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SUBEXPONENTIAL ASYMPTOTICS OF A MARKOV-MODULATED
RANDOM WALK WITH QUEUEING APPLICATIONS
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Abstract

Let {(Xn, Jn)} be a stationary Markov-modulated random walk on R× E (E is finite),
defined by its probability transition matrix measure F = {Fi j }, Fi j (B) = P[X1 ∈
B, J1 = j | J0 = i], B ∈ B(R), i, j ∈ E. If Fi j ([x, ∞))/(1 − H (x)) → Wi j ∈
[0, ∞), as x → ∞, for some long-tailed distribution function H , then the ascending
ladder heights matrix distribution G+(x) (right Wiener–Hopf factor) has long-tailed
asymptotics. If EXn < 0, at least one Wi j > 0, and H (x) is a subexponential
distribution function, then the asymptotic behavior of the supremum of this random
walk is the same as in the i.i.d. case, and it is given by P[supn≥0 Sn > x] →
(−EXn )−1 ∫ ∞

x P[Xn > u] du as x → ∞, where Sn = ∑n
1 Xk , S0 = 0. Two general

queueing applications of this result are given.
First, if the same asymptotic conditions are imposed on a Markov–modulated G/G/1
queue, then the waiting time distribution has the same asymptotics as the waiting time
distribution of a G I/G I/1 queue, i.e., it is given by the integrated tail of the service
time distribution function divided by the negative drift of the queue increment process.
Second, the autocorrelation function of a class of processes constructed by embedding a
Markov chain into a subexponential renewal process, has a subexponential tail. When a
fluid flow queue is fed by these processes, the queue-length distribution is asymptotically
proportional to its autocorrelation function.
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nential dependency; fluid flow queue
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1. Introduction

Our goal is to examine the asymptotics of the queue-length distribution when the Cramér
type conditions are replaced by subexponential assumptions. The main method that we use to
investigate the asymptotic behavior of the queue-length distribution is random walk ladder
heights technique. This is based on the direct connection between the distribution of the
supremum of a random walk and the distributionof the corresponding single server queue [20],
[9, Section 24]. Our main result extends the existing result on the asymptotic behavior of the
supremum of an i.i.d. random walk to the Markov–modulated setting. We apply this random
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walk result to investigate two canonical queueing scenarios that are of practical importance in
engineering broadband network multiplexers. Besides the queueing application, the random
walk results obtained have a variety of other applications, e.g. in Insurance Risk Theory [5].

This paper is organized as follows. In Section 2 we give the definitions, a few classical
results on subexponential and long-tailed distributions, and some new results on the long-
tailed asymptotics of signed measures. In Section 3.1 we define a Markov-modulated random
walk and present some recent results [3, 4] on its ladder heights analysis approach. The
explicit long-tailed asymptotic behavior of the ascending ladder heights matrix distribution
of the Markov-modulated random walk is examined in Section 3.2. The same section contains
our main result (Theorem 4) on the asymptotic behavior of the distribution of the supremum
of the Markov-modulated random walk. This theorem extends the classical result in [28, 29],
and recent Markov-modulated generalizations in [5]. In this result we essentially show that
the asymptotics of the supremum of an i.i.d. random walk with subexponential right tail and
negative drift is invariant under the Markov modulation.

In Sections 4 and 5 we present two important queueing applications. (The practical mo-
tivation for this queueing investigation is given in Section 4.1.) First, in Section 4 we extend
the classical result by Pakes ([28]) on the subexponential GI/GI/1 queue asymptotics to the
Markov-modulated G/G/1 queue. Generalization of Pakes result to the Markov-modulated
M/G/1 queue was recently explored in [5]. However, the asymptotic constant of proportion-
ality in [5] was left in a complex form. We show that even with the more general setting
of the Markov-modulated G/G/1 queue, this constant is the same as in the corresponding
GI/GI/1 queue. Second, in Section 5 we consider a class of processes that have a subexpo-
nential autocorrelation function. These processes are obtained by embedding a Markov chain
into a stationary subexponential renewal process. When these processes are fed into a fluid
flow queue, the queue-length distribution is asymptotically proportional to the autocorrelation
(autocovariance) function of the arrival process. The paper concludes in Section 6 with a brief
discussion on the applicability of these results to broadband network admission control.

2. Subexponential distributions

In this section we first state the definitions of subexponential and long-tailed distributions.
In Section 2.1 we enumerate some of the classical results on subexponential distributions. This
is followed in Section 2.2 by new results on the long-tailed asymptotics of the convolution of
signed measures.

Definition 1. A distribution function F on [0, ∞) is called long-tailed (F ∈ L) if

lim
x→∞

1 − F(x − y)

1 − F(x)
= 1, y ∈ R. (2.1)

Definition 2. A distribution function F on [0, ∞) is called subexponential (F ∈ S) if

lim
x→∞

1 − F∗2(x)

1 − F(x)
= 2, (2.2)

where F∗2 denotes the 2nd convolution of F with itself, i.e., F∗2(x) = ∫
[0,∞) F(x − y)F(dy).

The class of subexponential distributions was first introduced by Chistakov [11]. The
definition is motivated by the simplification of the asymptotic analysis of the convolution tails.
Some examples of distribution functions in S are as follows.



Subexponential asymptotics of a Markov-modulated random walk 327

(i) The Pareto family,

F(x) = 1 − (x − β + 1)−α,

x ≥ β ≥ 0, α > 0.

(ii) The lognormal distribution,

F(x) = 


(
log x − µ

σ

)
, µ ∈ R, σ > 0,

where 
 is the standard normal distribution.

(iii) The Weibull distribution,

F(x) = 1 − e−xβ

,

for 0 < β < 1.

(iv) F(x) = 1 − e−x(log x)−a
,

for a > 0.

(v) Benktander Type I distribution [25],

F(x) = 1 − cx−a−1x−b log x(a + 2b log x),

where a > 0, b > 0, and c are appropriately chosen.

(v) Benktander Type II distribution [25],

F(x) = 1 − cax−(1−b) exp{−(a/b)xb},
with a > 0, 0 < b < 1, and c appropriately chosen.

2.1. Classical results

In what follows we will state a few classical results from the literature on subexponential
distributions. The general relation between S and L is the following.

Lemma 1. S ⊂ L ([6]).

Lemma 2. If F ∈ L then (1 − F(x)) eαx → ∞ as x → ∞, for all α > 0.

Note. Lemma 2 clearly shows that for long-tailed distributions, Cramér type conditions are
not satisfied.

The proofs of the following results can be found in [19]. To simplify the notation, for any
distribution F we define F̄(x) = 1 − F(x).

Lemma 3. Let F ∈ S. Then,

(i) If G is a probability distribution such that Ḡ(x) = o(F̄(x)) as x → ∞, then
F ∗ G(x) ∼ F̄(x).

(ii) If limx→∞ Ḡ(x)/F̄(x) = c ∈ (0, ∞), where G is a distribution function on [0, ∞),
then G ∈ S.
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Often in renewal theory it is of interest to investigate the integrated tail of a distribution

function. For that reason for any distribution F we define F̂(x)
def= ∫ ∞

x [1 − F(t)] dt , and

F1(x)
def= m−1(1 − F̂(x)), where m = F̂(0).

Definition 3. F ∈ S∗ if∫ x

0

F̄(x − y)

F̄(x)
F̄(y) dy → 2mF < ∞, as x → ∞,

where mF = ∫ ∞
0 yF(dy).

This class has the property that F ∈ S∗ ⇒ F1 ∈ S, and that S∗ ⊂ S. Sufficient conditions
for F ∈ S

∗ can be found in [26], where it was explicitly shown that lognormal, Pareto, and
certain Weibull distributions are in S∗.

An extensive treatment of subexponential distributions (and further references) can be found
in Cline [15, 16].

2.2. Long-tailed asymptotics of signed measures

In this section we prove a few general results (which might be of independent interest)
on the long-tailed asymptotics of the convolution of signed measures. A combination of
these results will essentially give rise to the proofs of Theorems 2 and 3, on the long-tailed
asymptotics of the ascending ladder heights matrix distribution presented in Section 3.2.

Let B(R) be a Borel σ -algebra on R. The convolution of two measures µi , i = 1, 2, is
defined by [9, p. 272] as

(µ1 ∗ µ2)(B) =
∫

−∞,∞
µ1(B − x)µ2(dx), B ∈ B(R), B − x = {y : y + x ∈ B}.

Lemma 4. Let µ, µ− be two finite (signed) measures on (R,B(R)), such that µ([x, ∞))/H̄ (x)

→ c, as x → ∞, H (x) ∈ L, |c| < ∞, and µ− has a support on (−∞, 0]. Then, ν
def= µ− ∗ µ

satisfies

lim
x→∞

ν([x, ∞))

H̄ (x)
= cµ−((−∞, 0]).

Proof. This is given in Appendix A.

Lemma 5. Let µ, µ−, µ+, be finite (possibly signed) measures on (R,B(R)) with µ− having
a support on (−∞, 0], |µ−((−∞, 0])| > 0 and µ+ having a support on [0, ∞), µ+ is strictly
positive on [a, ∞), a > 0, and limx→∞ µ([x, ∞))/H̄ (x) = c, H (x) ∈ L, |c| < ∞. If
µ = µ− ∗ µ+, then

lim
x→∞

µ+([x, ∞))

H̄ (x)
= c

µ−((−∞, 0]) . (2.3)

Proof. This is given in Appendix A.

Proposition 1. Let µ = µ− ∗ µ+, where measures µ, µ−, µ+ satisfy the conditions from the
previous lemma, and in addition, µ−((−∞, 0]) = 0, and 0 < | ∫(−∞,0] uµ−(du)| < ∞. Then,

lim
x→∞

µ+([x, ∞))

Ĥ(x)
= c∫

(−∞,0] uµ−(du)
.
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(Recall that Ĥ (x) = ∫
[x,∞) H̄ (u) du.)

Proof. This is given in Appendix A.

3. Markov-modulated random walk

The natural probability technique for analyzing the supremum of a random walk is through
the ladder heights distributions and Weiner–Hopf factorization [20]. This approach has been
recently generalized by Asmussen [3, 4] to the Markov-modulated random walk. The neces-
sary definitions and basic results are presented in the following subsection. (We borrow the
notation from [3].)

3.1. Markov-modulated random walk and ladder heights

Let {Jt } be a stationary irreducible aperiodic Markov chain with a finite state space E (say
with N elements) and transition matrix P, and let {Xt } be a sequence of real valued random
variables. A stationary Markov process {(Jt , Xt)} on E × R, whose transition distribution
depends only on the first coordinate, is called a Markov-modulated random walk (MMRW).
This process is completely defined through its transition matrix measure Fi j (B) = P[J1 = j,
X1 ∈ B | J0 = i], and F = {Fi j } (note that ‖F‖ = F((−∞, ∞)) = P). Let {(Jr

t , Xr
t )}

denote the associated reversed process. This process is determined by the set of transition
measures Fr

i j (B) = P[J0 = j, X1 ∈ B | J1 = i], with Fr = {Fr
i j } being the corresponding

transition matrix measure.
Further, define S0 = 0, Sn = ∑n

t=1 Xt , (Pi[·] def= P[·|J0 = i]),

τ+ = inf{n > 0 : Sn > 0},
G+(i, j ; B) = Pi[Jτ+ = j, Sτ+ ∈ B, τ+ < ∞],
‖G+(i, j )‖ = G+(i, j ; (0, ∞)),

G+(B) = {G+(i, j ; B)}i, j∈E ,

‖G+‖ = {‖G+‖}i, j∈E .

The convolution of the matrix measure G+ is naturally extended to

G∗2+ (i, j ) =
∑
k∈E

G+(i, k) ∗ G+(k, j ),

G∗2+ = {G∗2+ (i, j )}i, j∈E ;

where higher convolution powers are similarly defined.
Then in [4] the following extension of the Pollaczek–Khinchine identity is provided for

M = supn≥0 Sn.

Theorem 1. Pi[M ∈ B] is the ith component of the vector

∞∑
n=0

G∗n+ (B)(I − ‖G+‖)e,

where e is the column vector of ones and I is the identity matrix.
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Let τ− = inf{n ≥ 1 : Sr
n ≤ 0}, where Sr

n = ∑n
t=1 Xr

t , and define

G−(i, j ; B) = Pi[Sr
τ− ∈ B, Jr

τ− = j, τ− < ∞],
#G−(i, j ) = π j

πi
G−( j, i),

where πi
def= P[Jt = i]. Then, the following Wiener–Hopf identity holds [3, Theorem 4.1].

I − F(B) = (I − #G−) ∗ (I − G+)(B), (3.1)

where B is any real Borel set.

3.2. Subexponential asymptotics of the distribution of the supremum of MMRW

This section contains our results on the subexponential asymptotics of MMRW. Theorems 2
and 3 explicitly give the long-tailed asymptotic behavior of the ascending ladder heights matrix
distributions. Our main result on the subexponential asymptotic behavior of the supremum of
the MMRW is stated in Theorem 4.

In order to state the results we need to introduce some additional notation. Let A(x) =
{Ai j (x)} be a matrix composed of distribution functions, and its Fourier transform defined as
Ã(ω) = {Ãi j (ω)}, Ãi j (ω) = ∫ ∞

−∞ eiωx dAi j (x). We will use the symbol F−1(·) to denote
the operation of taking the inverse Fourier transform. Note that there is a one-to-one cor-
respondence between the distribution functions on R and their Fourier transforms (see [12,
Section 8.3]). Then, the Wiener–Hopf factorization (3.1) can be written as

(I − F̃(ω)) = (I − #G̃−(ω))(I − G̃+(ω)). (3.2)

Observe that Ãi j (0) = A((−∞, ∞)). Also, if we assume that
∫ ∞
−∞ |x|1+δ Ai j (dx) < ∞,

for some δ > 0, then by [12, Theorem 1, p. 277], the Fourier transforms of Ãi j will have
continuous first derivatives, and in particular −i Ã′

i j (0) = ∫ ∞
−∞ x dAi j (x). For any matrix

A, let us define the adjoint matrix adj(A), adj(A)i j = (−1)i+ j det(Ai j ), where Ai j denotes
the matrix obtained by deleting the ith row and j th column from A. If A is invertible then
A−1 = (det(A))−1 adj(A). Assume EXn < 0 (negative drift) and

∫ ∞
−∞ |x|1+δ Fi j (dx) < ∞,

for some δ > 0. Let π be a row vector with its ith element being πi(= P[Jt = i]).
Theorem 2. Let limx→∞ F̄(x)/H̄ (x) = W , W = {Wi j }, Wi j ∈ [0, ∞), H (x) ∈ L. Then,

lim
x→∞

1

Ĥ(x)
Ḡ+(x) = D∫

(−∞,0] uµG− (du)
eπW, (3.3)

where

D ≡ D‖#G−‖
def= lim

α→1

det(I − α‖#G−‖)

1 − α
> 0,

e is a N × 1 column vector of ones, and

µG−
def= F

−1(det(I − #G̃−(ω)))

(∫
(−∞,0]

uµG− (du) > 0
)

.
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Remark. This result represents an extension of Theorem 1(C) of [29], where for the case of an
i.i.d. random walk with F ∈ S, it was shown that G+([x, ∞))/F̂(x) ∼ 1/

∫
(−∞,0] |u|G−(du).

Proof. First, let us observe that det(I − F̃)(ω) has a zero of order one for ω = 0. ω = 0 is a
zero since det(I − F̃)(0) = det(I −‖F‖) = 0, as ‖F‖ (‖F‖i j = p ji ) is a stochastic transition
matrix. This zero is of order one, as is seen from EXn < 0 and Lemma 9 of Appendix B (the
lemma implies that | det(I − F̃)′(0)| > 0). Furthermore, since ‖G+‖ is substochastic (see [3,
Proposition 4.2]), we have that | det(I − G̃+)(0)| > 0. This implies (by (3.2)) that ω = 0 is
also a zero of order one for the det(I − #G̃−)(ω), implying 0 < | det(I − #G̃−)′(0)| < ∞,
where finiteness follows from det(I − F̃)′(0) = det(I − G̃+)(0) det(I − #G̃−)′(0).

Let us define the measure µG−
def= F−1(det(I − #G̃−(ω))). Note that this measure is

finite with the support (−∞, 0], and
∫
(−∞,0] uµG− (du) = −i det(I − #G̃−)′(0) > 0. (The

positive sign follows from Lemma 9 (see Appendix B), EXn < 0 and det(I − F̃)′(0) =
det(I − G̃+)(0) det(I − #G̃−)′(0).) Also, (3.2) can be written as

adj(I − #G̃−(ω))(F̃ (ω) − I ) = (G̃+(ω) − I ) det(I − #G̃−(ω)),

or component-wise

(G̃+(ω) − I )i j det(I − #G̃−(ω)) =
N∑

k=1

adj(I − #G̃−(ω))ik (F̃(ω) − I )kj .

If µi j
def= F

−1(adj(I − #G̃−(ω))ik (F̃(ω) − I )kj ), then, by Lemma 4, µi j ([x, ∞))/H̄ (x)

→ ∑N
k=1 adj(I − #G̃−(0))ik Wkj , as x → ∞. If µ+i j

def= F−1(G̃+(ω) − I )i j , then µi j =
µ+i j ∗ µG− , where µi j , µ+i j , µG− satisfy the conditions of Proposition 1. Thus, by the same
proposition,

1

Ĥ (x)
Ḡ+i j (x) → 1

−i det(I − #G̃−)′(0)

N∑
k=1

adj(I − #G̃−(0))ik Wkj ,

as x → ∞ (recall that
∫
(−∞,0] uµG− (du) = −i det(I − #G̃−)′(0)), or in the matrix form,

Ḡ+(x)

Ĥ (x)
→ 1

−i det(I − #G̃−)′(0)
adj(I − #G̃−(0))W, (3.4)

as x → ∞. Since #G̃−(0) = ‖#G−‖ is a stochastic, aperiodic, irreducible matrix with
stationary probability distribution π (this follows easily from the definition of #G−, EXn < 0,
and assumptions on P), by Lemma 8 of Appendix B we get adj(I − #G̃−(0)) = Deπ ; when
we replace this result in (3.4) we obtain the desired statement of the theorem.

Although, the case of positive drift is not of our interest (unstable queue) for the reason of
completeness we state the following theorem. (The theorem is an extension of Theorem 1(B)
in [29].)

Theorem 3. Let limx→∞ F̄(x)/H̄ (x) = W , W = {Wi j }, Wi j ∈ [0, ∞), H (x) ∈ L. If
EXn > 0, then

lim
x→∞

Ḡ+(x)

H̄(x)
= (I − ‖#G−‖)−1W. (3.5)
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Remark. The i.i.d. version of this theorem ([29, Theorem 1(B)]) states that Ḡ+(x)/F̄(x)

∼ 1/(1 − ‖G−‖) as x → ∞.

Proof. Note that ‖#G−‖ is substochastic (see [3]). Then, if we define µi j , µ+i j , µG−
exactly as in the proof of Theorem 2, it follows (by Lemma 4) that µi j ([x, ∞))/H̄ (x) →∑N

k=1 adj(I − #G̃−(0))ik Wkj , as x → ∞. Now, by applying Lemma 5 to the measures
µi j , µ+i j , µG− , we obtain

Ḡ+i j (x)

H̄ (x)
→ 1

det(I − #G̃−)(0)

N∑
k=1

adj(I − #G̃−(0))ik Wkj ,

as x → ∞, which, in matrix form, is tantamount to stating (3.5). This completes the proof of
the theorem.

Now we will apply Theorem 2 to obtain the asymptotics of the supremum of the MMRW,
i.e., asymptotics of Pi[M > x] as x → ∞. In order to do so we need an asymptotic estimate
for the Pollaczek–Khinchine formula (Theorem 1). This will be obtained from the following
lemma, an extension of the result given in [5].

Lemma 6. Let G = {Gi j } be a matrix of non-negative measures on [0, ∞), such that
‖G‖ def= G(0, ∞) is substochastic (the spectral radius is < 1). If there exists some probability
distribution H ∈ S such that Ḡi j (x)/H̄ (x) → li j ∈ [0, ∞) as x → ∞ for some matrix
L = {li j }, then

1

H̄(x)

∞∑
n=0

G∗n(x)(I − ‖G‖) → (I − ‖G‖)−1L as x → ∞.

Remark. In [5] it was assumed that li j > 0 for all i, j ∈ E . The fact that the same result
holds in the more general case suggests that the (matrix) constants in Theorems 4.1 and 4.2 of
[5] have to be of the same form, and indeed this is the case. (Algebraic simplification of the
matrix constant A(4) in [5, Theorem 4.2] reduces it to the same form as in [5, Theorem 4.1].)

Proof. This is given in Appendix C.

The combination of this lemma and Theorem 2 implies the following theorem.

Theorem 4. Let limx→∞ F̄(x)/H̄ (x) = W , W = {Wi j }, Wi j ∈ [0, ∞), H (x) ∈ L, H1(x) ∈
S, with at least one Wi j > 0. If EXn < 0, and ‖F‖ is irreducible and aperiodic, then,

lim
x→∞

1

Ĥ (x)
M̄(x) = 1

−EXn
eπWe, (3.6)

where M̄(x) is a column vector with an ith component equal toPi[M > x]. In particular,

P[M > x] ∼ 1
−EXn

πW eĤ (x) ∼ 1
−EXn

∫ ∞

x
P[Xn > u] du, (3.7)

as x → ∞.

Remarks. (i) The i.i.d. version of this theorem was given in [29, Theorem 2(B)].
(ii) We have found that a weaker version of this theorem has appeared in the literature in [2].

The assumptions given there are more restrictive (also our method of proof is completely
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different). In [2] the following was assumed. (a) H belongs to a class of distributions of
extended regular variation [9, 24]. (This class is smaller than the subexponential class, for
example, of the distribution families given in Section 2, it contains the Pareto family only.)
(b) Wi j > 0 for all i, j ∈ E . (c) Absolute continuity assumptions are imposed on Fi j .

Proof. Combining Theorem 2, more precisely (3.4), and Lemma 6, we get

1

H̄ (x)
M̄(x) ∼ 1

−i det(I − #G̃−)′(0)
(I − G̃+(0))−1 adj(I − #G̃−(0))W e, (3.8)

as x → ∞. Now from the Wiener–Hopf identity (3.2) we obtain

(I − G̃+(ω))−1 adj(I − #G̃−(ω)) det(I − F̃(ω)) = det(I − #G̃−(ω)) adj(I − F̃(ω)).

By taking the derivative in the previous equation, and noting that det(I − #G̃−(0)) = det(I −
F̃(0)) = 0, we get

1

det(I − #G̃−)′(0)
(I − G̃+(0))−1 adj(I − #G̃−(0)) = 1

det(I − F̃)′(0)
adj(I − F̃(0)). (3.9)

Substituting (3.9) into (3.8) we obtain

1

H̄ (x)
M̄(x) ∼ 1

−i det(I − F̃)′(0)
adj(I − F̃(0))W e, (3.10)

as x → ∞. Finally, by using Lemmas 8, 9 of Appendix B, we get −i det(I − F̃)′(0) =
−EXn D‖F‖, and adj(I − F̃(0)) = D‖F‖eπ . By substituting these into (3.10), we obtain (3.6).

For (3.7) we observe that

P[M > x] =
∑
i∈E

πiPi[M > x] ∼ (−EXn )−1πeπW eH̄ (x)

= (−EXn )−1πW eH̄ (x), as x → ∞.

This proves the first part of (3.7). The second asymptotic relation follows from

∫ ∞

x
P[X1 > u] du =

∑
i, j∈E

πi

∫ ∞

x
P[X1 > u, J1 = j | J0 = i] du ∼

∑
i, j∈E

πi Wi j Ĥ (x)

= πW eĤ (x), as x → ∞.

This finishes the proof of the theorem.

4. Markov-modulated G/G/1 queue

In this section we will apply our main result, Theorem 4, to derive the asymptotic beha-
vior of the waiting times of a Markov-modulated G/G/1 queue (Theorem 6). This is done
through the classical connection between the extreme value theory and the queue-waiting time
distribution.
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4.1. Motivation

Practical motivation for the queueing investigation in this and the following section origin-
ates in the problem of statistical multiplexing in modern broadband networks. The idea of
multiplexing is to increase the network utilization by efficient sharing of network bandwidth
and buffer resources. The main entities that are multiplexed are calls established from various
sources. Each of these calls has some quality of service requirements that have to be satisfied
in order for a call to operate properly. Quality of service requirements are usually expressed
as bounds on performance measures associated with the multiplexer. The most basic model of
statistical multiplexing is an infinite buffer discrete-time single server queue. The fundamental
performance measure is the queue-length distribution (P[Q > x]).

Under a variety of assumptions of Cramér type (exponentially bounded marginals and
autocorrelation function of the arrival processes) many published results in the literature have
shown that the queue-length distributionof a network multiplexer has exponential asymptotics,
i.e., P[Q > x] ∼ α e−θ∗x as x → ∞. Some authors have argued that an even simpler
approximation holds, P[Q > x] ∼ e−θ∗x . This has led to the development of the so called
effective bandwidth based admission control (for an extensive list of references on this topic
see [18, 22]).

However, recent statistical observations presented in [21, 23] show that the (marginal)
distribution and the autocorrelation function of the arrival processes that appear in commu-
nication networks may have a long (subexponential) tail. For such processes the Cramér type
conditions are not satisfied. Motivated by these statistical findings, in this paper we further
advance the calculus for approximating the queue-length distribution of a single server queue
with subexponential characteristics.

To get some intuition about the behavior of the queue when the arrival process has a
subexponential (long-tailed) marginal distribution function let us examine the following ex-
ample. (All the examples in this paper are calculated using the z-transform technique and
Mathematica 2.2.)

Example 1. Consider a discrete-time queue (whose evolution is given by Lindley’s equation
(4.1)), with a service rate of one packet per slot (Ct = 1), and an arrival process characterized
by a sequence At of i.i.d. random variables distributed asP[A0 = 0] = 0.2,P[A0 = i] = d/ i6,
1 ≤ i ≤ 150, d = 0.77151. Thus, this source (arrival process) has a truncated heavy tailed
marginal distribution with peak rate of 150 packets. Since this process is bounded from above,
its cumulant function E eθ A0 exists for all θ > 0 and, therefore, the queue tail is asymptotically
exponential. However, the range of the exponential asymptotic may be far outside relevant
range (for communication networks applications) of probabilities. On the right-hand side of
Figure 1 we can see that the exponential asymptotics starts to work for very small probabilities
(roughly smaller than 10−40). However, in the relevant range of probabilities (10−4–10−10)
we see, on the left-hand side of Figure 1, that the exponential approximation fails. In this
region, the queue-length probabilities have a functional form approximately proportional to
the integrated tail of An (1/ i5).

Thus, we can see that even in the case of bounded heavy tailed arrivals, for which the queue-
length asymptotics is eventually exponential, the relevant part of the queue-length distribution
may be subexponential. Consequently, in the rest of the paper we will examine the effect of
the subexponential arrival process characteristics on the asymptotic queueing behavior.
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FIGURE 1: Illustration for Example 1.

4.2. Discrete time queue

Here, we define a discrete time single server queue process (or equivalently the waiting
time process of a G/G/1 queue). Let {At , Ct , t ∈ N0} be a sequence of random variables
(on a probability space (�,F,P)). Then, for any initial random variable Q0 the following
(Lindley’s) equation,

Qt+1 = (Qt + At − Ct )
+, (4.1)

defines the discrete time queue-length process {Qt , t ≥ 0}. Throughout this paper we assume
that {At , Ct , t ∈ N0} is stationary and ergodic, and that EAt < ECt (stability condition). Then,
according to the classical result in [27], there exists a unique stationary solution to recursion
(4.1) and for all initial conditions the queue-length process converges (in finite time) to this
stationary process. In this paper we assume that the queue is in its stationary regime, i.e.,
that {Qt , t ≥ 0} is the stationary solution to (4.1). The dynamics of a broadband network
multiplexer are modelled by the previous recursion. Qt represents the workload at the end of
the time slot t , At represents the amount of traffic (packets) that arrives at the multiplexer and
Ct represents the amount of traffic that is served during the slot t .

Note. Recursion (4.1) also represents the waiting time process of the G/G/1 queue with Ct

being interpreted as the interarrival time between the customer t and t + 1, At as customer t ’s
service requirement, and Qt as customer t ’s waiting time. For that reason the terms waiting-
time distribution for the G/G/1 queue and the queue-length distribution for the discrete-time
queue will be used interchangeably in this paper.

Let Xt = At − Ct , t ≥ 0 be a queue increment process. Assume Xt is a sequence of i.i.d.
random variables with distribution function F , and At independent of Ct . Then the following
result on the waiting time distribution asymptotics of the GI/GI/1 queue holds (see [29]).
Let K be the distribution function of At .

Theorem 5.

(i) F1 ∈ S ⇐⇒ K1 ∈ S and limx→∞ F̂(x)/K̂ (x) = 1.

(ii) If K ∈ L and K1 ∈ S (or K ∈ S∗), then

P[Qt > x] ∼ 1

ECt − EAt

∫ ∞

x
P[At > u] du, as x → ∞. (4.2)
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This theorem was first proved in [28]. In [29] the same result was shown using a random
walk technique, a technique also adopted in this paper. Some of the first applications of
long-tailed distributions in queueing theory were done by Cohen [17], and Borovkov [10]
for the functions of regular variations [9, 24]. Recent results on long-tailed and subexponential
asymptotics of a GI/GI/1 queue are given in [1, 30]. (Also, in [1], further motivation is given
for the application of long-tailed distributions to communication networks.)

In the followingsection we will generalize the result of Theorem 5 to the Markov-modulated
case.

4.3. Subexponential queue asymptotics

A simple iteration of Lindley’s equation (4.1) gives

Qt = sup
n≥0

Sr,t
n ,

where Sr,t
n

def= ∑n
i=0 Xt−i . By stationarity, it follows thatP[Qt > x | Jt = i] = P[supn≥0 Sr,0

n |
J0 = i], i ∈ E . Therefore, investigating the stationary queue-length distribution is equivalent
to investigating the associated reversed random walk Sr

n ≡ Sr,0
n . It becomes clear that by using

the already obtained results on the supremum of random walk, the desired queueing results
can be readily derived.

More formally, let (Jt , At ) and (Jt , Ct ) be two MMRWs such that At and Ct are condition-
ally independent given Jt−1, Jt ; {At } and {Ct } are arrival and service processes, respectively.
Let K and D be the corresponding transition measures for these MMRWs, i.e., K = {Ki j } =
{P[A1 ∈ B, J1 = j | J0 = i]}, and D = {Di j } = {P[C1 ∈ B, J1 = j | J0 = i]}; the reversed
transition measure for the arrival process is Kr = {Kr

i j } = {P[A1 ∈ B, J0 = j | J1 = i]},
B ∈ B(R). Then the following theorem holds.

Theorem 6. Let limx→∞ Kr (x)/H̄ (x) = W , as x → ∞, W = {Wi j }, Wi j ∈ [0, ∞), H (x) ∈
L, H1(x) ∈ S (or H ∈ S∗), with at least one Wi j > 0. If ECt > EAt , and P (= ‖K‖ = ‖D‖)
is irreducible and aperiodic, then

1

Ĥ (x)
Q̄(x) → 1

ECt − EAt
eπW e, as x → ∞, (4.3)

where Q̄(x) is a column vector with its ith component equal toPi[Qt > x]. In particular

P[Qt > x] ∼ 1
ECt − EAt

∫ ∞

x
P[At > u] du, as x → ∞. (4.4)

Note. Surprisingly enough, we see that the asymptotic behavior of the queue is not affected
by the Markovian dependency structure, i.e., it is structurally the same as the GI/GI/1 queue
asymptotics.

Proof. Component-wise the asymptotic proportionality of the tails of the matrix distribu-
tions Fr (x) and Kr (x) follows from Lemma 4. The conclusion of Theorem 6 follows from
Theorem 4.

An illustration of the preceding theorem is given in the following numerical example.

Example 2. Consider a constant server queue with Ct = 1 and with two state (e.g. {0, 1})
Markov-modulated arrivals (source). The transition probabilities for the modulating Markov
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FIGURE 2: Graph of log10P[Q = i] versus buffer size i from Example 2. The solid line represents the
true probabilities, and the dashed line represents the approximation 2.603/ i−4.

chain are p01 = 1/3, p10 = 3/4. When in state 0 the source is producing zero arrivals, and
when in state 1 the source is producing (independently of the previous state) arrivals according
to the distributionP[At = 0 | Jt = 1] = 0.327144,P[At = 1 | Jt = 1] = 0, and P[At = i |
Jt = 1] = w/ i5, w = 18.220859, 2 ≤ i ≤ 350; with ρ1 = E[At | Jt = 1] = 3/2. (Note
that these are bounded arrivals.) Thus, according to the previous theorem, the queue-length
distribution is proportional to 1/ i4, and the constant of proportionality is easily calculated to
be c = wπ1/(4(1 − ρ1π1)) = w/7 = 2.603. The comparison between the true probabilities
and the approximation c/ i4 is shown in Figure 2.

5. Asymptotics of a fluid-flow queue with subexponentially correlated arrivals

In this section we construct a class of processes for which we show that the autocorrelation
function (acf) is subexponential. Furthermore, when these processes are fed to a fluid-flow
queue, we prove the asymptotic proportionalityof the queue-length distributionwith the arrival
process acf. Throughout this section we assume a continuous time model (of course all the
results are valid for discrete time also).

5.1. Stationary subexponentially correlated arrivals

Consider a point process T = {T0 ≤ 0, Tn , n ≥ 1} such that Tn − Tn−1, n ≥ 1 are i.i.d.
with subexponential distribution function F . Further, let Jn , n ≥ 0 be an irreducible aperiodic
Markov chain with finite state space {1, . . . , K }, transition matrix {Pi j }, and stationary prob-
ability distribution πi , 1 ≤ i ≤ K . In order to make this point process stationary (see [14,
Section 9.3]), we choose the residual time at zero until the first jump to be distributed as an
integrated tail of F , i.e., F1(t) = P[T1 ≤ t ] = mF

−1
∫

0,t F̄(u) du, mF = E(Tn − Tn−1).
Now we construct a process At which takes values in {ai ≥ 0 : 1 ≤ i ≤ K } and whose

dynamics is described as

At = aJn for Tn ≤ t < Tn+1. (5.1)

At is called a Markov chain embedded in a stationary subexponential renewal process
(MCESSR). A typical sample path of this process is given in Figure 3. It is well known that
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A(t)
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FIGURE 3: A possible realization of a Markov chain embedded into a renewal process.

under fairly general conditions, a Markov chain converges exponentially fast to the steady state
distribution. However, the process that we have constructed, because of the subexponentially
distributed sojourn times, converges with subexponential speed to its steady-state. This is
stated in the following proposition. (Note that P[At = a j ] = P[Jt = j ] = π j .)

Proposition 2. If F, F1 ∈ S, then

(Pi[At = a j ] − π j )F̄1(t)
−1 → (δi j − π j ),

as t → ∞, δi j = 1, if i = j and zero otherwise.

In the proof of the above result we will use the following simple lemma.

Lemma 7. If F ∈ L, then F̄(t) = o(F̄1(t)) as t → ∞.

Proof. Observe that for any a > 0

F̄(t)∫ ∞
t F̄(u) du

≤ F̄(t)∫ t+a
t F̄(u) du

≤ F̄(t)

a F̄(t + a)
.

From this inequality, since F ∈ L, we obtain that lim supt→∞ F̄(t)/F̄1(t) ≤ mF /a, (recall
that mF = ∫ ∞

0 F̄(u) du , F1(t) = 1/mF
∫ ∞

t F̄(u) du). Now, by letting a → ∞, we finish the
proof of the lemma.

Proof of Proposition 2. Observe that

Pi[At = a j ] − π j = P[T1 > t ](δi j − π j ) +
∞∑

n=1

(p(n)
i j − π j )P[Tn ≤ t < Tn+1]. (5.2)

Thus, if the sum on the right-hand side of (5.2) is o(F̄1(t)) as t → ∞, the Proposition will
follow. For any n > 0, P[Tn > t ] ∼ F̄1(t) as t → ∞. This follows from Lemmas 7 and
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10(a) (Appendix C). Since P[Tn ≤ t < Tn+1] = P[Tn+1 > t ] − P[Tn > t ], it follows that
P[Tn ≤ t < Tn+1] = o(F̄1(t)) as t → ∞. Therefore, if the limit (with respect to t ) and
summation can be interchanged

∞∑
n=1

(p(n)
i j − π j )P[Tn ≤ t < Tn+1] = o(F̄1(t)),

as t → ∞. The justification for doing so follows from Lemma 10(b), the fact that
|(p(n)

i j − π j )| ≤ aρn , for some a ≥ 0, 0 ≤ ρ < 1, and from the dominated convergence
theorem. This finishes the proof of Proposition 2.

We will illustrate this Lemma by the following example.

Example 3. Let F be a discrete distribution function with support [1, 1000], P[T2 − T1 =
1] = 0.186532, and P[T2 − T1 = i] = w/ i5, w = 22.028625, 2 ≤ i ≤ 1000; then choose a
two state Markov chain with transition probabilities p01 = 1/3 and p10 = 3/4. The functions

di,1(t)
def= (Pi[At = a1] − π1)(F̄1(t)(δi1 − π1))

−1, i = 0, 1, then converge to one as t → ∞,
with subexponential rate. This can be clearly seen in Figure 4.
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FIGURE 4: Functions di,1(t)
def= (Pi[At = a1] − π1)(F̄1(t)(δi1 − π1))−1, i = 0, 1. The graph shows

that di,1(t) → 1 as t → 1.

It is now easy to prove that the autocorrelation function ρ(t)
def= (EA0 At −(EA0 ))2/ Var(A0)

of the MCESSR process satisfies the following asymptotic relation. Let Var(A0) > 0 be the
variance of A0.

Theorem 7. If F, F1 ∈ S, then

ρ(t) ∼ F̄1(t), as t → ∞.
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Proof. By applying the previous lemma and after some simple algebraic manipulations, we
obtain

(EA0 At − (EA0 )2)F̄1(t)
−1 =

∑
i, j

ai a j (πiPi[At = a j ] − πiπ j )F̄1(t)
−1

∼
∑
i, j

ai a jπi(δi j − π j )

=
∑

i

πi a
2
i −

∑
i, j

πiπ j aia j = Var(A0),

as t → ∞. This completes the proof of the theorem.

5.2. Subexponential asymptotics of a fluid flow queue

Let us investigate the queue-length distribution of a fluid queue fed with a MCESSR pro-
cess. We assume that both the arrival process At and the server process Ct are MCESSR
processes embedded into the same renewal process {Tn}, such that when the Markov chain
Jn is equal to i, At = ai ≥ 0 and Ct = ci ≥ 0, Tn ≤ t < Tn+1. Intuitively the pair At , Ct

represents a fluid queueing model in which At = ai means that the flow is arriving at the queue
with rate ai , and Ct = ci means that the flow is departing from the queue with rate ci . We
will calculate the queue-length distribution at the jump times (Palm probability). Qn ≡ Q(Tn)

satisfies the recursion

Qn+1 = (Qn + xJn�Tn)+,

where xi = ai −ci and �Tn = Tn+1 −Tn . (Again, we assume that Qn is the stationary solution
to the recursion above.)

We are now ready to state the following result on the asymptotic proportionality between
the queue-length distribution and its autocorrelation function. To avoid trivial cases we assume
that for at least one i, xi > 0 and also Var(A0) > 0.

Theorem 8. Let the stability condition ExJn = ∑
i πi xi < 0 be satisfied, and for all xi > 0,

P[�Tn > t/xi]/F̄(t) → wi , as t → ∞, with at least one wi > 0, and F, F1 ∈ S. Then, there
exists a positive constant r such that

P[Qn > t ] ∼ rρ(t),

where ρ(t) is the autocorrelation function of the arrival process At (the same as in Theorem 7).

Proof. This theorem follows by straightforward combination of Theorems 6 and 7.

Remarks. (i) If the distribution function of �Tn belongs to the Pareto family the assumption
P[�Tn > t/xi] ∼ wi F̄(t), wi > 0 will be satisfied for all xi > 0.

(ii) To the best of our knowledge this is the first rigorous result of this kind and with this
generality. Also, with an appropriate extension of Theorem 7 this result can be extended to the
general class of subexponential semi-Markov arrivals.
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6. Conclusion

For a Markov-modulated random walk with long-tailed right tail the ascending ladder height
matrix distribution is asymptotically proportional to a long-tailed distribution. When this
random walk has a negative drift and a subexponential right tail, its asymptotics are the same
as in the corresponding i.i.d. case. This result has a variety of applications, e.g. in queueing
theory and insurance risk theory.

In the queueing context the application of the random walk result showed that the queue-
length (waiting time) distribution of a Markov-modulated discrete-time (G/G/1) queue has
structurally the same asymptotics as the i.i.d. discrete-time (GI/GI/1) queue. Furthermore,
we constructed a general class of processes, for which the autocorrelation (covariance) function
has a subexponential tail. When these processes are fed into a fluid flow queue, the queue-
length distribution is asymptotically proportional to its autocorrelation function.

Informally, the queueing results derived in this paper can be summarized as follows (where
m.d.f. denotes marginal distribution function):

• (subexp. m.d.f. + exp. acf) ⇒ (the queue distribution is determined by the m.d.f.),

• (bounded (exp.) m.d.f. + subexp. acf) ⇒ (the queue distribution is determined by the
acf).

We expect that the above results may have an impact on the design of efficient broadband
network admission control policies. When these types of conditions are met in practice, the
admission controllers may decide their admission control policy based on either the marginal
distributions or the autocorrelation functions of the arrival streams, depending on which con-
ditions are satisfied.
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Appendix A. Proof of the results from Section 2.2

In this section we present the proofs of Lemmas 4, 5, and Proposition 1.

Proof of Lemma 4. Let c > 0, then for every 0 < ε < c, we can choose an x0 such that for
all x ≥ x0 we have (c − ε)H̄ (x) ≤ µ([x, ∞)) ≤ (c + ε)H̄ (x). Let us also assume that µ− is
a positive measure, then

ν([x, ∞)) =
∫

(−∞,0]
µ([x − y, ∞))µ−(dy) ≤ (c + ε)µ−((−∞, 0])H̄ (x).

This implies that, lim supx→∞ ν([x, ∞))/H̄ (x) ≤ cµ−((−∞, 0]). For the lower bound we
have, for any z > 0,

ν([x, ∞)) ≥ (c − ε)

∫
(−z,0]

H̄(x − y)µ−(dy) ≥ (c − ε)H̄ (x + z)µ−((−z, 0]).

From this and H ∈ L, it follows that

lim inf
x→∞ ν([x, ∞))/H̄ (x) = lim inf

x→∞ ν([x, ∞))/H̄ (x + z) ≥ (c − ε)µ−((−z, 0]).
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By passing z → ∞ and ε → 0 we now get lim infx→∞ ν([x, ∞))/H̄ (x) ≥ cµ−((−∞, 0]).
This proves the case c > 0 and µ− being positive measure. For c < 0 (µ− is positive
measure), we have (−ν) = (−µ) ∗ µ−, (−µ) ∼ |c|H̄ (x) and the same arguments apply.
When µ− is a signed measure, we can represent it (by Hahn’s decomposition theorem, [9,
p. 441]) as µ− = µ+− − µ−− where µ+−, µ−− are two positive measures. Therefore, by applying
what we have proved, we obtain ν([x, ∞)) ∼ (cµ+−((−∞, 0]) − cµ−−((−∞, 0]))H̄ (x) =
cµ−((−∞, 0])H̄ (x).

It is left to consider the case c = 0. For all sufficiently large x , −ε H̄ (x) ≤ µ([x, ∞)) ≤
ε H̄ (x). From this, by using similar arguments, it easily follows that ν([x, ∞))/H̄(x) → 0 as
x → ∞ , and the proof of the lemma follows.

Proof of Lemma 5. Let again µ− = µ+− − µ−−. Then, for any x > 0,

µ([x, ∞)) =
∫

(−∞,0]
µ+([x − y, ∞))µ+−(dy) −

∫
(−∞,0]

µ+([x − y, ∞))µ−−(dy).

From this it follows, for any z > 0 and x > a,

µ([x, ∞)) ≤
∫

(−∞,0]
µ+([x − y, ∞))µ+−(dy) −

∫
(−z,0]

µ+([x − y, ∞))µ−−(dy)

≤ µ+([x, ∞))µ+−((−∞, 0]) − µ+([x + z, ∞))µ−−((−z, 0]).
Let c > 0, then for any 0 < ε < c, there is an x0 > a such that for all x > x0, (c − ε)H̄ (x) ≤
µ([x, ∞)) ≤ (c + ε)H̄ (x). Then, for x > x0,

1 ≤ µ+([x, ∞))

(c − ε)H̄ (x)
µ+−((−∞, 0]) − µ+([x + z, ∞))

(c + ε)H̄ (x)
µ−−((−z, 0]).

Also assume for the moment that both µ+−((−∞, 0]) > 0, and µ−−((−∞, 0]) > 0, then by
taking the limit infimum, we get

1 ≤ µ+−((−∞, 0])(c − ε)−1 lim inf
x→∞

µ+([x, ∞))

H̄ (x)

− µ−−((−z, 0])(c + ε)−1 lim sup
x→∞

µ+([x + z, ∞))

H̄ (x)
.

Since H is long-tailed we have

lim sup
x→∞

µ+([x + z, ∞))

H̄ (x)
= lim sup

x→∞
µ+([x + z, ∞))

H̄ (x + z)
lim

x→∞
H̄(x + z)

H̄(x)

= lim sup
x→∞

µ+([x, ∞))

H̄ (x)
.

Therefore,

1 ≤ µ+−((−∞, 0])(c − ε)−1 lim inf
x→∞

µ+([x, ∞))

H̄ (x)

− µ−−((−z, 0])(c + ε)−1 lim sup
x→∞

µ+([x, ∞))

H̄(x)
,
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and finally, by letting z → ∞, and ε → 0, we obtain

1 ≤ µ+−((−∞, 0])c−1 lim inf
x→∞

µ+([x, ∞))

H̄ (x)
− µ−−((−∞, 0])c−1 lim sup

x→∞
µ+([x, ∞))

H̄(x)
. (A.1)

Similarly, for x > a we have

µ([x, ∞)) ≥ µ+([x + z, ∞))µ+−([−z, 0]) − µ+([x, ∞))µ−−([−∞, 0]);
and, by using the same type of argument, we arrive at

1 ≥ µ+−((−∞, 0])c−1 lim sup
x→∞

µ+([x, ∞))

H̄ (x)
− µ−−((−∞, 0])c−1 lim inf

x→∞
µ+([x, ∞))

H̄(x)
. (A.2)

Finally, from inequalities (A.1) and (A.2) we get

lim inf
x→∞

µ+([x, ∞))

H̄(x)
= lim sup

x→∞
µ+([x, ∞))

H̄(x)
= lim

x→∞
µ+([x, ∞))

H̄ (x)
= c

µ−((−∞, 0]) , (A.3)

which is the asymptotic result claimed in the lemma.
If either µ+−((−∞, 0]) = 0 or µ−−((−∞, 0]) = 0, we argue as follows.

Say µ−−((−∞, 0]) = 0, then

µ([x, ∞)) ≤ µ+([x, ∞))µ+−((−∞, 0]),
which implies that

1 ≤ µ+−((−∞, 0])(c − ε)−1 lim inf
x→∞

µ+([x, ∞))

H̄ (x)
,

and by passing ε → 0,

1 ≤ µ+−((−∞, 0])c−1 lim inf
x→∞

µ+([x, ∞))

H̄ (x)
. (A.4)

Similarly

µ([x, ∞)) ≥ µ+([x, ∞))µ+−((−z, 0]),
which implies that

1 ≥ µ+−((−z, 0])(c + ε)−1 lim sup
x→∞

µ+([x, ∞))

H̄ (x)
,

and by letting z → ∞, and ε → 0,

1 ≥ µ+−((−∞, 0])c−1 lim sup
x→∞

µ+([x, ∞))

H̄ (x)
. (A.5)

(A.3) follows from inequalities (A.4) and (A.5). We argue similarly if µ+−([−∞, 0)) = 0.
For c < 0 we have (−µ) = (−µ−) ∗ µ+, with (−µ)([x, ∞)) ∼ |c|H̄ (x), as x → ∞, and
the result immediately follows. The case c = 0 can be analyzed in a similar fashion. This
completes the proof.
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Proof of Proposition 1. Let µ1([x, ∞))
def= ∫ ∞

x µ([u, ∞)) du , and µ1−([z, 0]) def=∫
[z,0] µ−([u, 0]) du. Observe that µ1([x, ∞)) ∼ cŶ (x) as x → ∞.

Also, from the assumptions, it follows that µ1− defines a finite measure on (−∞, 0], since
µ1−((−∞, 0]) = ∫ 0

−∞ −µ−((−∞, u)) du = ∫
(−∞,0] uµ−(du). Then, by applying Fubini’s the-

orem (see [12, p. 180]), we get

µ1([y, ∞)) =
∫ ∞

y
du

∫
[0,∞)

µ−([u − x, 0])µ+(dx)

=
∫

[0,∞)

µ+(dx)

∫ x

y
µ−([u − x, 0]) du

=
∫

[0,∞)

µ1−([y − x, 0])µ+(dx).

Thus, µ1([y, ∞)) is obtained through the convolution of the finite measures µ+, µ1−.
Therefore, by applying Lemma 5, the conclusion of the proposition follows
(recall that µ1−((−∞, 0]) = ∫

(−∞,0] uµ−(du)).

Appendix B.

Consider an irreducible aperiodic probability transition matrix P = {pi j } with a stationary
probability distribution π = (π1, . . . , πn) (row vector). Then, the following lemma holds.

Lemma 8.

adj(I − P) = DP eπ,

where e is a (n × 1) column vector of ones, and DP
def= limα↑1 det(I − α P)/(1 − α)(> 0).

Proof. For any 0 < α < 1,

adj(I − α P) = det(I − α P)

∞∑
k=0

αk Pk

= det(I − α P)

1 − α
(1 − α)

∞∑
k=0

αk Pk .

Thus, by the Perron–Frobenius theorem, det(I − α P)/(1 − α) converges to a positive limit
as α ↑ 1 (we call it DP ) and (1 − α)

∑∞
k=0 αk Pk converges to eπ as α ↑ 1, since Pk → eπ

as k → ∞ (Tauberian theorem, [13, p. 52, Theorem 2]).

Let P be as in Lemma 8 and let us define F = {pi j fi j }, where fi j are probability measures
on (R,B(R)) such that

∫
−∞,∞ |u| fi j (du) < ∞ for all i, j ; we use the notation

ρi j = ∫
−∞,∞ u fi j (du). If F̃ = {pi j f̃i j } is the Fourier transform of F , then the following

result holds.

Lemma 9.

i det(I − F̃)′(0) = DP

∑
i, j

πi pi jρi j ,
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where DP is as in Lemma 8.

Proof. From the identity (I − F̃(ω)) adj(I − F̃(ω)) = det(I − F̃(ω)), it follows that

−i F̃ ′(0) adj(I − P) + i(I − P) adj(I − F̃)′(0) = i det(I − F̃)′(0).

By multiplying the previous equation on the left by π (the row vector) and observing that
−i F̃ ′(0) = {pi jρi j }, we arrive at

π{pi j ρi j } adj(I − P) = π(i det(I − F̃)′(0)).

Finally, by multiplying the above equation on the right with a column vector of ones e and
applying Lemma 8, the result follows.

Appendix C.

The following lemma is an improved version of [5, Lemma 4.2].

Lemma 10. Let H, H1, . . . , Hm be probability distributions such that H̄ j(x)/H̄ (x) ∼ c j ∈
[0, ∞) as u → ∞, j = 1, . . . , m. If H ∈ S then we can state the following.

(a) For all k1, . . . , km ∈ N,

H∗k1
1 ∗ · · · ∗ H∗km

m (x)/H̄ (x) →
m∑

j=1

k j c j , x → ∞;

moreover, if max1≤ j≤m c j > 0, then

H∗k1
1 ∗ · · · ∗ H∗km

m ∈ S.

(b) For each ε > 0 there exists some Kε < ∞ such that

H∗k1
1 ∗ · · · ∗ H∗km

m (x)/H̄ (x) ≤ Kε(1 + ε)k1+···+km H̄(x),

for all x ≥ 0 and k1, . . . , km .

Note. This lemma has been proved in [5] under the conditions that all c j > 0.

Proof. The first part of (a) follows from Theorem 1, [15], and Lemma 3(i); the second part
of (a) follows from Lemma 3(ii).

When all ci > 0, (b) follows from [5, Lemma 4.2]. In the case when some of the ci = 0 we
prove this lemma using the method of stochastic dominance. Without loss of generality, we
may assume that the first n coefficients ci = 0, 1 ≤ i ≤ n ≤ m; and that the rest are strictly
positive. Then, for any δ > 0, there exists an a > 0 such that for all x > a, H̄i(x) ≤ δ H̄(x),
1 ≤ i ≤ n. We can define a distribution function

H ′(x) =
{

0 0 ≤ x ≤ a,

δH (x) x > a.

This distribution function dominates Hi , 1 ≤ i ≤ n, i.e., H̄ ′(x) ≥ H̄i(x), x ≥ 0, 1 ≤ i ≤ n.
Assume that each distribution function Hi , 1 ≤ i ≤ m is associated with a sequence of random
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variables Xl
i , l ≥ 1. Then, by Strassen’s theorem on stochastic dominance [7, p. 174], we can

construct a sequence of independent random variables X ′l
i , 1 ≤ i ≤ n, such that they all have

a common distribution H ′ and Xl
j ≤ X ′l

j , l ≥ 1, 1 ≤ j ≤ n. Then we obtain the following
inequality

H∗k1
1 ∗ · · · ∗ H∗km

m (x) = P

[ m∑
j=1

k j∑
l j =1

X
l j
j > x

]

≤ P

[ n∑
j=1

k j∑
l j =1

X ′l j
j +

m∑
j=n+1

k j∑
l j =1

X
l j
j > x

]

= H ′∗(k1+···+kn) ∗ · · · ∗ H∗km
m (x). (C.1)

Note that the tails of all the distributions in (C.1) are asymptotically proportional to H̄(x), and
the conclusion follows from [5, Lemma 4.2].

Proof of Lemma 6. The proof is basically the same as the proof of [5, Lemma 4.3], where
the use of [5, Lemma 4.2], is replaced by Lemma 10.
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[25] KLÜPPELBERG, C. (1988). Subexponential distributions and integrated tails. J. Appl. Prob. 25, 132–141.
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