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Abstract—Earlier research has shown that filter impulse re-
sponses are quasi-periodic and filter coefficients can be approx-
imated by extrapolation techniques. In this paper, a discrete
coefficient extrapolated impulse response filter is proposed. Resid-
ual compensation technique is introduced to perfectly realize
the filter coefficients. Both the extrapolated filter coefficients
and the residuals are subexpression encoded to minimize the
filter complexity. Numerical example shows that the proposed
technique achieves minimum number of adders in the synthesis
of the filter when compared with any other existing techniques.

I. INTRODUCTION

Multiplierless finite impulse response (FIR) filters are very

attractive in VLSI (Very Large Scale Integration) implemen-

tation since the multiplication of the input sample data with

the filter coefficients can be achieved by a limited number

of additions and shifts. Since the shifts for fixed coefficient

values can be realized by hardwire, for decades, the efforts

to reduce the filter complexity have been focused on reducing

the number of adders. One of the most efficient approaches

to reducing the number of adders in realizing the coefficient

multiplication is the subexpression sharing technique.
The subexpression sharing technique can be grouped into

three categories. The first category is common subexpression
sharing [1]–[3] in which the common patterns of the coeffi-

cients, usually represented in a canonic signed digital (CSD)

form, or binary numbers are found and shared. The second

category of algorithms are based on the adder graph [4], [5]

in which larger coefficients are realized by shifting and adding

those already realized smaller coefficients. The third category

is the difference method [6], [7] of which the cost to realize

the differences of the coefficients are minimized to reduce the

overall complexity.
Since the subexpression coefficient implementation in trans-

posed form FIR filter is explicitly a multiple constant multi-

plication (MCM) problem, most of the above algorithms were

considered in this platform. As a dual of the transposed form,

the direct form FIR filter can always be implemented using

the subexpression sharing with exactly the same complexity.

However, in transposed form, the adders can be easily clas-

sified into the adders for the multiplier block (MB) and the

adders in between the delay elements of the delay line, as

shown in Fig. 1; these two types of adders are called MB adder

and structural adder, respectively. In this paper, the transposed

form is considered for easily referring to the different type of

adders.

h(1)h(0) h(2) h(3)

y(n)

x(n)
Multiplier Block

structural adders

Fig. 1. Transposed form of FIR filter

When considering to implement a set of coefficient val-

ues using subexpression sharing, these coefficients are first

transformed to positive odd numbers by scaling the coefficient

values with a proper signed power-of-two factor. Among these

positive odd numbers, only the non-one distinct coefficients

are considered, since coefficient with value one and duplicated

coefficients can be realized without any cost. Thus, for a filter

with L distinct positive non-one odd-valued coefficients, it

has been shown in [8] that the lower bound of the number

of MB adders of the transposed direct form implementation is

equal to the minimum number of adders required to realize the

simplest coefficient plus (L − 1). In most cases, the number

of adders required to realize the simplest coefficient is one,

since there are always very small magnitude coefficients which

can be realized by one adder in a practical filter. Therefore,

the lower bound basically is determined by the number of

distinct coefficients, L. For many benchmark filters, this lower

bound has been achieved, for instance, example 1 of reference

[9]. The example was a 120th-order filter with 52 distinct

coefficients. Many algorithms [5], [10]–[12] have achieved

this lower bound. Therefore, to further reduce the number of

MB adders, the only possibility is to reduce the lower bound

by reducing the number of distinct coefficients; this can be

achieved by reducing the dynamic range of the coefficient

multiplier.

In this paper, a discrete coefficient extrapolated impulse

response FIR filter is proposed. Due to the quasi-periodic

property of the impulse response [13], [14], coefficients can

be approximated by extrapolation. Residual compensation is

introduced to perfectly restore the coefficient values to the

original optimum values. By using the proposed technique, the

dynamic range of the coefficient multipliers are significantly

reduced. The reduction in dynamic range increases the chance

of having coefficients with identical values. This results in
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Fig. 2. A typical impulse response sequence of an FIR filter

a reduction in the lower bound of the number of MB adders.

Design examples show that the proposed technique reduces the

filter complexity in terms of the number of adders significantly

compared with any other existing techniques.

II. THE EXTRAPOLATED IMPULSE RESPONSE

This section briefly reviews the concept of extrapolated

impulse response technique. A typical impulse response of

an FIR filter is quasi-periodic as shown in Fig. 2. Most of the

energy of the impulse response is concentrated at the center

lobe while the side lobes have decreasing magnitudes. If lobe

0, lobe 1, lobe 2, etc.,(see Fig. 2) have the same number

of samples, they can be approximated as a scaled version

of anyone of the lobes. For instance, lobes 0 and 1 can be

approximated as scaled versions of a prototype lobe, say lobe

2. Mathematically, for the i-th lobe, we have:

h(n) ≈ αih(n + ki), for n = pi, · · · , qi, (1)

where αi is the scaling factor, ki is the displacement of the

i-th lobe to the prototype lobe; pi and qi are the first and the

last index of the i-th lobe.
If we assume that the center of the impulse response is at

n = 0, we have the z-transform transfer function:

H(z) = h(0) +
N∑

n=1

h(n)(zn + z−n). (2)

Assuming that the lobes begin at n = p0 through n = q0 and

n = p1 through n = q1, · · · , H(z) can be rewritten as

H(z) = h(0) +
M∑

n=1

h(n)(zn + z−n) +
q0∑

n=p0

h(n)(zn + z−n)

+
q1∑

n=p1

h(n)(zn + z−n) +
q2∑

n=p2

h(n)(zn + z−n) + · · · . (3)

The durations of these lobes are q0 − p0 +1, q1 − p1 +1, q2 −
p2 + 1, · · · and they might not be all equal. However, they

can be separated into several groups, and each group consists

of lobes with the same duration. Thus, in each group, any

lobe can always be approximated as the scaled version of a

prototype lobe in that group. For expository convenience, we

assume all the lobes have the same duration d since other cases

are just simple extensions. As a result, (3) can be written as:

H(z) = h(0) +
M∑

n=1

h(n)(zn + z−n) +

R−1∑

r=0

d∑

m=1

h(M + m + rd)(zM+m+rd + z−(M+m+rd)), (4)

where R is the number of lobes, d is the duration of each

lobe. If the lobe with the smallest magnitude(usually, the (R−
1)-th lobe)1 is chosen as the prototype lobe, H(z) can be

approximated by

H(z) ≈ Ĥ(z) = h(0) +
M∑

n=1

(zn + z−n) +

d∑

m=1

h(M +m+(R−1)d)
R−1∑

r=0

αr(zM+m+rd+z−(M+m+rd)),

(5)

where αr is the r-th scaling factor and αR−1 = 1.

A realization of a 12th-order symmetrical filter using the

above extrapolation technique is given in Fig. 3(a), where the

coefficients h(3) and h(4) are implemented as scaled version

of h(5) and h(6) with a scaling factor α0.

Optimization techniques have been proposed in [13], [14]

to optimize the filter coefficients of the prototype lobe as

well as the scaling factors. Although, the filter complexity

has been reduced, the frequency response of the extrapolated

filter is generally degraded compared with that of the minimax

optimum. To meet a given specification, the order of the

extrapolated filter is, in general, longer than that of the

minimax optimum.

III. DISCRETE COEFFICIENT EXTRAPOLATED FILTER

WITH PERFECT RESIDUAL COMPENSATION

In the traditional extrapolated filters, the frequency response

is degraded due to the fact that the complexity reduction is

achieved by reducing the degree of freedom of filter coeffi-

cients. Coefficients are only approximations of their optimum

values. In this section, a perfect residual compensation tech-

nique is proposed to restore the optimum coefficient values

when multiplierless filters are implemented.

Assume that the discrete space optimum impulse response

of a 2N -th order linear phase FIR filter for a given specifica-

tion is h(n). The discrete space, D, may be the finite-word

length space or the signed power-of-two space. Therefore,

h(n) ∈ D, and h(−n) = h(n), for −N ≤ n ≤ N .

Since the coefficients are symmetric, only the coefficients

with non-negative index are considered. Assume further that

the coefficients are quasi-periodic with duration d from n =
M + 1 to n = M + Rd for R periods. Thus, 0 ≤ M < N ,

R ≤ N−M
d and both are integers. Following the procedure

of the traditional extrapolated filters, the filter coefficients of

h(n) for 0 ≤ n ≤ M and M + Rd + 1 ≤ n ≤ N are

implemented accurately. For h(n) within the range M + 1 ≤
n ≤ M + Rd, if the period with the smallest magnitude is

chosen as the prototype lobe, and all the other periods are

approximated as the scaled versions of the prototype lobe, the

1lobe 0 is considered as the zero-th lobe
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Fig. 3. (a) Traditional Extrapolation Structure (b) Extrapolation Structure with Residual Compensation

approximated coefficients, denoted as ha(n), from n = M +1
to n = M + (R − 1)d become

ha(n − (R − r − 1)d) = αrh(n)
for M + (R − 1)d + 1 ≤ n ≤ M + Rd and

0 ≤ r ≤ R − 2, (6)

where the scaling factors, αr, are integers or power-of-two

numbers for multiplierless implementation. Therefore, the co-

efficient residuals, denoted as hr(n), due to the approximation

are given by

hr(n) = h(n)−ha(n), for M +1 ≤ n ≤ M +(R−1)d. (7)

In the implementation of the extrapolated filter, if the

coefficient residuals are compensated by adding the products

of the signal samples and the residuals into the tap delay line,

as shown in Fig. 3(b), the filter impulse response is restored

perfectly.

Comparing the residual compensated extrapolated filter im-

plementation shown in Fig. 3(b) with the non-extrapolated

transposed direct form implementation shown in Fig. 1, it can

be seen that the numbers of structural adders are the same for

both structures, since generally each extrapolated coefficient

is compensated by a corresponding residual. The MB adders

of the proposed technique can be further classified into the

prototype coefficient adders and the residual adders, which

are used to realize the prototype coefficients and residuals,

respectively. Both the prototype coefficients and residuals can

share the same MB in subexpression sharing, since they are

multiplied with the same signal, as shown in Fig. 3(b). Since

the residual is the difference of the optimum coefficient value

and the extrapolated approximation, its magnitude is much

smaller than the original optimum value. The magnitudes of

the prototype coefficients are small, since the lobe with the

smallest magnitude of coefficient values is selected as the

prototype lobe. Thus, the dynamic range of the coefficient

multiplier is significantly reduced. As a result, the number

of distinct odd positive integers is reduced.

It should be noted from Fig. 3 that, besides the structural

adders and MB adders, another two types of adders are

employed in the residual compensated extrapolated filters. The

first type of adder is the extrapolation adders used to add the

extrapolated terms into the tap delay line; and the second type

is the scaling factor adders used to generate proper scaling

factors if they are not power-of-two numbers. To minimize

the number of overall adders, the scaling factors are chosen in

such a way that as few adders as possible are used to reduce

the number of distinct residuals to few as possible. If power-

of-two numbers are used for the scaling factors, no additional

scaling factor adders are requires. However, in some cases,

using a few scaling factor adders may achieve more saving in

the residual adders.

In spite of the overhead which might be caused by the

extrapolation adders and scaling factor adders, the proposed

technique still significantly reduce the overall number of

adders when compared with any other existing techniques.

IV. DESIGN EXAMPLE

We shall illustrate the proposed technique using an example

taken from literature [9]. The discrete filter coefficient values

presented in [9] are also listed as h(n) in Table I for easy

reference. As we have indicated in the introduction of this

paper, the number of non-one distinct coefficient values (after

they have been transformed to positive odd numbers) of the

coefficient set of this filter is 52. Therefore, the lower bound

of the MB adders is 52, which have been achieved by many

algorithms [5], [10]–[12].

By inspecting the coefficient values h(n) in Table I, it is

noted that the filter impulse response shows a quasi-periodicity

for 5 periods, from h(4) to h(48), with period duration of 9.

The period with the minimum coefficient magnitude, i.e., from

h(40) to h(48) is chosen as the prototype lobe to approximate

the other 4 lobes. The scaling factors for lobes h(4) to h(12),
h(13) to h(21), h(22) to h(30) and h(31) to h(39) are

chosen to be 20, −8, 4, and −2, respectively. Therefore, the

approximated coefficient values are given by:

ha(4 + k) = 20h(40 + k), ha(13 + k) = −8h(40 + k),
ha(22 + k) = 4h(40 + k), ha(31 + k) = −2h(40 + k),
for k = 0, 1, · · · , 8. (8)

Thus, the residuals are:

hr(4 + k) = h(4 + k) − 20h(40 + k),
hr(13 + k) = h(13 + k) + 8h(40 + k),
hr(22 + k) = h(22 + k) − 4h(40 + k),
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hr(31 + k) = h(31 + k) + 2h(40 + k),
for k = 0, 1, · · · , 8. (9)

Both ha(n) and hr(n) for 4 ≤ n ≤ 39 are listed in Table I.

It can be seen from Table I that the residual coefficient

values from hr(4) to hr(39) are much smaller than their orig-

inal values. To implement the filter in residual compensated

extrapolated form, the coefficient values to be synthesized

are h(0) to h(3), hr(4) to hr(39) and h(40) to h(60).
Among these coefficient values, the number of distinct non-

one coefficient values (after they have been transformed to

positive odd numbers) have been reduced to 31. Using RAG-

n algorithm [5] to generate the subexpression coefficients, the

resulting MB requires 33 adders, which is close to the new

lower bound of 31. The reason that 2 more adders are used

than the lower bound is that some coefficient values of the

center lobe are realized directly, and their magnitudes are

large; more than an adder may be required to generate such

coefficient values.

Symmetric coefficients of linear phase FIR filter can share

the MB. However, the extrapolation adders and scaling factor

adders for symmetric lobes cannot be shared with each other.

Therefore, besides the MB adders, the extrapolated realization

requires additional 8 adders to add the extrapolated lobes into

the tap delay line, and additional 2 adders to generate the

scaling factor 20. Thus, in total 43 adders are required to

synthesize the filter, as shown in Table II. The best results

obtained in published literature requires 52 adders; the result

is also listed in Table II for comparison.

V. CONCLUSION

In this paper, an extrapolated structure with residual com-

pensation for synthesizing linear phase FIR filters is pro-

posed. Residual compensation provides perfect restoration

of the coefficient values and therefore preserves the filter

performance. The proposed technique successfully reduces the

dynamic range of coefficient values, and consequently reduces

the required number of adders to synthesize the filter. The

choosing of scaling factors is also discussed in the light of

minimizing the total number of adders.
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