SUBELLIPTIC ESTIMATES FOR THE $\overline{\partial}$ -NEUMANN PROBLEM IN C^2

PETER GREINER

1. Introduction

In this paper we prove a conjecture of J. J. Kohn concerning precise subelliptic estimates for the local $\bar{\partial}$ -Neumann problem in C^2 . Let Ω be a bounded open set in C^2 with C^{∞} boundary ω . If ω is pseudoconvex near a point $P \in \omega$, and P is of type m (the precise definitions are given in § 2), then Kohn proved that the subelliptic esitimate

$$\|\phi\|_{(s)}^{(\varrho)} \leq C_s(\|\bar{\partial}\phi\|_{(0)}^{(\varrho)} + \|\theta\phi\|_{(0)}^{(\varrho)} + \|\phi\|_{(0)}^{(\varrho)})$$

holds for all s < 1/(m + 1) (see [8, (7.4)]). Here ϕ is a C^{∞} one-form with compact support in $\Omega \cap U$ where U is some sufficiently small neighborhood of P, θ is the adjoint of $\overline{\partial}$, and ϕ is in the domain of θ .

In [7] and [8] Kohn suggested that (i) the subelliptic estimate in question holds with s = 1/(m + 1), and (ii) it cannot hold with s > 1/(m + 1). In Theorem 3.7 of this paper we shall prove the second conjecture. We do not know whether s = 1/(m + 1) is achieved. In proving Theorem 3.7 we make use of results obtained by Yu. V. Egorov [1], L. Hörmander [4], [5] and W. J. Sweeney [9], which enable us to reduce the problem to a similar question concerning a system of pseudo-differential operators on ω . We shall compute these pseudo-differential operators with great precision by utilizing some results of Kohn (see [7] and [8]) concerning the behavior of ω near a point of type *m*. Our notation and terminology are standard (see e.g. [3] and [4]).

2. The Levi invariants

We recall the basic definitions of [8]. Let Ω be a bounded open subset of C^2 with C^{∞} boundary ω , and let r(P) denote the distance of the point P from ω , and assume that r < 0 in Ω and r > 0 outside of Ω . A vector field L is said to be *holomorphic* in some open set $U \subset C^2$ if it can be written in the form

(2.1)
$$L = a^1 \frac{\partial}{\partial z_1} + a^2 \frac{\partial}{\partial z^2}, \qquad a^i \in C^{\infty}(U),$$

Communicated by J. J. Kohn, October 17, 1973. This research was partially supported by the National Research Council of Canada under Grant A-3017.

where $\partial/\partial z_j = \frac{1}{2}(\partial/\partial x_j - i(\partial/\partial y_j))$, j = 1, 2. A vector field L is said to be *tangential* if at each point of ω it is tangent to ω , that is, if L(r) = 0 at r = 0. As usual we define \overline{L} by

(2.2)
$$\bar{L} = \bar{a}^1 \frac{\partial}{\partial \bar{z}_1} + \bar{a}^2 \frac{\partial}{\partial \bar{z}_2} .$$

If T_1 and T_2 are two vector fields, we define the Lie bracket by $[T_1, T_2] = T_1T_2 - T_2T_1$. The Lie algebra generated by T_1 and T_2 over the C^{∞} functions is the smallest module over the C^{∞} functions closed under [,], and is denoted by $\mathscr{L}\{T_1, T_2\}$. $\mathscr{L}\{T_1, T_2\}$ is filtered, that is,

$$\mathscr{L}{T_1, T_2} = \bigcup_{k=0}^{\infty} \mathscr{L}_k{T_1, T_2},$$

where $\mathscr{L}_0[T_1, T_2]$ is the module spanned by T_1 and T_2 , and $\mathscr{L}_{k+1}[T_1, T_2]$ is the module spanned by the elements of $\mathscr{L}_k[T_1, T_2]$ and the elements of the form $[A, T_i]$ with $A \in \mathscr{L}_k[T_1, T_2]$. Set

$${\mathscr L} = {\mathscr L} \{ L, ar L \} \ , \qquad {\mathscr L}_k = {\mathscr L}_k \{ L, ar L \} \ ,$$

where L is a holomorphic tangent vector in some neighborhood of a point $P \in \omega$, which is different from zero at P. We note that the \mathcal{L} and \mathcal{L}_k evaluated at P do not depend on the choice of L.

2.3. Definition. $P \in \omega$ is said to be of finite type if there exists $F \in \mathscr{L}$ such that $\langle (\partial r)_P, F_P \rangle \neq 0$. Here \langle , \rangle denotes contraction between cotangent vectors and tangent vectors, and the subscript *P* denotes evaluation at *P*. *P* of finite type is said to be of *type m* if *m* is the least integer such that there is an element in \mathscr{L}_m satisfying the above property.

2.4. Definition. Ω is said to be pseudo-convex near a point $P \in \omega$ if there is a neighborhood U of P such that

(2.5)
$$\langle \partial r, [\bar{L}, L] \rangle_{\omega \cap U} \geq 0$$
,

where L is a nonzero tangential holomorphic vector field.

2.6. Definition. If Ω is pseudo-convex near a point $P \in \omega$, and P is of type m, we say that ω is pseudo-convex of order m at P.

3. The local $\bar{\partial}$ -Neumann problem in C^2

Let $H_{(s)}^{(a)}$ and $H_{(s)}^{(\omega)}$ denote the Sobolev spaces on Ω and ω respectively (see e.g. [3]) with norms denoted by $\| \|_{(s)}^{(\alpha)}$ and $\| \|_{(s)}^{(\omega)}$ as usual. These spaces and norms are well defined for vector functions, in particular, for (0, 1)-forms $\phi = \phi_1 d\bar{z}_1 + \phi_2 d\bar{z}_2, \phi_1, \phi_2 \in C^{\infty}(\Omega)$. On (0, 1)-forms we have

SUBELLIPTIC ESTIMATES

(3.1)
$$\bar{\partial}\phi = (\partial\phi_2/\partial\bar{z}_1 - \partial\phi_1/\partial\bar{z}_2)d\bar{z}_1 \wedge d\bar{z}_2$$

Let θ denote the formal adjoint of $\overline{\partial}$ operating on (0, 1)-forms, that is,

(3.2)
$$(\bar{\partial}\phi,\psi)_{L^2(\mathcal{G})} = (\phi,\theta\psi)_{L^2(\mathcal{G})},$$

 $\phi \in C_0^{\infty}(\Omega)$ and $\psi \in D_{(0,1)}(\Omega)$, where $D_{(0,1)}(\Omega)$ stands for $C^{\infty}(0, 1)$ -forms with compact support in Ω . More precisely we have

(3.3)
$$\theta(\phi_1 d\bar{z}_1 + \phi_2 d\bar{z}_2) = - \frac{\partial \phi_1}{\partial z_1} - \frac{\partial \phi_2}{\partial z_2} \cdot \frac{\partial \phi_2}{\partial z_2}$$

Now we can state the main result of [8].

3.4. Theorem. Let $P \in \omega$ be a point of type m, and U be an open neighborhood of P such that $U \cap \omega$ is pseudoconvex. Then there exists a constant C_s for all s, 0 < s < 1/(m + 1), such that

$$(3.5) \|\phi\|_{(s)}^{(g)} \le C_s(\|\bar{\partial}\phi\|_{(0)}^{(g)} + \|\theta\phi\|_{(0)}^{(g)} + \|\phi\|_{(0)}^{(g)})$$

for all $\phi \in D_{(0,1)}(U \cap \overline{\Omega})$ satisfying $\langle \phi, \overline{\partial}r \rangle = 0$ on $\omega \cap U$. We note that $\langle \psi, \overline{\partial}r \rangle = 0$ on $\omega \cap U$ is equivalent to

bit that
$$\langle \psi, \theta \rangle = 0$$
 on $\psi + 0$ is equivalent to

$$\left< \partial \phi, \psi \right> = \left< \phi, \theta \psi \right>, \qquad \phi \in D_{\scriptscriptstyle (0,1)}(U \cap \varOmega)$$

When m = 1, (3.4) holds with $s = \frac{1}{2}$, and this is the best possible estimate (see [4], [6] and [10]). When m > 1, we do not have such a precise result. On the other hand, we have the following result.

3.7. Theorem. Let $P \in \omega$ be a point of type m, and U a neighborhood of P. Then the estimate (3.5) does not hold with any s > 1/(m + 1).

The proof of Theorem 3.7 will be given in §§ 4, 5 and 6.

4. The $\bar{\partial}$ operator near a point of type *m*

Let $P \in \omega$ be a point of type *m*, and *U* a sufficiently small neighborhood of *P*. By an affine change of coordinates we construct coordinates z'_1, z'_2 in *U* such that

(4.1)
$$z'_1(P) = z'_2(P) = (\partial r/\partial z'_1)_P = (\partial r/\partial \bar{z}'_1)_P = (\partial r/\partial y'_2)_P = 0 ,$$
$$(\partial r/\partial x'_2)_P = 1 .$$

where $z'_1 = x'_1 + iy'_1$ and $z'_2 = x'_2 + iy'_2$. Now r has the following Taylor series expansion

(4.2)
$$r(z') = \operatorname{Re} h(z') + \psi(z') + O(|z'|^{m+2}),$$

where $\psi(z')$ is a polynomial of degree m + 1 such that each term contains $z'_i \bar{z}'_j$ as a factor and

(4.3)
$$h(z'_1, z'_2) = \sum_{s+t \le m+1} \frac{1}{s! t!} \{ (\partial/\partial z'_1)^s (\partial/\partial z'_2)^t r \} z'_1 z'_2 z'_2 .$$

According to (4.1) and (4.2)

(4.4)
$$(\partial h/\partial z_1')_0 = 0$$
, $(\partial h/\partial z_2')_0 = (\partial r/\partial x_2')_0 = 1$

Thus z'_1 and h are linearly independent in U (here we need U to be sufficiently small), and therefore we can introduce holomorphic coordinates $w_1 = u_1 + iv_1$, $w_2 = u_2 + iv_2$ defined by $w_1 = z'_1$ and $w_2 = h$. Then (4.2) becomes

(4.5)
$$r(w_1, w_2) = u_2 + \gamma(w_1, w_2) + O(|w|^{m+2}),$$

where

(4.6)
$$\gamma(w_1, w_2) = O(|w|^2)$$

is a polynomial of degree m + 1 which contains no pure terms, that is, holomorphic or antiholomorphic terms.

To derive a precise expression for the $\bar{\partial}$ operator we set

$$|\nabla r|\omega^1 = r_{w_2} dw_1 - r_{w_1} dw_2$$
, $|\nabla r|\omega^2 = r_{w_1} dw_1 + r_{w_2} dw_2 = \partial r$,

where $r_{w_1} = \partial r / \partial w_1$, etc., so that ω_1 and ω_2 yield a basis of the (1,0)-forms in U. Let $\phi = \phi_1 \overline{\omega}^1 + \phi_2 \overline{\omega}^2$. From (3.1) it is easy to see that the $\overline{\partial}$ operator on (0,1)-forms ϕ has the following expression in terms of the basis $\overline{\omega}^1$ and $\overline{\omega}^2$:

(4.7)
$$\begin{aligned} \bar{\partial}\phi &= (-\ \overline{M}\phi_1 + \overline{L}\phi_2)\overline{\omega}^1 \wedge \overline{\omega}^2 \\ &+ (\text{terms in which } \phi_1 \text{ and } \phi_2 \text{ remain undifferentiated}) , \end{aligned}$$

where

(4.8)
$$|\nabla r|L = r_{w_2} \frac{\partial}{\partial w_1} - r_{w_1} \frac{\partial}{\partial w_2},$$

(4.9)
$$|\nabla r|M = r_{w_1} \frac{\partial}{\partial w_1} + r_{w_2} \frac{\partial}{\partial w_2} .$$

Given $\phi = \phi_1 \overline{\omega}^1 + \phi_2 \overline{\omega}^2$ the $\overline{\partial}$ -Neumann boundary condition $\langle \phi, \overline{\partial}r \rangle = 0$ on ω is equivalent to the vanishing of ϕ_2 on ω . If $\phi = \phi_1 \overline{\omega}^1 + \phi_2 \overline{\omega}^2 \in C_0^{\infty}(U \cap \overline{\Omega})$ and $\phi_2 = 0$ on ω , then $\theta \phi$ is well defined and is given by the expression

(4.10)
$$\begin{aligned} \theta \phi &= - \left(L \phi_1 + M \phi_2 \right) \\ &+ (\text{terms in which } \phi_1 \text{ and } \phi_2 \text{ remain undifferentiated}). \end{aligned}$$

Thus in terms of the basis $\overline{\omega}^1, \overline{\omega}^2$ the principal part of the $\overline{\partial}$ -Neumann operator on (0,1)-forms is given by

(4.11)
$$D_0 = \begin{pmatrix} -\overline{M} & \overline{L} \\ -L & -M \end{pmatrix}.$$

4.12. Lemma. Let $P \in \omega$ be of type m. Then $\gamma(w_1, 0)$ is a homogeneous polynomial in w_1 of degree m + 1. More precisely

(4.13)
$$\gamma(w_1, 0) = \sum_{s+t=m-1}^{l} \frac{1}{(s+1)! (t+1)!} L^s \overline{L}^t \langle \partial r, [L, \overline{L}] \rangle w_1^{s+1} \overline{w}_1^{t+1}$$

Proof. See Kohn [8, Lemma 3.16]. Consider

$$(4.14) r = u_2 + \gamma(u_1, v_1, u_2, v_2) + O(|u|^{m+2} + |v|^{m+2}) = 0,$$

where we set $u = (u_1, u_2)$ and $v = (v_1, v_2)$. Since $(\partial r/\partial u_2)_0 = 1$, we can solve (4.14) for $u_2 = u_2(u_1, v_1, v_2)$ in a neighborhood of 0.

4.15. Lemma. Let $u_2(u_1, v_1, v_2)$ be a solution of (4.14) in some neighborhood of 0. Then

(4.16)
$$\frac{\partial^{l+k}u_2(0)}{\partial u_1^l \partial v_1^k} = 0 \quad \text{if} \quad l+k \le m \; .$$

Proof. According to Lemma 4.12

(4.17)
$$\frac{\partial^{l+k}\gamma(0)}{\partial u_1^l \partial v_1^k} = 0 \quad \text{if} \quad l+k \le m \; .$$

By the definition of $r, u_2(0) = 0$. Next, replacing u_2 by $u_2(u_1, v_1, v_2)$ in (4.17) we obtain

$$\frac{\partial u_2}{\partial u_1} + \frac{\partial \gamma}{\partial u_1} + \frac{\partial \gamma}{\partial u_2} \frac{\partial u_2}{\partial u_1} + O(|u_1|^{m+1} + |v|^{m+1}) = 0 .$$

Since $\gamma = O(|u|^2 + |v|^2)$, this implies that

(4.18)
$$\frac{\partial u_2(0)}{\partial u_1} = 0$$
, and similarly $\frac{\partial u_2(0)}{\partial v_1} = 0$.

Now suppose that

(4.19)
$$\frac{\partial^{l+k}u_2(0)}{\partial u_1^l \partial v_1^k} = 0 \quad \text{if} \quad l+k \le p$$

for some p < m. Then for a fixed l and k satisfying l + k = p + 1 we have

$$\begin{split} &\frac{\partial^{p+1}u_2}{\partial u_1^l \partial v_1^k} + \frac{\partial^{p+1}\gamma}{\partial u_1^l \partial v_1^k} \\ &+ \sum_{\substack{\sum_j (s_j+t_j+(q_j-1)) \le p+1 \\ j} C_{\{s_j, t_j, q_j\}_j} \prod_j \left(\frac{\partial^{s_j+t_j}u_2(0)}{\partial u_1^{s_j} \partial v_1^{t_j}}\right)^{q_j} \\ &+ O((|u_1|+|v|)^{m+1-p}) = 0 \;. \end{split}$$

In particular if we set $u_1 = v_1 = v_2 = 0$, the induction hypothesis (4.19) implies that

$$rac{\partial^{p+1}u_2(0)}{\partial u_1^l\partial v_1^k}+rac{\partial\gamma(0)}{\partial u_2}rac{\partial^{p+1}u_2(0)}{\partial u_1^l\partial v_1^k}=rac{\partial^{p+1}u_2(0)}{\partial u_1^l\partial v_1^k}=0\;.$$

This proves Lemma 4.15.

To utilize Lemma 4.15 we set $x_1 = u_1$, $x_2 = v_1$, $x_3 = v_2$ and $\rho = -r$. Then a simple computation yields

(4.20)
$$|\nabla \rho| L = -\frac{1}{2} \rho_{w_2} \left(\frac{\partial}{\partial x_1} - i \frac{\partial}{\partial x_2} \right) - \frac{1}{2} i \rho_{w_1} \frac{\partial}{\partial x_3} ,$$

(4.21)
$$|\nabla \rho| M = - |\nabla_w \rho|^2 \frac{\partial}{\partial \rho} - \frac{1}{2} \rho_{w_1} \left(\frac{\partial}{\partial x_1} - i \frac{\partial}{\partial x_2} \right) + \frac{1}{2} i \rho_{w_2} \frac{\partial}{\partial x_3}$$

where

(4.22)
$$|\nabla_w \rho|^2 = |\rho_{w_1}|^2 + |\rho_{w_2}|^2.$$

5. Reduction to the boundary

In [4] L. Hörmander reduced the study of the estimate (3.5) from $U \cap \Omega$ to the study of similar estimates involving pseudo-differential operators on $U \cap \omega$, at least in the case $s = \frac{1}{2}$. This result was extended by W. J. Sweeney [10] to arbitrary s, $0 < s \le 1$. To be able to state the result in our particular case we shall first compute the boundary system of pseudo-differential operators in question. From (4.11) we have

(5.1)
$$D_0^*D_0 = (L(-\overline{L}) + M(-\overline{M}))I_2 + \text{ first order terms },$$

where I_2 stands for the two-by-two identity matrix. Let r^0 denote $d^{0*}d^0$, the principal symbol of $D_0^*D_0$. A somewhat messy calculation yields

(5.2)
$$r^{0}(x,\xi,\tau) = (|L(x,\xi)|^{2} + |M(x,\xi,\tau)|^{2})I_{2}$$
$$= \frac{1}{4}\{|\nabla_{w}\rho|^{2}\tau^{2} + [\operatorname{Re}(\rho_{w_{1}}(\xi_{1} - i\xi_{2})) - (\operatorname{Im} \rho_{w_{2}})\xi_{3}]\tau + \frac{1}{4}|\xi|^{2}]I_{2}|\nabla\rho|^{-2},$$

where τ stands for the symbol of $\partial/i\partial\rho$, and ρ is assumed to be zero. The equation $r^0(x, \xi, D_{\rho})U(\rho) = 0$ has a unique exponentially decreasing solution on R_+ such that U(0) = u, which is given by

(5.3)
$$\begin{pmatrix} u_1 & e^{m\rho} \\ u_2 & e^{m\rho} \end{pmatrix}$$

where

(5.4)
$$m = \frac{1}{2} | \mathcal{F}_m \rho |^{-2} \{ -i[\operatorname{Re}(\rho_{w_1}(\xi_1 - i\xi_2)) - (\operatorname{Im} \rho_{w_2})\xi_3] \\ - (| \mathcal{F}_w \rho |^2 |\xi|^2 - [\operatorname{Re}(\rho_{w_1}(\xi_1 - i\xi_2)) - (\operatorname{Im} \rho_{w_2})\xi_3]^2)^{\frac{1}{2}} \} .$$

Following Hörmander (see [4, Theorem 2.3.1]) we define pseudo-differential operators P_1 and P_2 on $U \cap \omega$ with principal symbols $p_1^0(x, \xi)$ and $p_2^0(x, \xi)$, respectively, given by the first column of

(5.5)
$$d^{0}(x,\rho=0,\xi,D_{\rho})\binom{e^{m\rho}}{0}$$

evaluated at $\rho = 0$. More explicitly we have

(5.6)
$$p_1^0(x,\xi) = \frac{1}{2} \operatorname{Im}(\rho_{w_1}(\xi_1 - i\xi_2)) - \frac{1}{2} (\operatorname{Re} \rho_{w_2}) \xi_3 \\ - \frac{1}{2} \{ |\nabla_w \rho|^2 |\xi|^2 - [\operatorname{Re}(\rho_{w_1}(\xi_1 - i\xi_2)) - \operatorname{Im}(\rho_{w_2}) \xi_3]^2 \}^{\frac{1}{2}},$$

(5.7)
$$p_2^0(x,\xi) = -\frac{1}{2}i\rho_{w_2}(\xi_1 - i\xi_2) + \frac{1}{2}\rho_{w_1}\xi_3$$

5.8. Proposition. Let $0 < s \le 1$. Then (3.5) implies the following estimate

(5.9)
$$\|\phi\|_{(s)}^{(\omega)} \le C_s(\|P_1\phi\|_{(0)}^{(\omega)} + \|P_2\phi\|_{(0)}^{(\omega)} + \|\phi\|_{(0)}^{(\omega)})$$

for all $\phi \in C_0^{\infty}(U \cap \omega)$.

Proof. Recall that the $\bar{\partial}$ -Neumann boundary condition is equivalent to $\phi_2 = 0$ on ω . Then Proposition 5.8 is a special case of the results of Hörmander (see [4, Theorems 2.3.1 and 2.3.2]) and of Sweeney (see [10, Propositions 5.7 and 5.8]).

6. Proof of Theorem 3.7

First we localize the estimate (5.9).

6.1. Proposition. Let $0 < s \le 1$, and set $\delta = 1 - s$. Suppose that the estimate (5.9) holds with

(6.2)
$$\frac{k}{k+1} \le \delta < \frac{k+1}{k+2},$$

where k is a positive integer. Then for every $(x, \xi) \in T^*(\omega)$, $|\xi| = 1$, there exists a constant C such that

(6.3)
$$\int_{R_{3}} |\phi(y)|^{2} dy$$
$$= C \left\{ \sum_{j=1,2} \int_{R_{3}} \left| \sum_{|\alpha+\beta| \leq k} \frac{1}{\alpha ! \beta !} \frac{\partial^{\alpha+\beta} p_{j}^{0}(x,\xi)}{\partial \xi^{\alpha} \partial x^{\beta}} y^{\beta} (D^{\alpha} \phi)(y) \lambda^{\delta-|\alpha|\delta-(1-\delta)|\beta|} \right|^{2} dy + \lambda^{2\delta-2(k+1)(1-\delta)} \sum_{|\alpha+\beta| \leq k+1} \int_{R_{3}} |y^{\beta} (D^{\alpha} \phi)(y)|^{2} dy \lambda^{-2|\alpha|(2\delta-1)} \right\},$$

for all $\lambda \geq 1$ and $\phi \in C_0^{\infty}(\mathbf{R}_3)$.

Proof. See Egorov [1, Theorem 1] and Hörmander [5, Theorems 6.1 and 6.3].

Let x = 0 be a point of type m. We shall show that the estimate (6.3) cannot hold at the point $(x_0, \xi^0) = (0, 0, 0, 0, 0, 1)$ when k < m. According to Proposition 6.1 this proves that the estimate (5.9) does not hold with s > 1/(m + 1), which proves Theorem 3.7. Since $\rho_{w_2}(0) = -\frac{1}{2}$, according to (5.6) and (5.7) we have

(6.4)
$$p_1^0(x_0,\xi^0) = p_2^0(x_0,\xi^0) = 0$$
,

and therefore we can assume that $k \ge 1$. Furthermore Lemmas 4.12 and 4.15 imply that

(6.5)
$$\rho_{w_1}(x) = x_3 h(x) + O(|x|^m) .$$

Assume that the estimate (6.3) holds for some δ such that $k/(k + 1) \leq \delta \leq (k + 1)/(k + 2)$ with k < m. We substitute

(6.6)
$$\phi(y) = \psi(y_1, y_2, y_3 \lambda^{2\delta - 1 + \epsilon}) , \qquad \psi \in C_0^{\infty}(\boldsymbol{R}_3)$$

into (6.3) with some $\varepsilon > 0$ such that

(6.7)
$$(k+1)\varepsilon + \delta < (k+1)(1-\delta) \le 1$$
.

According to the right hand side of (6.2) we have $\delta < (k + 1)(1 - \delta)$ so that such an ε can always be found. We change coordinates $y_1 = y'_1$, $y_2 = y'_2$, $y_3\lambda^{2\delta-1+\varepsilon} = y'_3$, divide both sides of (6.3) by $\lambda^{-2\delta+1-\varepsilon}$, and let $\lambda \to \infty$. Then the left hand side of (6.3) becomes

(6.8)
$$\int_{R_3} |\psi(y')|^2 dy' \, .$$

Next we compute the right hand side of (6.3).

- 1) Terms involving $p_1^0(x, \xi)$ and its derivatives at (x_0, ξ^0) .
- (i) Set $q_1(x,\xi) = \text{Im}(\rho_{w_1}(\xi_1 i\xi_2))$. Then

(6.9)

$$\sum_{\substack{|\beta| \leq k-1 \\ j=1,2}} \frac{1}{\beta!} \frac{\partial^{\beta+1} q_1(x_0, \xi^0)}{\partial x^{\beta} \partial \xi_j} y^{\beta}(D_j \phi)(y) \lambda^{-(1-\delta)|\beta|}$$

$$= \sum_{\substack{|\beta| \leq k-1 \\ j=1,2}} \frac{1}{\beta!} \frac{\partial^{\beta+1} q_1(x_0, \xi^0)}{\partial x^{\beta} \partial \xi_j} y'^{\beta}(D_j \psi)(y') \lambda^{-(1-\delta)|\beta|+\beta_3(-2\delta+1-\epsilon)}$$

$$= O(\lambda^{-(1-\delta)}) ,$$
since $\beta_2 > 0$ by (6.5).

since
$$\beta_3 > 0$$
 by (6.5).
(ii) Set $p_1 = \frac{1}{2}q_1 - \frac{1}{2}q_2$. Then

$$\sum_{\substack{|\alpha+\beta| \le k \\ \alpha_1+\alpha_2 \neq 0}} \frac{1}{\alpha!\beta!} \frac{\partial^{\alpha+\beta}q_2(x_0,\xi^0)}{\partial\xi^{\alpha}\partial x^{\beta}} y^{\beta} (D^{\alpha}\phi)(y) \lambda^{\delta-|\alpha|\delta-(1-\delta)|\beta|}$$

$$= \sum_{\substack{|\alpha+\beta| \le k \\ \alpha_1+\alpha_2 \neq 0}} \frac{1}{\alpha!\beta!} \frac{\partial^{\alpha+\beta}q_2(x_0,\xi^0)}{\partial\xi^{\alpha}\partial x^{\beta}} y'^{\beta} (D^{\alpha}\psi)(y')$$

$$\cdot \lambda^{-(\alpha_1+\alpha_2-1)\delta-\alpha_3(1-\delta-\epsilon)-(1-\delta)(\beta_1+\beta_2)-\beta_3(\delta+\epsilon)}$$

$$= \sum_{j=1}^2 \frac{\partial q_2(x_0,\xi^0)}{\partial\xi_j} (D_j\psi)(y') + o(1) = o(1) ,$$

because

$$\frac{\partial q_2(x_0,\xi^0)}{\partial \xi_j} = \left(\frac{\partial}{\partial \xi_j} \left(-\frac{1}{2} + \frac{1}{2}\sqrt{\xi_j^2 + 1}\right)\right)_{\xi_j=0} = 0, \quad j = 1, 2.$$

(iii) Finally set $\xi_1 = \xi_2 = 0$ in q_2 . Then

$$q_{2}(x, 0, 0, \xi_{3}) = ((|\rho_{w_{1}}|^{2} + (\operatorname{Re} \rho_{w_{2}})^{2})^{\frac{1}{2}} + \operatorname{Re} \rho_{w_{2}})\xi_{3}$$

$$= -\operatorname{Re} \rho_{w_{2}}\{1 - (1 + |\rho_{w_{1}}|^{2}/(\operatorname{Re} \rho_{w_{2}})^{2})^{\frac{1}{2}}\}\xi_{3}$$

$$= \left(-(\operatorname{Re} \rho_{w_{2}})\sum_{j=1}^{m} a_{j}\frac{|\rho_{w_{1}}|^{2j}}{(\operatorname{Re} \rho_{w_{2}})^{2j}} + O(|x|^{2m+2})\right)\xi_{3}$$

$$= (x_{3}^{2}H(x) + O(|x|^{2m+2}))\xi_{3},$$

where $a_j, j = 1, \dots, m$, are the coefficients in the Taylor series expansion $1 + \sum_{j=1}^{m} a_j x^j + O(|x|^{m+1})$ of $\sqrt{1+x}$ about x = 0, and H(x) is a C^{∞} function near x = 0. Thus

(6.12)
$$\sum_{\substack{|\beta+\alpha_{3}|\leq k}} \frac{1}{\beta!} \frac{\partial^{\beta+\alpha_{3}}q_{2}(x_{0},\xi^{0})}{\partial\xi_{3}^{\alpha_{3}}\partial x^{\beta}} y^{\beta}(D^{\alpha_{3}}\phi)(y)\lambda^{\delta-\alpha_{3}\delta-(1-\delta)|\beta|} = \sum_{\substack{|\beta|\leq k}} \frac{1}{\beta!} \frac{\partial^{\beta}q_{2}(x_{0},\xi^{0})}{\partial x^{\beta}} y'^{\beta}\psi(y')\lambda^{\delta+2(1-2\delta-\varepsilon)-(1-\delta)|\beta|+(\beta_{3}-2)(1-2\delta-\varepsilon)}$$

$$+ \sum_{|\beta| \le k-1} \frac{1}{\beta!} \frac{\partial^{\beta+1} q_2(x_0, \xi^0)}{\partial \xi_3 \partial x^{\beta}} y'^{\beta} (D_3 \psi)(y') \lambda^{-(1-\delta)|\beta|+(\beta_3-1)(1-2\delta-\epsilon)}$$

= $O(\lambda^{-(\delta+2\epsilon)})$,

since $\beta_3 \ge 2$ according to (6.11).

2) As for $p_2^0(x,\xi)$ we have

$$- \frac{1}{4} (\partial \psi / \partial y_1 - i \partial \psi / \partial y_2) \\ - \frac{1}{2} i \sum_{0 < |\beta| \le k-1} \frac{1}{\beta!} \frac{\partial^{\beta} \rho_{w_2}(x_0)}{\partial x^{\beta}} y'^{\beta} ((D_1 \psi)(y') - i(D_2 \psi)(y')) \\ \cdot \lambda^{-(1-\delta)|\beta| + \beta_3(1-2\delta-\epsilon)}$$

$$(6.13) + \frac{1}{2} \sum_{\substack{0 < |\beta| \le k \\ \beta_{\mathfrak{s}} \ge 1}} \frac{1}{\beta!} \frac{\partial^{\beta} \rho_{w_{1}}(x_{0})}{\partial x^{\beta}} y'^{\beta} \psi(y') \lambda^{\delta - (1-\delta)|\beta| + \beta_{\mathfrak{s}}(1-2\delta-\varepsilon)} \\ + \frac{1}{2} \sum_{\substack{0 < |\beta| \le k-1 \\ \beta_{\mathfrak{s}} \ge 1}} \frac{1}{\beta!} \frac{\partial^{\beta} \rho_{w_{1}}(x_{0})}{\partial x^{\beta}} y'^{\beta} (D_{\mathfrak{s}}\psi)(y') \lambda^{-(1-\delta)|\beta| + (\beta_{\mathfrak{s}}-1)(1-2\delta-\varepsilon)} \\ = -\frac{1}{4} (\partial \psi/\partial y'_{1} - i\partial \psi/\partial y'_{2}) + O(\lambda^{-\epsilon}) ,$$

where we have used (6.5).

3) Finally, the remainder yields

(6.14)
$$\sum_{|\alpha+\beta|\leq k+1} y'^{\beta} (D^{\alpha}\psi)(y')\lambda^{\delta-(k+1)(1-\delta)-(\alpha_1+\alpha_2)(2\delta-1)+\beta_3(1-2\delta-\varepsilon)+\alpha_3\varepsilon} = O(\lambda^{(k+1)\varepsilon+\delta-(k+1)(1-\delta)}) = o(1) ,$$

where we have used (6.7). Thus (6.8), (6.9), (6.10), (6.12), (6.13) and (6.14) yield

(6.15)
$$\int_{\mathbf{R}_3} |\psi(y)|^2 dy \leq \frac{1}{4} C \int_{\mathbf{R}_3} \left| \frac{\partial \psi(y)}{\partial y_1} - i \frac{\partial \psi(y)}{\partial y_2} \right|^2 dy ,$$

where $\psi \in C_0^{\infty}(\mathbf{R}_3)$. This is impossible. To see that set $\psi(y) = f(\varepsilon y)$, $f \in C_0^{\infty}(\mathbf{R}_3)$, and let $\varepsilon \to 0$. Then the left hand side of (6.15) is $O(\varepsilon^{-3})$, while the right hand side is only $O(\varepsilon^{-2})$. Hence Theorem 3.7 is proved..

7. Remarks on the estimate (3.5)

In [8] Kohn proved that if $P \in \omega$ is of type *m*, and ω is pseudo-convex at *P*, then *m* must be odd. This result also follows by applying Propositions 2.4 of [9] to the symbol (5.7). Furthermore Kohn conjectured that under the hypothesis of Theorem 3.4 the estimate (3.5) holds with s = 1/(m + 1).

7.1. Proposition. Let $P \in \omega$ be a point of type m, and suppose that the estimate (3.5) holds with s = 1/(m + 1). Then m is necessarily odd.

Proof. It suffices to show that if the estimate (6.3) holds with $k = m, \delta = m/(m + 1)$ and $(x_0, \xi^0) = (0, 0, 0, 0, 0, 1)$, then *m* is odd. We shall follow the arguments of § 6 and indicate the necessary changes. Thus we substitute

(7.2)
$$\phi(y) = \psi(y_1, y_2, y_3 \lambda^{2\delta - 1 + \varepsilon}) , \qquad \psi \in C_0^{\infty}(\boldsymbol{R}_3)$$

into (6.3), where

(7.3)
$$(m+1)\varepsilon + \delta < (m+1)(1-\delta) = 1$$
.

The left hand side of (6.3) again becomes (6.8). (6.9), (6.10) and (6.12) go through unchanged. (6.13) becomes

(7.4)
$$-\frac{1}{4}(\partial\psi/\partial y_1' - i\partial\psi/\partial y_2') + \frac{1}{2}\gamma_{w_1}(w_1, 0)\psi + O(\lambda^{-\epsilon}),$$

and there is no change in (6.14). Thus the hypothesis of Proposition 7.1 implies the following estimate

(7.5)
$$\int_{\mathbf{R}_3} |\psi(y)|^2 dy \leq C \int_{\mathbf{R}_3} \left| \frac{\partial \psi}{\partial y_1} - i \frac{\partial \psi}{\partial y_2} - 2\gamma_{w_1}(w_1, 0)\psi(y) \right|^2 dy ,$$

where $\psi \in C_0^{\infty}(\mathbf{R}_3)$. Set

$$\psi(y_1, y_2, y_3) = \overline{f(y_1, y_2)}g(y_3)e^{2\gamma(w_1, 0)}$$

Then (7.5) yields

(7.6)
$$\int_{R_2} |f(y)|^2 e^{4\gamma(w_1,0)} dy \le C \int_{R_3} \left| \frac{\partial f}{\partial \overline{w}_1} \right|^2 e^{4\gamma(w_1,0)} dy ,$$

for all $f \in C_0^{\infty}(\mathbf{R}_2)$. According to Theorem 2 of [2], (7.6) implies

(7.7)
$$\frac{\partial^2 \gamma(w_1, 0)}{\partial w_1 \partial \overline{w}_1} \ge 0 .$$

(Compare Kohn [8, formula (3.10)]. Egorov's proof of (7.7) is based on one of Hörmander's arguments in [4]; see [4, Lemma 1.2.4, especially (1.2.16)].) Now (7.7) clearly implies Proposition 7.1.

References

- Yu. V. Egorov, Pseudo-differential operators of principal type, Math. U.S.S.R.-Sb. 2 (1967) 319–333.
- [2] —, Bounds for differential operators of the first order, Functional Anal. Appl. 3 (1969) 211–217.
- [3] L. Hörmander, Linear partial differential operators, Springer, Berlin, 1963.
- [4] —, Pseudo-differential operators and non-elliptic boundary problems, Ann. of Math. 83 (1966) 129–209.

- [5] --, Pseudo-differential operators and hypoelliptic equations, Proc. Sympos. Pure Math. Vol. 10, Amer. Math. Soc., 1966, 138-183.
- [6] J. J. Kohn, Harmonic integrals on strongly pseudo-convex manifolds. I, II, Ann. of Math. 78 (1963) 112–148, 79 (1964) 450–472.
 [7] —, The ∂-Neumann problem on (weakly) pseudo-convex two-dimensional mani-
- folds, Proc. Nat. Acad. Sci. U.S.A. **69** (1972) 1119–1120. —, Boundary behavior of $\overline{\vartheta}$ on weakly pseudo-convex manifolds of dimension two, J. Differential Geometry **6** (1972) 523–542. [8] -
- [9] L. Nirenberg & F. Treves, On local solvability of linear partial differential equations. Part I: Necessary conditions, Comm. Pure Appl. Math. 23 (1970) 1-38.
- [10] W. J. Sweeney, The D-Neumann problem, Acta Math. 120 (1968) 223-277.

UNIVERSITY OF TORONTO