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Subglacial hydrology and the
formation of ice streams
T. M. Kyrke-Smith1, R. F. Katz1 and A. C. Fowler2,3

1Department of Earth Sciences, and 2OCIAM, University of Oxford,

Oxford, UK
3MACSI, University of Limerick, Limerick, Ireland

Antarctic ice streams are associated with pressurized

subglacial meltwater but the role this water plays in

the dynamics of the streams is not known. To address

this, we present a model of subglacial water flow

below ice sheets, and particularly below ice streams.

The base-level flow is fed by subglacial melting and

is presumed to take the form of a rough-bedded film,

in which the ice is supported by larger clasts, but

there is a millimetric water film which submerges the

smaller particles. A model for the film is given by two

coupled partial differential equations, representing

mass conservation of water and ice closure. We

assume that there is no sediment transport and solve

for water film depth and effective pressure. This is

coupled to a vertically integrated, higher order model

for ice-sheet dynamics. If there is a sufficiently small

amount of meltwater produced (e.g. if ice flux is low),

the distributed film and ice sheet are stable, whereas

for larger amounts of melt the ice–water system can

become unstable, and ice streams form spontaneously

as a consequence. We show that this can be explained

in terms of a multi-valued sliding law, which arises

from a simplified, one-dimensional analysis of the

coupled model.

1. Introduction
Variations in sliding velocity at the ice–bed interface can

cause extreme spatial and temporal differentials in flow

speed throughout an ice sheet. In particular, while there

are many locations in Antarctica where the ice has zero

velocity, velocities of up to thousands of metres per year

are observed in some coastal areas [1]. In the fast-flowing

regions, the rapid basal sliding is attributed to the

presence of meltwater at the bed [2]. Frictional resistance

at the bed is intrinsically linked to the water pressure

in the meltwater drainage system [3–6]. This effect is
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best considered in terms of the effective pressure (the difference between ice overburden pressure

and water pressure); sliding at the bed can occur when the effective pressure is small and the

weight of the ice is largely supported by the underlying water. The dependence of the basal

sliding velocity on both the basal shear stress and the effective pressure at the bed is typically

modelled with a sliding law [7–9]. To improve our understanding of variations in basal velocity,

we must investigate the physical basis and consequences of the sliding law.

It is the behaviour of the subglacial hydrological system that governs the effective pressure

at the ice–bed interface. There are two contrasting types of subglacial drainage systems beneath

ice sheets that are commonly discussed in the literature. If there is little meltwater production,

the bed can be effectively drained by a distributed system of cavities [10,11] or through thin,

patchy films [12]. With this style of drainage, increasing meltwater production increases the

water pressure beneath the ice, which lowers the effective pressure, and hence results in more

rapid sliding [10,13–15]. By contrast, subglacial water transport may occur through larger scale

Röthlisberger channels. These provide efficient drainage for meltwater, resulting in low water

pressure at the bed, corresponding to high effective pressure, and hence slower sliding velocities

[16]. Beneath Antarctica, however, there is more evidence of high water pressure, distributed

drainage systems [17].

In this work, we are particularly interested in ice streams and their subglacial hydrology. A

significant proportion of all ice discharge occurs through ice streams, despite the fact that they

are only found over a small portion of an ice sheet. In Antarctica, for example, it is estimated

that ice streams cover approximately 10% of the ice-sheet’s surface, but transmit up to 90% of

drainage [1,18]. There is evidence suggesting the presence of an active subglacial water system

in West Antarctica [19] and it is therefore important to understand the effect of this on the ice

flow. Previous work has shown that multi-valued sliding laws can result in ice-stream flow [11,

13,20–23]. More specifically, Fowler & Johnson [24,25] demonstrated that a ‘hydraulic runaway’

mechanism is suggestive of a triple-valued sliding law, based on thermomechanical feedbacks

that arise as a result of having a distributed drainage system at the bed. Sayag & Tziperman [26]

invoked a switch in drainage system as the motivation for a triple-valued sliding law, suggesting

that each of two stable branches correspond to different drainage patterns at the bed.

While implementing a multi-valued flux law as a boundary condition may produce ice-stream

behaviour, using knowledge of the subglacial drainage system beneath Antarctica more directly

to explain ice-stream emergence would further our understanding of the system. Evidence from

Antarctica suggests that the rapid basal velocities in ice streams are enabled by the presence

of a layer of till at the base of the sheet [27–30]. For likely permeabilities and till thickness,

Darcian porous flow through the sediment would be too slow to evacuate all the meltwater

present at the bed [31,32] and the till is therefore water saturated and is thought to deform with

Coulomb-plastic behaviour [33–37]. Knowledge of the yield strength of the till is important, but

more information than this is required about the hydrological system and how its evolution

affects the ice above. Recent work looking at ice-stream formation over till either disregards

water transport altogether [38] or uses a simple diffusion equation to describe the evolution of a

water layer over saturated till, assuming the water ‘diffuses’ from high to low effective thickness

[39–41]. In this work, we wish to develop a more physically motivated model for the water

layer and investigate the potential link between the hydrological system and multi-valued flux

laws. This will extend the work done by Fowler & Johnson [24,25], who introduced the concept

of hydraulic runaway and considered the feedbacks in a simplified one-dimensional model. In

our more detailed hydrological model, we consider meltwater flowing over saturated, relatively

impermeable till. A water film exists only if it is shallow enough not to submerge all surrounding

bed protrusions [42]. If the water depth increases beyond some critical value (that at which all

surrounding clasts are drowned by the water), the water film becomes unstable to the formation

of local water streams incised in the sediment [32]. There is uncertainty surrounding some of the

parametrizations made in the formulation of the model; the purpose of this work is to investigate

the qualitative implications and feedbacks that arise from the coupling of the meltwater and ice.
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Figure 1. Geometry of the subglacial 	ow under consideration.

The paper is organized as follows. In §2, we present the ice-sheet model and derive

governing equations for the water film depth and the effective pressure at the bed, before non-

dimensionalizing the model in §3. Section 4 considers behaviour of the water layer itself in

more detail, specifically considering what happens in the model once the water layer becomes

deep enough to submerge all surrounding clasts. In §5, we present numerical solutions to the

fully coupled ice-water model, which, under certain conditions, results in ice-stream flow, and

we discuss how this can be explained in relation to a multi-valued flux law and the chosen

parametrizations in §6.

2. Governing equations

(a) Ice 	ow

Given that ice is an incompressible, viscous fluid, an ice sheet moving under gravity is accurately

described by Stokes flow. The low aspect ratio of ice sheets (approx. 10−3) allows simplifications

to be made to the three-dimensional nonlinear equations, with two end-member models being

the shallow ice approximation (SIA) and the shallow shelf approximation (SSA). The former is a

classical lubrication approximation, valid for flow frozen to the bed, and so dominated by vertical

shear stresses [43–45]. The SSA, on the other hand, does not allow for internal deformation, and

so provides an accurate flow description where horizontal ice velocities do not vary with depth

[46,47], for example in ice streams or on ice shelves.

In this work, we use a model that is a vertically integrated hybrid of the SIA and SSA. It

takes into account both vertical shear stresses and membrane stresses, so providing a valid flow

description for all flow regimes within a shallow ice sheet. This is particularly important when

modelling the emergence of ice streams. The force balance includes basal stresses, driving stresses

and membrane stresses. A complete description of the model is presented in previous work [48],

along with a comparison between this model and similar higher order approaches [49,50]; here

just the non-dimensional equations are outlined at the end of §3.

(b) Subglacial water 	ow

We conceive of water flowing at the base of an ice stream as illustrated in figure 1. The ice is

underlain by sediments that are saturated by water. Typically, the water is at high pressure and

the till is deformable. We presume that the till is not very permeable and expect that the water

generated at the base might flow in some sort of distributed system. The simplest such flow is

a thin film at the interface between the ice and the till. With a clean separation between the ice

and the bed, as imagined by Weertman [51], the resulting flow is an unstable configuration [52].

However, we can suppose such a film could exist stably if it is thinner than the supporting clast

size [42], which is reasonable if the water film thickness is of the order of millimetres. Of course,

this film is still subject to instability if it grows deep enough to separate the ice and bed, and

we can expect local-scale water streams to form once the water layer depth reaches some critical

value at which surrounding bed protrusions are submerged [32]. Note that these water streams
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form over much smaller length scales than ice streams; in this work, we consider the larger scale

averaged behaviour of these small-scale features at the bed and postpone the study of a more

detailed process of the formation of water streams for future work.

We consider Cartesian axes (x, y, z) where x points in the ice flow direction, y is across-flow

and z is vertically upwards. As shown in figure 1, the till surface is denoted by z = b, the lower ice

surface by z = sw and the resulting depth of the water film is

H = sw − b. (2.1)

The upper ice surface is denoted by z = si. The hydraulic head driving water flow at the ice–till

interface is

ψ = pw + ρwgsw

= pa + ρigsi + �ρwigsw − N, (2.2)

where pw is water pressure, pa is atmospheric pressure, ρw and ρi are the densities of water and

ice, respectively, and g is gravitational acceleration. �ρwi = ρw − ρi and N = pi − pw is the effective

pressure. pi = pa + ρig(si − sw) is the basal ice pressure. Note that (2.2) reflects the well-known

fact that basal water flow is driven primarily by the ice surface slope, and the basal slope only

contributes approximately 1/10 to the flow direction.

Given that the water flows in a film of depth H, mass conservation of water takes the form

∂H

∂t
+ ∇ · q = Γ , (2.3)

where Γ is the melt rate of the ice (with units kg m−2 s−1). It includes contributions from local heat

sources as well as from frictional water dissipation in the subglacial water flow. More specifically,

Γ =
G + ub · τb − qT + |q · ∇ψ |

ρwL
, (2.4)

where G is the geothermal heat flux, ub is the basal ice velocity, τb is the basal ice stress, qT is

the sensible heat flux into the overlying ice and L is the latent heat. It is important to note that the

frictional heat source ub · τb arises from an integration of the ice viscous dissipation term over the

basal sliding region, and τb and ub here refer to conditions near the base of the far-field ice-sheet

flow, but far from the actual interface [53]; they are the quantities used in the ice-sheet sliding law.

At this stage, we are also neglecting dissipation in the ice owing to lateral shear—an effect that

could be significant in the regions around ice-stream shear margins [54,55].

Assuming a local Poiseuille flow in the water film implies that

q = −
H3

12ηw
∇ψ

=
H3

12ηw
(−ρig∇si − �ρwig∇sw + ∇N), (2.5)

where ηw is the viscosity of water.

(c) Ice closure relation

While mass conservation of water tells us how the water moves in response to a hydraulic

potential gradient, we also require an equation to describe the evolution of the subglacial

hydraulic system. By analogy with the closure equation of [16], we consider a balance between

the opening and closure rates of the system; we take

∂sw

∂t
=

ρw

ρi
Γ − Wc, (2.6)

where the melt rate, Γ , is given by (2.4). The water film thickens as melt is produced and thins by

closure owing to the excess ice overburden pressure. In the present situation, we conceive of the
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Figure 2. Plots of two choices forΛ(H). The dashed grey line is given by (2.9) and the solid black line by (2.11) with δ = 0.1,

Λ∞ = 0.1.

ice as being supported by load-bearing clasts, and Wc represents the viscous creep of ice around

these supporting clasts. Under the assumption that clasts have spacing l∗ (figure 1), we take the

rate of closure owing to viscous creep as [42]

WC = ANnl∗. (2.7)

A is the rate factor and n the exponent from Glen’s flow law, which describes the rheological

behaviour of ice [8]. N is the effective pressure; as the difference between ice overburden pressure

and water pressure increases, the closure rate will also increase. Finally, the quantity l∗ is

analogous to the channel width in the closure equation of Röthlisberger [16], assuming a single

(wide) channel. Moreover, as the film thickness increases, the spacing between protruding clasts

will increase as more of them become submerged; l∗ will therefore be an increasing function of H.

There is little to constrain our choice for the functional dependence of l∗(H). We assume that

there is some film depth Hc at which all the clasts would become submerged and the ice would

become locally clear of the bed. To be more specific, we will define

l∗(H) =
l0

Λ(H)
, (2.8)

where l0 is a length scale that represents the typical clast spacing in the absence of water, and

will be chosen to be consistent with observed effective pressures on the Whillans ice stream (B).

We are then left to choose a function for Λ(H). The most simple choice, for illustrative purposes,

would be a function such as

Λ(H) =

⎧

⎨

⎩

1 −
H

Hc
, 0 < H < Hc,

0, H ≥ Hc,
(2.9)

as illustrated by the dashed grey line in figure 2. When H reaches Hc, the ice separates from the

bed. From (2.6) with (2.7) and (2.8), we have that

N =

[

Λ(H)

Al0

(

ρw

ρi
Γ −

∂sw

∂t

)]1/n

, (2.10)

and it is clear that, with the above choice of Λ(H), N = 0 when H = Hc, implying that once the ice

separates from the bed there is no basal stress. In this context, there is then no reason that H cannot

increase further locally, with the effective pressure remaining zero. However, in practice, a sheet

flow with depth H > Hc is an unstable configuration [52], as discussed above, and a water layer

cannot increase indefinitely in depth. Furthermore, we do not expect that N = 0 under ice streams;

this would only be the case if there were a subglacial lake. We address this model issue by noting

that the subglacial flow model has been formulated on the small scale; locally, areas of the bed

may become submerged but we expect that on the larger scale there will still be areas of the bed
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providing support to the ice. More specifically, we presume that, when H approaches Hc, the

Walder instability is no longer suppressed, and the system becomes unstable to the formation

of some kind of locally channelized drainage system at the ice–till interface [32]. We therefore

consider the case where Λ(H) decreases to some small limit as H approaches Hc, and specifically

we take Λ(H) to be a function of the form

Λ(H) = Λ∞ + δ(1 − Λ∞) ln

[

1 + exp

(

Hc − H

δHc

)]

, (2.11)

where both Λ∞ and δ are small. The solid black line in figure 2 illustrates this, with Λ∞ = δ = 0.1.

From (2.10), we have that N ∼ Λ1/n. This finite limit of Λ(H) therefore now means that the effective

pressure does not reach zero in our model. Locally, we expect that there are small areas where the

effective pressure is zero and H > Hc, but on the larger scale (over which we are interested in

modelling when investigating ice streams) there are regions of finite support, now on a length

scale of several metres. Our choice of Λ(H) presented here is meant to represent this globally

averaged behaviour in the simplest possible way.

It is also worth noting that, as we are considering water flow over sediment rather than hard

bedrock, there should also be a description of bed evolution in the model. This would require

a second closure relation for the bed elevation b, based on an Exner equation incorporating

sediment transport. In the present work, however, we assume that there is no sediment transport

so that b is fixed and H = sw − b. We therefore require only one closure equation. This is not an

unreasonable assumption so long as there is no net change in bed elevation. There can still be some

transport of sediment by virtue of the shear induced by the sliding of basal ice, but if the sliding

is a uniform motion in the downflow direction, we would expect the deposition and erosion rates

to be in equilibrium. Other work specifically considers bed evolution in an effort to explain the

evolution of subglacial bedforms [56], but we postpone including details of these processes for

future work.

(d) Mechanical coupling of the water and ice

It is necessary to prescribe a boundary condition at the interface between the ice and water in

order to couple the subglacial hydraulic flow to the ice flow. This is done through a basal friction

law, which relates the basal shear stress, τb, to the hydrology, through the general relationship

τb = c|ub|pNq ub

|ub|
, (2.12)

where ub = (ub, vb) is the sliding velocity of the ice, and p and q are commonly taken as 1/3 [3,7].

We furthermore take c = 6.8 × 104 Pa2/3 s2/3 m−1/3 so as to give a sliding speed of the order of

60 m yr−1 for typical driving stresses of 104 Pa [57].

Coupling also occurs through feedbacks of the ice on the drainage system, in particular

through the melting caused by basal friction and the creep closure of the ice over the water film.

The prescription of the cooling rate, qT, in the melt rate expression (2.4) also depends on the

ice velocity. To prescribe this, we first consider a simplified temperature equation. In a thermal

boundary layer, the dominant balance is expected between heat advection and vertical diffusion

ub
∂T

∂x
= κT

∂2T

∂z2
, (2.13)

where κT is the thermal diffusivity of ice (and lateral heat advection is ignored because we expect

ub ≫ vb in the region of ice streams). With T = 0 on z = b and T → −�T far from the bed, we obtain

an error function as a similarity solution of (2.13), which yields the average basal heat flux in the

form

qT =

(

ρicpkub

πx0

)1/2

�T, (2.14)

where the variable x has been replaced with the length scale x0. Constants are defined in table 1.

This boundary layer approximation is appropriate if the reduced Péclet number Pe = u0d2
0/κTx0
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Table 1. Constants.

symbol description typical value

ρi ice density 917 kg m−3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ρw water density 1000 kg m−3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

�ρwi density di�erence 83 kg m−3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

g gravity 9.81 m s−2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ηw water viscosity 1.8 × 10−3 Pa s
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ηi ice viscosity 1014 Pa s
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

L latent heat of water 3.3 × 105 J kg−1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

n Glen’s 	ow law exponent 3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

cp specic heat capacity 2.1 × 103 J kg−1 K−1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

�T surface cooling 20 K
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

k thermal conductivity 2.1 W m−1 K−1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c sliding law coe�cient 6.8 × 104 Pa2/3 s2/3 m−1/3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

p velocity exponent in sliding law 1
3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

q e�ective pressure exponent in sliding law 1
3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

G geothermal heat 	ux 60 mWm−2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

is large. For velocities u0 ∼ 100 m yr−1, length x0 ∼ 500 km and depth d0 ∼ 103 m, Pe = 5, and it is

larger for ice-streaming speeds. The boundary layer approximation is not, therefore, a highly

accurate approximation, but it probably gives a sufficiently accurate representation for the present

purpose, and indicates correctly the increase of basal heat flux with basal velocity. Furthermore,

the qT boundary layer formula is inappropriate at large x ∼ u0d2
0/4κT, when the temperature

profile becomes more conductive, or for small x near divides where ub → 0 and the x dependence

becomes important. The Robin solution which includes vertical but not horizontal advection is

often used here, but a better approach uses the von Mises transformation [58] which includes

the Robin solution, and allows the similarity solution to approach divides by allowing for the x

dependence of ub. However, we omit such subtleties here.

From our simplified considerations, we therefore have that the sensible heat flux increases

with u
1/2
b . The frictional heat, however, increases with ub, so, for large ub, Γ (2.4) is positive. It is

possible for intermediate ub that Γ could reach zero and then become negative; our model still

applies until the water film thickness vanishes, at which point sliding law (2.12) would cease to

apply and the model would need modification. However, in our simulations this never occurs

because G and τ are sufficiently large to prevent refreezing.

3. Non-dimensionalization and reduction
Together with the equations for ice flow [48], the coupled system of equations includes the

mass conservation of water equation (2.3) and the creep closure equation (2.6). Values of

the dimensional constants are given in table 1. To couple the ice and water systems at the basal

boundary, we have the sliding law (2.12).

(a) Non-dimensionalization of the subglacial water equations

To make the subglacial water model dimensionless, we guess approximate scales for some

variables based on observations/physical intuition, and then use these to derive characteristic

scales for other variables, as given in table 2. We assume a characteristic value for the horizontal

extent of the ice x0 ∼ 500 km based on length scales in ice-streaming regions, for example the Siple
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Table 2. Scalings.

symbol description typical value

x0 horizontal length scale 500 km
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d0 ice depth 1000 m
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Γ0 melt rate scale 10−10 m s−1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

H0 meltwater depth scale 3 × 10−3 m
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

N0 e�ective pressure scale 4 × 104 Pa
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

q0 meltwater 	ux scale 5 × 10−5 m2 s−1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

u0 ice velocity scale 100 m yr−1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a0 accumulation rate scale 0.2 m yr−1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ti ice time scale 5000 years
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

tw water time scale 1 year
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

τ0 basal stress scale 2 × 104 Pa
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ψ0 hydraulic potential scale 107 Pa
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ω0 ice surface slope scale 2 × 10−3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

l0 clast spacing 0.3 m
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A0 Glen’s 	ow law rate scale 1.25 × 10−23 s−1 Pa−3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

=3 bar−3 yr−1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Coast [8]. We also define an effective pressure scale approximately 4 × 104 Pa [59] and choose

other scales by defining

Γ0 =
G

ρwL
, (3.1)

l0 =
ρw

ρiA0Nn
0

Γ0, (3.2)

q0 = Γ0x0, (3.3)

Ω0 =
d0

x0
, (3.4)

ψ0 = ρigΩ0x0 (3.5)

and H0 =

(

12ηwq0x0

ψ0

)1/3

. (3.6)

The ice flow scales are furthermore defined by

A0 =
1

2ηiτ
n−1
0

, (3.7)

τ0 = ρigd0Ω0 (3.8)

and u0d0 = Qi, (3.9)

where the ice flux scale Qi is either prescribed (from upstream supply) or related to the typical

accumulation rate a0 by

Qi = a0x0. (3.10)

Equations (3.8) and (3.9), together with our prescribed sliding law (2.12), determine τ0, u0 and d0.

However, as the sliding law is not well constrained, we will use observed values for these scales.
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Table 3. Dimensionless parameters.

symbol denition typical value

r ρi/ρw 0.9
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

β �ρwi/ρi 0.1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σ (�ρwiH0)/(ρiΩ0x0) 2 × 10−7

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ν N0/(ρigΩ0x0) 4 × 10−3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

χ (q0ψ0)/(x0G) 10−2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

µ (τ0u0)/G 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

κ (ρicpku0/π x0)
1/2�T/G 0.27

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c0 cu
1/3
0 N

1/3
0 /τ0 1.7

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

λ (τ0d0)/(ηIu0) 0.0625
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ε d0/x0 0.002
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

δT tw/ti 2 × 10−4

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Specifically, in the Siple Coast region of Antarctica, typical ice depths are 1000 m [60]. Given a

velocity scale u0 ∼ 100 m yr−1, we take the accumulation rate scale as

a0 ∼
u0d0

x0
∼ 0.2 m yr−1. (3.11)

Finally, as the water flows on a much shorter time scale than the ice, we define two separate time

scales

ti =
x0

u0
(3.12)

and

tw =
H0x0

q0
. (3.13)

Table 2 gives values of these model variable scales.

We non-dimensionalize all equations with the larger of the time scales, ti, and so introduce

a non-dimensional parameter δT = tw/ti. Using these scalings, the dimensionless form of the

subglacial flow equations becomes

δT
∂H

∂t
+ ∇ · q = Γ (3.14)

and

rδT
∂H

∂t
= Γ −

Nn

Λ(H)
, (3.15)

where

q = −H3∇ψ

= H3(−∇si − β∇b − σ∇H + ν∇N) (3.16)

and

Γ = 1 + µub · τb − κu1/2 + χH3|∇ψ |2. (3.17)

Dimensionless parameters are given in table 3 and Λ(H) is the same function as in (2.8), only now

a function of the dimensionless water depth.
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(b) Simplication of the subglacial system

The parameters σ , ν and χ are all small. We thus neglect the terms of order σ and χ , representing

gradients in water depth and melting due to meltwater dissipation, respectively, but retain the

term in ν, as it represents a singular perturbation. From (3.15), we have

N =

[

Λ(H)

(

Γ − rδT
∂H

∂t

)]1/n

, (3.18)

and the mass conservation of water equation (3.14) can then be written as an equation for H

δT
∂H

∂t
− ∇ · (H3(∇si + β∇b)) = −ν∇ ·

[

H3∇

(

Λ(H)

(

Γ − rδT
∂H

∂t

))1/n
]

+ Γ . (3.19)

Furthermore, to allow consideration of the behaviour of the hydraulic system on its own, we

temporarily assume that the ice has a constant, uniform surface slope

∇si = −ı̂, (3.20)

and zero basal slope, ∇b = 0. Equation (3.19) then reduces to

δT
∂H

∂t
+

∂

∂x
(H3) = −ν∇ ·

[

H3∇

(

Λ(H)

(

Γ − rδT
∂H

∂t

))1/n
]

+ Γ . (3.21)

Given that Λ(H) is a decreasing function of H, the essential structure of the model can be

described by

Ht + Hx = ∇2H + ∇2Ht, (3.22)

which is closely related to that studied by Benjamin et al. [61] as a model for long waves in shallow

water; we may infer that the present equation is well posed.

(c) Full set of governing non-dimensional equations

We now have a full set of non-dimensional governing equations for the water system. From

Kyrke-Smith et al. [48], the non-dimensional mass conservation and force balance for the ice are

given by

∂h

∂t
+ ∇ ·

(

hub − λ
hn+2

n + 2
|γ |n−1∇si

)

= a (3.23)

and

τb = hγ , (3.24)

where

γ = −∇si +
ε2

λ
∇ · S, (3.25)

S is the resistive stress tensor [62,63],

S = τ + I trace (τ ) =

[

2τ11 + τ22 τ12

τ12 τ11 + 2τ22

]

, (3.26)

and a is the accumulation rate. τ is the deviatoric stress tensor, related to strain rate through Glen’s

flow law for ice [8]. The full derivation and non-dimensionalization are provided in the appendix

of a previous publication [48].

Together with the non-dimensional sliding law as the boundary condition at the water–ice

interface,

τb = c0|ub|pNq ub

|ub|
, (3.27)

and the non-dimensional mass conservation of water equation (3.19), these equations provide a

complete non-dimensionalized description of the ice–water system. Variable scales are in table 2

and descriptions of the non-dimensional parameters are in table 3.
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Figure 3. Γ (H) from (4.3) with (4.4), andHt = 0, h= 1,δ = Λ∞ = 0.01 and other parameter values are as given in table 3.

4. Results for hydrology with constant ice

(a) Hydraulic runaway

Hydraulic runaway is a physical phenomenon that models suggest may occur as a result of

a positive feedback between ice velocity and melt rate [24]. As ice velocities increase, more

meltwater is produced by frictional heating, which results in further ice–bed lubrication, and

hence faster velocities. We consider whether the basal hydrology model presented here results in

such behaviour.

The melting term, Γ in (3.21), depends on the ice flow. It therefore also has indirect dependence

on the water depth, H, as the sliding velocity ub depends on H through its dependence on N. The

ice depth, h, evolves over a long time scale, ti, through the solution of (3.23) and (3.24). We are

initially interested in changes in behaviour on a short time scale, so we assume that the ice is of

constant depth, with constant surface slope (3.20). Taking the shallow-ice version of basal shear

stress as an approximate sliding law, together with the water equations, we then have

h = c0u
p
bNq, (4.1)

N =

[

Λ(H)

(

Γ − rδT
∂H

∂t

)]1/n

(4.2)

and Γ = 1 + µhub − κu
1/2
b , (4.3)

which gives three equations for the three unknowns, ub, Γ and N. These can be solved to give

Γ = Γ (H, Ht, h).

We seek to eliminate u and N from (4.1) to (4.3). Equation (4.2) gives us an expression for

N(Γ , H) and substituting (4.2) into (4.1) we have an expression for ub(Γ , H) which is

ub = c
−1/p
0 h1/pΛ(H)−q/np

(

Γ − rδT
∂H

∂t

)−q/np

. (4.4)

This can then be substituted into (4.3) so that we have Γ (H, Ht, h).

In figure 3, we plot the quasi-static instance with ∂H/∂t ≈ 0 and Λ(H) given by (2.11). As H

increases, the melt rate also increases owing to an increase in frictional heating. This in turn

comes about from an increase in basal velocity by (4.4). From this, it is evident that some kind

of hydraulic runaway is inherent in the model, with melt rate increasing rapidly as H → Hc.

However, complete runaway is avoided as we do not allow the model to reach zero effective

pressure in the subglacial system, which would correspond to no basal stress, and so allow the

ice to increase in velocity without limit.
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Figure 4. Evolution of a solution of the uncoupled water layer equation (3.21) with a melt rate given by (4.5). We take the ice

to be of constant depth h= 1 km and the critical water depth Hc = 4.5 mm.Λ∞ = δ = 0.01 and other parameter values for

the solution are given in table 3. The solution reaches the steady-state solution given by (4.6), plotted in black.

(b) Solutions with a stable water lm

We consider solutions of the decoupled water layer equation, to see its basic state behaviour. We

take the ice to have constant surface slope and zero basal slope, as in the simplification given by

equation (3.21). The coupling to the ice occurs through the melt rate term, which, from above,

we know increases with both ice depth h and water layer depth H. We therefore here take an

illustrative Γ function,

Γ =
h

H3
c − H3

, (4.5)

which results in an analytic steady-state solution to (3.21) at leading order. This steady-state

solution is given by

1 −

(

H

Hc

)3

=

(

1 −
x

xc

)1/2

, (4.6)

where

xc =
H6

c

2h
(4.7)

is the non-dimensional position downstream where H reaches Hc. This corresponds to the point

at which the bed becomes submerged and the thin film flow becomes a stream. If the bed is

sufficiently rough (large Hc) or the ice depth or flux is sufficiently small, then this point would be

downstream of the grounding line, and the film flow can exist everywhere.

We ran a suite of simulations solving (3.21) with a melt rate of form (4.5). As expected, so

long as Hc > (2h)1/6 then the solutions evolve into the steady state given by (4.6) (e.g. figure 4).

However, if Hc < (2h)1/6 then the water depth reaches its critical value before the grounding line.

The melt rate is no longer defined and an analytic solution does not exist. Our interest therefore

now turns to the case where H may reach Hc, by considering the fully coupled water–ice system.

5. Results for coupled hydrology and ice dynamics
Having formulated a description of the subglacial water layer, we now couple it with the ice to

explore the combined behaviour of the system. The water film equation takes the same form,

given by (3.19), and the ice flow equations are given by (3.23) and (3.24).
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(a) Model set-up and boundary conditions

We consider a 500 × 500 km domain with a uniform bedslope. The upstream end x = 0 is a cold-

temperate transition line with no water at the bed (H = 0). The ice depth satisfies ∂h/∂x = 0 across

the boundary, and the inflow is at a constant velocity into the domain (ub = uin at x = 0). Free

slip is also allowed along this inflow boundary (τ12 = 0). To avoid considering grounding-line

behaviour, we treat x = 1 as an open outflow boundary [26,64], where the upper surface is free to

evolve and ∂u/∂x = 0. Furthermore, a suitable condition for the water layer thickness, H, which

also avoids the possibility of boundary layers, is ∂H/∂x = 0. The domain is taken to be periodic

in the y-direction. With these boundary conditions, we solve (3.21) coupled to the hybrid ice

flow model outlined in §3c. The method for the numerical solution, using the Portable Extensible

Toolkit for Scientific Computation [65–67], is described in previous work [48]. In that work, we

used a heuristic triple-valued sliding law together with an equation to describe the relaxation time

for the ice to adjust to changes at the bed; these have been replaced with a sliding law that directly

depends on the subglacial conditions (3.27) and the physics-based water layer equation (3.19).

The simulations are initialized with a downstream ice flow that is uniform in the cross-flow

direction, i.e. (ub, vb) = (u(x), 0). The velocity field u(x) is computed from the x-component of

equation (3.24) with (3.27). There is no water at the bed and the ice has a constant uniform

thickness, h = 1.5. A constant uniform accumulation rate is applied over the domain. Average

accumulation rates in the Siple Coast region of Antarctica are approximately 140 kg m−2 yr−1

[68], and so we take a ∼ 140 kg m−2 yr−1/917 kg m−3 = 0.15 m yr−1 as a suitable value. We expect

the accumulation rate to be an important parameter in governing the flow behaviour, but do

not present a detailed parameter study of the system in this paper; here, we discuss results that

illustrate the basic flow regimes that occur as a result of a realistic accumulation rate applied over

the domain.

(b) Flow regimes

(i) Laterally uniform water and ice 	ow

We first consider the case where the water film does not get thick enough to submerge all

surrounding clasts (i.e. the film depth remains less than the critical depth Hc). If this is the case,

the coupled system evolves into a stable steady state. This is illustrated in figure 5, where the

critical water depth is Hc = 2, corresponding to 6 mm.

The water film evolves rapidly into a quasi-steady-state, similar to that seen in §4b, when

the water layer is considered alone with a prescribed melt rate. Meanwhile, the ice depth and

basal velocities also evolve into a steady state over a longer time scale. Ice depth remains

uniform, increasing by approximately 200 m over the time of the simulation run. This is due

to the downstream ice velocity initially being insufficient to balance the incoming ice flux

and accumulation. However, the downstream ice velocity increases and over approximately

5000 years evolves to put the system in equilibrium. The velocity profile becomes a monotonically

increasing function downstream. Over this time, the downstream profile of the water layer

remains very similar to the initial profile it reaches within the first year. It does increase in depth

by approximately 0.25 mm downstream owing to increases in ice velocity and ice depth that cause

a larger melt rate from frictional heating. The water layer rapidly adjusts for this as the melt rate

increase occurs.

Overall the model is well behaved, and the coupled behaviour is straightforward for the case

where there is insufficient meltwater at the bed to submerge all supporting clasts.

(ii) Laterally unstable stream 	ow

Our interest now turns to the case where the amount of meltwater is sufficient to locally drown

all supporting clasts; we are interested in what effect the decrease in support provided by the bed

will have on the ice. Analysis in §4 suggested that melt rate will increase rapidly as the water



14

rspa.royalsocietypublishing.org
Proc.R.Soc.A

470:20130494
...................................................

50

60

70

80

90

100

110

b
a
sa

l 
v
el

o
ci

ty
, 

u
b
 (

m
 y

r–
1
)

 

t = 10 years

t = 100 years

t = 1000 years

t = 5000 years

t = 10 000 years

0

1

2

3

4

5

w
a
te

r 
fi

lm
 d

ep
th

, 
H

 (
m

m
)

0 100 200 300 400 500
–1.0

–0.5

0

0.5

1.0

1.5

2.0

distance downstream, x (km)

el
ev

a
ti

o
n
, 

s i 
(k

m
)

 
bed elevation

(b)

(a)

(c)

Figure 5. (a–c) Downstream centre-line proles of basal velocity, water lm depth and surface elevation plotted at ve

di�erent times for the case where the water layer depth does not reach the critical value. Uniform accumulation of magnitude

0.15 m yr−1 is appliedover the ice sheet andHc = 6 mm.There is an in	owof 60 m yr−1 into thedomain.Λ∞ = δ = 0.01 and

other parameter values are given in table 3. The proles remain uniform across the domain, hence we plot only a downstream

prole.

depth reaches its critical value. In that analysis, we assumed that the ice was stationary as we

were only interested in behaviour over a short time scale. As a result of that assumption, there

is nothing to prevent water depth increasing indefinitely, in turn also allowing the ice velocity to

increase (because there is little support at the bed). However, there is a long time-scale feedback

that was not taken into account; over this longer time scale the ice depth decreases as a result

of increased outflow from the domain. This causes the basal stress, and thus Γ , to decrease. The

water depth will start to decrease as a result, therefore decreasing the ice velocity and the total ice

flux. This cycle could then repeat once the water depth builds up again to reach the critical depth.

In a narrow, confined flow, we might expect this to lead to cyclic surging behaviour (similar to

[69]). However, in a wide flow, a lateral instability that leads to ice streaming occurs; we illustrate

this with numerical solutions to the governing equations.

Figure 6 shows maps of basal velocity, water depth and surface elevation at three different

times for a simulation run with Hc = 1.5, corresponding to a critical water depth of 4.5 mm. It
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magnitude 0.15 m yr−1 is applied over the ice sheet. There is an in	ow of 60 m yr−1 into the domain.Λ∞ = δ = 0.01 and

other parameter values are given in table 3.

is evident that this small change in the critical water depth results in dramatic changes in the

behaviour of both the water layer and the ice, when compared with the results of the previous

section. Initially, the flow is stable and uniform cross-stream, but, as more water is generated

at the bed, H approaches Hc and an instability emerges, as shown in the plots at t = 82 years.

There is a sudden increase in water depth near the boundary, which results in an increase in

ice velocity, because the ice can slip more easily over the bed. A consequential surface lowering

of the ice is also evident in the ice depth field. A non-uniformity in the water depth and the

ice velocity develops across the domain at this time, as a result of lateral instability (there has

been no imposed perturbation to the system). Patches of faster ice flow form, corresponding

to the positioning of the discrete areas of deeper water. There is a coarsening of this instability as

the system evolves to create distinct stream-like features with a longer wavelength than the initial

instability (t = 105 years). The streamlines of the water flow show that water from upstream is

drawn towards these water-rich areas, resulting in a positive feedback. These unstable features

propagate up the domain, and evolve to create pronounced ice streams, flowing at hundreds of

metres per year and of width approximately 60 km (t = 360 years). The values are of the same

order of magnitude as observed velocity and width values of ice streams in Antarctica [8], and in

other numerical studies [38,70]. A discussion of the stress balances that are necessary to maintain

ice-stream flow for different basal conditions is in previous work [48] and demonstrates the
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Figure 7. E�ective pressure and melt rate elds plotted for the simulation shown in gure 6 at t = 360 years.

importance of membrane mechanics in determining ice-stream width. Again, the channelizing

of water towards these deep-water patches is evident from the streamlines of water flow. There

are depressions in surface elevation at the onset region of the ice streams, as a result of the rapid

increase in discharge from the region. This is consistent with some observations [71]. At this point,

the simulation has reached a quasi-steady state. The distinct streams do not grow further. There

are, however, periodic wave-like features at the edge of the ice streams that propagate along the

boundaries (particularly clear in the plots of water depth at 360 years and in the movie of the

velocity field provided in the electronic supplementary material). These could be the result of

travelling wave solutions that exist for the water layer equation (3.19), although this is purely

speculative at present.

Plots of effective pressure and melt rate at t = 360 years are shown in figure 7. The fine-

scale structures at the edge of the ice streams are evident in these fields as well. As would be

expected from the relationship between N and H (equation (4.2)), we see that the areas of low

effective pressure correspond directly to where there is a lot of meltwater. Low effective pressure

furthermore allows the ice to move more rapidly because there is little resistance provided by the

bed in these areas (from the sliding law (3.27)).

Moreover, the melt rate field illustrates the positive feedback that occurs with more melt being

produced underneath the ice streams owing to frictional heating from the rapid velocities. The

melt rate is, in fact, the greatest at the onset zone of the ice streams. This is due to the large driving

stress here from the gradient in surface elevation, combined with a higher effective pressure,

and therefore higher basal stress, which results in a larger melt rate from frictional dissipation.

There is therefore enhanced melting at the onset zone—a feedback that will help to maintain

ice-stream flow.

6. Discussion

(a) Relationship to multi-valued 	ux laws

We have seen in the previous section that, under certain parameter combinations, ice flow can

become laterally unstable; this leads to two distinct modes of flow—fast ice streams and slow-

moving ice. This is similar to the behaviour seen in numerical models that use a triple-valued

sliding law as a basal boundary condition [26,48]. Can the streaming results from the coupled

ice–hydrology model be understood in terms of an emergent triple-valued sliding law, as with

the more simplistic model of Fowler & Johnson [25]?

The water film evolves on a much faster time scale than the ice. As it is the ice flux we are

interested in here, we assume now that the water film is in equilibrium, i.e. we take

∂

∂x
(H3Ω) ≈ Γ (6.1)
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and

N = [Λ(H)Γ ]1/n, (6.2)

where ∂si/∂x = −Ω is the ice surface slope, a constant in the downflow direction (we also assume

there is no cross-flow variation in H or Ω). This is in contrast to the analysis of the water film in

§4a when we were interested in the behaviour of the water film over a short time scale and so

assumed the ice was in equilibrium.

Assuming that the melt rate is constant with x in this steady-state water case, and integrating

(6.1) over x gives

H3Ω = Γ x, (6.3)

under the assumption that H = 0 at x = 0, i.e. the inflow boundary is taken to be a divide or a

cold-temperature transition line.

We can write the non-dimensionalized sliding law (3.27) as

hΩ = c0u
p
bNq

= c0u
p
b

[

Γ Λ

(

[

Γ x

Ω

]1/3
)]q/n

, (6.4)

where

Γ = 1 + µhub − κu
1/2
b . (6.5)

This gives a relationship between ice depth, h, and basal ice velocity, ub, for ice overlying a

water film which is in equilibrium.

Using Λ(H) as described by (2.11), we have from (6.4)

hΩ = c0u
p
b

{

Γ

[

Λ∞ + δ(1 − Λ∞) ln

(

1 + exp

(

Hc − (Γ x/Ω)1/3

δHc

))]}q/n

, (6.6)

with Γ once again given by (6.5).

We solve this algebraic relationship between h and ub [72] and plot the solution in figure 8a

with the same parameter values that produced the ice-streaming behaviour in §5b(ii). In this

case, the relationship between ice depth and ice velocity is multi-valued, suggesting that distinct

velocity states can occur at the same ice thickness, h. In figure 8b, we plot this multi-valued

relationship against a rescaled version of the triple-valued sliding law derived in Sayag &

Tziperman [26]. In their work, the sliding law is obtained analytically from a simple one-

dimensional force balance, based on the cross-flow structure of an ice stream; it has been used

for subsequent analysis of ice-stream behaviour by [48,73]. We see that the sliding law that arises
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Figure 9. Plot of one-dimensional ice velocity versus ice depth from (6.6) with non-dimensional parameter values p= q=

1/3, x = 1,Ω = 1.0,Λ∞ = δ = 0.01,µ = 1.0,κ = 0 and c0 = 1.7. Plots for three di�erent non-dimensional values of Hc
are given, corresponding to 3, 4.5 and 6 mm. For Hc = 2 (6 mm) some solutions are imaginary and we therefore only plot the

real solutions (circles), joined together by the dotted grey line.

from a basic coupling of our hydrology model and the ice flow exhibits very similar properties to

the triple-valued function from Sayag & Tziperman [26]. As a result, when solving our coupled

model, similar behaviour arises to that seen when using a triple-valued sliding law of the form

presented in [26] as the basal boundary condition.

(b) Parameter dependence

The analysis above allows us to investigate what parameters are critical in governing multi-

valued flux behaviour. Throughout the paper, we have used Λ∞ = δ = 0.01 and have shown in

figure 8 that this results in a multi-valued flux law when Hc = 1.5 (corresponding to 4.5 mm). We

were motivated to plot this as we observed multi-valued behaviour from numerical simulations

run with this parameter combination. The dependence of this behaviour on Hc is of interest;

in figure 9, we therefore plot the relationship between ice depth and ice velocity for three

different values of Hc with Λ∞ = δ = 0.01. We see that while for very small Hc the relationship

is not multi-valued, as Hc increases and the function becomes multi-valued the effect of further

increasing Hc is that the turning points of the function occur at larger values of h and ub. This is

because more meltwater is required for the water film depth to come close to the critical depth;

a larger ice depth results in a larger driving stress that in turn causes more frictional heating.

For larger values of Hc (e.g. figure 5), it is necessary to have thicker ice if there is to be sufficient

meltwater to initiate the instability. This is in contrast to the behaviour we would expect if Hc

were reduced too low; the flux law is no longer multi-valued, so we would not expect multiple

velocity states to coexist in steady state, however large the driving stress.

As well as considering variations in Hc, in figure 10 we plot a phase diagram showing the

distinct regions of Λ∞–δ parameter space where the relationship is triple-valued and single-

valued for the case with Hc = 1.5. It is clear that if both Λ∞ and δ are sufficiently small then the

relationship (6.6) is multi-valued and there is therefore the potential for different velocity states

to coexist.

7. Summary and conclusion
The theory developed in §2 provides a simplified model of subglacial water flow at the base of

an ice sheet. We assume the meltwater flows in a Weertman–Creyts–Schoof style rough-bedded

film [42,51] and show that this results in hydraulic runaway of the water film when the depth of

the water layer reaches some critical depth Hc at which all supporting clasts are submerged. In

reality, a water sheet with depth greater than Hc is an unstable configuration [52] and we would
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Figure 10. A diagram showing discrete regions where the ice depth versus ice velocity relationship is multi-valued and where

it is single-valued, depending on the values ofΛ∞ and δ. Hc = 4.5 mm as for the simulations shown in gure 8.

expect the water film to form discrete streams incised into the sediment; we present a simplified

representation of this idea motivated by the fact that while locally there might be areas of zero

effective pressure, at a larger scale (that is still sub-grid scale) there will be regions of finite support

between water streams.

Numerical solutions of the fully coupled ice–water system result in distinct flow regimes

dependent on whether the water depth reaches the critical depth within the domain. Under the

model set-up considered in this paper, the system evolves into a uniform steady state if the bed is

sufficiently rough (i.e. Hc sufficiently large) that all the melt can flow in the thin film configuration.

However, reducing the critical water depth (so that H reaches Hc) results in the ice flow becoming

laterally unstable and non-uniform in the cross-flow direction; ice-stream-like features develop.

A basic analysis of the coupled system suggests that the hydrological system can result in a

triple-valued flux relationship for the ice. It has previously been shown that a triple-valued sliding

law is associated with ice-stream behaviour and such multi-valued flux laws have therefore

been used to investigate ice-stream dynamics [26,48,73]. By showing that this coupling between

subglacial hydrology and the ice can result in similar multi-valued flux behaviour, this work helps

to contextualize analyses of ice-stream flow that result from using a triple-valued sliding law at

the bed. Given that the sliding law is multi-valued, however, does not enforce instability in the

system for all simulations; it still requires the ice to get sufficiently thick and the water layer to be

sufficiently deep. Furthermore, some parameter combinations (we specifically consider variations

of Λ∞, δ and Hc in this paper) do not result in triple-valued flux behaviour at all. In these cases,

under no circumstances would we expect a lateral instability in the system to occur.

While this paper presents theory and intriguing results associated with a new coupling

between physically reasonable models of ice and hydrology, a more detailed investigation of the

coupled model behaviour is needed. Future work will provide a more comprehensive parameter

study, as well as analysing in detail the stress balances that occur across emergent ice streams, in

a bid to explain their spacing. Furthermore, an important limitation of the current model is that

it neglects energy conservation. The model instead assumes that the bed is always at the melting

point. While this might not be an unfair assumption in the region of ice streams, other work with

thermodynamically coupled ice dynamics has shown that fast flow may begin owing to purely
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thermomechanical feedbacks [70,74,75]. It is interesting to observe from these studies that similar

ice-stream widths are obtained both in thermal theories and in the hydraulic theory presented

here. We expect that this is due to the role of membrane mechanics in resisting ice-stream flow, as

discussed in our previous work investigating the necessary stress balances to maintain ice-stream

flow [48]. It will be important in the future to consider a detailed model with energy conservation

included, to explore the result of combined thermal and hydraulic feedbacks in a bid to further

our understanding of ice-stream dynamics.
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