pint�er, The impact of accelerating tools on the interval subdivision algo-

rithm for global optimization, European J. of Operational Research, 65 (1993), pp. 314{320.

[6] R. Hammer, M. Hocks, U. Kulisch and D. Ratz, Numerical Toolbox for Veri�ed Computing

I., Springer-Verlag, Berlin, 1993.
[7] E. Hansen, Global optimization using interval analysis, Marcel Dekker, New York, 1992.

[8] Z. Hantos, B. Suki, T. Csendes, B. Dar�oczy and S. Nagy, Modeling of low-frequency

pulmonary impedance in dogs, J. of Appl. Physiol., 68 (1990), pp. 849{860.
[9] R. Horst, M. Nast and N. V. Thoai, A New LP-Bound in Multivariate Lipschitz Optimiza-

tion: Application to Unconstrained and Linearly Constrained Problems and to Systems of

Inequalities, Forschungsbericht Nr. 94-08, Universit�at Trier, 1994.
[10] C. Jansson and O. Kn�uppel, A global minimization method: the multi-dimensional case,

Report 92.1, Technische Universit�at Hamburg-Harburg, 1992.

[11] D. R. Jones, C. D. Perttunen and B. E. Stuckman, Lipschitzian Optimization without the

Lipschitz Constant, J. of Opt. Theory and Appl., 79 (1993), pp. 157-181.

[12] R. B. Kearfott, A FORTRAN-90 Environment for Research and Prototyping of Enclosure

Algorithms for Constrained and UnconstrainedNonlinear Equations, accepted for publication



Subdivision direction selection in interval methods for global optimization 935

in the ACM T. on Mathematical Software.

[13] R. B. Kearfott and M. Novoa, INTBIS, a Portable Interval Newton/Bisection Package,
ACM T. on Mathematical Software, 16 (1990), pp. 152{157.

[14] R. B. Kearfott and Z. Xing, An interval step control for continuation methods, SIAM J.

Numer. Anal., 31 (1994), pp. 892{914.
[15] B. P. Kristinsdottir, Z. B. Zabinsky, T. Csendes and M. E. Tuttle, Methodologies for

tolerance intervals, Interval Computations, 3 (1993), pp. 133{147.

[16] R. E. Moore, Interval Analysis, Prentice Hall, Engelwood Cli�s, 1966.
[17] A. Neumaier, Interval Methods for Systems of Equations, Cambridge University Press, Cam-

bridge, 1990.

[18] F. Pet�ak, Z. Hantos, �A. Adamicza and B. Dar�oczy, Partitioning of pulmonary impedance:
modeling vs. alveolar capsule approach, J. Appl. Physiol., 75 (1993), pp. 513{521.

[19] J. Pint�er, Extended univariate algorithms for n-dimensional global optimization, Computing,

36 (1986), pp. 91{103.
[20] , Convergence quali�cation of adaptive partition algorithms in global optimization, Mathe-

matical Programming, 56 (1992), pp. 343{360.

[21] H. Ratschek and J. Rokne, New Computer Methods for Global Optimization, Ellis Horwood,
Chichester, 1988.

[22] , Experiments using interval analysis for solving a circuit design problem, J. Global Opti-

mization, 3 (1993), pp. 501{518.
[23] D. Ratz, Automatische Ergebnisveri�kation bei globalen Optimierungsproblemen. Dissertation,

Universit�at Karlsruhe, 1992.

[24] S. Skelboe, Computation of Rational Interval Functions, BIT, 4 (1974), pp. 87{95.
[25] A. T�orn and A. �Zilinskas, Global Optimization, Springer-Verlag, Berlin, 1989.



936 T. Csendes and D. Ratz

Table 1

CPU time in seconds required by the four methods for the solution of the test problems

Problem Direction selection rules

Name n A B (B/A) C (C/A) D (D/A)

S5 4 0.17 0.16 ( 94%) 0.17 (100%) 0.17 (100%)

S7 4 0.25 0.24 ( 96%) 0.24 ( 96%) 0.25 (100%)

S10 4 0.35 0.35 (100%) 0.35 (100%) 0.36 (103%)

H3 3 0.48 0.22 ( 46%) 0.21 ( 44%) 1.07 (223%)

H6 6 5.84 3.66 ( 63%) 3.09 ( 53%) 16.30 (279%)

GP 2 558.57 449.94 ( 81%) 474.15 ( 85%) 182 203.62 (32 620%)

SHCB 2 0.07 0.07 (100%) 0.06 ( 86%) 0.09 (129%)

RCOS 2 0.04 0.03 ( 75%) 0.03 ( 75%) 0.05 (125%)

RB 2 0.01 0.01 (100%) 0.01 (100%) 0.01 (100%)

THCB 2 0.06 0.05 ( 83%) 0.05 ( 83%) 0.07 (117%)

L1 1 0.05 0.05 (100%) 0.05 (100%) 0.05 (100%)

L3 2 6.91 4.76 ( 69%) 4.76 ( 69%) 7.21 (104%)

L5 2 2.71 2.09 ( 77%) 2.09 ( 77%) 2.77 (102%)

L8 3 0.04 0.04 (100%) 0.04 (100%) 0.04 (100%)

L9 4 0.06 0.06 (100%) 0.06 (100%) 0.06 (100%)

L10 5 0.09 0.09 (100%) 0.09 (100%) 0.09 (100%)

L11 8 0.22 0.22 (100%) 0.22 (100%) 0.22 (100%)

L12 10 0.34 0.34 (100%) 0.34 (100%) 0.34 (100%)

L13 2 0.02 0.02 (100%) 0.02 (100%) 0.02 (100%)

L14 3 0.04 0.03 ( 75%) 0.03 ( 75%) 0.04 (100%)

L15 4 0.06 0.05 ( 83%) 0.06 (100%) 0.06 (100%)

L16 5 0.08 0.08 (100%) 0.08 (100%) 0.08 (100%)

L18 7 0.15 0.14 ( 93%) 0.14 ( 93%) 0.16 (107%)

SC12 50 105.14 114.60 (109%) 116.14 (110%) 105.56 (100%)

Beale 2 0.11 0.16 (145%) 0.17 (155%) 0.10 ( 91%)

SC31 3 0.04 0.04 (100%) 0.04 (100%) 0.04 (100%)

SC31P 3 0.04 0.04 (100%) 0.04 (100%) 0.04 (100%)

Booth 2 0.02 0.02 (100%) 0.02 (100%) 0.02 (100%)

Box 3 0.15 0.29 (193%) 0.29 (193%) 0.15 (100%)

Kowalik 4 0.72 0.31 ( 43%) 0.31 ( 43%) 0.14 ( 19%)

Powell 4 0.17 0.17 (100%) 0.18 (106%) 0.16 ( 94%)

Matyas 2 0.09 0.09 (100%) 0.09 (100%) 0.09 (100%)

SC37 5 0.02 0.02 (100%) 0.02 (100%) 0.02 (100%)

SC37 10 0.04 0.04 (100%) 0.04 (100%) 0.04 (100%)

SC37 30 0.21 0.21 (100%) 0.21 (100%) 0.21 (100%)

SC32 3 0.02 0.02 (100%) 0.02 (100%) 0.02 (100%)

EX1 2 0.02 0.02 (100%) 0.02 (100%) 0.02 (100%)

EX2 5 18 343.47 1 379.06 ( 8%) 1 080.00 ( 6%) 30 842.71 (168%)

EX3 4 0.07 0.07 (100%) 0.07 (100%) 0.07 (100%)

Sum 19 026.94 1 957.86 ( 10%) 1 684.00 ( 9%) 213 182.52 (1 120%)

AoP ( 93%) ( 94%) (943%)

Sum / sig. 19 022.64 1 954.11 ( 10%) 1 680.23 ( 9%) 213 178.17 (1 121%)

AoP / sig. ( 68%) ( 67%) (5 562%)



Subdivision direction selection in interval methods for global optimization 937

Table 2

Number of function evaluations required by the four methods for the solution of the test problems

Problem Direction selection rules

Name n A B (B/A) C (C/A) D (D/A)

S5 4 89 89 (100%) 89 (100%) 89 (100%)

S7 4 95 95 (100%) 95 (100%) 95 (100%)

S10 4 97 97 (100%) 95 ( 98%) 97 (100%)

H3 3 405 183 ( 45%) 163 ( 40%) 887 (219%)

H6 6 1 621 1 057 ( 65%) 893 ( 55%) 4 505 (278%)

GP 2 112 287 98 565 ( 88%) 101 997 ( 91%) 4 176 639 (3 720%)

SHCB 2 345 309 ( 90%) 305 ( 88%) 437 (127%)

RCOS 2 101 75 ( 74%) 75 ( 74%) 139 (138%)

RB 2 59 49 ( 83%) 49 ( 83%) 59 (100%)

THCB 2 265 237 ( 89%) 239 ( 90%) 367 (138%)

L1 1 301 301 (100%) 301 (100%) 301 (100%)

L3 2 2 777 1 961 ( 71%) 1 953 ( 70%) 2 917 (105%)

L5 2 1 089 853 ( 78%) 847 ( 78%) 1 123 (103%)

L8 3 45 45 (100%) 45 (100%) 45 (100%)

L9 4 59 59 (100%) 59 (100%) 59 (100%)

L10 5 73 73 (100%) 73 (100%) 73 (100%)

L11 8 117 117 (100%) 117 (100%) 117 (100%)

L12 10 145 145 (100%) 145 (100%) 145 (100%)

L13 2 45 41 ( 91%) 41 ( 91%) 45 (100%)

L14 3 65 59 ( 91%) 59 ( 91%) 65 (100%)

L15 4 85 79 ( 93%) 77 ( 91%) 85 (100%)

L16 5 105 97 ( 92%) 95 ( 90%) 105 (100%)

L18 7 145 133 ( 92%) 133 ( 92%) 145 (100%)

SC12 50 1 125 1 111 ( 99%) 1 111 ( 99%) 1 125 (100%)

Beale 2 291 447 (154%) 467 (160%) 265 ( 91%)

SC31 3 61 61 (100%) 61 (100%) 61 (100%)

SC31P 3 61 61 (100%) 61 (100%) 61 (100%)

Booth 2 121 107 ( 88%) 117 ( 97%) 97 ( 80%)

Box 3 91 179 (197%) 177 (195%) 95 (104%)

Kowalik 4 153 71 ( 46%) 71 ( 46%) 31 ( 20%)

Powell 4 563 577 (102%) 591 (105%) 535 ( 95%)

Matyas 2 765 765 (100%) 765 (100%) 789 (103%)

SC37 5 27 27 (100%) 27 (100%) 27 (100%)

SC37 10 43 43 (100%) 43 (100%) 43 (100%)

SC37 30 91 91 (100%) 91 (100%) 91 (100%)

SC32 3 85 75 ( 88%) 71 ( 84%) 85 (100%)

EX1 2 55 53 ( 96%) 53 ( 96%) 63 (115%)

EX2 5 971 103 197 529 ( 20%) 174 009 ( 18%) 1 551 483 (160%)

EX3 4 169 169 (100%) 169 (100%) 169 (100%)

Sum 1 095 219 306 085 ( 28%) 285 829 ( 26%) 5 743 559 (524%)

AoP ( 93%) ( 93%) (202%)

Sum / sig. 1 090 002 301 076 ( 28%) 280 810 ( 26%) 5 737 792 (526%)

AoP / sig. ( 70%) ( 69%) (744%)
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Table 3

Number of derivative evaluations required by the four methods for the solution of the test problems

Problem Direction selection rules

Name n A B (B/A) C (C/A) D (D/A)

S5 4 305 303 ( 99%) 305 (100%) 305 (100%)

S7 4 332 329 ( 99%) 330 ( 99%) 332 (100%)

S10 4 340 338 ( 99%) 330 ( 97%) 340 (100%)

H3 3 1 000 468 ( 47%) 424 ( 42%) 2 131 (213%)

H6 6 8 245 5 242 ( 64%) 4 445 ( 54%) 22 934 (278%)

GP 2 199 566 176 292 ( 88%) 181 494 ( 91%) 7 129 277 (3 572%)

SHCB 2 618 558 ( 90%) 554 ( 90%) 768 (124%)

RCOS 2 184 134 ( 73%) 134 ( 73%) 258 (140%)

RB 2 94 75 ( 80%) 75 ( 80%) 94 (100%)

THCB 2 474 429 ( 91%) 430 ( 91%) 653 (138%)

L1 1 299 299 (100%) 299 (100%) 299 (100%)

L3 2 5 395 3 770 ( 70%) 3 758 ( 70%) 5 657 (105%)

L5 2 2 145 1 668 ( 78%) 1 659 ( 77%) 2 207 (103%)

L8 3 117 115 ( 98%) 115 ( 98%) 117 (100%)

L9 4 204 201 ( 99%) 201 ( 99%) 204 (100%)

L10 5 315 311 ( 99%) 311 ( 99%) 315 (100%)

L11 8 801 801 (100%) 801 (100%) 801 (100%)

L12 10 1 241 1 241 (100%) 1 241 (100%) 1 241 (100%)

L13 2 82 74 ( 90%) 74 ( 90%) 82 (100%)

L14 3 177 162 ( 92%) 161 ( 91%) 177 (100%)

L15 4 308 284 ( 92%) 280 ( 91%) 308 (100%)

L16 5 475 436 ( 92%) 433 ( 91%) 475 (100%)

L18 7 917 832 ( 91%) 839 ( 91%) 917 (100%)

SC12 50 31 111 34 184 (110%) 34 723 (112%) 31 111 (100%)

Beale 2 523 809 (155%) 843 (161%) 488 ( 93%)

SC31 3 166 166 (100%) 165 ( 99%) 166 (100%)

SC31P 3 166 166 (100%) 165 ( 99%) 166 (100%)

Booth 2 206 186 ( 90%) 200 ( 97%) 166 ( 81%)

Box 3 259 531 (205%) 525 (203%) 269 (104%)

Kowalik 4 597 254 ( 43%) 254 ( 43%) 116 ( 19%)

Powell 4 1 974 1 986 (101%) 2 041 (103%) 1 901 ( 96%)

Matyas 2 1 346 1 346 (100%) 1 346 (100%) 1 384 (103%)

SC37 5 108 108 (100%) 111 (103%) 108 (100%)

SC37 10 365 365 (100%) 365 (100%) 365 (100%)

SC37 30 2 355 2 355 (100%) 2 355 (100%) 2 355 (100%)

SC32 3 209 189 ( 90%) 181 ( 87%) 209 (100%)

EX1 2 100 98 ( 98%) 98 ( 98%) 108 (108%)

EX2 5 3 906 446 800 050 ( 20%) 708 987 ( 18%) 6 151 948 (157%)

EX3 4 663 663 (100%) 663 (100%) 663 (100%)

Sum 4 170 228 1 037 818 ( 25%) 951 715 ( 23%) 13 362 026 (320%)

AoP ( 93%) ( 93%) (198%)

Sum / sig. 4 152 908 1 021 206 ( 25%) 935 066 ( 23%) 13 343 134 (321%)

AoP / sig. ( 72%) ( 70%) (719%)
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Table 4

Space complexity of the four methods for the solution of the test problems in terms of the necessary

length of the list

Problem Direction selection rules

Name n A B (B/A) C (C/A) D (D/A)

S5 4 13 14 (108%) 14 (108%) 13 (100%)

S7 4 16 16 (100%) 17 (106%) 16 (100%)

S10 4 16 17 (106%) 17 (106%) 16 (100%)

H3 3 26 17 ( 65%) 15 ( 58%) 48 (185%)

H6 6 182 99 ( 54%) 87 ( 48%) 405 (223%)

GP 2 9 648 9 381 ( 97%) 9 463 ( 98%) 486 382 (5 041%)

SHCB 2 37 36 ( 97%) 34 ( 92%) 44 (119%)

RCOS 2 15 11 ( 73%) 11 ( 73%) 19 (127%)

RB 2 7 4 ( 57%) 4 ( 57%) 7 (100%)

THCB 2 21 21 (100%) 21 (100%) 23 (110%)

L1 1 16 16 (100%) 16 (100%) 16 (100%)

L3 2 820 530 ( 65%) 525 ( 64%) 692 ( 84%)

L5 2 253 200 ( 79%) 196 ( 77%) 250 ( 99%)

L8 3 9 9 (100%) 9 (100%) 9 (100%)

L9 4 12 12 (100%) 12 (100%) 12 (100%)

L10 5 15 15 (100%) 15 (100%) 15 (100%)

L11 8 24 24 (100%) 24 (100%) 24 (100%)

L12 10 30 30 (100%) 30 (100%) 30 (100%)

L13 2 8 9 (113%) 8 (100%) 8 (100%)

L14 3 12 13 (108%) 12 (100%) 12 (100%)

L15 4 16 19 (119%) 19 (119%) 16 (100%)

L16 5 21 23 (110%) 23 (110%) 21 (100%)

L18 7 32 31 ( 97%) 31 ( 97%) 32 (100%)

SC12 50 50 120 (240%) 131 (262%) 50 (100%)

Beale 2 53 62 (117%) 63 (119%) 56 (106%)

SC31 3 5 5 (100%) 7 (140%) 5 (100%)

SC31P 3 5 5 (100%) 7 (140%) 5 (100%)

Booth 2 12 13 (108%) 11 ( 92%) 16 (133%)

Box 3 26 79 (304%) 77 (296%) 26 (100%)

Kowalik 4 69 25 ( 36%) 25 ( 36%) 13 ( 19%)

Powell 4 69 52 ( 75%) 58 ( 84%) 85 (123%)

Matyas 2 24 24 (100%) 24 (100%) 26 (108%)

SC37 5 5 5 (100%) 5 (100%) 5 (100%)

SC37 10 10 10 (100%) 10 (100%) 10 (100%)

SC37 30 30 30 (100%) 30 (100%) 30 (100%)

SC32 3 10 13 (130%) 13 (130%) 10 (100%)

EX1 2 14 10 ( 71%) 10 ( 71%) 9 ( 64%)

EX2 5 68 714 13 898 ( 20%) 12 855 ( 19%) 121 623 (177%)

EX3 4 80 80 (100%) 80 (100%) 80 (100%)

Maximum 68 714 13 898 ( 20%) 12 855 (19%) 486 382 (708%)

Average 2 062 640 ( 31%) 616 ( 30%) 15 645 (759%)

AoP (101%) (103%) (234%)

Average / sig. 13 278 4 038 ( 30%) 3 876 ( 29%) 101 567 (765%)

AoP / sig. ( 93%) ( 95%) (954%)


