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Abstract. We show that the renewal theory developed by Sarig and Gouëzel in the
context of nonuniformly expanding dynamical systems applies also to the study of
compact group extensions of such systems. As a consequence, we obtain results on
subexponential decay of correlations for equivariant Hölder observations.

1. Introduction
Suppose that f : X → X is a discrete dynamical system with ergodic invariant
measure µ. If φ, ψ : X → R lie in L2(X), we define the correlation function

ρφ,ψ(n) =
∣∣∫
X
φ(ψ ◦ fn)dµ−

∫
X
φdµ

∫
X
ψ dµ

∣∣.
The dynamical system is mixing if ρφ,ψ(n) → 0 as n → ∞ for all φ, ψ ∈ L2(X).
For certain classes of dynamical systems and sufficiently regular observations
φ, ψ, it is possible to estimate the speed at which ρφ,ψ(n) → 0. For Axiom A
diffeomorphisms, it is known that the correlation function decays exponentially for
Hölder observations (see for example [3, 20, 19]).

The early proofs in the uniformly hyperbolic case revolve around
quasicompactness of a certain transfer operator. This method also applies to
certain hyperbolic systems with singularities and to certain nonuniformly hyperbolic
situations. Such systems can often be modelled by the tower construction of
Young [24] and then exponential return asymptotics guarantee the existence of
a “physical” measure µ and exponential decay of correlations.

Several methods have been developed to deal with the case where the rate
of decay of correlations are slower than exponential. (For a recent survey,
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2 H. Bruin, M. Holland and I. Melbourne

see Baladi [2].) These methods include Birkhoff cones [5, 14, 23] and
probabilistic coupling [25]. In particular, Young towers with subexponential return
asymptotics have subexponential (stretched exponential or polynomial) decay of
correlations [25]. Sarig [21] introduced operator renewal sequences to obtain
also lower bounds for decay of correlations and this method was sharpened by
Gouëzel [8]. In particular, the results of [8, 21] show that the subexponential
decay rates of Young [25] are optimal. (See also [12, Theorem 4.3].)

In this paper, we are interested in group extensions X×G where G is a compact
connected Lie group with Haar measure ν and f : X → X is a dynamical system
of the type described above with ergodic measure µ. Given a Hölder cocycle
h : X → G, we define theG-extension fh : X×G→ X×G by fh(x, g) = (fx, gh(x)).
The product measure m = µ× ν is fh-invariant and is ergodic/mixing under mild
hypotheses on f and h (see [7] for the case when X is uniformly hyperbolic).
We take mixing as given in this paper, and direct our attention to the rate of
mixing. For general Hölder observations φ, ψ : X × G → R, existing results are
restricted to the case when X is uniformly hyperbolic and either G is semisimple
or X is infranil Anosov, see Dolgopyat [4]. Nicol et al. [18] introduced a class of
equivariant observations φ : X × G → Rd of the form φ(x, g) = g · v(x) where Rd
is a representation of G and v : X → Rd. The statistics of such observations arise
naturally in dynamical systems with Euclidean symmetry [18]. The correlation
function ρφ,ψ(n) is now defined to be

ρφ,ψ(n) =
∣∣∫
X×Gφ(ψT ◦ fnh )dm−

∫
X×Gφdm

∫
X×Gψ

T dm
∣∣.

We view elements of Rd as column vectors, and so ρφ,ψ(n) takes values in the space
of d× d matrices.

Results on exponential decay of correlations for equivariant observations on
compact group extensions were obtained by [6] in the case when X is uniformly
hyperbolic. This was extended in [16] to include more general situations where the
transfer operator is quasicompact for the X dynamics.

An important open problem is to obtain results on subexponential decay of
correlations for sufficiently regular observations of compact group extensions.
Previously, there were no such results even for equivariant observations. In this
paper, we deduce subexponential decay results for equivariant observations on
X ×G in certain situations where subexponential decay can be proved on X. The
technique of proof is perhaps unexpected. The Hilbert cones and probabilistic
coupling methods mentioned above fail for equivariant observations — Hilbert
cones uses positivity of the transfer operator; in coupling the observation is viewed
as the density for a probability measure; neither makes sense here. Instead we
use the operator renewal sequence method of Sarig [21] and Gouëzel [8]. In
the nonequivariant context, the renewal method gives optimal decay rates for
Hölder observations supported on a certain subset of X, see [21, 8]. This can
be used to obtain decay rates for general Hölder observations as was pointed out
in Gouëzel [10], see also [9]. In fact, the method is much easier to apply in our
context than in the nonequivariant situation, but we do not obtain lower bounds.
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Group extensions of nonuniformly expanding systems 3

(These two statements are related since the leading term in [8, 21] vanishes in the
equivariant case.)

1.1. Statement of the main result Let (X, d) be a separable bounded metric
space with Borel probability measure η and let f : X → X be a nonsingular
transformation for which η is ergodic. Let Y ⊂ X be a measurable subset with
η(Y ) > 0. We suppose that there is an at most countable measurable partition
{Yj} with η(Yj) > 0, and that there exist integers rj ≥ 1, and constants λ > 1;
C,D > 0 and γ ∈ (0, 1) such that for all j,

(1) frj : Yj → Y is a (measure-theoretic) isomorphism.

(2) d(frjx, frjy) ≥ λd(x, y) for all x, y ∈ Yj .

(3) d(fkx, fky) ≤ Cd(frjx, frjy) for all x, y ∈ Yj , k < rj .

(4) gj =
d(η|Yj

◦(frj )−1)

dη|Y satisfies | log gj(x) − log gj(y)| ≤ Dd(x, y)γ for almost all
x, y ∈ Y .

(5)
∑
j rjη(Yj) <∞.

We say that a dynamical system f satisfying (1)–(5) is nonuniformly expanding.
Define the return time function r : Y → N by r|Yj ≡ rj . Condition (5) says

that
∫
Y
r dη < ∞. The corresponding return map fY : Y → Y is given by

fY (y) = fr(y)(y). By condition (2), fY is uniformly expanding. It can be shown
(see Section 5.1) that there is a unique invariant probability measure µ on X that
is equivalent to η.

Remark 1.1. We note that the return times r(y) need not be first returns and
so fY need not be the first return map to Y . In order to apply renewal theory, a
preliminary step is to model f : X → X by a Young tower F : ∆ → ∆ built over
a base ∆0 ⊂ ∆ that is a copy of Y . The tower map F is Markov and the first
return map for ∆0 is precisely the uniformly expanding map fY : Y → Y . Hence,
renewal theory can be used to study F : ∆ → ∆ and thereby to study f : X → X.
Throughout Sections 3 and 4, the return times are first return times. The Young
tower model appears in Section 5.

Let G be a compact connected Lie group with Haar measure ν. Given a
measurable cocycle h : X → G, we define the G-extension fh : X × G → X × G

with fh invariant measure m = µ× ν. Forward iterates are given for n ≥ 1 by

fnh (x, g) = (fnx, ghn(x)), where hn(x) = h(x)h(fx) · · ·h(fn−1x).

In particular, we obtain the return map on Y ×G given by (y, g) 7→ (fY y, ghY (y))
where hY : Y → G is defined to be hY (y) = hr(y)(y).

Now let Rd be an orthogonal representation of G (so G can be viewed as a closed
subgroup of the d× d orthogonal matrices). Let | | denote a choice of norm on Rd.
We say that φ : X × G → Rd is an equivariant observation if φ(x, g) = g · v(x)
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where v : X → Rd. Note that φ ∈ L∞(X ×G) if and only if v ∈ L∞(X) in which
case |φ|∞ = |v|∞. If v : X → Rd is γ-Hölder, then we say that φ is Hölder and we
define ‖φ‖γ = |v|∞ + |v|γ where |v|γ = supx6=y |v(x)− v(y)|/d(x, y)γ .

Theorem 1.2. Let fh : X × G → X × G be a mixing compact group extension of
a nonuniformly expanding map as above, where h : X → G is a Hölder cocycle.
Assume that

µ(y ∈ Y : r(y) ≥ n) = O(n−(β+1)),

for some β > 1. Let G act orthogonally on Rd. Then there exists a constant C > 0
such that for all equivariant observations φ, ψ : X × G → Rd with φ Hölder and
ψ ∈ L∞,

ρφ,ψ(n) ≤ C‖φ‖γ |ψ|∞n−β .

Similar results hold for more general decay rates, including stretched exponential
(see Section 2.1).

Remark 1.3. (a) Define FixG = {v ∈ Rd : gv = v for all g ∈ G}. We can always
decompose Rd = Rd1 ×Rd2 where G acts trivially on Rd1 (FixG = Rd1) and fixed-
point freely on Rd2 (FixG = {0}). When G acts trivially, we are in the situation
studied by [8, 21] so we focus on the case FixG = {0}.
(b) Suppose that FixG = {0} and that φ and ψ are supported in Y × G. Then
we obtain the improved estimate ρφ,ψ(n) ≤ C‖φ‖γ |ψ|∞n−(β+1) if the cocycle h is
either (i) locally constant (more precisely, h is constant on f `(Yj) for each j ≥ 1
and 0 ≤ ` ≤ rj − 1), or (ii) supported in Y . See Remark 5.4.

It is clear that the results in this paper hold for more general classes of piecewise
Hölder observations/cocycles (possibly with weaker decay results). For ease of
exposition, we consider primarily the uniformly Hölder case.

The remainder of the paper is organised as follows: In Section 2, we prove a
simplified special case of the Renewal Theorem of [8, 21] which suffices for our
purposes. In Section 3, we introduce operator renewal sequences in the context of
group extensions. In Section 4, we prove a version of Theorem 1.2 in the context
of Markov maps with a Gibbs-Markov first return map fY : Y → Y , for Hölder
observations supported in Y ×G. In Section 5, we prove Theorem 1.2. This is done
by reducing to the case of a Young tower [25] which is itself a special case of a
Markov map with a Gibbs-Markov first return map. We also consider in Section 5
compact group extensions of systems that are nonuniformly hyperbolic in the sense
of Young [24].

2. A simplified renewal theorem
Let Hom(B) denote the space of bounded linear operators on a Banach space B.
Let Rn ∈ Hom(B). We assume that

(H1)
∑∞
j=n ‖Rj‖ = O(n−β), where β ≥ 0.

Set R(ω) =
∑∞
n=1Rne

inω. It follows from (H1) that R : S1 → Hom(B) is a
well-defined map. Next, we assume that
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(H2) The spectrum of R(ω) does not contain 1 for all ω ∈ S1.

Define T (ω) = (I − R(ω))−1. Hypothesis (H2) guarantees that T : S1 → Hom(B)
is well-defined.

Theorem 2.1. Assume that (H1) and (H2) are valid with β > 0 not an integer.
Then the Fourier coefficients Tn of T satisfy ‖Tn‖ = O(|n|−β).

By definition, the negative Fourier coefficients of R(ω) vanish, but this property
need not hold for T . If it does, then a sharper result is possible.

(H3) Tn = 0 for n ≤ −1.

Corollary 2.2. Assume that (H1)–(H3) are valid with β > 0 and β 6= 1. Then
the Fourier coefficients Tn of T satisfy ‖Tn‖ = O(n−β).

Proof. By Theorem 2.1, it remains to consider the cases β ∈ {2, 3, . . .}.
In particular, the Fourier coefficients ‖Tn‖ are summable. Now apply [8,
Lemma 4.5]. 2

Remark 2.3. (1) Much of the difficulty, and hence depth, of the work in [8, 21]
stems from the fact that 1 is automatically an eigenvalue of R(0) in their context.
Hence (H2) is violated, necessitating a combination of complex analytic techniques
and Fourier analysis. In our work, Fourier analysis alone suffices.
(2) As the proof of Corollary 2.2 shows, when (H3) holds it suffices to show that
Theorem 2.1 holds for β ∈ (0, 1) and that ‖Tn‖ is summable for β > 1. For
completeness, an independent proof of Theorem 2.1 is given in Subsection 2.2. In
addition, the estimates in Theorem 2.1 are explicit (this is clear in the proof) which
may be of use for estimating mixing times (though we do not pursue that issue here).

2.1. Stretched exponential rates and convolutive sequences Corollary 2.2 can
be generalised significantly using ideas in the Ph. D. thesis of Gouëzel [10,
Définition 2.2.10]. Adapting the definitions there, we say that a sequence of positive
numbers un > 0 is convolutive if

∑∞
n=1 un < ∞ and there exists a constant C > 0

such that

(i) (u ∗ u)n ≤ Cun for all n ≥ 1,

(ii) um ≤ Cun for all m ≥ n,

(iii) (1− ε)n = O(un) for all ε > 0,

(iv) for all ε > 0, there exists N ≥ 1 such that the sequence vn = 1n≥Nun satisfies
(v ∗ v)n ≤ εun for all n ≥ 1.

For un convolutive, it follows from Gouëzel [10] that if
∑∞
j=n ‖Rj‖ = O(un) and

(H2) and (H3) are valid, then ‖Tn‖ = O(un).
It is easily verified that un = n−β is convolutive for β > 1, so we recover

Corollary 2.2 in this case. Also, stretched exponential sequences un = τn
γ

with
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6 H. Bruin, M. Holland and I. Melbourne

τ, γ ∈ (0, 1) are convolutive, so we obtain a stretched exponential version of
Corollary 2.2.

The above definition of convolutive sequence is simpler than in [10], so it is worth
mentioning where the various conditions are used. The method in [10] is to apply a
generalised version of the Wiener lemma from harmonic analysis (if f ∈ L1(S1,C)
is nonvanishing and has summable Fourier coefficients, then f−1 has summable
Fourier coefficients) [13, p. 202]. Conditions (i) and (ii) guarantee the existence of
a suitable Banach algebra. Conditions (iii) and (iv) ensure that the Wiener lemma
holds in this Banach algebra. The remaining conditions in [10] are not required
here due to the simplification mentioned in Remark 2.3(1).

2.2. Proof of Theorem 2.1 In the remainder of this section, we prove Theorem 2.1.
Throughout, if β ≥ 0 then we write β = k + α where k = [β] and α ∈ [0, 1).

Lemma 2.4. Assume that R(ω) =
∑∞
n=1Rne

inω with
∑∞
j=n ‖Rj‖ = O(n−β) where

β > 0 is not an integer. Then R : S1 → R is Cβ.

Proof. First suppose that β = α ∈ [0, 1). We follow [8, 21]. Let ω1, ω2 ∈ S1 and
fix N ≥ 1. Write Sn =

∑∞
j=n ‖Rj‖. Then

‖R(ω1)−R(ω2)‖ ≤
N−1∑
n=1

|einω1 − einω2 |‖Rn‖+ 2
∞∑
n=N

‖Rn‖

≤ |ω1 − ω2|
N−1∑
n=1

n(Sn − Sn+1) + 2
∞∑
n=N

(Sn − Sn+1)

≤ |ω1 − ω2|
N−1∑
n=1

Sn + 2SN ≤ C|ω1 − ω2|
N−1∑
n=1

n−α + 2CN−α

≤ C(1− α)−1N−α
{
N |ω1 − ω2|+ 2(1− α)

}
.

Let N = 1/|ω1 − ω2| + c where 0 ≤ c < 1. Then N−α ≤ |ω1 − ω2|α and
N |ω1−ω2| ≤ 1+2π so that ‖R(ω1)−R(ω2)‖ ≤ C(1−α)−1(3+2π−2α)|ω1−ω2|α,
as required.

Next suppose that β = k + α ≥ 1. Repeatedly differentiating the power series
for R yields R(k)(ω) =

∑∞
n=1 n

kRne
inω. Let En =

∑
j≥n j

k‖Rj‖. We claim that
En = O(n−α). It follows that R(k) is Cα as required.

It remains to prove the claim. We have Sn =
∑
j≥n ‖Rj‖ ≤ Cn−(k+α). Compute

that

En =
∑
j≥n

jk‖Rj‖ =
∑
j≥n

jk(Sj − Sj+1) = nkSn +
∑

j≥n+1

(jk − (j − 1)k)Sj

Using the identity xk − yk = (x− y)(xk−1 + xk−2y + · · ·+ yk−1), we see that jk −
(j − 1)k ≤ kjk−1. Hence En ≤ Cn−α + Ck

∑
j≥n+1 j

−(α+1) ≤ C(1 + k/α)n−α. 2

Lemma 2.5. Suppose that T : S1 → Hom(B) is Cβ where β ≥ 0 and let
Tn ∈ Hom(B) denote the Fourier coefficients of T . Then ‖Tn‖ = O(n−β).
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Proof. First suppose that β = α ∈ [0, 1). The estimate is a standard result for
B = C (see [13, p. 25]) which easily generalises as in Sarig [21].

Next suppose that β = k + α ≥ 1. Integrating by parts k times yields

Tn =
1
2π

∫ 2π

0

T (k)(ω)
e−inω

(in)k
dω.

Now En = (in)kTn are the Fourier coefficients of the Cα function T (k) and so
‖En‖ = O(n−α). Hence ‖Tn‖ = O(n−β) as required. 2

Proof of Theorem 2.1. By Lemma 2.4, R is Cβ , and it follows from (H2) that
T = (I −R)−1 is Cβ . The result follows from Lemma 2.5. 2

3. Renewal sequences for group extensions
In this section, we begin by recalling the formalism of inducing for discrete
dynamical systems in the context of compact group extensions and equivariant
observations, see Subsection 3.1. In Subsection 3.2, we introduce the operator
renewal sequences Tn and Rn. In our context, these operators are twisted versions
of the transfer operators introduced by Sarig [21]. In Subsection 3.3 we prove a
partial result towards the verification of hypothesis (H2).

3.1. Inducing and compact group extensions Let (X,µ) be a probability space,
f : X → X a measure preserving transformation, and Y ⊂ X a measurable subset
with µ(Y ) > 0. By Poincaré recurrence, for almost every point y there is an integer
n ≥ 1 such that fny ∈ Y . Let Zn consist of those y ∈ Y for which n is the least
integer such that fny ∈ Y . Then we have the measurable partition Y = ∪n≥1Zn
and we define the first return map (or induced map) fY : Y → Y by setting
fY y = fny for y ∈ Zn.

Given a cocycle h : X → G with corresponding G-extension fh : X×G→ X×G,
we define (as in the introduction) the induced G-extension (fh)Y×G : Y × G →
Y ×G. Note that (fh)Y×G = (fY )hY where

hY = hn = h · h ◦ f · · ·h ◦ fn−1 on Zn.

We consider equivariant observations φ : X×G→ Rd of the form φ(x, g) = gv(x)
where v ∈ L1(X,Rd). The standing assumption FixG = {0} has the consequence
that

∫
X×G φdm = 0 for all equivariant observations φ (since

∫
G
gv dν = 0 for all

v ∈ Rd).
Corresponding to the map f : X → X, we define as usual the transfer (or Perron-

Frobenius) operator L on L1(X): if v ∈ L1(X), then Lv is the unique element of
L1(X) such that

∫
X
Lv w dµ =

∫
X
v w ◦ f dµ for all w ∈ L∞(X). The operator

L defines (componentwise) an operator L : L1(X,Cd) → L1(X,Cd) for all d ≥ 1
(so L(v1, . . . , vd)T = (Lv1, . . . , Lvd)T ). Similarly, we obtain a transfer operator
L̂ : L1(X × G,Cd) → L1(X × G,Cd) corresponding to fh : X × G → X × G. We
define the twisted transfer operator Lh : L1(X,Cd) → L1(X,Cd) by Lhv = L(h−1v)
(taking the complexified action of G on Cd).
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8 H. Bruin, M. Holland and I. Melbourne

The analogous definitions apply to the first return map fY : Y → Y . We
have the transfer operators R : L1(Y,Cd) → L1(Y,Cd) and R̂ : L1(Y × G,Cd) →
L1(Y ×G,Cd), and and the twisted transfer operator Rh : L1(Y,Cd) → L1(Y,Cd)
defined by Rhv = R((hY )−1v). (We avoid the more natural, but cumbersome,
notation RhY .)

Proposition 3.1. Let φ(x, g) = gv(x) be an equivariant observation with v ∈
L1(X,Cd) or v ∈ L1(Y,Cd). Then (L̂φ)(x, g) = g(Lhv)(x) and (R̂φ)(y, g) =
g(Rhv)(y).

Proof. This is standard, see for example [6]. We give the details for completeness in
the case of L̂. (The argument for R̂ is identical.) By the Peter-Weyl theorem and
orthogonality relations for representations of compact Lie groups, it suffices to show
that

∫
X×G L̂φψ

T dm =
∫
X×G g(Lhv)ψ

T dm for all equivariant ψ ∈ L2(X ×G,Cd).
In other words, we may suppose that ψ(x, g) = gw(x) where w ∈ L2(X,Cd). Then
we compute that∫

X×G (L̂φ)(x, g)ψ(x, g)T dm =
∫
X×G φ(x, g)ψ(fx, gh(x))T dm

=
∫
X×Ggv(x)w(fx)Th(x)T gT dm =

∫
X×G gh(x)

−1v(x)w(fx)T gT dm

=
∫
X×Gg[L(h−1v)](x)w(x)T gT dm =

∫
X×G g[L(h−1v)](x)ψ(x)T dm

as required. 2

3.2. Operator renewal sequences Following [8, 21], we define the following
bounded linear operators on L1(X,Cd) for n ≥ 1:

Tnv = Lnh(1Y v)1Y , Rnv = Lnh(1Zn
v)1Y .

Proposition 3.2. (a) Tn =
∑
i1+···+ik=nRik · · ·Ri2Ri1 , for all n ≥ 1.

(b) Restricting to L1(Y ), we have

Rh(eirωv) =
∞∑
n=1

Rnve
inω

where r : Y → N is given by r|Zn
≡ n.

Proof. Define the sequences of bounded operators T̂n, R̂n on L1(X ×G) by

T̂nφ = L̂n(1Y×Gφ)1Y×G, R̂nφ = L̂n(1Zn×Gφ)1Y×G. (3.1)

It follows from Proposition A.1(a) that

T̂n =
∑

i1+···+ik=n

R̂ik · · · R̂i2R̂i1 . (3.2)

Let φ(x, g) = gv(x). Using Proposition 3.1 and the definitions in (3.1), we
compute that

(T̂nφ)(x, g) = (L̂n(1Y×Gφ)1Y×G)(x, g) = g[(Lnh1Y v)1Y ](x) = g(Tnv)(x).
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Group extensions of nonuniformly expanding systems 9

Similarly, (R̂nφ)(x, g) = g(Rnv)(x). Substituting into (3.2) yields part (a).
Next, define R̂ωφ = R̂(eirωφ). It follows from Proposition A.1(b) that

R̂ω =
∑
n≥1

R̂ne
inω (3.3)

By Proposition 3.1, (R̂ωφ)(x, g) = g(Rh(eirωv))(x) and again (R̂nφ)(x, g) =
g(Rnv)(x). Substituting these into (3.3) yields part (b). 2

3.3. Ruling out eigenvalues for R(ω) The next result is a step towards verifying
hypothesis (H2) from Section 2. Recall that R(ω) =

∑
n≥1Rne

inω.

Proposition 3.3. Suppose that FixG = {0} and that fh : X × G → X × G is
mixing. Then for all ω ∈ R the cohomological equation

R(ω)v = v,

has no nonzero L2 solutions v : Y → Cd.

Proof. By Proposition 3.2(b),

R(ω)v =
∞∑
n=1

Rnve
inω = Rh(eirωv) = R(eirω(hY )−1v).

Hence, it is equivalent to rule out solutions to the cohomological equation
R(eirω(hY )−1v) = v. The proof is standard for ω 6= 0 (cf. Pollicott & Parry [19,
Proposition 6.2]), and the case ω = 0 follows as in [6]. The details are provided for
completeness.

Let U : L2(Y,Cd) → L2(Y,Cd) denote the isometry Uv = e−irωhY v ◦ fY with
adjoint U∗v = R(eirω(hY )−1v) satisfying U∗U = I. It is easy to see that Uv = v is
equivalent to U∗v = v (see for example [16, Section 2]). Hence it suffices to show
that Uv = v has no nonzero solutions in L2(Y,Cd).

Suppose for contradiction that v ∈ L2(Y,Cd) is nonzero and Uv = v. Writing
φ(y, g) = gv(y) we have

φ ◦ fYhY = eirωφ. (3.4)

Denoting r|Zn
= n, we can view X ×G as a discrete suspension over Y ×G by

writing
X ×G = {(y, g, j) ∈ Y ×G× N : 0 ≤ j ≤ r(y)}/ ∼,

where (y, g, r(y)) ∼ (fY y, ghY (y), 0). Then fh : X × G → X × G is simply
given by fh(y, g, j) = (y, g, j + 1) computed modulo identifications. Define
ψ : Y ×G×N → Cd by setting ψ(y, g, j) = eijωφ(y, g). Condition (3.4) guarantees
that ψ is well-defined as a map ψ : X ×G→ Cd. Moreover, it is immediate that

ψ ◦ fh = eiωψ.

If ω 6= 0, then this contradicts the assumption that fh is mixing. If ω = 0 then it
follows from ergodicity of fh that ψ is constant. Writing ψ(x, g) = gw(x) (where
w(y, j) = eijωv(y)), we obtain that w(x) ∈ FixG = {0} for all x ∈ X contradicting
the assumption that v is nonzero. 2
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10 H. Bruin, M. Holland and I. Melbourne

4. The Gibbs-Markov setting
In this section, we obtain a version of Theorem 1.2 under the additional assumptions
that (i) the underlying dynamical system f : X → X is Markov with a first return
map fY : Y → Y that is Gibbs-Markov, and (ii) the observations are supported in
Y ×G.

The notions of Markov and Gibbs-Markov map are recalled in Subsection 4.1.
In Subsection 4.2 we obtain some basic estimates for the twisted operators Rn that
arise for compact group extensions in the (Gibbs-)Markov setting. In Subsection 4.3
we state and prove the version of Theorem 1.2 mentioned above.

4.1. Markov maps and Gibbs-Markov maps A background reference for Markov
maps is [1, Section 4.7]. We follow the presentation in [8]. Let (X,µ) be a Lebesgue
space. Recall that a measure-preserving transformation f : X → X is a Markov
map if there is a measurable partition α of X such that if a ∈ α with µ(a) > 0,
then fa is a union of elements of α and f |a is injective. Moreover, it is assumed
that

∨
i≥0 f

−iα generates the σ-algebra of measurable sets. If a0, . . . , an−1 ∈ α, we
define the cylinder [a0, . . . , an−1] = ∩n−1

i=0 f
−iai.

Suppose that Y = ∪a∈α̃a is a union of elements of α with µ(Y ) > 0. By Poincaré
recurrence, for almost every point y there is an integer n ≥ 1 such that fny ∈ Y .
Let Zn consist of those y ∈ Y for which n is the least integer such that fny ∈ Y .
Then we have the measurable partition Y = ∪n≥1Zn and we define the first return
(induced) map fY : Y → Y by setting fY y = fny for y ∈ Zn. This is a measure-
preserving transformation with respect to µY = µ|Y . Moreover, fY is a Markov
map with respect to the partition β consisting of all cylinders for f : X → X of the
form b = [a, ξ1, . . . , ξn−1, Y ] where a ∈ α̃, ξ1, . . . , ξn−1 6∈ α̃.

If b0, . . . , bn−1 ∈ β, we define the n-cylinder [b0, . . . , bn−1]Y = ∩n−1
i=0 (fY )−ibi.

These cylinders can be used to define a metric on Y in terms of separation times.
Fix θ ∈ (0, 1), and define dθ(x, y) = θs(x,y) where s(x, y) is the greatest integer
n ≥ 0 such that x, y lie in the same n-cylinder [b0, . . . , bn−1]Y .

We shall suppose that the first return map is additionally a Gibbs-Markov map
satisfying the following properties:

(i) Big images: There exists c > 0 such that µ(fY b) ≥ c for all b ∈ β.

(ii) Distortion: There exists θ ∈ (0, 1) such that that p|b : b → R is Lipschitz

with respect to dθ for all b ∈ β′ where p(x) = pY (x) = log
dµY

dµY ◦ fY
and β′

denotes the smallest partition of Y such that fY b is a union of atoms in β′

for all b ∈ β.

It follows in a standard manner from assumptions (i) and (ii) that there exists
a constant D > 0 such that for all x, y ∈ [b0, . . . , bk−1]Y ,∣∣∣∣epk(x)

epk(y)
− 1

∣∣∣∣ ≤ Dθ−kdθ(x, y) and D−1 ≤ µ[b0, . . . , bk−1]Y
epk(x)

≤ D, (4.1)
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Group extensions of nonuniformly expanding systems 11

where pk(x) = p(x) + p(fY x) + · · ·+ p((fY )k−1x).
Let B denote the Banach space of functions v : Y → Cd with norm ‖v‖ =

|v|∞ + |v|θ < ∞, where |v|θ denotes the Lipschitz constant (with respect to the
metric dθ). The transfer operator R : L1(Y,Cd) → L1(Y,Cd) associated to the
Gibbs-Markov map fY : Y → Y restricts to an operator R : B → B given by

(Rv)(x) =
∑

fY y=x

ep(y)v(y),

4.2. Estimates for group extensions Recall that hY (x) = hn(x) =
h(x)h(fx) · · ·h(fn−1x) for x ∈ Zn. Throughout, hYk means (hY )k. Since h(x)
acts orthogonally on Rd for all x ∈ X, |hYk |∞ = 1 for all k. Viewing hY : Y → G

as a map hY : Y → Rd2 we can speak of the Hölder constant | |θ with respect to
the metric dθ on Y and any choice of norm on Rd2 . In fact, we do not assume that
|hY |θ is finite, but we do require that |1Zn

hn|θ <∞ for all n ≥ 1.
Let b̄ = [b0, . . . , bk−1]Y be a k-cylinder for the first return map fY . If x ∈ Y ,

write b̄x = b0 · · · bk−1x.

Proposition 4.1. Let x, y ∈ Y . Then |hYk (b̄x)−hYk (b̄y)| ≤
∑k−1
j=0 θ

k−j |1bj
hY |θdθ(x, y).

Proof. To simplify notation, we write H = hY and F = fY . Compute that

|Hk(b̄x)−Hk(b̄y)| ≤
k−1∑
j=0

|H|k−1
∞ |H ◦ F j(b̄x))−H ◦ F j(b̄y))|

≤
k−1∑
j=0

|1bj
H|θdθ(F j(b̄x), F j(b̄y)).

The result follows since dθ(F j(b̄x), F j(b̄y)) ≤ θk−jdθ(x, y). 2

For x ∈ Y , define

(Mb̄v)(x) = epk(b̄x)(hYk )−1(b̄x)v(b̄x)

if the point b̄x = b0 · · · bk−1x is defined, and zero otherwise. It is immediate
from (4.1) that |Mb̄|∞ ≤ Dµ(b̄).

Lemma 4.2. There is a constant E ≥ 1 such that

‖Mb̄v‖ ≤ Eµ(b̄)
{(

1 +
k−1∑
j=0

θk−j |1bj
hY |θ

)
|v|∞ + θk|v|θ

}
,

for all k-cylinders b̄ = [b0, . . . , bk−1]Y , v ∈ B.

Proof. See [21] for a proof in the absence of h. We again write H = hY and also,
we write b instead of b̄. Let x, y ∈ Y and compute that

|(Mbv)(x)− (Mbv)(y)| = |epk(bx)H−1
k (bx)v(bx)− epk(by)H−1

k (by)v(by)|
≤ |1bepk |∞|v(bx)− v(by)|+ |1bepk |∞|H−1

k (bx)−H−1
k (by)| |1bv|∞

+ |1bepk |∞
∣∣∣epk(bx)

epk(by)
− 1

∣∣∣ |1bv|∞
Prepared using etds.cls



12 H. Bruin, M. Holland and I. Melbourne

and so by (4.1) and Proposition 4.1,

|(Mbv)(x)− (Mbv)(y)| ≤ Dµ(b)
{
θk|1bv|θ +

k−1∑
j=0

θk−j |1bj
hY |θ|1bv|∞ +D|1bv|∞

}
dθ(x, y).

Hence |Mbv|θ ≤ Dµ(b){θk|1bv|θ+
∑k−1
j=0 θ

k−j |1bj
hY |θ|1bv|∞+D|1bv|∞}. Combining

this with the estimate for |Mb|∞ yields the required result with E = D2 +D. 2

Corollary 4.3. (a) There is a constant E′ ≥ 1 such that for all ω ∈ S1, the
linear operator R(ω) : B → B satisfies

‖R(ω)kv‖ ≤ E′{(1 +
∑
n≥1

µ(Zn)|1Zn
hn|θ)|v|∞ + θk|v|θ

}
,

for all k ≥ 1.
(b) ‖Rn‖ = O

(
µ(Zn)(1 + |1Zn

hn|θ)
)
.

Proof. Recall from Proposition 3.2(b) that R(ω)v = R(eirω(hY )−1v) where R

is the transfer operator for fY : Y → Y . Write R(ω)k =
∑
b̄Mb̄e

irkω where
rk =

∑k−1
j=0 r ◦ (fY )j and the sum is over all k-cylinders b̄. Since rk is constant on b̄,

the term eirkω does not contribute to the Hölder estimates. Hence by Lemma 4.2,
to prove part (a) it remains to estimate

∑
b̄=[b0,...,bk−1]

µ(b̄)
∑k−1
j=0 θ

k−j |1bj
hY |θ.

Let n denote the symbol corresponding to Zn (that is b0 = n precisely when
[b0] = Zn). We compute that

∑
b̄=[b0,...,bk−1]

µ(b̄)
k−1∑
j=0

θk−j |1bj
hY |θ =

k−1∑
j=0

∑
b̄=[b0,...,bk−1]

µ(b̄)θk−j |1bj
hY |θ

=
k−1∑
j=0

θk−j
∑
n≥1

∑
b̄=[b0,...,bk−1], bj=n

µ(b̄)|1bj
hY |θ

=
∑
n≥1

|1Znhn|θ
k−1∑
j=0

θk−jµ((fY )−jZn)

≤ θ(1− θ)−1
∑
n≥1

µ(Zn)|1Znhn|θ,

as required (with E′ = Eθ(1− θ)−1).
Next, recall that Rnv = R(1Zn

(hY )−1v). Hence, summing up the estimates in
Lemma 4.2 over 1-cylinders b̄ ⊂ Zn yields the estimate for ‖Rn‖. 2

4.3. Decay rates for observations supported in Y ×G

Theorem 4.4. Let fh : X × G → X × G be a mixing compact group extension of
a Markov map f : X → X. Suppose that there exists Y ⊂ X such that the first
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Group extensions of nonuniformly expanding systems 13

return map fY : Y → Y is Gibbs-Markov. Suppose that h : X → G is a cocycle
satisfying ∑

j≥n

µ(Zj)(1 + |1Zj
hj |θ) = O(n−β),

for some β > 1.
Let G act orthogonally on Rd with FixG = {0}. Then there is a constant

C > 0 such that for all equivariant observations φ, ψ : Y × G → Rd of the form
φ(x, g) = gv(x), ψ(x, g) = gw(x) where v ∈ B and w ∈ L∞(Y,Rd),∣∣∣∫

X×G
φψT ◦ fnh dm

∣∣∣ ≤ C‖v‖ |w|∞n−β

for all n ≥ 1.

Proof. View the operators Tn, Rn as lying in Hom(B) and let

R(ω) =
∑
n≥1

Rne
inω, T (ω) = (I −R(ω))−1.

We begin by verifying hypotheses (H1)–(H3) stated in Section 2.
Hypothesis (H1) is immediate from Corollary 4.3(b). By a standard argument,

the unit ball in B is compact in L∞. This combined with Corollary 4.3(a) implies,
by Hennion [11], that the essential spectral radius of R(ω) : B → B is bounded
above by θ < 1 for all ω ∈ S1. By Proposition 3.3, 1 is not an eigenvalue of
R(ω) : L2(Y ) → L2(Y ), and B ⊂ L2(Y ), so we conclude that 1 does not lie in the
spectrum of R(ω), establishing (H2).

To prove (H3), we extend R to an analytic map z 7→ R(z) =
∑
n≥1Rnz

n for
z ∈ C, |z| ≤ 1. (This is a slight abuse of notation since R(ω) is now written R(eiω).)
The map I − R(z) is invertible for |z| = 1 by (H2), and invertibility for |z| < 1
is simpler: the inequality in Corollary 4.3(a) generalises to ‖R(z)n‖ ≤ E′′|z|n for
|z| ≤ 1, so the spectral radius of R(z) is at most |z|. Hence T (z) = (I −R(z))−1 is
analytic and we can write T (z) =

∑
n≥0 Tnz

n establishing (H3).
Hypotheses (H1) and (H2) guarantee that the maps R, T : S1 → Hom(B) are

well-defined and by Lemma 2.4 they are Cβ . In particular, the series definition
of R(ω) is absolutely convergent to R(ω) and since β > 1, T (ω) = (I − R(ω))−1

has an absolutely convergent Fourier series T (ω) = I +
∑

|n|≥1 T̃ne
inω. By (H3)

and Corollary 2.2, there is a constant C > 0 such that ‖T̃n‖ ≤ Cn−β . Equating
coefficients in T (I − R) = I yields T̃n =

∑
i1+···+ik=nRik · · ·Ri1 so it follows from

Proposition 3.2(a) that Tn = T̃n. Hence ‖Tn‖ ≤ Cn−β .
The remainder of the proof is a straightforward computation using

Proposition 3.1:

ρ(n) =
∫
X×G

φψT ◦ fnh dm =
∫
X×G

L̂nφψT dm =
∫
X×G

g(Lnhv)w
T g−1 dm,

so that |ρ(n)| ≤ |
∫
X
Lnhv w

T dµ|. Since v and w are supported in Y , we can write

|ρ(n)| ≤ |
∫
X
Tnv w

T dµ| ≤ |Tnv|1 |w|∞.

But |Tnv|1 ≤ ‖Tnv‖ ≤ Cn−β‖v‖ as required. 2
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14 H. Bruin, M. Holland and I. Melbourne

5. Proof of the main theorem
In this section, we complete the proof of Theorem 1.2. In Subsection 5.1, we reduce
to the case of a Young tower satisfying the hypotheses of Theorem 4.4. Decay of
correlations follows for Hölder observations supported in Y ×G. In Subsection 5.2,
we obtain decay rates for Hölder observations supported on the whole of X × G.
In Subsection 5.3, we consider group extensions of systems that are nonuniformly
hyperbolic in the sense of [24].

5.1. Reduction to a Young tower Suppose that f : X → X is a nonuniformly
expanding map with ergodic measure η and uniformly expanding return map
fY : Y → Y as described in the introduction. The map f can be modelled by
a Young tower F : ∆ → ∆ where π : ∆ → X is a Markov extension with certain
properties [25]. We recall the construction now.

Let ∆0 be a copy of the subset Y ⊂ X and let ∆j,0 = Yj . Recall that the
return time function r : Y → N is constant on partition elements ∆j,0 with value
r|∆j,0 = rj ≥ 1. Let ∆ = {(y, `) : y ∈ ∆0, ` = 0, . . . , r(y)− 1}, so ∆ is the disjoint
union of rj copies of each ∆j,0. Define the tower map F : ∆ → ∆ by setting
F (y, `) = (y, ` + 1) for 0 ≤ ` < r(y) − 1 and F (y, r(y) − 1) = (fY y, 0). Note that
the return map fY : Y → Y is identified with the first return map fY : ∆0 → ∆0.
In particular, the return times rj for the map f are first return times for the map
F .

We can write ∆ as the disjoint union ∆ =
⋃
j≥1

⋃rj−1
`=0 ∆j,`, where ∆j,` =

∆j,0 × {`}. Then F is Markov with respect to the partition {∆j,`}. Also fY

is Markov with respect to the partition {∆j,0}. (In the notation of Section 4.1,
{∆j,`} plays the role of α and {∆j,0} plays the role of β.)

As in Section 4.1, we define a metric dθ on ∆0 in terms of the separation times
under the first return map fY . So if x, y ∈ ∆j,0 for some j, then s(x, y) is the
greatest integer n ≥ 0 such that (fY )nx and (fY )ny lie in the same partition
element of ∆0 and dθ(x, y) = θs(x,y).

The separation time function and metric extend to ∆ as follows: If x, y lie in
distinct partition elements, then s(x, y) = 0. If x, y ∈ ∆j,` then write x = F `x0,
y = F `y0 where x0, y0 ∈ ∆j,0 and define s(x, y) = s(x0, y0). Hence dθ(x, y) = θs(x,y)

defines a metric on ∆ for any choice of θ ∈ (0, 1).
Define the projection π : ∆ → X by π(y, `) = f `(y). Clearly, π is a semi-

conjugacy between F and f .

Proposition 5.1. Assume that f is nonuniformly expanding, and hence satisfies
conditions (1)–(5) in Section 1.1. Let θ = 1/λγ . Then

(i) There is a constant C ′ ≥ 1 such that d(πx, πy) ≤ C ′[dθ(x, y)]1/γ for all
x, y ∈ ∆.

(ii) There exist (unique) ergodic F -invariant and f-invariant probability measures
µ′ on ∆ and µ on X, with µ equivalent to η, such that the semi-conjugacy
π : ∆ → X is measure-preserving.
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Group extensions of nonuniformly expanding systems 15

(iii) The first return map fY : ∆0 → ∆0 is Gibbs-Markov with respect to the
partition {∆j,0}.

Proof. First suppose that x, y ∈ ∆0 and let k = s(x, y). Then it follows
from condition (2) that d((fY )kx, (fY )ky) ≥ λkd(x, y). Hence d(x, y) ≤
diam(Y )/λs(x,y).

If x, y lie in ∆j,`, then write x = f `x0, y = f `y0. By condition (3),

d(πx, πy) ≤ Cd(fY x0, f
Y y0) ≤ diam(Y )/λs(x,y)−1 = λ diam(Y )[dθ(x, y)]1/γ .

This proves part (i).
Define an ergodic measure η′ on ∆ by setting η′|∆j,`

= η|Yj . We note that ∆
satisfies the technical assumptions to be a Young tower [25]: by condition (1),
each partition element ∆j,0 is mapped by fY onto the whole of ∆0; the required
distortion condition is immediate by condition (4) and part (i) of the proposition.
Since the return time function r is integrable (condition(5)), it is standard (see for
example [25, Theorem 1]) that there is an F -invariant probability measure µ′ on
∆, with µ′ equivalent to η. Now define µ = π∗µ

′ to obtain the required measure on
X. This completes the proof of part (ii).

Part (iii) is immediate again by part (i) and conditions (1) and (4). (Indeed
β′ = {∆0} and p is globally Lipschitz.) 2

Define the projection π : ∆×G→ X ×G by setting π(x, g) = (πx, g). This is a
measure-preserving semi-conjugacy between the group extensions Fh◦π : ∆×G→
∆×G and fh : X×G→ X×G (with respect to the product measures m′ = µ′× ν
and m = µ × ν where ν is Haar measure on G). It is immediate that mixing
properties for Fh◦π are inherited by fh. We have the following partial converse:

Proposition 5.2. Suppose that the group extension fh : X×G→ X×G is mixing
and that gcd{rj , j ≥ 1} = 1. Then Fh◦π : ∆×G→ ∆×G is mixing.

Sketch proof. First consider the case when G is absent. Then it is clear that
gcd{rj , j ≥ 1} = 1 is a necessary condition for F : ∆ → ∆ to be mixing and
Young [24, Lemma 5] shows that this condition is also sufficient. The idea is that
the required mixing takes place at the base ∆0 of the tower (where the return map
fY is identical for fh and Fh◦π) and the greatest common divisor condition ensures
that simultaneous returns to the base occur. The arguments are identical when G

is present so we omit the details. 2

We obtain a special case of Theorem 1.2 as a consequence of Theorem 4.4.

Corollary 5.3. Theorem 1.2 holds under the additional hypothesis that the
observations φ and ψ are supported on Y ×G.

Proof. As above, we have the measure-preserving projection π : ∆ × G → X × G

where ∆ is a Young tower. By Proposition 5.1(i), Hölder cocycles h0 : X → G lift
to Lipschitz cocycles h ◦π : ∆ → G and similarly Hölder observations on Y ×G lift
to Lipschitz observations on ∆0 × G. A simple argument [24, p. 607] shows that
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16 H. Bruin, M. Holland and I. Melbourne

it is no loss of generality to assume that gcd{rj , j ≥ 1} = 1. Then Proposition 5.2
guarantees that Fh◦π : ∆×G→ ∆×G is mixing.

Hence it suffices to prove decay of correlations under the assumptions that
Fh : ∆ × G → ∆ × G is a mixing group extension defined by a Lipschitz cocycle
h : X → G and φ(x, g) = gv(x), ψ(x, g) = gw(x) are equivariant observations
supported on ∆0×G where v : ∆0 → Rd is Lipschitz (and hence lies in the Banach
space B) and w ∈ L∞(∆0,Rd).

By Theorem 4.4, it remains to show that
∑
j≥n µ(Zj)(1 + |1Zj

hj |θ) = O(n−β).
Here Zn is the union of partition elements of ∆0 on which r takes the value of n.
If x, y ∈ Zn, then using the definition of dθ on ∆ we compute that

|hn(x)− hn(y)| ≤
n−1∑
`=0

|h(f `x)− h(f `y)| ≤ |h|θ
n−1∑
`=0

dθ(f `x, f `y) = n|h|θdθ(x, y).

Hence |1Zn
hn|θ ≤ n|h|θ. By assumption

∑
j≥n µ(Zj) = O(n−(β+1)) and so we

obtain the required O(n−β) estimate. 2

Remark 5.4. If in addition h is supported in Y or h is locally constant, then we
obtain the improved O(n−(β+1)) estimate mentioned in Remark 1.3(b).

5.2. Decay of correlations for observations on X × G In this subsection, we
complete the proof of Theorem 1.2 by extending Corollary 5.3 to the case where
observations are defined on the whole ofX×G. Again, it suffices to work at the level
of a tower group extension Fh : ∆×G→ ∆×G. As before, h : ∆ → G is a Lipschitz
cocycle. We consider observations φ, ψ : ∆×G→ Rd of the form φ(x, g) = gv(x),
ψ(x, g) = gw(x), where v : ∆ → Rd is Lipschitz and w ∈ L∞(∆,Rd).

Define B(∆) to consist of globally Lipschitz functions v : ∆ → Cd with
‖v‖θ = |v|∞ + |v|θ where |v|θ is the Lipschitz constant with respect to dθ. Define
B(∆0) in the same way for functions v : ∆0 → Cd, so B(∆0) coincides with the
space B from Section 4.

Recall that Lhv = L(h−1v) where L denote the transfer operator corresponding
to the tower map F : ∆ → ∆. Following Gouëzel [10, 9], we estimate the norm of
Lnh : B(∆) → L1(∆).

Write (Lnhv)(x) =
∑
Fnz=x gn(z)hn(z)

−1v(z) where gn(z) is the inverse of the
Jacobian of Fn at z. It follows from the definition of the tower that g1(z) = 1
if z ∈ ∆j,` for 0 ≤ ` ≤ rj − 2. Moreover, if z ∈ ∆j,0, then grj is Lipschitz and
coincides with the inverse of the Jacobian of F0 : ∆j,0 → ∆0.

Define An : L∞(∆0,Cd) → L1(∆,Cd) by

(Anv)(x) =
∑

Fnz=x
z∈∆0

Fz 6∈∆0,...,F
nz 6∈∆0

gn(z)hn(z)−1v(z).

Note that Anv is supported on level n of the tower, and that for x in level n we
have (Anv)(x) = hn(z)−1v(z) where z is the unique point in ∆0 with Fnz = x.
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For brevity, we let |An|∞,1 denote the operator norm of An : L∞(∆0,Cd) →
L1(∆,Cd).

Lemma 5.5. |An|∞,1 = O(n−(β+1)).

Proof. Since |h−1
n | ≡ 1, it is immediate that |Anv|∞ ≤ |v|∞. Also, the support

of Anv (contained in level n of the tower) has measure at most
∑
rj>n

µ(∆j,0) =
µ(r > n). The result follows. 2

Define Bn : B(∆) → B(∆0) by

(Bnv)(x) =
∑

Fnz=x
z 6∈∆0,...,F

n−1z 6∈∆0
Fnz∈∆0

gn(z)hn(z)−1v(z).

Lemma 5.6. ‖Bn‖ = O(n−β).

Proof. It follows from the definition of Bn that each preimage z lies in ∆j,rj−n
for some j with rj > n. If z and z′ are compatible preimages of x and x′,
then |v(z) − v(z′)| ≤ |v|θdθ(z, z′) = θ|v|θdθ(x, x′). Moreover, gn(z) = ep(y) where
y ∈ ∆j,0 with F0y = x and p is the Lipschitz potential for F0. Hence we obtain
estimates of the form

‖Bn‖ ≤ C
∑
rj>n

µ(∆j,0)(1 + |1∆j,rj−n
hn|θ),

in the same way as was done for ‖Rn‖ in Corollary 4.3(b). The calculation in the
proof of Corollary 5.3 shows that |1∆j,rj−nhn|θ ≤ n|h|θ and the result follows. 2

We can now estimate Lnh : B(∆) → L1(∆).

Corollary 5.7. There exists C ≥ 1 such that |Lnhv|1 ≤ Cn−β‖v‖θ for all
v ∈ B(∆).

Proof. Recall that Tnv =
∑

Fnz=x
x,z∈∆0

gn(z)hn(z)−1v(z) and so

Lnh =
∑

i+j+k=n

AiTjBk + Cn,

where Ai, Bk are as defined above and

(Cnv)(x) =
∑

Fnz=x
z 6∈∆0,...,F

nz 6∈∆0

gn(z)hn(z)−1v(z).

Hence

|Lnhv|1 ≤
∑

i+j+k=n

|Ai|∞,1|TjBkv|∞ + |Cn|∞,1|v|∞

≤
∑

i+j+k=n

|Ai|∞,1‖Tj‖ ‖Bk‖ ‖v‖+ |Cn|∞,1‖v‖.
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As shown in the proof of Theorem 4.4, ‖Tn‖ = O(n−β). By Lemmas 5.5 and 5.6,
|An|∞,1 = O(n−(β+1)) and ‖Bn‖ = O(n−β). Hence the convolution of the sequences
An, Tn, Bn is O(n−β). Also, arguing as in Lemma 5.5,

|Cn|∞,1 ≤
∑
rj>n
n<`<rj

µ(∆j,`) =
∑
rj>n

(rj − n)µ(∆j,`) = O(n−β),

giving the required estimate for the Cn term. 2

Proof of Theorem 1.2. As in Subsection 5.1, we first reduce to the case of a mixing
group extension Fh : ∆ × G → ∆ × G where F : ∆ → ∆ is a tower map and
h : ∆ → G is a Lipschitz cocycle. This time we consider equivariant observations
φ(x, g) = gv(x), ψ(x, g) = gw(x) defined on the whole of ∆×G, so v ∈ B(∆) and
w ∈ L∞(∆,Rd).

By Corollary 5.7, we have ‖Lnh‖ = O(n−β). Decay of correlations on ∆ × G

follows immediately by the same argument as in the last three lines of the proof of
Theorem 4.4. 2

5.3. Group extensions of nonuniformly hyperbolic systems In this subsection, we
consider the case of a compact group extension M × G where f : M → M is
nonuniformly hyperbolic in the sense of Young [24]. Part of the set up in [24] is that
there is a “physical” f -invariant ergodic probability measure µ and a “uniformly
hyperbolic” subset Λ ⊂ M with an integrable return time function r : Λ → N. If
h : M → G is a Hölder cocycle, we define the group extension fh : M×G→M×G.
Consider equivariant observations of the form φ(x, g) = gv(x) where v : M → Rd.
As before, φ is said to be γ-Hölder if v is γ-Hölder, and we define ‖φ‖γ = |v|∞+|v|γ .

Theorem 5.8. Let fh : M ×G→M ×G be a mixing compact group extension of
a nonuniformly hyperbolic system as above, where h : M → G is a Hölder cocycle.
Assume that

µ(y ∈ Λ : r(y) ≥ n) = O(n−(β+1)),

for some β > 1. Let G act orthogonally on Rd. Then for any β′ < β, there exists a
constant C > 0 such that for all Hölder equivariant observations φ, ψ : M×G→ Rd,

ρφ,ψ(n) ≤ C‖φ‖γ ‖ψ‖γn−β
′
.

As in the nonuniformly expanding case, f : M →M can be modelled by a tower
F : ∆ → ∆. This tower has an F -invariant foliation by stable disks, leading to a
quotient tower map F̄ : ∆̄ → ∆̄. For each θ ∈ (0, 1), define a metric dθ on ∆̄ as
in Subsection 5.1. (We note that the quotient tower map F̄ : ∆̄ → ∆̄ corresponds
to the tower map F : ∆ → ∆ in Subsection 5.1.) There are invariant measures
m = µ × ν on M × G, m′ = µ′ × ν on ∆ × G, and m̄ = µ̄ × ν on ∆̄ × G, and
measure-preserving semiconjugacies π : ∆×G→M ×G and π̄ : ∆×G→ ∆̄×G.

The reduction to the nonuniformly expanding case breaks into three main steps
(cf. [6] in the uniformly hyperbolic case).
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(1) Define ĥ = h ◦ π : ∆ → G and φ̂ = φ ◦ π, ψ̂ = ψ ◦ π : ∆×G→ Rd. It suffices to
establish decay of correlations for the observations φ̂, ψ̂ and group extension Fĥ.
(2) A version of the “Sinai trick” [22] shows that ĥ is cohomologous to a cocycle
h̃ : ∆ → G that “depends only on future coordinates”. In other words, h̃ is
constant on stable disks and projects down to a cocycle h̄ : ∆̄ → G. Moreover,
h̄ is Lipschitz with respect to the metric dθ. Details in the case of R-valued
cocycles are given in [17], and the argument there generalises to compact group
extensions using [19, Appendix II]. Group extensions by cohomologous cocycles
are topologically conjugate, so there is almost no loss in carrying out this step.
However, the observations φ̂ and ψ̂ are slightly modified in the process, yielding
new observations φ̃ and ψ̃ (which need not be lifts of Hölder observations on M).
(3) Write φ̃(x, g) = gṽ(x), ψ̃(x, g) = gw̃(x). To estimate

∫
∆×G φ̃ (ψ̃T ◦ Fn

h̃
) dm′, it

suffices to estimate
∫
∆
h̃−1
n ṽ (w̃T ◦Fn) dµ′. Let k ≥ 1. By [15, Lemma 5.4], we can

construct vk : ∆ → Rd such that

(a) vk depends only on future coordinates and projects to vk : ∆̄ → Rd.

(b) |vk|∞ ≤ |v|∞, |vk|θ ≤ 2θ−2k|v|∞, |ṽ ◦ F k − vk|∞ ≤ C1‖v‖γ αk.

Similarly, we define wk : ∆ → Rd. Here, α ∈ (0, 1) is a constant arising from the
nonuniformly hyperbolic structure of f and the Hölder exponent γ.

Following [15, Section 5(b)], the expression
∫
∆
h̃−1
n ṽ (w̃T ◦ Fn) dµ′ breaks up

into three integrals, two of which are of order αk by (b). The third integral is
given by I3 =

∫
∆
h̃−1
n (h̃kvk) ((h̃kwk)T ◦ Fn) dµ′. The integrand projects down

to ∆̄ and so I3 =
∫
∆̄
Ln
h̄
(h̄kvk) (h̄kwk)T dµ̄. By our results in the nonuniformly

expanding case, |I3| ≤ C2n
−β‖h̄kvk‖θ|h̄kwk|∞. By (b), this leads easily to

|I3| ≤ C3n
−βθ−2k|v|∞|w|∞. Hence, decay of correlations is estimated by C4(αk +

n−βθ−2k). Choosing k = k(n) so that αk ∼ n−βθ−2k, and choosing θ close to 1, we
obtain the required decay rate n−β

′
with β′ close to β.

A. The renewal equation
In this appendix, we recall standard results about first return maps that were used
in Section 3.2. Since the result has nothing to do with group extensions, we write
Ω instead of X ×G and Z ⊂ Ω instead of Y ×G. So the set up is that (Ω, µ) is a
probability space, f : Ω → Ω is a measure preserving transformation, and Z ⊂ Ω
is a measurable subset with µ(Z) > 0. Let fZ : Z → Z denote the first return
map and let Z = ∪n≥1Zn denote the corresponding partition. Let L̂, R̂ denote the
transfer operators corresponding to f and fZ and define

T̂nφ = L̂n(1Zφ)1Z , R̂nφ = L̂n(1Zn
φ)1Z .

We also define the return time function r : Z → N by r|Zn
≡ n and the twisted

transfer operator
R̂ω φ = R̂(eirωφ),

for ω ∈ S1.
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Proposition A.1 ( [21, Proposition 1] ) (a) T̂n =
∑
i1+···+ik=n R̂ik · · · R̂i2R̂i1 .

(b) Restricting to L1(Z), we have R̂ω =
∑∞
n=1 R̂ne

inω.

Proof. Compute that
∫
R̂nφψ =

∫
L̂n(1Zn

φ) 1Zψ =
∫

1Zn
φ (1Zψ) ◦ fn. But

fn = fZ when restricted to Zn, so we have∫
R̂nφψ =

∫
1Zn

φ (1Zψ) ◦ fn =
∫

1Zn
φ (1Zψ) ◦ fZ . (A.1)

Applying (A.1) inductively yields∫
R̂ik · · · R̂i2R̂i1φψ =

∫
A

φ (1Zψ) ◦ f i1+···+ik ,

where A = Zi1 ∩ (fZ)−1Zi2 ∩ · · · (fZ)−(k−1)Zik . Hence∫ ( ∑
i1+···+ik=n

R̂ik · · · R̂i2R̂i1φ
)
ψ =

∫
φ1Z (1Zψ) ◦ fn =

∫
T̂nφψ,

proving part (a).
Restricting to L1(Z) and summing (A.1) over n yields∫ ( ∞∑

n=1

R̂nφ
)
ψ =

∫
φψ ◦ fZ =

∫
R̂φψ,

so that R̂ =
∑∞
n=1 R̂n. Hence R̂ωφ = R̂(eirωφ) =

∑∞
n=1 R̂n(e

irωφ). But

R̂n(eirωφ) = L̂n(1Zn
eirωφ) = L̂n(1Zn

einωφ) = R̂n(φ)einω,

and part (b) follows. 2
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