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Abstract

Subdivision surfaces have become a standard technique for freeform shape modeling. They are intuitive to use

and permit designers to flexibly add detail. But with larger control meshes, efficient adaptive rendering techniques

are indispensable for interactive visualization and shape modeling. In this paper, we present a realization of

tesselation-on-the-fly for Loop subdivision surfaces as part of a framework for interactive visualization.

1. Introduction

Polygonal meshes have received considerable attention over

the last years, due to a progress in diverse fields, just to

mention progressive meshes2, multiresolution analysis10, or

mesh compression. But the world is not only made of poly-

gons. The need to represent complicated freeform shapes fi-

nally led us – like many others – to the subdivision surface

representation. In fact, subdivision surfaces can be used to

reduce freeform modeling to mesh modeling. Overcoming

the well-known restrictions of tensor product surfaces, with

subdivision surfaces virtually every polygonal mesh can be

used as control mesh for a freeform object. Rapidly converg-

ing subdivision rules quickly produce accurate tesselations

at any resolution needed, and designers can freely manipu-

late the control mesh to add local detail, including fancy fea-

tures like sharp creases, starting and ending within an other-

wise smooth surface.

While subdivision surfaces are a powerful tool in the de-

sign of complex shapes, this complexity poses a serious

problem in interactive applications. For the most popular

subdivision schemes, the number of faces increases by a

factor of four with each subdivision step. This exponential

growth of the number of faces with the subdivision depth

makes an accurate uniform tesselation of a moderately big

control mesh impractical. With a useful number of subdivi-

sion steps in the range of three to five, tesselation results in

64 to 1024 faces per toplevel face of the control mesh.

However, most of these faces are invisible. Instead of

holding a complete tesselation in memory and to use opti-

mized simplificiation and culling algorithms for maintain-

ing interactive display rates, an alternative approach is a

tesselation-on-the-fly, only producing faces actually needed

for a given scene and camera configuration. For example,

covering a 1024� 768 display with only 20k triangles will,

in average, result in triangles containing 40-65 pixels each,

which are 9 - 11 pixels in diameter. These triangles should be

small enough to produce any perceivable detail for interac-

tive applications. Interactive display of 20k triangles, how-

ever, is now in fact possible with low-cost 3D hardware. The

only problem remaining is to find the appropriate triangles

to represent a scene.

At this point, subdivision surfaces can actually be seen

as an adaptive rendering method for a mesh. Given a large

control mesh, the goal of interactive subdivision surface ren-

dering is to tesselate visibly important parts with higher res-

olution than less important parts. But as a rendering method

is not an integral feature of a mesh, it seems reasonable to

manifest this orthogonality also in the design of data struc-

tures. This not only allows to combine different mesh rep-

resentations with different subdivision schemes. As another

advantage, the library of mesh data structures and algorithms

can be independently extended, plugging in interactive sub-

division surface rendering whenever needed.

2. Motivation

Fast interaction with large-scale three-dimensional environ-

ments typically requires a combination of different tech-

niques. Famous approaches for efficient interaction with

polygonal models are progressive meshes2 (PMs), specifi-

cally the version for view-dependent refinement3, and hier-
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archical dynamic simplification6 (HDS). In general, frame-

works for fast 3D interaction are composed of different

building blocks:

� A multiresolution model representation scheme

� Measures for visibility and display accuracy

� Fast on-line update of the active scene part

The active scene is a coarser version of the original scene,

where visibly unimportant, distant or very small, parts of

the model have been collapsed, according to the accuracy

measure. The active part of a scene has to be updated in ev-

ery frame, making use of temporal coherence in the position

and orientation of the viewer. This implies that fast evalua-

tion of accuracy measures and fast update of the active scene

database are crucial prerequisites for maintaining an interac-

tive frame rate of at least 15-20 frames per second.

While these approaches work well for triangular worlds,

polygonal representations have important drawbacks in that

the highest model resolution is limited a priori by the ac-

curacy of the original scene. The obvious solution is to

switch to a different model representation, replacing polyg-

onal primitives by some sort of freeform surface. A first, im-

portant step into this direction is the work of Subodh Kumar,

who showed that tesselation-on-the-fly can cope with mod-

els represented by trimmed NURBS. Incrementally convert-

ing NURBS to Bézier patches, that are subsequently tesse-

lated, about 10 fps were possible with a scene complexity of

5,000 Bézier patches4 .

A disadvantage of using NURBS though is that they re-

quire their control mesh to have a regular structure. Fur-

thermore, stitching NURBS patches together is not straight-

forward, since maintaining geometric continuity between

neighbouring patches severely constraints the positions of

their control vertices.

These shortcomings can be remedied by using subdivision

surfaces. Loop subdivision surfaces, permit any manifold tri-

angle mesh to serve as control mesh for a freeform object.

And by using the Catmull/Clark scheme, any polygonal ob-

ject with convex faces of arbitrary degree can be taken to

represent a complicated freeform shape. Surface continuity

is built into the subdivision rules, but designers don’t have to

do without the features they know from trimmed NURBS.

With subdivision surfaces, it is even possible to let a sharp

edge start and end in an otherwise smooth surface.

The ability of subdivision surfaces to digest almost any

polygonal mesh now opens the possibility to apply the afore-

mentioned sophisticated frameworks for interaction with

complex polygonal environments to the subdivision surface

control mesh.

One important building block of an integrated realtime-

rendering system for very large freeform worlds is the abil-

ity to tesselate a given subdivision surface patch extremely

fast to any resolution needed. Second, neighbouring faces

with different subdivision depths have to be zipped together

along their common border, so that no cracks appear be-

tween them.

Tesselation-on-the-fly may then be used together with a

multiresolution representation of the control mesh to de-

velop fully integrated schemes. Spatial coherence will then

not only be used for updating the active part of the control

mesh, but also for caching already tesselated faces, incre-

mentally adjusting tesselation quality whenever needed.

3. Subdivision Schemes

As noted before, in principle any polygonal mesh can serve

as control mesh for a subdivision surface. However, focus-

ing on the most popular subdivision schemes from Loop5

and Catmull and Clark1, a fundamental requirement is that

the mesh be locally 2-manifold everywhere, but may have

boundaries.

As with both schemes subdivision implies shrinkage, sub-

dividing a face produces sub-faces that share no 3D cor-

ner position with their parent face. Fortunately, for both

schemes, closed expressions exist to project a given vertex,

that is produced at any level of subdivision, onto the limit

surface of the infinite subdivision process8; 9. With the same

mathematical tool used to derive these formulae, namely

eigenanalysis of the subdivision matrix, closed expressions

for the tangent vectors of the limit surface can be derived,

thus the limit surface normal can be obtained analytically.

In principle, any subdivision scheme with closed expres-

sions for limit points and limit-surface normals can be used

with the algorithmic framework for tesselation-on-the-fly.

However, Loop subdivision surfaces are chosen here as an

example for a triangle-based scheme. To combine a given

mesh representation with Loop subdivision, faces with de-

gree higher than three have to be triangulated in a prepro-

cessing step. This triangulation has to be done with care, be-

cause the shape of the freeform surface is not invariant under

different triangulations.

3.1. Loop Subdivision Surfaces

Performing one subdivision step on a triangle will result in

four subtriangles (cf. Fig 9). The vertices of these sub-faces

can be classified into edge and vertex points of the parent

triangle. They are computed using affine combinations of

vertices from the parent face and its 1-neighborhood, using

so-called vertex masks and edge masks.

For a level l vertex v
(l)
0 of valence n, i.e. with neighbors

v
(l)
1 ; : : :;v

(l)
n , the new vertex of level l+1 and its new neigh-

bors are computed using the vertex and edge rules:

v
(l+1)
0 =

w0(n)v
(l)
0 + v

(l)
1 + : : :+ v

(l)
n

w0(n)+n
(1)

v
(l+1)
i =

3v
(l)
0 +3v

(l)
i + v

(l)
i�1 + v

(l)
i+1

8
; i = 1; : : : ;n (2)
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Figure 1: A regular triangle and its 1-neighborhood

All indices are taken modulo n, and w0(n) = n=a(n)� n

with a(n) = 5
8 � (3+2cos (2π=n))2=64. The corresponding

masks are shown in Fig. 2.
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Figure 2: Vertex mask and edge mask

If this process is iterated recursively, the mesh converges

to a smooth limit surface, and every vertex of the toplevel

control mesh corresponds to one point on the limit surface.

The position of this point v(1) as well as the tangent vec-

tors u1 and u2 of the limit surface can be computed using

an affine combination of the vertex and its neighbors, with

w
(1)
0 (n) = 3n=8a(n) and ti = cos (2πi=n):

v
(1)

=
w
(1)
0 (n)v

(0)
0 + v

(0)
1 + : : :+ v

(0)
n

w
(1)
0 (n)+n

(3)

u1 =
∑

n
i=1 ti(n) v

(0)
i

∑n
i=1 ti

(4)

u2 =
∑

n
i=1 ti�1(n) v

(0)
i

∑n
i=1 ti�1

(5)

4. Tesselation on the fly

A concise, straightforward, yet naïve method to visualize a

subdivision surface is sketched in the following recursive

procedure. This algorithm will either blow up the mesh ex-

ponentially, saving intermediate results as new faces and

vertices, or it computes many vertices several times. But

even worse, individual triangles are sent down the graphics

pipeline instead of triangle strips, which is a waste of bus

bandwidth. Finally, tesselation charges the processor with

a lot of work, and in multiprocessor environments, work

should be split over several largely independent threads.

procedure subdiv( f ace, depth):

if (depth > 0) :

create subfaces 0,1,2,3 of f ace

subdiv(sub f ace0 , depth�1)

subdiv(sub f ace1 , depth�1)

subdiv(sub f ace2 , depth�1)

subdiv(sub f ace3 , depth�1)

else

compute limit surface points and normals

render triangle (to OpenGL)

In summary, an algorithm for tesselation-on-the-fly

should ideally have the following features:

� no dynamic storage allocation

� producing triangle strips

� parallelizable, and

� the tesselation doesn’t write to the mesh

In a paper from Kari Pulli and Mark Segal, a tesselation

method with these properties was presented, called the slid-

ing window method 7. It is based on the observation that

subdividing a pair of adjacent triangles at a time is more

efficient, because this produces an upper and a lower row

of triangles. Iterating this scheme produces triangle strips

that double in length with each subdivision level, which can

directly be rendered using vertex and normal arrays from

OpenGL. The arrays used for one triangle strip may subse-

quently be overwritten for computing and rendering the next

strip or row.

What makes this idea very attractive to an interactive ren-

dering system is the fact that the same scheme can be applied

to quad-based subdivision, for instance using the Catmull-

Clark scheme. The sliding window method actually operates

on quadrangles, because in a preprocessing step, the mesh is

partitioned into triangle pairs. Consequently, the same algo-

rithmic framework can be re-used for a Catmull-Clark type

of subdivision surface rendering, by simply plugging in dif-

ferent subdivision rules. In fact, using quadrangle strips is

almost identical to using triangle strips on the OpenGL level,

and it is even possible to use the same type of OpenGL ver-

tex arrays for both schemes to optimize performance.

This generic framework for subdivision surface tessela-

tion realizes an OpenGL-like geometry engine by itself,

which was the API already proposed by Pulli and Segal:

One triangle pair at a time together with its 1-neighborhood

is read from the mesh and given to a dedicated tessela-

tion thread working independently. When finished, the main

thread, which in standard OpenGL ’owns’ the OpenGL con-

text, only needs to collect the results and to stripwise hand

the computed vertex arrays over to the OpenGL driver.

With each triangle pair processed individually, it becomes

possible to let the subdivision depth vary from face to
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face, thereby implementing adaptive tesselation-on-the-fly,

instead of a much simpler uniform tesselation. But then,

heuristics are needed telling which approximation accuracy

is needed for each of the triangle pairs. However, this strat-

egy is not part of the tesselation engine and can be worked

on independently.

The sliding window method is a good candidate for im-

plementing subdivision surface tesselation in hardware. But

this requires simple strategies for avoiding cracks between

neighboring pairs with different tesselation depths. Both

problems will be addressed in the next sections.

4.1. Heuristics for the Choice of the Subdivision Depth

Tesselation in realtime can only be achieved if higher ac-

curacy, i.e. greater subdivision depth, is assigned to visi-

bly important faces. In this context, however, accuracy is

very coarse-grained, as the number of triangles in the tes-

selation increases by powers of four: For all cases except

extreme close-ups, the subdivision depth ranges only over

seven integral values, from �1 (cull face away) to 5 (1024

sub-triangles). Several properties influence importance:

� visibility

� distance to the eye point

� projected size of the limit surface

� curvature of the limit surface

These criteria are not independent from each other. The

limit surface from distant faces usually occupies fewer pixels

when projected on the image plane than from faces nearby. A

face near the object’s silhouette may have a high curvature,

but it leaves hardly a trace in the z-buffer. And, of course,

the effort to subdivide backfaces or faces with occluded limit

surface is completely wasted.

Given only the control mesh, it is hardly possible to com-

pute these measures exactly during the time between con-

secutive frames. So, appropriate heuristics have to be found.

While the projected size of a triangular face can be com-

puted fast, in some cases this can be found to be a very

bad estimate for the size of its limit surface’s projection. On

the other hand, the convex hull from the vertices of a face’s

1-neighbourhood is a guaranteed bounding volume for the

limit surface, but it is not tight. As the quality parameter is

coarse grained, we chose a very rough estimate for the pro-

jected size of a patch, namely the size of a bounding sphere

around the triangle vertices, divided through the distance

from the viewpoint. This strategy is called project-sphere.

Besides view-dependent measures of visual importance,

there are also object-based measures. To estimate the ac-

curacy needed for a tesselation to adequately represent the

limit surface’s shape, normal cones can be used. To measure

the variation of the normal over the patch, one main normal

and an angle are computed that bounds the deviation of all

normals over the patch from the main normal. On the one

hand, this permits to classify a patch as either completely

front-facing or backfacing, otherwise it is tagged a visibly

important silhouette patch6. But the deviation angle can also

be taken as a rough estimate for the curvature of a patch,

directly influencing the subdivision depth necessary for an

accurate tesselation.

Computing the normal cone of a subdivision surface,

however, is neither elementary nor inexpensive. Computing

the curvature only in some points, e.g. the corners, of the

curved limit surface is much simpler and faster, still in prac-

tice it yields good-looking results. The subdivision depth can

in fact directly be computed from the curvature by specify-

ing in advance a maximal angle α that is tolerated between a

limit vertex normal and its incident sub-triangle: Each trian-

gle f of the control mesh with vertices v1;v2;v3 is assigned

the minimal depth value l so that

Ni �N(l)
i < cos α; i= 1;2;3;

where Ni is the limit surface normal of vertex vi, and N
(l)
i

is the face normal of the sub-face of f incident to a vertex

corresponding to vi on subdivision level l.

This computation is done by looping once through all ver-

tices. Each vertex and its neighborhood are copied to a vertex

mask-like structure (cf. Fig. 2, left). The limit surface nor-

mal is computed, and if the vertex is back-facing, its depth

value is set to -1. Otherwise, subdivision is performed in-

place using the vertex mask, until all normals from incident

sub-triangles have entered the normal cone, as depicted in

Fig. 3.

v
N

v
N

α

v

(0)

(2)

3
f

(2)

f

(1)

(0)

3
f1

1
f

f

(0)

N
3

(1)

N

 3

N

N
1

(0)
N

3

(2)

(1)

1
f

3

1
(2)

N
1

(1)

N

Figure 3: The normal cone over two subdivision steps

The prescribed deviation α can be varied according to the

classification of a vertex. Faces where all three corner nor-

mals point backwards are classified as back-patches and are

not displayed at all. Completely front-facing patches do not

need a high-resolution tesselation, and silhouette patches are

c The Eurographics Association and Blackwell Publishers 2000.



Müller and Havemann / Subdivision on the fly

detected by comparing the vertex normal cones. Unfortu-

nately, as Loop subdivision surfaces are derived from cubic

splines, counterexamples for this strategy can be found. Vis-

ible artifacts, however, have not been observed in practice.

4.2. Pairing strategy

To use the sliding window method efficiently, a triangle

mesh has to be partitioned into triangle pairs. This pairing

step can be performed by a greedy algorithm. It was proven

correct by Pulli and Segal7, and though it may not be opti-

mal, it behaves well in practice. It can even be modified to

take into account varying face depths, by preferably group-

ing triangles with equal depth values.

In the beginning, each triangle is inserted into one of four

disjoint sets S0; : : :;S3 containing the free triangles. A trian-

gle is called free iff it is not paired yet. Boundary vertices

may have only one or two neighbors, but for a closed mesh,

all triangles are inserted into set S3 in the beginning.

S0 : 0 or 1 free neighbors

S1 : 2 free neighbors, one of them in S0[S1

S2 : 2 free neighbors, both of them in S3

S3 : 3 free neighbors

Now, the algorithm attempts to create pairs, taking trian-

gles from the nonempty set with the highest priority. S0 has

the highest and S3 the lowest priority in this algorithm.

while S0; : : :;S3 are not empty do

1. Take a triangle f from the nonempty set

with the highest priority

2. LOOK FOR A FREE PARTNER g FOR f :

if f has free neighbors then

if f has a neighbor in S0 then take it as g

else

if f has neighbors with the same depth then

let g be the one with the highest priority

else

let g be the neighbor with the highest priority

f .depth := g.depth := max( f .depth,g.depth)

remove f ;g from S0; : : :;S3

insert ( f ;g) into the pair list

else

remove f from S0; : : :;S3

mark f as unpaired singleton

3. INCREASE NEIGHBOR PRIORITIES:

move neighbors of f (and g) from S3 to S2

move neighbors of f (and g) from S2 and S1 to S0

if any triangle moved from S3 to S2 then

move all triangles from S2 with neighbors in

S0, S1 or S2 to S1

As a result, a partition of the mesh into triangle pairs is

created, where both triangles in a pair have the same subdi-

vision depth, possibly modifying previously assigned depth

values. With this modificiation, still very few singletons are

created, typically only about one percent. Now, the list of

triangle pairs is ready to be delivered to the sliding window

method for efficient tesselation.

4.3. The sliding window method

The sliding window method operates on one triangle pair at

a time. Unpaired singleton triangles are assigned a dummy

partner which is not visualized. As typically only few of

them exist, this doesn’t introduce a performance problem.

In a multithreaded environment, several instances of the al-

gorithm can be active in parallel.

For a given triangle pair, the four corners and the vertex

positions from the – possibly irregular – 1-neighborhood are

collected from the mesh, and copied to different arrays of

3D points. These arrays are of a fixed size that only depends

on the level of subdivision they are used with. Consequently,

they are allocated statically, once per thread, and can be re-

used for each triangle pair that is to be tesselated. Fig. 4

shows the freshly filled arrays in level l = 0, right before

the start of tesselation.

bottom[0]

corner1[0]

corner2[0]

outbottom[0]

corner0[0]

corner3[0]

outtop[0]

top[0]

Figure 4: A pair of triangles with its neighborhood is copied

to arrays of 3D vectors

The core algorithm is shown in the following pseudocode.

procedure subdiv(level, top, bottom, outtop, outbottom,

corner0, corner1, corner2, corner3)

if (level>0)

Perform one subdivision step and

save the new points in the arrays of level [level].

SUBDIVIDE UPPER ROW:

subdiv(level-1, top, middle, outtop, bottom,

mcorner0, mcorner1, corner2, corner3)

SUBDIVIDE THE LOWER ROW:

subdiv(level-1, middle, bottom, top, outbottom,

corner0, corner1, mcorner1, mcorner0)

else :

compute the limit points and normals:

render triangle-strip (to OpenGL)
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outtop[1]
top[1]

outbottom[2]

final top-normals
final top-points
final bottom points
final bottom-normals

bottom[1]
outbottom[1]

bottom[2]

middle[1]

top[0]
outtop[0]

bottom[0]

middle[2]
top[2]
outtop[2]

outbottom[0]

Figure 5: Two levels of subdivision with the sliding window

method. For better readability, the corner arrays are left out.

The corner vertices of the two faces are held in arrays top

and bottom, while the 1-neighborhood is copied to outtop,

outbottom and corner0,. . . ,corner3. Newly computed points

from each level are saved in eleven arrays that are indexed by

the subdivision level: top, middle, bottom, outbottom, outtop,

corner0,. . . ,corner3. The arrays mcorner0, mcorner1 hold

the neighbors left and right of array middle. The structure

of the computation is visualized in Fig. 5. The size of these

arrays essentially doubles from level to level.

4.3.1. Space and time consumption

In order to use statically allocated arrays of fixed size, the

maximal vertex valence has to be limited. A value for nmax

of 50 was sufficient in practice, as higher valences only occur

in special cases.

As mentioned before, eleven arrays are needed for each

level l: Five arrays (outtop, top, middle, bottom, outbottom)

of length 2l
+ 1, and six arrays, corner0,. . . ,corner3 and

mcorner0, mcorner1 of length nmax. Thus, subdividing m

levels uses the following number of 3D vectors:

m

∑
l=0

(5 � (2l
+1)+6 �nmax)

= 5 � (2m+1�1)+5m+6m �nmax

This is the complete number of 3D vectors necessary to per-

form all subdivisions. The results of the computation, the

limit points from top and bottom, and the limit surface nor-

mals are stored in an interleaved fashion to an OpenGL ver-

tex array and a normal array. This can efficiently be rendered

as a triangle strip with normals. So, additionally two arrays

of length 2 � (2m
+1) are needed:

5 � (2m+1�1)+5m+6m �nmax+4 � (2m
+1)

= 7 �2m+1�1+5m+6m �nmax

A single pair of triangles is rendered using 2m
+ 1 triangle

strips alltogether, so n= (2m
+1)2 points and the same num-

ber of normals have to be computed. Taking the time needed

to calculate a vertex as constant (in fact, it depends on its

valence), the number of calculations is:

m

∑
l=0

2
l �
�

5 � (2l
+1)+4 �nmax

�

=
5

3
�22�(m+1)

+(5+4 �nmax) �2m+1� 20

3
�4 �nmax

But this is linear in the number of limit points:

O
�

5

3
� (4 � (

p
n�1)

2
)

+(5+4 �nmax) �2 � (
p

n�1)� 20

3
�4 �nmax

�

= O(n)

5. Crack Prevention

Special care has to be taken for borders between triangle

pairs with different subdivision depths. Fig. 6 shows a typi-

cal setting: Each of the grey triangles has two or more black

neighbors. The singleton triangle in the lower left for ex-

ample is subdivided only once, while its right neighbor has

depth four. Cracks appear because the grey triangles have

more degrees of freedom at the border than the black ones.

To repair these cracks, a tesselation scheme producing tri-

angle fans can be used, as shown in Fig. 7. First, a grey trian-

gle is subdivided to the maximal neighbor depth, collecting

only vertices on the triangle border according to the respec-

tive neighbor subdivision levels. Then, these are used to cre-

ate a triangle fan around the triangle center that is added to

the tesselation.

Figure 6: A part of a mesh with cracks.

Unfortunately, taking the triangle point with barycentric co-

ordinates (1
3 ;

1
3 ;

1
3 ) for a center vertex, produces unwanted

nonconvexities. An example is given in Fig. 8. Significantly
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Figure 7: A part of a mesh with repaired cracks.

better results are achieved if the triangle center is first pro-

jected to the limit surface. But the triangle center cannot be

reached by successive subdivision, as it will never appear as

the vertex of a triangle for any finite subdivision depth.

Figure 8: Repairing nonconvex artifacts: Using the triangle

center (left) and projecting the triangle center to the limit

surface (right).

Consequently, a different technique has to be used to obtain

the center’s limit position. As presented by Stam8, the limit

surface of a triangle for the Loop scheme can be expressed

in closed parametric form. For a triangle without extraordi-

nary vertices, i.e. where all vertices have valence six, twelve

control points influence the shape of the limit surface:

s(α;β) =C
T

b(α;β); α;β� 0; α+β� 1;

where C is a 12� 3 matrix containing the vertices of the

face and its 1-neighborhood, using the index scheme as

in Fig. 9. The vector b(α;β) contains the twelve scalar-

valued polynomial basis functions in barycentric coordinates

(α;β;1�α�β) providing the weights of the control points.

The definition of b(α;β) is given in the appendix. It is suffi-

cient to consider the regular case, because after one subdiv-

sion step, the vertices of the central triangle have valence six

(cf. Fig. 9).
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Figure 9: A regular triangle and its 1-neighborhood. After

one subdivision step, the inner triangle is regular

.

This subdivision step doesn’t cause much overhead, because

most of the vertices computed in it are needed for repairing

cracks anyway. Evaluating the basis functions bi(α;β); i =

1; : : :;12 at the center coordinates (1
3 ;

1
3 ) yields the follow-

ing weights:

1
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;23;23;

1

4
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4
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2
;

1

4

�
:

The limit surface normal at the center point is the cross prod-

uct of the tangent vectors. These are obtained using the par-

tial derivatives of the basis functions:

n(α;β) =
�

C
T ∂

∂α
b(α;β)

�
�
�

C
T ∂

∂β
b(α;β)

�
(6)

Evaluating the partial derivatives at parameter values (1
3 ;

1
3 )

results in the following weight vectors for the limit surface

tangents:
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;5;
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With this crack prevention scheme, positional discontinuities

are resolved, and the use of the limit surface normal at the

center vertex remedies color discontinuities. No T-vertices

are introduced, and Gouraud shading produces good-looking

results, as can be seen in the color plates.

6. Results

Timings have been taken by rotating a series of bumpy

spheres with 200 to 4000 faces. The bumpy sphere is cre-

ated by taking a bunch of random unit vectors, computing

a triangulation of the unit sphere from them, and then ran-

domly varying the the length of each vector, choosing a value

from [0:5;1:5]. With an increasing number of these random

vectors, extremely curved models are created, because the

distance variation of neighbouring mesh vertices is not cor-

related. This effect is demonstrated in Figure 10.
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Figure 10: Bumpy spheres with 200 and 4000 toplevel faces

The tables in Fig. 11 show effective frame rates for a

single-threaded test on two target machines. The first one

is an SGI Onyx2 with a dual-pipe InfiniteReality II graph-

ics board, employing a MIPS R10k running at 250 MHz.

The second machine is a standard PC with a 500 MHz Pen-

tium III (Katmai) and a GeForce 256 graphics board with

32 MB DDR-RAM. Main memory has not been an issue

in this test. On both machines, the different tests show the

same behaviour, although the PC is faster by a factor of 1.8

(!) compared to the Onyx2. All fancy OpenGL features (ex-

cept Gouraud shading) have been disabled, and a single light

source was active.
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Figure 11: Frame rates for Onyx2 and standard PC

These tables show that uniform tesselation behaves much

worse than adaptive tesselation-on-the-fly, although (i) no

crack prevention has to be done, and (ii) the test scene is

very clustered, so it is actually a bad example for adaptive

tesselation. This result validates a central thesis of this arti-

cle: Adaptive tesselation pays off.

The diagrams also show that, as curvature increases with

the number of random vertices, the combined curvature-

sphere strategy will tend to assign a higher subdivision depth

to many faces. In fact, this strategy preserves object detail

perceivably better than the project-sphere heuristic alone.

The diagrams in Fig. 12 show the numbers of OpenGL

triangles actually drawn, as well as the number of toplevel

triangles culled away by the backface culling heuristic. The

percentage of backfaces decreases due to the bumpy struc-

ture of the model. Again, for the combined strategy, the in-

creasing curvature takes over and prevents the project-sphere

heuristic from introducing artifacts.
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Figure 12: Numbers of sub-triangles and backfaces

7. Conclusions and Future Work

In this paper, it was shown that for interactive applica-

tions, a moderately optimized implementation of adaptive

tesselation-on-the-fly for Loop subdivision surfaces can pro-

duce 10k triangles in each frame, from an 800 faces triangle

mesh, with a frame rate of > 10 fps on a standard PC.

The tesselations generated by the proposed combination

of heuristics accurately reproduce the limit surface geome-

try, up to a point where there is no perceivable difference

between adaptive and high-depth uniform tesselations.

The tesselation module is designed in a geometry-engine

fashion and can be plugged in as a rendering module for

any pair of triangles, yet respecting the tesselation quality

of neighbouring triangles.

Although these are encouraging results, much remains to
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be done. First, we are confident to achieve a speedup by a

factor of around 2 by optimizing the order of computations.

The evaluation of heuristics, for instance, the projected size

of a patch, can be directly integrated with the sliding window

method. Second, the present design makes no use of any in-

formation that is stored for more than a single frame, and can

thus not exploit temporal coherence. Although tesselation-

on-the-fly aims at interactive applications where the con-

trol mesh is subject to change, due to continuous-level-of-

detail techniques, even in this cases the control mesh will

not change completely every frame.

The development of caching strategies for the results of

preceding frames, as the tesselation, the pairing, and subdi-

vision depth heuristics, will as well challenge our software

design as it will also trigger the development of new, inte-

grated algorithms for interactive freeform visualization.

Appendix A: Parametric basis functions

The limit surface of a regular triangle face for Loop sub-

division can be expressed in parametric form by s(α;β) =
CT b(α;β), where C is the 12� 3 control point matrix, us-

ing an index scheme as in Fig. 9. Barycentric coordinates

sum to unity, consequently, in a coordinate tuple (α;β;γ)
with α;β;γ � 0, α+ β+ γ = 1, γ can be substituted using

γ = 1�α�β. With this substitution, the vector of polyno-

mial basis functions is8:

b(α;β) =
1

12
(γ4

+2γ3α3
; γ4

+2γ3β; γ4
+2γ3β+

6γ3α+6γ2αβ+12γ2α2
+6γα2β+6γα3

+2α3β

+α4
; 6γ4

+24γ3β+24γ2β2
+8γβ3

+β4

+24γ3α+60γ2αβ+36γαβ2
+6αβ3

+24γ2α2

+36γα2β+12α2β2
+8γα3

+6α3β+α4
;

γ4
+6γ3β+12γ2β2

+6γβ3
+β4

+2γ3α

+6γ2αβ+6γαβ2
+2αβ3

;

2γα3
+α4

; γ4
+6γ3β+12γ2β2

+6γβ3
+β4

+8γ3α+36γ2αβ+36γαβ2

+8αβ3
+24γ2α2

+60γα2β+24α2β2

+24γα3
+24α3β+6α4

;

γ4
+8γ3β+24γ2β2

+24γβ3
+6β4

+6γ3α+36γ2αβ+60γαβ2
+24αβ3

+12γ2α2
+36γα2β+24α2β2

+6γα3

+8α3β+α4
; 2γβ3

+β4
; 2α3β+α4

;

2γβ3
+β4

+6γαβ2
+6αβ3

+6γα2β

+12α2β2
+2γα3

+6α3β+α4
; β4

+2αβ3
)
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Figure 13: Demonstration of crack prevention. Subdivision depth has been randomly assigned. The right picture shows the

effect of the backface culling heuristic. The object is rotated to show missing triangle pairs at the back.

Figure 14: Curvature dependent assignment of subdivision depth values. At the right, additionally all normal vectors necessary

for the computation of the curvature-dependent subdivision depths are shown.
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