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SUBELLIPTIC ESTIMATES FOR THE
9-NEUMANN PROBLEM IN C2

PETER GREINER

1. Introduction

In this paper we prove a conjecture of J. J. Kohn concerning precise sub-
elliptic estimates for the local 5-Neumann problem in C2. Let Ω be a bounded
open set in C2 with C°° boundary ω. If ω is pseudoconvex near a point P € ω,
and P is of type m (the precise definitions are given in § 2), then Kohn proved
that the subelliptic esitimate

WΦWW < c , ( | | 5 0 C + WβΦWW + WΦWffl)

holds for all s < l/(m + 1) (see [8, (7.4)]). Here φ is a C°° one-form with
compact support in Ω ΓΊ U where U is some sufficiently small neighborhood
of P, θ is the adjoint of 9, and φ is in the domain of θ.

In [7] and [8] Kohn suggested that (i) the subelliptic estimate in question
holds with s = l/(m + 1), and (ii) it cannot hold with s > l/(m + 1). In
Theorem 3.7 of this paper we shall prove the second conjecture. We do not
know whether s = l/(m + 1) is achieved. In proving Theorem 3.7 we make
use of results obtained by Yu. V. Egorov [1], L. Hδrmander [4], [5] and W.
J. Sweeney [9], which enable us to reduce the problem to a similar question
concerning a system of pseudo-differential operators on ω. We shall compute
these pseudo-differential operators with great precision by utilizing some re-
sults of Kohn (see [7] and [8]) concerning the behavior of ω near a point of
type m. Our notation and terminology are standard (see e.g. [3] and [4]).

2. The Levi invariants

We recall the basic definitions of [8]. Let Ω be a bounded open subset of
C2 with C°° boundary ω, and let r(P) denote the distance of the point P from
ω, and assume that r < 0 in Ω and r > 0 outside of Ω. A vector field L is said
to be holomorphic in some open set U C C2 if it can be written in the form

(2.1) L = fl1 A + tfJL , fl«€C-(ϋ),
dzλ dz2
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where d/dZj = j(d/dXj — i(d/dyj))9 / = 1,2. A vector field L is said to be
tangential if at each point of ω it is tangent to ω, that is, if L(r) = 0 at r = 0.
As usual we define L by

(2.2) L = a1-*- + a2 — .
3 d

If Γj and T2 are two vector fields, we define the Lie bracket by [T19 T2] =
TλT2 — T2TX. The Lie algebra generated by Tλ and T2 over the C°° functions
is the smallest module over the C°° functions closed under [, ], and is denoted
by &{T19 T2). &{TU T2) is filtered, that is,

&{T19 T2} = U &ΛT» T2) ,
k = 0

where J2?0{̂ i> ^2} is the module spanned by 7\ and T29 and Sfk+1{T19 T2} is the
module spanned by the elements of J2?fc{7\> T2} and the elements of the form
[A, Til with A e &h{Tl9 T2). Set

where L is a holomorphic tangent vector in some neighborhood of a point
P € ω, which is different from zero at P. We note that the J£? and <gk evaluat-
ed at P do not depend on the choice of L.

2.3. Definition. P e ω is said to be of finite type if there exists F € ££
such that <(3r)P, FP> ^ 0. Here < , )> denotes contraction between cotangent
vectors and tangent vectors, and the subscript P denotes evaluation at P. P of
finite type is said to be of type m if m is the least integer such that there is an
element in j£?m satisfying the above property.

2.4. Definition. Ω is said to be pseudo-convex near a point P € ω if there
is a neighborhood U oi P such that

(2.5) < d r , [ L , L ] > ω f W > 0 ,

where L is a nonzero tangential holomorphic vector field.
2.6. Definition. If Ω is pseudo-convex near a point P € ω, and P is of

type m, we say that ω is pseudo-convex of order m at P.

3. The local 5-Neumann problem in C2

Let Hffi and //$ denote the Sobolev spaces on Ω and ω respectively (see
e.g. [3]) with norms denoted by || | | $ } and || \\$ as usual. These spaces and
norms are well defined for vector functions, in particular, for (0, l)-forms
φ = φγdzx + φ2dz2, φi, φι £ C°°(β), On (0? l)-forms we have
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(3.1) dφ = (dφ2/dzι - dφjdzjdϊr A dz2 .

Let θ denote the formal adjoint of 5 operating on (0, l)-forms, that is,

(3.2) (dφ,ψ)LHΩ) — (

φ € CQ(Ω) and ψ e D(0>l)(Ω), where D(Otl)(Ω) stands for C°° (0, l)-forms with
compact support in Ω. More precisely we have

(3.3) θ{φxdlχ + Φidlί) = - dφjdz1 - dφ2/dz2 .

Now we can state the main result of [8].
3.4. Theorem. Let P € ω be a point of type m, and U be an open neigh-

borhood of P such that U Π ω is pseudoconvex. Then there exists a constant
Cs for all s,0 < s < l/(ra + 1), such that

(3.5) \\φ\\W < cs(\\dφ\\W + WβΦWffl + IÎ HίoT)

for all φ € D(0>ί)(U Π Ώ) satisfying (φ, dr) = 0 on ω Π U.
We note that <ψ , dr) = 0 on ω Π U is equivalent to

<dφ, ψ> = (φ, βψy , φe D(Otl)(u n Ώ).

When m = 1, (3.4) holds with s — \, and this is the best possible estimate
(see [4], [6] and [10]). When m > 1, we do not have such a precise result.
On the other hand, we have the following result.

3.7. Theorem. Let P eω be a point of type m, and U a neighborhood
of P. Then the estimate (3.5) does not hold with any s>l/(m + 1).

The proof of Theorem 3.7 will be given in §§ 4, 5 and 6.

4. The 3 operator near a point of type m

Let P 6 ω be a point of type m, and U a sufficiently small neighborhood
of P. By an affine change of coordinates we construct coordinates z{, z'2 in U
such that

(4.1) zί(P) = z!2(P) = (dr/dzΐ)P = (dr/dzί)P = (dr/dyOP = 0 ,

(dr/dxQP = 1 ,

where zί = x[ + iy[ and z!2 = τί% + iy'2. Now r has the following Taylor series

expansion

(4.2) r(z') = Re h(zf) + ψ(z') + O(\zί\n+*) ,

where ψ(z') is a polynomial of degree m + 1 such that each term contains
ẑ  as a factor and
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(4.3) h(z[,4)= Σ - ^ { ( W

s + ί<m + l SI tl

According to (4.1) and (4.2)

(4.4) (dh/dzOo = 0 , (dh/dzOo = Or/djQo = 1 .

Thus z[ and h are linearly independent in U (here we need U to be sufficiently
small), and therefore we can introduce holomorphic coordinates w1 = ux + iv19

w2 = u2 + iv2 defined by wx = z{ and w2 = h. Then (4.2) becomes

(4.5) Kw19w2) = u2 + γ(w19w2) + O(\w\m+2) ,

where

(4.6) r(Wl,w2) = O(\w\2)

is a polynomial of degree m + 1 which contains no pure terms, that is, holo-
morphic or antiholomorphic terms.

To derive a precise expression for the 3 operator we set

\Pr\ωι = rW2 dwγ - rWχ dw2 , \Fr\ω2 = rWl dwx + rW2 dw2 = dr ,

where rWl = dr/dw19 etc., so that ωλ and ω2 yield a basis of the (l,0)-forms in
U. Let 0 = φλω

λ + 02ω
2. From (3.1) it is easy to see that the 3 operator on

(0,l)-forms φ has the following expression in terms of the basis ω1 and ω2:

(4 7) δ)1 Λ

+ (terms in which φλ and φ2 remain undifferentiated) ,

where

(4.8) \Fr\L = rW2JL-rWi-<L ,
θW, OWn

(4.9)

*2

d

Given φ = φ^1 + φ2ω
2 the 9-Neumann boundary1 condition (φ, dry = 0 on ω

is equivalent to the vanishing of φ2 on ω. If φ == ^iω1 + 5̂2ω
2 e Q°(£/ Π i5) and

02 = 0 on ω, then 00 is well defined and is given by the expression

(4 10) ΘΦ
+ (terms in which φx and 02 remain undifferentiated).



SUBELLIPTIC ESTIMATES 243

Thus in terms of the basis ω\ ω2 the principal part of the 3-Neumann operator
on (0,l)-forms is given by

<«•'» D = ( : f _*)•
4.12. Lemma. Let P eω be of type m. Then γ(wly 0) is a homogeneous

polynomial in wx of degree m + 1. More precisely

(4.13) *» Σ

« + t = m-l (s + 1)! (/ + 1)!

Proof. See Kohn [8, Lemma 3.16].
Consider

(4.14) r = u2 + γiu^v^u^v,) + Oflκ|m + 2 + M m + 2 ) = 0 ,

where we set u = (w1? w2) and v = (v15 v2). Since (dr/du2)0 = 1, we can solve
(4.14) for M2 = M2(M15 V1S V2) in a neighborhood of 0.

4.15. Lemma. Let u2(u19v19v2) be a solution of (4.14) in some neigh-
borhood of 0. Then

(4.16) d l + k u 2 ( 0 ) = Q i f ι + k < m

Q i f ι + k < m
du\dvl

Proof. According to Lemma 4.12

(4.17) dι+kγ(O) = 0 i f ι + k < m

du[dvk

By the definition of r, M2(0) = 0. Next, replacing w2 by u2{ux,vλ,v2) in (4.17)

we obtain

^ + _^L + i L ̂  + O(|M l |
T O + 1 + |τ;|w + 1) = 0 .

d 9 5

Since y = O(\uf + \v\2), this implies that

(4.18) d u M = 0, and similarly ^ ( 0 ) = 0

Now suppose that

(4.19) dl + ku2(0) = o i f / + ^ < p

3w{3vf
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for some p < m. Then for a fixed / and k satisfying I + k = p + 1 we have

du\dv\ du\dv\
. ~.-w M It " * |/f. si 1 I V f \

L Λ ^{Sj,tj,qj}j 1 1 1 "
. . . . . . . . . . 4-1 3

+ OίdiiJ + \v\)m+1~p) = 0 .

In particular if we set ux = vλ = v2 = 0, the induction hypothesis (4.19) im-
plies that

dγ(0) dp+1u2(0) _ dp+1u2(0) __ Q

3u2 du[dvl ~~ du\dv\

This proves Lemma 4.15.
To utilize Lemma 4.15 we set xλ — u19 x2 = v19 x3 = v2 and p = — r. Then

a simple computation yields

(4.20) |F,|L = - ~PJ~ " ' # - ) - I''0-/- '
2 Vd 5 / 2 5x3

(4.21) \Fp\M= -\VwPf^- - ±pl-H--iJ^\ + -ipW2^- ,

OjO 2 \ 9JCJ σ ^ 2 ' 2 (M3

where

(4.22) I ^ | 2 = | ^ J 2 + \pwj .

5. Reduction to the boundary

In [4] L. Hδrmander reduced the study of the estimate (3.5) from C/flfl
to the study of similar estimates involving pseudo-differential operators on
U Π ω, at least in the case s — \. This result was extended by W. J. Sweeney
[10] to arbitrary s, 0 < s < 1. To be able to state the result in our particular
case we shall first compute the boundary system of pseudo-differential opera-
tors in question. From (4.11) we have

(5.1) D*D0 = ( L ( - L) + M(- M))I2 + first order terms ,

where I2 stands for the two-by-two identity matrix. Let r° denote d°*d°, the
principal symbol of D£DQ. A somewhat messy calculation yields

r\x, £, τ) = d L(x, ξ) |2 + | M(x, ξ, τ) |2)/2

(5.2) = i { | F > | V + [ReQt^fo - ϊ£2))
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where τ stands for the symbol of d/idp, and p is assumed to be zero. The
equation r°(x,ξ,Dp)U(ρ) = 0 has a unique exponentially decreasing solution
on R+ such that £7(0) = u, which is given by

(5.3)

where

(5 4) m

- (l^llf I2 - [Re^fo - if2)) -
Following Hormander (see [4, Theorem 2.3.1]) we define pseudo-differential
operators P1 and P2 on U f) ω with principal symbols rf(jt, ξ) and /?£(Λ;, f),
respectively, given by the first column of

(5.5) <P(x9p = 09ς,D

evaluated at p = 0. More explicitly we have

rf(*, f) = i lm(Pwi(ξ 1 - if 2)) - i(Re

- i ί lΓ^Πf I2 - [Re^ί f , - if2)) -

(5.7) rt(jc,f) - - i ι>«,,(fi - Ϊ'6) + έ ^ ^ s

5.8. Proposition. Let 0 < s < 1. TTzerc (3.5) implies the following
estimate

(5.9)

/or a// φ e Co(U Π ω) .
Proof. Recall that the 5-Neumann boundary condition is equivalent to

φ2 = 0 on ω. Then Proposition 5.8 is a special case of the results of Hormander
(see [4, Theorems 2.3.1 and 2.3.2]) and of Sweeney (see [10, Propositions 5.7
and 5.8]).

6. Proof of Theorem 3.7

First we localize the estimate (5.9).
6.1. Proposition. Let 0 < s < 1, and set δ = 1 — s. Suppose that the

estimate (5.9) holds with
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(6 2) ΪTΊ^&Ϊ
where k is a positive integer. Then for every (x,ξ) e T*(ω), |f | = 1, there
exists a constant C such that

ί
J R,

\Φiy)fdy

(6.3)
ccl βl dξadxβ

for all λ>\ and φ <= Co(R,).

Proof. See Egorov [1, Theorem 1] and Hόrmander [5, Theorems 6.1 and
6.3].

Let x = 0 be a point of type m. We shall show that the estimate (6.3) can-
not hold at the point (JC0, ξ°) = (0,0, 0,0,0,1) when k < m. According to
Proposition 6.1 this proves that the estimate (5.9) does not hold with s >
l/(m + 1), which proves Theorem 3.7. Since pW2(0) = — J, according to
(5.6) and (5.7) we have

(6.4) ri(*o>£°) = rf(*o,e°) = o ,

and therefore we can assume that k > 1. Furthermore Lemmas 4.12 and 4.15
imply that

(6.5) pWl(x) = xMx) + O(\x\m) .

Assume that the estimate (6.3) holds for some δ such that k/(k + 1) < δ <
(A: + l)/(k + 2) with & < m. We substitute

(6.6) 060 = ψfo, y2,3>sJM-1+f) , Ψ 6

into (6.3) with some ε > 0 such that

(6.7) (k + l)ε + δ < (k + 1)(1 - 5) < 1 .

According to the right hand side of (6.2) we have δ < (k + 1)(1 — δ) so
that such an ε can always be found. We change coordinates y1 = y[, y2 = yj,
y 3 ^- 1 + e - y3, divide both sides of (6.3) by ^~2 δ+1-% and let λ -> oo. Then the
left hand side of (6.3) becomes

(6.8) f iψOOIW

Next we compute the right hand side of (6.3).
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1) Terms involving pl(x, ξ) and its derivatives at (JC0, f°).
(i) Set q^x, ξ) = ίmfafa - if,)). Then

Σ 4r

(6.9) = 2 ^ + ^x°'^
j8! dxβdξj

since ft > 0 by (6.5).
(ii) Set Pι = Jft - Jft. Then

α!i8! dξadxβ

because

fi fj 2 2

(iii) Finally set ξt = ξ2 = 0 in g2. Then

( 6 * Π )

where aj9j = 1, ,ra, are the coefficients in the Taylor series expansion
1 + Σ?=iajχj + O(\x\m+1) of Vl + x about JC = 0, and H(x) is a C°° func-
tion near Λ: = 0. Thus

_ yi 1 9 ^V ̂ o? f )

(6.12) utitβl dx>
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+ v J_ dβ+1(Ϊ2(χo> £°)

\β\<k-i β\ dζ3dxβ

= O(λ-(δ+2ε)) ,

since /33 > 2 according to (6.11).
2) As for p%(x, ξ) we have

, - idψ/dy2)

~i Σ \
2 o<\β\<k-i β\

t χ-(.l-δ)\β\+βz(l-2δ-ε)

(6.13) _|_ J V ^ PWSXQ

2 o<\β\<k-i β\
βs>i r

ί - idψ/dy'2)

where we have used (6.5).
3) Finally, the remainder yields

(6.14)

where we have used (6.7). Thus (6.8), (6.9), (6.10), (6.12), (6.13) and (6.14)
yield

(6.15) f \ψ(y)\2dy < l-c [
J Rz 4 J Rz dy2

dy,

where ψ 6 C"(J?3). This is impossible. To see that set ψOO = /GoO> / <= Q(/? 3),
and let ε -^ 0. Then the left hand side of (6.15) is O(ε"3), while the right hand
side is only O(ε~2). Hence Theorem 3.7 is proved..

7. Remarks on the estimate (3.5)

In [8] Kohn proved that if P e ω is of type m, and ω is pseudo-convex at P,
then m must be odd. This result also follows by applying Propositions 2.4 of
[9] to the symbol (5.7). Furthermore Kohn conjectured that under the hypo-
thesis of Theorem 3.4 the estimate (3.5) holds with s = l/(ra + 1).

7.1. Proposition. Let P e ω be a point of type m, and suppose that the
estimate (3.5) holds with s = l/(ra + 1). Then m is necessarily odd.
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Proof. It suffices to show that if the estimate (6.3) holds with k = m, δ =
m/(m + 1) and (JC0, ξ°) = (0,0,0, 0, 0,1), then m is odd. We shall follow the
arguments of § 6 and indicate the necessary changes. Thus we substitute

(7.2) φ(y) = ψ f o , y2, y3λ
2δ~1+ε) , ψ 6 C0~(fl3)

into (6.3), where

(7.3) (m + l ) e + δ < (m + 1)(1 - δ) = 1 .

The left hand side of (6.3) again becomes (6.8). (6.9), (6.10) and (6.12) go
through unchanged. (6.13) becomes

(7.4) - iOψ/Syί - ϊ'3ψ/3/a) + W " Ί > 0 ) ψ + O(λ~*) ,

and there is no change in (6.14). Thus the hypothesis of Proposition 7.1 im-
plies the following estimate

(7.5) f \ψ(y)?dy<c\ | t
J R3 J Rz dyλ

where ψ e CQ(R3). Set

Then (7.5) yields

(7.6) ί \f(y)\2e^w»0)dy < C ί -?L V' ( W l 0)έ/y ,

J R2 J Rz dWx

for all / e Cj°(i?2). According to Theorem 2 of [2], (7.6) implies

(7.7) d2r(Wi^0) ^ 0 ^

dwλdwx

(Compare Kohn [8, formula (3.10)]. Egorov's proof of (7.7) is based on one
of Hδrmander's arguments in [4]; see [4, Lemma 1.2.4, especially (1.2.16)].)
Now (7.7) clearly implies Proposition 7.1.
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