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Abstract

We consider a Lévy process reflected in barriers at 0 and K > 0. The
loss rate is the mean time spent at the upper barrier K at time 1 when the
process is started in stationarity, and is a natural continuous-time analogue
of the stationary expected loss rate for a reflected random walk. We derive
asymptotics for the loss rate when K tends to infinity, when the mean of the
Lévy process is negative and the positive jumps are subexponential. In the
course of this derivation, we achieve a formula, which is a generalization of
the celebrated Pollaczeck-Khinchine formula.

Keywords finite buffer, heavy tails, Lévy process, local times, loss rate,
Pollaczeck-Khinchine formula, subexponential distributions.

1 Introduction

In the papers Jelenković [13] and Pihlsg̊ard [18], the authors examine the loss rate
associated with a stochastic process obtained by reflecting a random walk in two
barriers at 0 and K > 0, and derive asymptotic expressions for the loss rate as
K tends to infinity. In particular, Jelenković [13] derives the asymptotics of the
loss rate in the case of heavy tails. The continuous-time analogue of the loss rate
associated with a reflected random walk, is the loss rate associated with a reflected
Lévy process which is examined in Asmussen and Pihlsg̊ard [4], where an explicit
expression for the loss rate in terms of the characteristic triplet of the Lévy process
is provided. Furthermore, [4] gives the asymptotic behavior of the loss rate as K
tends to infinity in the case where the mean of the Lévy process is positive as well
the case where the mean is negative and the jumps of the process are light-tailed,
and in the Andersen and Asmussen [1] the authors examine loss rate asymptotics
for centered Lévy processes. In this paper we derive asymptotics where the mean is
negative and the process is heavy-tailed.

Reflected processes may be used to model waiting time processes in queues with
finite capacity (Cohen [8], Cooper et al. [9], Bekker and Zwart [5], Daley [10]).
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It may be used to model a finite dam or fluid model (Asmussen [3],Moran [17],
Stadje [21]). Furthermore, it is used in models of network traffic or telecommunica-
tions systems involving a finite buffer (Jelenković [13], Zwart [22], Kim and Shroff
[14]) and in this context the loss rate can be interpreted as the bit loss rate in a
finite data buffer.

The main contribution of this paper is Theorem 3.1 which provides an asymptotic
expression for the loss rate in the heavy-tailed case. In the course of the derivation
of this expression, we also obtain a formula, (3.2), which is a generalization of the
celebrated Pollaczeck-Khinchine formula.

The outline of the paper is as follows: In Section 2 we provide the essential
background on Lévy processes, and give the formal definition of the loss rate. With
the definitions and previous results settled we can state the main results in Section 3.
The proofs are given in Section 4.

2 Preliminaries

2.1 Lévy Processes and the Loss rate

We consider a probability space (Ω,F ,P). A Lévy process S := {St} is a real-valued
stochastic process on R with stationary independent increments which is continuous
in probability and with S0 = 0 P − a.s. Every Lévy process S is associated with a
unique characteristic triplet (θ, σ, ν), where θ ∈ R, σ ≥ 0 and ν is a measure (the
Lévy measure) with

∫∞
−∞(1 ∧ y2)ν(dy) < ∞ and ν({0}) = 0. The Lévy exponent is

given by

κ(α) = θα +
σ2α2

2
+

∫ ∞

−∞

[
eαx − 1− αI(|x| ≤ 1)

]
ν(dx)

and is defined for α in Θ := {α ∈ C | Ee<(α)S1 < ∞}. The Lévy exponent is the
unique function satisfying EeαXt = etκ(α) and κ(0) = 0. We assume throughout this
paper that E|S1| < ∞. We use the cadlag version of S, which exists because of
stochastic continuity. We note that this implies that ∆St := St−St− is well-defined.
Standard references for Lévy processes are Bertoin [6], Kyprianou [15] and Sato [20].

We are given a Lévy process through its characteristic triplet, and reflect it in
barriers at 0 and K > 0. The reflected process is given as part of the solution to a
Skorokhod problem and is denoted VK. We have a decomposition

V K
t = x+ St + L0

t − LKt (2.1)

of the reflected process started at x ∈ [0, K] where L0 := {L0
t} and LK := {LKt } are

the local times at 0, K respectively. Note that the reflected process and the local
times are cadlag, so that objects such as ∆L0

t := L0
t − L0

t− are well-defined and by
way of being increasing, the local times are of bounded variation which allow is to
decompose them into a continuous part and a jump part. For more information on
Skorokhod problems, see Asmussen [3], Asmussen and Pihlsg̊ard [4] and Andersen
and Mandjes [2].

Because of the independent, identically distributed increments of S, VK has
a regenerative structure which yields a stationary distribution denoted πK . The
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stationary distribution satisfies:

πK(y) = πK [y,K] = P
(
Sτ [y−K,y) ≥ y

)
, 0 ≤ y ≤ K (2.2)

where τ [u, v) = inf
{
t > 0 | St /∈ [u, v)

}
. See Asmussen [3, pp. 393-394] for a

derivation of this representation. When K = ∞, we have one-sided reflection (See
Asmussen [3, IX 2a]). In this case LKt ≡ 0, and L0

t := (− inf0≤v≤t Sv − y)+, and we
have a result similar to (2.2) of the one-sided stationary distribution which follows
from Cor. 2. IX p. 253 in Asmussen [3]:

π∞(y) = P
(

sup
t≥0

St ≥ y
)

= P(τ(y) <∞) (2.3)

where τ(y) = inf{t > 0 : St ≥ y}. Furthermore, for notational convenience we set
L0
t := Lt when K =∞.

We follow the standard definitions of the classes S and S∗ of distribution func-
tions. The class S is defined by the requirement that F ∗n(x) ∼ nF (x) (F ∗n = nth
convolution power), and S∗ by

lim
x→∞

1

µ

∫ x

0

F (x− y)

F (x)
F (y)dy = 2

where µ is the first moment of F . It is well-known that S∗ ⊆ S and using (2.3) we
may apply Theorem 4.1 from Maulik and Zwart [16] to get

νI(K) :=

∫ ∞

K

ν(y) dy ∼ |ES1|π∞(K) (2.4)

when ES1 < 0 and νI(x) ∼ F (x) for some F ∈ S. The latter condition is ensured
by requiring that ν(x) ∼ F (x) for some F (x) ∈ S∗.

� � �
The loss rate is defined as

`K = EπK
LK1 , (2.5)

that is, as the mean of LK1 when the process is started in stationarity.
According to Theorem 3.6 in Asmussen and Pihlsg̊ard [4] we have the following

expression of the loss rate, in terms of the characteristic triplet of the Lévy processes:

`K =
ES1

K

∫ K

0

πK(x) dx+
σ2

2K
+

1

2K

∫ K

0

πK(dx)

∫ ∞

−∞
ϕK(x, y)ν(dy), (2.6)

where

ϕK(x, y) =





−(x2 + 2xy) if y ≤ −x
y2 if − x < y < K − x
2y(K − x)− (K − x)2 if y ≥ K − x .

(2.7)
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3 Main results

We start by stating the main results. The first result provides the asymptotics in
the case of heavy tails and negative drift.

Theorem 3.1. Let S be a Lévy process with Lévy measure ν such that νI(x) ∼ B(x)
for some B ∈ S, and with finite negative mean: ES1 = µ < 0. Define the conditions

(I) ES2
1 <∞ and

∫∞
K
νI(y) dy/νI(K) ∈ O(K) .

(II) ν(K) ∼ L(K)K−α where L is a locally bounded slowly varying function and
1 < α < 2.

If either (I) or (II) holds, then

`K ∼
∫ ∞

K

ν(y)dy (3.1)

We remark that the requirement
∫∞
K
νI(y) dy/νI(K) ∈ O(K) in Theorem 3.1 is

very weak. Indeed, suppose νI(x) ∼ B(x) where B is either lognormal, Benktander
or heavy-tailed Weibull. Then we recognize a(x) :=

∫∞
x
B(y) dy/B(x) as the mean-

excess function and it is known (see Goldie and Klüppelberg [12]), that a(x) ∈ o(x).
Furthermore, it is easily checked that the condition is satisfied when B is a Pareto
or Burr distribution, provided that the second moment is finite.

� � �
We also derive the following theorem, giving an expression for the moment generating
function of the stationary distribution in the case of one-sided reflection. Recall our
decomposition of the one-sided reflected process Vt(x) = x+St−Lt(x) and let {Lct}
be the continuous part of the local time.
Theorem 3.2. Suppose −∞ < µ = ES1 < 0 then V := limt Vt exists in distribution
and for α ∈ Θ with κ(α) <∞ we have:

E
[
eαV
]

= −
αEπ∞L

c
1 + Eπ∞

[∑
0≤s≤1(1− e−α∆Ls)

]

κ(α)
(3.2)

If S has no negative jumps, the term Eπ∞

[∑
0≤s≤1(1 − e−α∆Ls)

]
disappears,

and Eπ∞L
c
1 = Eπ∞L1 = µ, and we see that Theorem 3.2 indeed is a generalization

of Corollary 3.4 in Asmussen [3, Chap. IX] which is itself a generalization of the
Pollaczeck-Khinchine formula.

4 Loss rate asymptotics in the case of negative

drift and heavy tails

In this section we prove Theorem 3.1 and in the pursuit of this, we prove Theo-
rem 3.2. We first prove Proposition 4.1, which is a set of inequalities which al-
low us to compare the stationary distributions in the cases of one and two-sided
reflection. Next, we prove Proposition 4.2 showing that 1 is a lower bound for
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lim infK `
K/νI(K), which is essentially half of Theorem 3.1. Lemma 4.1 and Propo-

sition 4.3 provide a martingale, and using optional stopping of this martingale yields
Theorem 3.2, which gives the m.g.f. E[eαV ]. We differentiate this transform in Corol-
lary 4.1 to give us the mean of V , which is needed in the proof of Theorem 3.1.

Proposition 4.1. Let S be a Lévy process, and let πK(y), π∞(y) be the tails of the
reflected (one/two-sided) distributions. Then we have the following inequalities for
x > 0, K > 0

0 ≤ π∞(x)− πK(x) ≤ π∞(K) . (4.1)

Proof. The inequalities are trivial for x > K. Let 0 ≤ x ≤ K. The inequality
πK(x) ≤ π∞(x) follows from the representations (2.2) and (2.3). The inequality
π∞(x) − πK(x) ≤ π∞(K), follows by dividing the sample paths of S which cross
above x into those which do so by first passing below K − x, and those which stay
above K − x. To be precise, define τ(y) := inf{t > 0 : St ≥ y} and σ(y) :=
inf{t > 0 : St < y}. Then, since any path which passes below K − x and then
above x must pass an interval of length at least K, we have by the strong Markov
property:

P(σ(x−K) < τ(x) <∞) ≤ P
(

sup
t>0

Sσ(x−K)+t − Sσ(x−K) > K
)

= P(τ(K) <∞) = π∞(K) .

And therefore:

π∞(x) = P(τ(x) <∞)

= P(σ(x−K) < τ(x) <∞) + P(τ(x) < σ(x−K) <∞)

≤ πK(x) + π∞(K) .

In our effort to prove that `K ∼ νI(K) we need to prove that 1 is a lower bound
for lim infK `

K/νI(K) and an upper bound for lim supK `
K/νI(K). The former holds

without any regularity conditions.

Proposition 4.2. For any Lévy process we have

1 ≤ lim inf
K

`K

νI(K)

Proof. We have
∫ K

0

πk(dx)

∫ ∞

K

(y −K + x)ν(dy) ≤ `K

since the left hand side is the contribution to the local time by the jumps larger
than K. Since

νI(K) ≤
∫ ∞

K

(y −K)ν(dy) +

∫ K

0

xπk(dx)

=

∫ K

0

πk(dx)

∫ ∞

K

(y −K + x)ν(dy)

we are done.
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Recall our decomposition Vt(x) = x + St − Lt(x) of the one-sided reflection of
the Lévy process started at x and reflected in 0 and we let Lct(x) and Ljt(x) denote
the continuous and jump parts of the local time respectively. We suppress the x’s
for ease of notation.

Lemma 4.1. For α ∈ Θ and t > 0 we have

E
[ ∑

0≤s≤t

∣∣1− e−α∆Ls
∣∣
]
<∞ (4.2)

Proof. Setting ∆Ls = ∆LsI(Ls ≤ 1) and ∆Ls = ∆LsI(∆Ls > 1) we can split the
sum into the contribution from the jumps of size ≤ 1 and those of size > 1 by writing

E
[ ∑

0≤s≤t

∣∣1− e−α∆Ls
∣∣
]

= E
[ ∑

0≤s≤t

∣∣1− e−α∆Ls
∣∣
]

+ E
[ ∑

0≤s≤t

∣∣1− e−α∆Ls
∣∣
]
,

and we note that first sum on the r.h.s. is bounded, since there exists a constant c
such that |1− eαx| ≤ c|α|x for x ∈ [0, 1] and therefore

E
[ ∑

0≤s≤t

∣∣1− e−α∆Ls
∣∣
]
≤ c|α|E

[ ∑

0≤s≤t
∆Ls|

]
≤ c|α|ELt <∞,

where the last inequality follows from Lemma 3.3 in Asmussen [3, Chap IX].
Since

|1− e−α∆Ls| =
∣∣I(∆Ls > 0)− e−α∆Ls

∣∣ ≤ I(∆Ls > 0) + e−<(α)∆LsI(∆Ls > 0)

we have

E
[ ∑

0≤s≤t

∣∣1− e−α∆Ls
∣∣
]

≤ E
[ ∑

0≤s≤t
I(∆Ls > 0)

]
+ E

[ ∑

0≤s≤t
e−<(α)∆LsI(∆Ls > 0)

]

A jump of size of > 1 at time s of the local time can only occur if the process itself
makes a negative jump of size > 1, and therefore I(∆Ls > 0) ≤ I(∆Ss < 0), where
∆Ss := ∆SsI(∆Ss < −1), which implies

E
[ ∑

0≤s≤t
I(∆Ls > 0)

]
≤ E

[ ∑

0≤s≤t
I(∆Ss < 0)

]
= t

∫ −1

−∞
ν(dy) <∞

where the last number is finite because E|S1| < ∞. Regarding the remaining sum,
we observe that if <(α) ≥ 0 we have

E
[ ∑

0≤s≤t
e−<(α)∆LsI(∆Ls > 0)

]
≤ E

[ ∑

0≤s≤t
I(∆Ls > 0)

]

and the sum is finite by the inequalities above. If <(α) < 0 we have

E
[ ∑

0≤s≤t
e−<(α)∆LsI(∆Ls > 0)

]

≤ E
[ ∑

0≤s≤t
e<(α)∆SsI(∆Ss < 0)

]
= t

∫ −1

−∞
e<(α)yν(dy) <∞ ,

where the last inequality follows from Theorem 25.3 i Sato [20] and the fact that
α ∈ Θ. Putting everything together we have that (4.2) is finite.
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The lemma above is used in the following generalization of Cor. 3.2 in Asmussen
[3, Chap. IX].

Proposition 4.3. Consider a Lévy process S, and let V be the process reflected at 0
and let Lc := {Lct} and Lj := Ljt be the continuous and jump part of the local time L.
Then for α ∈ Θ and x ≥ 0

Mt := κ(α)

∫ t

0

eαVs(x) ds+ eαx − eαVt(x) + αLct(x) +
∑

0≤s≤t
(1− e−α∆Ls(x)) (4.3)

is a martingale.

Proof. For notational convenience, we write Vs := Vs(x) and Lcs = Lcs(x). Since
the local time is of bounded variation, we may apply Theorem 3.1 in Asmussen [3,
Chap. IX], to obtain that

κ(α)

∫ t

0

eαVs ds+ eαx − eαVt + α

∫ t

0

eαVs dLcs +
∑

0≤s≤t
eαVs(1− e−α∆Ls)

is a local martingale. Since Lct can only increase when Vt = 0 and ∆Lt > 0⇒ Vt = 0,
the expression above is equal to Mt, so that Mt is a local martingale. According
to Lemma 3.3 in Protter [19, p. 35] it will be a martingale if we can prove that
E sups≤t |Ms| <∞. But this follows from

E
[

sup
0≤s≤t

|Ms|
]

≤ κ(α)tE sup
0≤s≤t

|eαVs|+ |eαx|+ E|eαVt |+ |α|E[Lct ] + E
∑

0≤s≤t
|(1− e−α∆Ls)|

which is finite according to lemma 3.3 in Asmussen [3, Chap. IX] and Lemma 4.1
above.

We are now ready to prove Theorem 3.2

Proof. The existence of V follows from Cor. 2.6 in Asmussen [3, p. 253]. Let V0 be
a r.v. independent of S and distributed as V , and set x = V0, t = 1 in (4.3). Then
V is stationary and by taking expectation we get

0 = κ(α)Eπ∞ [

∫ 1

0

eαVs ds] + αEπ∞L
c
1 + Eπ∞

[ ∑

0≤s≤1

(1− e−α∆Ls)
]

⇓
κ(α)

∫ 1

0

Eπ∞

[
eαV
]

ds+ αEπ∞L
c
1 + Eπ∞

[ ∑

0≤s≤1

(1− e−α∆Ls)
]

⇓

E
[
eαV
]

= −
αEπ∞ [Lc1] + Eπ∞

[∑
0≤s≤1(1− e−α∆Ls)

]

κ(α)
.
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Next, we use the results above to obtain an expression for the mean of the
stationary distribution in the case of one-sided reflection.

Corollary 4.1. If S is square integrable then V is integrable and we have

E[V ] =
Eπ∞ [

∑
0≤s≤1 ∆L2

s]− V ar(S1)

2ES1

(4.4)

=

∫∞
−∞ y

2ν(dy) + σ2 −
∫∞

0

∫ −x
−∞(x+ y)2ν(dy)π∞(dx)

2|ES1|
(4.5)

Proof. Since S1 is non-degenerate, we have by Lemma 4 in Feller [11] that there
exists ε > 0 such that κ(it) 6= 0 for t ∈ (−ε, ε) \ {0}, and we may use (3.2) to obtain
the characteristic function ϕ of V and we wish to show that ϕ is differentiable at 0.
Define g(t) := Eπ∞

[∑
0≤s≤1(1−e−it∆Ls)

]
and set `1 := Eπ∞L

c
1. By Doob’s inequality,

we have that ES2
1 <∞ implies EL2

1 <∞ and therefore Eπ∞L
2
1 <∞, and this implies

that g is twice differentiable at 0 and we see that g′(0) = iEπ∞

[∑
0≤s≤t ∆Ls

]
=

iEπ∞L
j
t , g

′′(0) = Eπ∞

[∑
0≤s≤t ∆L2

s

]
and i`1 + g′(0) = iEπ∞L1 = −iES1.

Applying Proposition 4.2 and using l’Hospital’s rule twice (see Prop. 4.1 the in
Appendix), we have:

lim
t→0

EeitV − 1

t
= lim

t→0

−ti`1 − g(t)− κ(it)

tκ(it)

= lim
t→0

−i`1 − g′(t)− iκ′(it)

κ(it) + tiκ′(ti)

= lim
t→0

−g′′(t) + κ′′(it)

iκ′(it) + iκ′(ti)− tκ′′(ti)

=
−g′′(0) + κ′′(0)

2iκ′(0)
.

We see that ϕ is differentiable. In itself, this does not entail integrability of V , but a
short argument using the Law of Large Numbers and the fact that V is non-negative,
yeilds that V is integrable. The first moment is

EV =
−g′′(0) + κ′′(0)

2(−1)κ′(0)

which is (4.4). We obtain (4.5) by conditioning on the value of the process prior to
a jump.

We are now ready for the proof of Theorem 3.1. The proof has two distinct
cases, depending on whether or not the Lévy process is square integrable. If this is
the case we require only mild regularity conditions. However, if the Lévy process
has infinite variance, we impose stronger regularity conditions.

Proof. Because of Proposition 4.2, we only need to prove

lim sup
K

`K/νI(K) ≤ 1 .
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Define the following:

I1 :=
ES1

K

∫ K

0

xπK(dx)

I2 :=
σ2

2K

I3 :=
1

2K

∫ K

0

πK(dx)

∫ ∞

−∞
ϕK(x, y)ν(dy) .

Then, because of the expression for the loss rate given by (2.6) and the inequality
from Proposition 4.1 we have the following inequality:

`K ≤ ES1

K

∫ K

0

π∞(x) dx− ES1π∞(K) + I2 + I3 . (4.6)

First, we assume (I) holds. By (2.4) we have

lim
K

−ES1π∞(K)

νI(K)
= 1 , (4.7)

so we will be done, if we can show

lim sup
K

1

νI(K)

[
ES1

K

∫ K

0

π∞(y) dy + I2 + I3

]
= 0 . (4.8)

We start by rewriting the term in the brackets above. Using Cor. 4.1 and the
assumption that ES2

1 <∞ we have that
∫∞

0
π∞(y)dy <∞ and using (4.4)

ES1

K

∫ K

0

π∞(y) dy

=
ES1

K

∫ ∞

0

π∞(y) dy − ES1

K

∫ ∞

K

π∞(y) dy

=
Eπ∞ [

∑
0≤s≤1 ∆L2

s]− Var(S1)

2K
+
|ES1|
K

∫ ∞

K

π∞(y) dy .
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Furthermore,

I2 + I3

=
σ2

2K
+

1

2K

∫ K

0

πK(dx)
(∫ −x

−∞
−(x2 + 2xy)ν(dy) +

1

2K

∫ K−x

−x
y2ν(dy)

+
1

2K

∫ ∞

K−x

[
2y(K − x)− (K − x)2

]
ν(dy)

)

=
σ2

2K
+

1

2K

∫ ∞

−∞
y2ν(dy) +

1

2K

∫ K

0

πK(dx)

∫ −x

−∞

[
− (x2 + 2xy)− y2

]
ν(dy)

+
1

2K

∫ K

0

πK(dx)

∫ ∞

K−x

[
2y(K − x)− (K − x)2 − y2

]
ν(dy)

=
σ2

2K
+

1

2K

∫ ∞

−∞
y2ν(dy)− 1

2K

∫ K

0

πK(dx)

∫ −x

−∞
(x+ y)2ν(dy)

− 1

2K

∫ K

0

πK(dx)

∫ ∞

K−x
(y − (K − x))2ν(dy)

=
Var(S1)− EπK

[
∑

0≤s≤1 ∆L2
s]

2K
− 1

2K

∫ K

0

πK(dx)

∫ ∞

K−x
(y − (K − x))2ν(dy).

We note the fact that

Eπ∞

[ ∑

0≤s≤1

∆L2
s

]
≤ EπK

[ ∑

0≤s≤1

∆L2
s

]

which can be verified using partial integration and (4.1). Using this in the last
equation above, we may continue our calculation and obtain:

I2 + I3 ≤
Var(S1)− Eπ∞ [

∑
0≤s≤1 ∆L2

s]

2K

− 1

2K

∫ K

0

πK(dx)

∫ ∞

K−x
(y − (K − x))2ν(dy) .

Comparing the expressions above we see that fractions cancel, and the expression
in the brackets in (4.8) is less than

|ES1|
K

∫ ∞

K

π∞(y) dy − 1

2K

∫ K

0

∫ ∞

K−x
(y − (K − x))2ν(dy)πK(dx) .

Applying partial integration

|ES1|
K

∫ ∞

K

π∞(y) dy − 1

2K

∫ K

0

∫ ∞

K−x
(y − (K − x))2ν(dy)πK(dx)

=
|ES1|
K

∫ ∞

K

π∞(y) dy − 1

2K

∫ ∞

K

(y −K)2ν(dy)− 1

K

∫ K

0

πK(x)νI(K − x)dx

≤ |ES1|
K

∫ ∞

K

π∞(y) dy − 1

2K

∫ ∞

K

(y −K)2ν(dy)

=
|ES1|
K

∫ ∞

K

π∞(y) dy − 1

K

∫ ∞

K

νI(y) dy.
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Returning to (4.8) and applying the results above we get

lim sup
K

1

νI(K)

[
ES1

K

∫ K

0

π∞(y) dy + I2 + I3

]

≤ lim sup
K

1

νI(K)

[ |ES1|
K

∫ ∞

K

π∞(y) dy − 1

K

∫ ∞

K

νI(y) dy

]

= lim sup
K

∫∞
K
νI(y) dy

KνI(K)

[∫∞
K
|ES1|π∞(y) dy∫∞
K
νI(y) dy

− 1

]
= 0,

where the last equality follows since the term in the brackets tends to 0, and the
fraction outside it is bounded by assumption. This proves that (3.1) holds under
condition (I).

We now assume condition (II)
We start by noticing the following consequences of the assumptions:

∫ ∞

K

ν(y) dy ∼
∫ ∞

K

L(y)

yα
dy ∼ K−α+1L(K)

α− 1
K →∞ (4.9)

where the last equivalence follows by Proposition 1.5.10 of Bingham et al. [7] and
the fact that α > 1. Since by Proposition 1.3.6 of Bingham et al. [7], we have
K−α+2L(K)→∞, (4.9) implies KνI(K)→∞.

The inequality (4.6) still holds, as does the limit in (4.7), so we proceed to

analysis of ES1

∫ K
0
π∞(y)dy/(νI(K)K)

Since KνI(K)→∞ K →∞ we see that for any A we have

lim
K→∞

ES1

KνI(K)

∫ A

0

π∞(y) dy = 0 . (4.10)

Because of the result above we have for any A

lim
K→∞

ES1

KνI(K)

∫ K

0

π∞(y) dy = lim
K→∞

ES1

KνI(K)

∫ K

A

π∞(y) dy

and using |ES1|π∞(K) ∼ νI(K) ∼ K−α+1L(K)/(α− 1) we have

lim
K→∞

ES1

KνI(K)

∫ K

A

π∞(y) dy = lim
K→∞

− 1

KνI(K)

∫ K

A

νI(y) dy

= − lim
K→∞

1

KνI(K)

∫ K

A

y−α+1L(y)

(α− 1)
dy

in the sense that if either limit exits so does the other and they are equal. Further-
more, since −α+ 1 > −1 and L is locally bounded, we may apply Proposition 1.5.8
in Bingham et al. [7] to obtain

− lim
K→∞

1

KνI(K)

∫ K

A

y−α+1L(y)

(α− 1)
dy

= − lim
K→∞

1

KνI(K)

K−α+2L(K)

(−α + 2)(α− 1)
= − 1

−α + 2
.
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That is, we obtain

lim
K→∞

ES1

KνI(K)

∫ K

0

π∞(y) dy = − 1

−α + 2
. (4.11)

Returning to (4.6) we have

lim sup
K

`K

νI(K)

= lim sup
K

ES1

KνI(K)

∫ K

0

π∞(y) dy − ES1π∞(K)

νI(K)
+
I2

νI(K)
+
I3

νI(K)

= − 1

−α + 2
+ 1 + lim sup

K

I2

νI(K)
+
I3

νI(K)
. (4.12)

Since KνI(K)→∞ we have

I2/νI(K) =
σ2

2KνI(K)
= 0

and we may continue our calculation from (4.12)

− 1

−α + 2
+ 1 + lim sup

K

I2

νI(K)
+
I3

νI(K)
= − 1

−α + 2
+ 1 + lim sup

K

I3

νI(K)
(4.13)

So we turn our attention to I3. First we divide the integral into two:

2KI3 = (4.14)
∫ K

0

πK(dx)

∫ −x

−∞
−(x2 + 2xy)ν(dy) +

∫ 0

−x
y2ν(dy)

︸ ︷︷ ︸
A(K)

(4.15)

∫ K

0

πK(dx)

∫ K−x

0

y2ν(dy) +

∫ ∞

K−x
2(K − x)y − (K − x)2ν(dy)

︸ ︷︷ ︸
B(K)

. (4.16)

We may assume ν is bounded from below, otherwise we may truncate ν at −L for
some L > 0 which is chosen large enough to ensure that the mean of S1 remains
negative. This truncation may increase the loss rate, which is not a problem, since
we are proving an upper bound. Thus, we may assume that A(K) is bounded:

A(K) ≤
∫ K

0

πK(dx)

∫ 0

−∞
y2ν(dy) ≤

∫ 0

−∞
y2ν(dy) <∞

And therefore, since KνI(K)→∞, we have

A(K)

2KνI(K)
→ 0 . (4.17)

12



Turning to B(K), we first perform partial integration

B(K) =

∫ K

0

y2ν(dy) +

∫ ∞

K

2Ky −K2ν(dy)

−
∫ K

0

νI(K − x)πK(x) dx

≤
∫ K

0

y2ν(dy) +

∫ ∞

K

2Ky −K2ν(dy)

=

∫ K

0

2yν(y) dy −K2ν(K) +

∫ ∞

K

2Ky −K2ν(dy)

=

∫ K

0

2yν(y) dy + 2K

∫ ∞

K

ν(y) dy .

Since yν(y) ∼ y−α+1L(y) way may apply Proposition 1.5.8 from [7]:

∫ K

0

2yν(y) dy ∼ 2
L(K)K−α+2

2− α
and therefore:

lim
K

1

2KνI(K)

∫ K

0

2yν(y) dy =
α− 1

2− α .

Combining this with our inequality for B(K) above, we have:

lim sup
K

B(K)

2KνI(K)
≤ α− 1

2− α + 1 =
1

2− α .

Finally, by combining this with (4.12), (4.17) and (4.13) we have get

lim sup
K

`K

νI(K)
≤ 1

and we are done.
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