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SUBELLIPTIC ESTIMATES FOR THE
0-NEUMANN PROBLEM IN ¢?

PETER GREINER

1. Introduction

In this paper we prove a conjecture of J. J. Kohn concerning precise sub-
elliptic estimates for the local -Neumann problem in C%. Let £ be a bounded
open set in C? with C* boundary w. If w is pseudoconvex near a point P € w,
and P is of type m (the precise definitions are given in § 2), then Kohn proved
that the subelliptic esitimate

1915 < CUaBIE + 10815 + l$lie

holds for all s < 1/(m + 1) (see [8, (7.4)]). Here ¢ is a C* one-form with
compact support in 2 N U where U is some sufficiently small neighborhood
of P, ¢ is the adjoint of 3, and ¢ is in the domain of 6.

In [7] and [8] Kohn suggested that (i) the subelliptic estimate in question
holds with s = 1/(m + 1), and (ii) it cannot hold with s > 1/(m + 1). In
Theorem 3.7 of this paper we shall prove the second conjecture. We do not
know whether s = 1/(m + 1) is achieved. In proving Theorem 3.7 we make
use of results obtained by Yu. V. Egorov [1], L. Hormander [4], [5] and W.
J. Sweeney [9], which enable us to reduce the problem to a similar question
concerning a system of pseudo-differential operators on w. We shall compute
these pseudo-differential operators with great precision by utilizing some re-
sults of Kohn (see [7] and [8]) concerning the behavior of w near a point of
type m. Our notation and terminology are standard (see e.g. [3] and [4]).

2. The Levi invariants

We recall the basic definitions of [8]. Let £ be a bounded open subset of
C? with C~ boundary o, and let r(P) denote the distance of the point P from
o, and assume that r < 0 in £ and r > 0 outside of 2. A vector field L is said
to be holomorphic in some open set U C C? if it can be written in the form

a

2.1 L=a "+ ad—, ateC-(U) ,
@D 0z, + 07
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where §/0z; = 3(d/dx; — i(@/dy;)), j = 1,2. A vector field L is said to be
tangential if at each point of w it is tangent to o, that is, if L(r) = 0 at r = 0.
As usual we define L by

F_ 10 ~3 0
(2.2) L=a—+a—.
07, 07,

If T, and T, are two vector fields, we define the Lie bracket by [T}, T,] =
T.T, — T,T,. The Lie algebra generated by T, and T, over the C~ functions
is the smallest module over the C= functions closed under [, ], and is denoted
by Z{T,, T,}. #{T,, T,} is filtered, that is,

°g{TU Tz} = kL;JO gk{Tla Tz} )

where % (T,, T} is the module spanned by T, and T,, and Z; ,{T}, T,} is the
module spanned by the elements of #,{T,, T,} and the elements of the form
[4,T;] with A € £{T\, T,}. Set

¢ =2, L}, %.=%JLL},

where L is a holomorphic tangent vector in some neighborhood of a point
P ¢ w, which is different from zero at P. We note that the ¥ and .#, evaluat-
ed at P do not depend on the choice of L.

2.3. Definition. P e o is said to be of finite type if there exists F ¢ &
such that {(dr)p, Fp) # 0. Here {, ) denotes contraction between cotangent
vectors and tangent vectors, and the subscript P denotes evaluation at P. P of
finite type is said to be of type m if m is the least integer such that there is an
element in %, satisfying the above property.

2.4. Definition. £ is said to be pseudo-convex near a point P ¢ o if there
is a neighborhood U of P such that

(2-5) <ar’ [Z, L]>wﬂU 2 0 s

where L is a nonzero tangential holomorphic vector field.
2.6. Definition. If £ is pseudo-convex near a point P € w, and P is of
type m, we say that  is pseudo-convex of order m at P.

3. The local 5-Neumann problem in C*

Let H{2 and H{?) denote the Sobolev spaces on 2 and o respectively (see
e.g. [3]) with norms denoted by || [{2 and || ||{) as usual. These spaces and
norms are well defined for vector functions, in particular, for (0, 1)-forms
¢ = $,dz7, + A%y, ¢y, ¢, € C=(2). On (0, 1)-forms we have
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3.1 ¢ = (0¢,/0Z, — 0¢,/0Z,)dZ, N dzZ, .
Let 6 denote the formal adjoint of 6 operating on (0, 1)-forms, that is,

(3.2) (0, V) 130y = (B, 0V) 1acqy »

¢ e Cy(Q) and € D ,,(2), where D, ,,(2) stands for C= (0, 1)-forms with
compact support in £. More precisely we have

(33) 0(¢,dz, + ¢2dzz) = - a¢1/azl v a¢2/az2 .

Now we can state the main result of [8].
3.4. Theorem. Let P e w be a point of type m, and U be an open neigh-
borhood of P such that U N w is pseudoconvex. Then there exists a constant

C, for all 5,0 < s < 1/(m + 1), such that
(3.5) gl < Cloglls + 11081 + 16l

for all $ € D,,,(U N Q) satisfying {$,dry =0onw N U.
We note that (y,dr> = 0 on w N U is equivalent to

Qp > =<p,0v>, $eD, ,(UN D).

When m = 1, (3.4) holds with s = %, and this is the best possible estimate
(see [4], [6] and [10]). When m > 1, we do not have such a precise result.
On the other hand, we have the following result.

3.7. Theorem. Let Pe w be a point of type m, and U a neighborhood
of P. Then the estimate (3.5) does not hold with any s>1/(m + 1).

The proof of Theorem 3.7 will be given in §§ 4, 5 and 6.

4. The § operator near a point of type m

Let Pew be a point of type m, and U a sufficiently small neighborhood
of P. By an affine change of coordinates we construct coordinates z;, z; in U

such that
4.1) Zi(P) = zy(P) = (0r/9z)p = (0r/0Z)p = (Or/0y))p =0,
@rjox)p =1,

where z{ = x| + iy; and z; = x; + iy;. Now r has the following Taylor series
expansion

(4.2) n(Z) = Re h(Z) + ¥(2) + O(Z "),

where (z') is a polynomial of degree m + 1 such that each term contains
z;Z); as a factor and
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.3) D W (AL AT

s+tSmAl §
According to (4.1) and (4.2)

4.4) @h/3z), = 0, (0h)0z3), = (dr/ox), = 1.

Thus z{ and A are linearly independent in U (here we need U to be sufficiently

small), and therefore we can introduce holomorphic coordinates w, = u, + iv,,
w, = u, + iv, defined by w, = z{ and w, = h. Then (4.2) becomes

4.5) riw, w,)) = u, + y(w;, w)) + O(w|™*?) ,
where
(4.6) 7wy, w) = O(wp)

is a polynomial of degree m + 1 which contains no pure terms, that is, holo-
morphic or antlholomorphlc terms.
To derive a precise expression for the d operator we set

[Vrie' = ry, dw, — 1y, dw, , |Vr|e® = ry,, dw, + 1, dw, = 0r ,

where r,, = dr/ow,, etc., so that w; and w, yield a basis of the (1,0)-forms in
U. Let ¢ = ¢,@" + ¢,@°. From (3.1) it is easy to see that the ¢ operator on
(0,1)-forms ¢ has the following expression in terms of the basis @' and @°:

0p = (— Mo, + L)' N\ @

4.7
@D + (terms in which ¢, and ¢, remain undifferentiated) ,
where
(4.8) AL = 1y, 2 — 1y, -0,
ow, ow,
4.9) M = rwl s 9
ow,

Given ¢ = ¢,@" + ¢, the 0-Neumann boundary’ condition {@,ory = 0 on
is equivalent to the vanishing of ¢, on w. If ¢ = ¢,@" + $@* ¢ C3(U N 2) and
¢, = 0 on w, then 6¢ is well defined and is given by the expression

0¢ = - (L¢1 + M¢2)

4.10
( ) + (terms in which ¢, and ¢, remain undifferentiated).
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Thus in terms of the basis @', @* the principal part of the 9-Neumann operator
on (0,1)-forms is given by

@.11) D, = (:]LW _i) .

4.12. Lemma. Let P e w be of type m. Then y(w,,0) is a homogeneous
polynomial in w, of degree m + 1. More precisely

1

4.13) 7w, 0) = s+t§n—1 s+ D!'@+ D!

LeLtCor, [L, L>wi i+ .

Proof. See Kohn [8, Lemma 3.16].
Consider

(4.14) r=u, + 7y, vy, Uy, V) + O(u|™*? + |v[™**) =0,

where we set u = (u;, u,) and v = (v, v,). Since (or/du,), = 1, we can solve
(4.14) for u, = u,(u,, v,, v,) in a neighborhood of 0.

4.15. Lemma. Let u,(u,,v,,v,) be a solution of (4.14) in some neigh-
borhood of 0. Then

al + kuZ(O) _

4.16
¢ ) oulovr

0 if Il+k<m.

Proof. According to Lemma 4.12

al+kr(0) .
4.17 - =0 if I+k<m.
4.17) SulouE + k<

By the definition of r, ,(0) = 0. Next, replacing u, by u,(u,, v,,v,) in (4.17)
we obtain

ou, or or ou, O(lu, ™+ m+1
9 4 O 4 9T 9% + [v™*) =0.
ou, + ou, + ou, du, + O 1l

Since y = O(luf + |v[), this implies that

(4.18) 90 _ o and similarly 4@ _ ¢ |
ou, v,

Now suppose that

(4.19) O _ o i jyrk<p

outovt
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for some p < m. Then for a fixed [ and k satisfying | + k = p + 1 we have

1 1
7" 'u, ortly
oulovt outovt
+ C a.s].ftj,uz(o_). o
(sirtpazt; L1\ "7 cA )
Tsj+ti+(q-1))<p+1 J ousiovts
J

+ O] + [v)™*17) =0 .

In particular if we set 4, = v, = v, = 0, the induction hypothesis (4.19) im-
plies that

7 (0) | 97(0) *Mu0) _ 7 u(0) _
oulovr ou, oulovt oulovt

This proves Lemma 4.15.
To utilize Lemma 4.15 we set x, = u,, x, = v;, x; = v, and p = — r. Then
a simple computation yields

1 s .8 1. 9
(4.20) VolL = — L w2<fg_,,_,,)_~, o2
Vel 2 \ox, T o) T 20,
1 .9 1. 9
@2 PoM =~ ppf 2 = Lo (2 —i 0 ) Lip, 2
IPel Vel as = 20\ ~lan) T 2 0,
where
(4.22) Vol = 10w, + |pw,l -

5. Reduction to the boundary

In [4] L. Hormander reduced the study of the estimate (3.5) from U N £
to the study of similar estimates involving pseudo-differential operators on
U N o, atleast in the case s = £. This result was extended by W. J. Sweeney
[10] to arbitrary s, 0 < s < 1. To be able to state the result in our particular
case we shall first compute the boundary system of pseudo-differential opera-
tors in question. From (4.11) we have

5.1 D#D, = (L(— L) + M(— M))I, + first order terms ,

where I, stands for the two-by-two identity matrix. Let r* denote d”d’, the
principal symbol of DFD,. A somewhat messy calculation yields

rﬂ(x’ E’ T) = (IL(.X', 5) IZ + IM(x, E’ T) '2)12

(5.2) = Y uol* 4+ [Relop (&, — i&))
— (Im p,,,)&]c + IEMLIPpl™,
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where 7 stands for the symbol of 9/idp, and p is assumed to be zero. The
equation r’(x, &, D,)U(p) = 0 has a unique exponentially decreasing solution
on R such that U(0) = u, which is given by

(5.3) Cl”v

u, em
where

m = %lePI_Z{—— i[Re(Pwl(& - I‘SZ)) — (Im sz)sa]

(5.4) .
- (' Vw,olzlglz - [RC(PEI(& - 152)) - (Im Pw2)§3]2)1}} .

Following Hormander (see [4, Theorem 2.3.1]) we define pseudo-differential
operators P, and P, on U N w with principal symbols p(x, &) and p3(x, &),
respectively, given by the first column of

(5.5) f@p:@&%%ij

evaluated at p = 0. More explicitly we have

pix, &) = § Im(py,,(§, — i§)) — 3(Re p,,)6;

5.6
G0 — HVwolIEF — [Re(on,(§; — i€2)) — Im(p, )&},

(5.7 Pix, §) = — Yipy, (61 — i5) + Foués -

5.8. Proposition. Let 0 < s < 1. Then (3.5) implies the following
estimate

(5.9 81 < CIPGIE + 1PSIE + 1415

forall e C3(U N ) .

Proof. Recall that the 6-Neumann boundary condition is equivalent to
#, = 0 on w. Then Proposition 5.8 is a special case of the results of Hormander
(see [4, Theorems 2.3.1 and 2.3.2]) and of Sweeney (see [10, Propositions 5.7
and 5.8]).

6. Proof of Theorem 3.7

First we localize the estimate (5.9).
6.1. Proposition. Let0 < s < 1, and set 6 =1 — s. Suppose that the
estimate (5.9) holds with
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k k+1
6.2 — << —,
6.2) k+17 k+2

where k is a positive integer. Then for every (x,&) e T*(w), |&| = 1, there
exists a constant C such that

Ls |¢(y) Fdy
6 =cf],

j=1,2

1 aa+ﬁp‘}(x, &) 8(D= 2"""""(1-6)1,91‘2‘1
Ia+ZﬁEsk a! B! O 0x? YD) y

+ ]26—2(k+1)(1—6) 2 I 'yﬂ(Da¢)(y) |2dy2—2|n|(26—-1)} ,
la+B8I<k+1J R

forall 2 > 1 and ¢ € C3(R;).

Proof. See Egorov [1, Theorem 1] and Hormander [5, Theorems 6.1 and
6.3].

Let x = 0 be a point of type m. We shall show that the estimate (6.3) can-
not hold at the point (x,, &% = (0,0,0,0,0,1) when k& < m. According to
Proposition 6.1 this proves that the estimate (5.9) does not hold with s >

1/(m + 1), which proves Theorem 3.7. Since p,,(0) = — %, according to
(5.6) and (5.7) we have
(6.4) Pi(x; §) = Pa(x,, ) = 0,

and therefore we can assume that k£ > 1. Furthermore Lemmas 4.12 and 4.15
imply that

6.5 0 ) = xh(x) + O(x[™) .

Assume that the estimate (6.3) holds for some & such that k/(k + 1) < 6 <
(k + 1)/(k + 2) with k& < m. We substitute

(6~6) ¢(y) = 1lr()’1, Y2 y3226—1+s) 5 ‘P‘ € CSO(R::,)
into (6.3) with some ¢ > O such that
6.7 k+De+o<k+DA-9<T1.

According to the right hand side of (6.2) we have § < (k + 1)(1 — §) so
that such an ¢ can always be found. We change coordinates y, = yi, y, = ¥},
y,A8-1*e = y[, divide both sides of (6.3) by -#*+'~¢, and let A — co. Then the
left hand side of (6.3) becomes

(6.8) L () Py .

Next we compute the right hand side of (6.3).
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1) Terms involving p(x, &) and its derivatives at (x,, £°).
()  Set gi(x, &) = Im(p,, (&, — i£,)). Then

B+1 0
Z L' a aqlp(gwf) yp(qus)(y)z_(l_a)lm
18j<k o1 B! xP0&
6.9) = L w V(D ) () A~ (- D161+Bs(-2o+1-0)
i<kt Bl 0xP0,
= 0Q-4-v) ,

since B; > 0 by (6.5).
(i) Set p, = 34, — 9,. Then

1 072 qy(x0, &) s b o
“ Q- lals—(1-0)15]
la+ﬂl,<_6ca'!‘@! 0E“OxP ¥4 ¢)(y)

a1+ ag#

= 1 0% Pgy(xp, &%) /s D= y
(610) |a+ﬂ|g§a!ﬁ! agaaxﬁ Yy ( "l")()’)

ay+ag#
. 2—(u1+ ag—1)d—ag(1—d—¢e)—(1—38)(B1+p2)—P3(d+e)

= 3, 9% ) (b)) + o) = o(1)

Jj=1 0 j

because

S e DEL

(iii) Finally set &, = & = 0 in g,. Then

q,(x,0,0,&) = (o, + Re p,,))* + Re py,,)€,
= — Re pwe{l -1+ |Pw1|2/(Re sz)z)i}fs

m 2]
6.11) _ (_ Repu) 5 “’T}lfzﬂ,i';)ﬁ + 0(|x,zm+z))§3

= (GH(x) + O(xf™*))&, ,
where a;,j =1, ---,m, are the coefficients in the Taylor series expansion

1+ 3™, a;x5 + O(x|™*") of ¥/1 4+ x about x = 0, and H(x) is a C~ func-
tion near x = 0. Thus

1 0%+ asqz(xo; 80) s R
TS E— D= A9 asd=(1=-0)151
1B+as| <k ‘@! 0Es0xP y( ¢)(J’)

1 9°gy(x, &) s () 2o +2a-z-o-- —2)(1-23—
— 1 )4+ 2= = (=8 Bl + (Bg=2) (1=23 =)
6.12) DT MR



248 SUBELLIPTIC ESTIMATES

i aﬂ+qu(x0a fo) 6(D /)3~ (=D1B1+ s =1 (1-20-0)
181<k-1 B! 08.,0x° Y D)y

= O~ 6+) |

since B, > 2 according to (6.11).
2) As for pY(x, &) we have

— L@ /0y, — iy /dy,)
L1y L Py, o
2 10<|ﬁIZSk—1 ‘8! oxP YHDG) l(Dz‘V)(y )

. 2—(1—6)|ﬁl+ﬂs(1—-26—s)

(6.13) + l l aﬁpw,(xo) ylﬁw(yl)za—(l—d)[ﬂl+ﬂs(1—2d-s)
2 ocjei<e B! ox*
Bs=1
N _1_ Z l ﬂg{,(xo) y’ﬁ(D;;’\I/‘)(y,)Z_(l_a)'ﬂl-Hh_l)(l—”—s)
2 S B! oxf

— 1@y /0y, — iy /dy) + OQ™) ,

where we have used (6.5).
3) Finally, the remainder yields

(6 14) B, 1ylﬁ(Da\I/‘)(y/)zﬁ—(lc+1)(l—6)—(a1+uz)(26—1)F53(1—26—5)+a35
atpl<k+
— O(Z(k+1)e+6—-(k+1)(l—5)) — 0(1) ,

where we have used (6.7). Thus (6.8), (6.9), (6.10), (6.12), (6.13) and (6.14)
yield

HNO) WOy,
9y, 0y, ’

(6.15) [ lvoray <,

where +» € C7(R,). This is impossible. To see that set (y) = f(ey), f € CF(R;),
and let ¢ — 0. Then the left hand side of (6.15) is O(¢~%), while the right hand
side is only O(¢~%). Hence Theorem 3.7 is proved..

7. Remarks on the estimate (3.5)

In [8] Kohn proved that if P €  is of type m, and w is pseudo-convex at P,
then m must be odd. This result also follows by applying Propositions 2.4 of
[9] to the symbol (5.7). Furthermore Kohn conjectured that under the hypo-
thesis of Theorem 3.4 the estimate (3.5) holds with s = 1/(m + 1).

7.1. Proposition. Let P ¢ w be a point of type m, and suppose that the
estimate (3.5) holds with s = 1/(m + 1). Then m is necessarily odd.
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Proof. It suffices to show that if the estimate (6.3) holds with k = m, § =
m/(m + 1) and (x,, &) = (0,0,0,0,0, 1), then m is odd. We shall follow the
arguments of § 6 and indicate the necessary changes. Thus we substitute

(7.2) d) = Y1, Y5, YA ¥ e C7(Ry)
into (6.3), where
(7.3) m+Ded+o<m+DA—-95=1.

The left hand side of (6.3) again becomes (6.8). (6.9), (6.10) and (6.12) go
through unchanged. (6.13) becomes

(7.4) — 1@y /0y, — iV [0yy) + Erw, W, O + O ,

and there is no change in (6.14). Thus the hypothesis of Proposition 7.1 im-
plies the following estimate

N _ O gy, (w, Oy | dy

(7:3) JRS WOy < € Lea oy, ay,

where 4 € C3’(R,). Set

\l"(yla Vas ya) - mg(ys)eZT(wl,O) .
Then (7.5) yields

K2

2
L e4r(w1,0)dy R
ow,

(7.6) hwaWW@gcj

Rs
for all f e C7(R,). According to Theorem 2 of [2], (7.6) implies

1.7 Trw,0 - ¢
ow,0w,

(Compare Kohn [8, formula (3.10)]. Egorov’s proof of (7.7) is based on one
of Hormander’s arguments in [4]; see [4, Lemma 1.2.4, especially (1.2.16)].)
Now (7.7) clearly implies Proposition 7.1.
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