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Abstract 

An approach for parallel ray tracing is to subdivide the 3D space into rectangular vol
umes and assign the object descriptions with their related computations in each volume 
to a different processor. The subdivision process is critical in reducing the interproces
sor communication overhead, and maintaining the load balance among processors of a 
multicomputer. In this paper, after a brief overview of parallel ray tracing, a heuristic is 
proposed to subdivide the 3D space by converting the problem into a graph partition
ing problem. The proposed algorithm tries to minimize the communication cost while 
maintaining a load balance among processors. 

1 Introduction 

Realistic images are used widely in many computer graphics applications such as computer
aided design (CAD), animation and visualization, simulation, education, robotics, archi
tecture, advertising, medicine, etc. Ray tracing is the most powerful algorithm to produce 
realistic images by finding the interaction of light sources and the objects in an envi
ronment. Although ray tracing is a simple algorithm, it requires excessive floating point 
operations. The amount of computation mainly depends on two parameters: the total 
number of pixels in the generated image and the number of objects in the scene. In the 
naive algorithm, the number of objects has a great effect on the total computation time, 
since each ray is tested with all objects in the scene to find the first intersection point. 
Several methods have been developed to reduce the computation time by testing only the 
objects on the ray's path for intersection. Spatial subdivision and the use of a hierarchy of 
bounding volumes are two of the well known techniques that aim to generate ray traced 
images independent of the complexity of the objects in the scene. 

Even if we could reduce the total computations for a ray to a constant time, it is 
still necessary to process all of the pixels independently. Additionally, we may wish to 
shoot more than one ray for each pixel to increase the accuracy of the image as well as 
adding diffuse effects. This means that the algorithm has another bottleneck due to the 
number of rays traveling in the scene. Thus, parallelism is essential in speeding up the 
ray tracing algorithm. Furthermore, ray tracing is easily amenable to parallelization on a 
multiprocessor, since each primary ray is traced independently. 

In recent years, research on ray tracing has been mostly concentrated on speeding up 
the algorithm on multiprocessors. There are mainly two approaches to parallelize ray 
tracing. One of them is an image space subdivision in which the computations related to 
different rays are distributed to the processors. The other approach studies the parallel ray 
tracing on a distributed-memory message-passing multiprocessor (multicomputer). In a 
multicomputer, there is no global memory and synchronization, and coordination between 
processors are achieved through message exchange. For an efficient parallelization on a 
multicomputer, the object space data as well as computations should be distributed among 
processors of the multicomputer. Since the model database (scene description with the 
auxiliary data structure) may not fit into the local memory of each processor, object space 
data need to be distributed. 

In this paper, our concern is to speed up the ray tracing on a multicomputer for com
plex scenes that require large amounts of memory. Thus, both computations and the 
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entire database are distributed fairly among the processors. Section 2 contains a short 
overview of parallel ray tracing algorithms. In Section 3, we propose a subdivision scheme 
which maintains the load balance among processors and minimizes the interprocessor 
communication cost. The scheme transforms the subdivision of 3D space problem to a 
graph partitioning problem with some imposed constraints as discussed in Section 3.1. A 
Kernighan-Lin-like [I1J algorithm is presented as a solution in Section 3.2. 

2 Parallel Ray Tracing 

A large number of parallel systems have been proposed to exploit the inherent parallelism 
in the algorithm. Most of these are special-purpose systems that require the construc
tion of custom hardware using VLSI. The recent developments in the VLSI technology 
have made it feasible to design and implement special-purpose hardware for the ray trac
ing algorithm [5, 10, 16J. In spite of the gain obtained in this way, these special purpose 
architectures have several disadvantages. First, there are still studies to improve the al
gorithm itself. Researchers should thus work on general purpose machines in order not to 
be restricted by the hardware. Second, special purpose hardware is expensive and often 
restricts the applications that require other computer graphics algorithms. 

The other approach that exploits speedup through the inherent parallelism in ray
tracing investigates the algorithm on a general rurpose parallel architecture independent 
of the hardware configuration [4, 8, 12, 13, 14 . The effective parallelization of the ray 
tracing algorithm on a multicomputer requires the partitioning and mapping of the ray 
tracing computations and the object space data. This partitioning and mapping should be 
performed in a manner that results in low interprocessor communication overhead and low 
processor idle time. Processor idle time can be minimized by achieving a fair load balance 
among the processors of the multicomputer. Two basic schemes exists for parallelization. 
In the first scheme, only ray tracing computations are partitioned among the processors. 
In the other scheme, both ray tracing computations and object space data are partitioned 
among the processors. 

In the first scheme, the overall pixel domain of the image space to be generated is 
decomposed into subdomains. Then, each pixel subdomain is assigned to and computed 
by a different processor of the multicomputer. However, each processor should keep a 
copy of the entire information about the objects in the scene in order to trace the rays 
associated with the pixels assigned to itself. Hence, an identical copy of the data structure 
representing the overall object space is duplicated in the local memory of each processor. 
This scheme requires no interprocessor communication since the computations associated 
with each pixel is independent of each other. 

The image space subdivision achieves almost a linear speedup. No communication is 
needed between processors. The only overhead is the communication between the sched
uler and the processors of the multicomputer. On the other hand, each processor should 
have access to the whole scene description, since ray-object intersection tests may be car
ried out with any object in the scene. This is a big disadvantage. Furthermore, sometimes 
a large amount of storage is needed to hold the object definitions and other related in
formation. Therefore, processors cannot store the entire information about the objects in 
the scene. 

The subdivision of the object space necessitates interprocessor communication, because 
each processor owns only a portion of the database. During the execution, a processor may 
need some portion of the database that exists in the local memory of another processor. 
In this case, either the needed portion is sent to the requesting processor [2, 10, 9J or the 
ray with the other relevant information is passed to the processor that has the needed 
part of the database [3, 4, 5, 13J. 

In object-based type of algOrIthms, the load imbalance is the major problem to deal 
with, since some processors may contain objects that are more likely to be intersected 
than others. Additionally, it is not easy to achieve a linear speedup as in image space sub
division where object space data is duplicated in the local memory of each processor. The 
communication overhead between processors might drastically degrade the performance. 
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3 Subdivision of 3D Space 

A new scheme is proposed in order to reduce the negative effects of object-space sub
division techniques mentioned above. The proposed scheme consists of three phases. In 
the first phase, the problem is converted to a graph partitioning problem. The graph 
obtained in this phase is a directed graph with weighted nodes and edges. In the second 
phase, this graph is partitioned into P clusters where P is the number of processors in 
the multicomputer. The objective in this partitioning is to minimize the weighted sum 
of inter-cluster edges, subject to the constraint that the cluster weights are balanced to 
within a specified tolerance. The actual assignment of the clusters to the processors of 
the multicomputer is done in the third phase. The objective in the assignment of these P 
clusters to P processors is to minimize the distances of interprocessor communications. 

Fig 1. Regular subdivision of 3D scene. 

3.1 Graph Generation 

We start by subdividing the 3D space into disjoint rectangular volumes by planes perpen
dicular to x-y plane as shown in Figure 1. Then, a primary ray is shot into the 3D space 
for each region (called coarse grid) in a very similar way Bouatouch, et. al. proposed II J. 
The primary rays are traced until they reach a certain level. During this sub-samplmg 
phase, an account of rays entering and leaving each subvolume is collected. Additionally, 
the number of rays processed in each subvolume is stored. The subvolumes and adja
cency relations correspond to the nodes and edges of the graph, respectively. Figure 2 
il!t-::trates the resulting graph for a 12 X 12 coarse grid. Nodes of the graph represent 
the rectangular subvolume in the 3D coarse grid. Each node u of the graph is associated 
with a weight w(u) where w(u) = awcdu) + (3wMR(U). Here, computational load WCL(U) 
is proportional to the number of rays processed in subvolume u during the subsampling 
phase. The complexity of the intersection tests for each ray processed in subvolume u 

is also taken into account during the computation of WCL(U). The second term WMR(U) 
represents the storage requirement for the objects resident in subvolume u. The a, (3 pa
rameters are introduced to achieve a balance between the computational and memory 
load in assigning weights to the nodes of the graph. The node weights will be used to de
termine the load (computational + memory) of each partition. The directed edge uv from 
node u to node v represents the adjacency relation between the associated subvolumes. 
Each directed edge uv is associated with a weight d( uv) where d( uv) is proportional to the 
number of rays entered into subvolume v from subvolume u during subsampling phase. 
The edge weight d( uv) represents the additional number and volume of communications 
to be performed, due to the rays originating from subvolume u and entering subvolume v, 

by processor Pi to processor Pj if subvolumes u and v are mapped to different processors 
Pi and Pj , respectively. Hence, edge weights will be used to determine the interprocessor 
communIcation load. 
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Fig 2. Resulted graph from the first step. 

3.2 Graph Partitioning 

It is known that partitioning a graph into a number of clusters with predetermined sizes 
and with minimum number of inter-cluster edges is an NP-complete problem [7]. The 
algorithm proposed by Kernighan and Lin (KL) is a popular non-trivial heuristic to solve 
the graph partitioning problem [11]. This heuristic provides hill-climbing ability to strictly 
local search methods by finding a favorable sequence of swaps of nodes between partitions 
rather than a single favorable swap of groups of nodes. Fiduccia and Mattheyses [6] 
improved the KL algorithm by introducing efficient data structures and node moves across 
clusters instead of swaps between clusters. 

The partitioning algorithm proposed in this paper resembles the one proposed by Fiduc
cia and Mattheyses. However, the application problem that is of interest here imposes a 
major constraint on the spatial shape of the clusters. The constraint imposed is the con
vexity requirement for the image subspace associated with each cluster. The reason for this 
constraint is the problem that arises due to the traversal of the rays in 3D space in order to 
utilize spatial coherence. For spatial subdivision into non-convex subvolumes, movement 
to the next subvolume on the ray's path is complex and time consuming; besides the same 
ray might exit and reenter a subvolume thus causing extra tests and interprocessor com
munication for intersections and other operations. The convexity constraint for clusters 
can easily be maintained by restricting a move to a move of a row or a column of nodes 
at a time instead of a single node move. The simplest way to achieve this is to introduce 
horizontal and vertical virtual lines to partition the graph into clusters. Assume that the 
nodes of the graph are to be mapped onto a multicomputer with P = Px X Py processors. 
The algorithm partitions the graph into P clusters by Px -1 vertical and EY. -1 horizontal 
lines. Figure 3 illustrates the partitioning of a 12 x 12 coarse grid for a l' = 4 X 4 = 16 
processor multicomputer. In this scheme, a move is considered to be the move of a whole 
horizontal and a vertical line effectively resulting in the move of groups of nodes across 
clusters. The resulting clusters will be in rectangular shape thus satisfying the convexity 
requirement and making the use of simple traversal algorithms feasible. This scheme also 
ensures the 2D mesh adjacency relation among clusters. 

An alternative approach is to move either vertical or horizontal boundary line segments 
of the clusters instead of whole lines dividing the mesh graph into two mesh subgraphs. 
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That is, either whole vertical lines and horizontal line segments or whole horizontal lines 
and vertical line segments are allowed to move. Vertical line segment moves are illustrated 
in Figure 4 for partitioning a 12 x 12 coarse grid for a P = 4 x 4 = 16 processor mul
ticomputer. This approach increases the search space by increasing the total number of 
possible moves. In this approach, the convexity of the clusters is ensured by restricting 
the moves to either horizontal or vertical line segment moves. The only drawback in this 
approach is that the mesh adjacency relation among the resulting clusters is not ensured. 
The problem of mapping of the clusters to the processors of the hypercube in this case is 
not straightforward and necessitates heuristics discussed in [15]. 

Assume that the nodes of the graph are to be mapped onto a multicomputer with 
P processors, where P = Px X Py • The algorithm initially partitions the graph into P 
clusters by (Px -1) x Py vertical line segments and Py -1 horizontal lines. The vertical and 
horizontal lines are aligned with the horizontal and vertical coarse grid lines such that each 
cluster is assigned equal number of coarse grid pixel areas. Each line is associated with two 
moves. Two moves associated with a horizontal line (vertical line segment) correspond to 
the action of sliding the horizontal line (vertical line segment) up or down (right or left) 
by one position on the 2D coarse grid. A line move may increase the load of some clusters 
by enlarging them spatially and decrease the load of some other clusters by contracting 
them spatially. The steps of the algorithm are given below. 

1. a) Compute the weight WOi) = 2:,,(0.) w(u) for each cluster C jj . 

b) Find all feasible moves associated with horizontal lines and vertical line segments. 
A move is feasible if the weight of any cluster affected by the move does not 
deviate from the average weight within a specified tolerance. 

c) Compute the gain of each feasible move. The gain of a move corresponds to the 
decrease in the sum of the inter-cluster edge weights if the move is realized. 

2. Unlock and unmark each move. 

3. Choose the move A1j with maximum gain 9i among the feasible unlocked moves. 

a) Mark move M j , lock the reverse move of M j • Reverse move is the other move 
associated with the same line segment as M j but in reverse direction. 

b) Recompute the gain of move Mi. 

c) If move M j is a horizontal line move then: 

i) Update the gains of the moves associated with its 2(Px -1) adjacent vertical 
line segments. 

ii) Unlock these adjacent vertical line segment moves (if they were previously 
locked). 

d) If move A1i is a vertical line segment move then unlock the moves associated with 
its two adjacent horizontal lines (if they were previously locked). 

e) Update the weights of the clusters that are affected by the move M j • Then, update 
the feasibility status of the moves adjacent to these clusters. 

4. Step 3 is repeated until no move can be selected, resulting in the marked moves 
MJ, ... ,Mn with gains 91,92, ... ,9n' 

5. Choose k (1 :S k :S n) which maximizes G = 2:7=19j. If Gmax > 0, realize the 
sequence of moves MJ, M2 , ... , Mk and then go to step 1. Otherwise exit. 

In the first step of the algorithm, the initializations related to the cluster weights, the 
feasibility status and the gains of moves are carried out. There are Px x Py clusters which 

are divided by Py - 1 horizontallilles and (Px - 1) x Py vertical lines. Since each line is 

associated with two moves, the number of possible moves is 2 X ((Px -1) X Py + Py - 1) = 

2 x (P - 1). These initial computed values are updated incrementally during the inner 
loop at step 3. 

The second step of the algorithm is used to clear all flags before the execution of the 
inner loop. A locked move is not taken into consideration until it is unlocked during the 
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iteration of the inner loop. On the other hand, a marked move is still considered during 
the iteration of the inner loop. 

The third step picks a move with the highest gain from feasible and unlocked moves. 
This move is marked at step 3.(a) for a possible realization at step 5. On the other hand, 
the reverse move associated with the same line as the marked move is locked to prevent 
oscillations. The move M. of a horizontal line or a vertical line segment does not prevent 
the further move of the same line or line segment in the same direction. This new candidate 
move is automatically relabeled as M. again, and its gain is recalculated as indicated at 
step 3.(b). 

A horizontal line move alters the nature of the adjacent vertical line segment moves. 
A vertical line segment and a horizontal line are considered to be adjacent if they form 
a corner of a cluster. Therefore, there are two successive rows of vertical line segments 
adjacent to an individual horizontal line. If a horizo~talline move is realized, then each 
adjacent vertical line segment move corresponds to the move of a different group of nodes. 
That is, either one node is to be added or deleted from the original group of nodes. For this 
reason, the moves associated with these adjacent vertical line segments should be unlocked 
if they were locked and their gains should be updated incrementally as indicated at step 
3.(c). 

Similarly, a vertical line segment move alters the nature of the moves associated with 
the two successive horizontal lines which are adjacent to that vertical line segment. Hence, 
these adjacent horizontal lines should be unlocked if they were previously locked as indi
cated at step 3.(d). However, the gains of the moves associated with these two adjacent 
horizontal lines are not affected at all. 

A vertical line segment move alters the weights of only two adjacent clusters which share 
this vertical line segment as a right or left boundary. A horizontal line move modifies the 
weights of the two successive row of clusters sharing this horizontal line as an up or 
down boundary. Hence, the weights of these clusters should be updated incrementally 
as indicated at step 3.(e). The change in the weight of a cluster may affect the current 
feasibility status of the moves associated with the lines or line segments which are adjacent 
to that cluster. A line or line segment is considered to be adjacent to a cluster if it 
constitutes a boundary for that cluster. Hence, the feasibility status of the adjacent line 
or line segment moves should be updated accordingly as indicated at step 3.(e). 

Step 3 is iterated until no feasible and unlocked move remains as indicated at step 4. 
Then, at step 5, the sequence of moves which maximize the overall gain is selected. If this 
maximum gain Gma., > 0, it means that the sequence of marked line or line segment moves 
Mt, M2 , ••• , Mk result in a further reduction in the overall interprocessor communication 
overhead. In this case, this sequence of moves is realized and then the outer loop (steps 
1-5) is iterated once more. Note that, the selected moves are not really realized at step 
3. In fact, the effects of these selected moves are simulated as if these moves are realized. 
If Gma., ~ 0 then the algorithm is terminated since no further reduction in the overall 
interprocessor communication can be obtained. 

Note that, at step 3, a selected move AJ. with maximum gain may have a negative gain. 
Such a move is still considered for realization since it may result in moves with positive 
gains in the following cycles of the inner loop. This selection scheme enhances the KL 
algorithm with hill-climbing ability which is not available in other strictly local search 
methods. 

Figure 5 illustrates a subgraph (two middle successive cluster rows) of a sample graph 
to be partitioned. Assume that, move Mj (left move of vertical line segment L.,) has a 

maximum gain and hence, selected at the kth iteration of step 3. Note that move Mj cor
responds to the move of group of nodes US,4, U6,4, U7,4 from cluster Cy2 ,:>:1 to Cy2,x2. Hence, 

the gain of Mj is 9j = 2:;=sD(Ui,4,Ui,S) - 2:;=5D(Ui,3,Ui,4)' Here, D(u,v) is the total 
weight of the directed edges between node U and v. That is, D(u,v) = d(u, v) + d(v,u). 
At step 3.(a), move M j is marked as Mk with gain 9k +- 9j. The reverse move Mj+l (right 

move of vertical line L~) is also locked at step 3.(a). The gain of move Mj is recalculated 

as 9j = 2:;=5 D(U.,3, Ui,4) - 2:;=5 D(Ui,2, Ui,3) Ly- 1 are adjacent to Lx. Hence, these lines 
are unlocked (if they were previously locked) at step 3.(d). The weights of the two clusters 

Cy2,xl and Cy2 ,x2 are updated at step 3.(e) as follows: Wy2,xl = Wy2,xl - 2:;=sW(Ui,4) and 

Wy2,x2 = Wy2 ,x2 + 2:;=5W(Ui,4)' The feasibility status of the moves associated with hori-
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Fig 5. Sample graph to be partitioned. 

zontallines L y - 1 and L]J and all vertical line segments lying between these two successive 
horizontal lines are updated, accordingly. 

Assume that, move Mi (up move of horizontal line Ly) is selected in a later iteration of 

step 3. The dotted horizontal line L~ denotes the new position of Ly if move Mi is realized. 

Move Mi as marked and the reverse move M j +1 is locked similarly at step 3.(a). The gain 

of move Mi is recalculated at step 3.(b) as 9i = E}!lD(U8,j,U7,j) - E}!lD(U7,j,U6,j). 
All vertical line segments seen in this subgraph are adjacent to the horizontal line L y • 

Hence, the ~ains of the moves associated with all the vertical line segments are updated 
at step 3.(c). For example, 9j = 9j - D(U73,U7,4) +D(U7,2,U7,3)' Similarly, these moves 
are unlocked if they were previously locked. For instance, prevIOusly locked move M j +1 

is unlocked at this step. All clusters shown in the subgraph (Fig. 5) are affected by move 
Mi. Thus, the weights of these clusters are updated accordingly at step.3(e). All moves 
shown in the subgraph are adjacent to the updated clusters. Hence, the feasibility status 
of all possible moves shown in the subgraph are also updated at step 3.(e). 

4 Conclusion and Future Work 

The proposed heuristic algorithm explicitly tries to minimize the overall sum of inter
cluster edge weights while maintaining the load balance within a specified tolerance. The 
minimization of the sum of inter-cluster edge weights corresponds to the minimization 
of the interprocessor communication overhead since different clusters will be mapped to 
different processors. 

Since the implementation of the proposed heuristic partitioning algorithm is still in 
progress, no performance results can now be presented. It seems to converge to a solu
tion as in the original graph partitioning algorithm given by Fiduccia and Mattheyses. 
However, we are not sure of the ratio between the preprocessing phase time and the ob
served image generation time. In the near future, the efficiency and speed-up curves for 
the parallel ray tracing algorithm mapped to the hypercube using this proposed heuristic 
partitioning algorithm will be obtained. 

In order to enlarge the search space for line moves in the given graph, the number 
of horizontal line moves might be increased as vertical moves. That is, both horizontal 
and vertical line segments can be allowed to move. However, in this case efficient graph 
theoretical methods should be developed to restrict the line segment moves in order to 
maintain the convexity of the resulting clusters. 
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