
Journal of Artificial Intelligence Research 68 (2020) 691-752 Submitted 12/2019; published 08/2020

Subgoaling Techniques for
Satisficing and Optimal Numeric Planning

Enrico Scala enricos83@gmail.com
Universitá di Brescia (Italy)
The Australian National University (Australia)

Patrik Haslum patrik.haslum@anu.edu.au
Sylvie Thiébaux sylvie.thiebaux@anu.edu.au
The Australian National University (Australia)

Miquel Ramirez miquel.ramirez@unimelb.edu.au

University of Melbourne (Australia)

Abstract

This paper studies novel subgoaling relaxations for automated planning with proposi-
tional and numeric state variables. Subgoaling relaxations address one source of complexity
of the planning problem: the requirement to satisfy conditions simultaneously. The core
idea is to relax this requirement by recursively decomposing conditions into atomic sub-
goals that are considered in isolation. Such relaxations are typically used for pruning, or
as the basis for computing admissible or inadmissible heuristic estimates to guide optimal
or satisficing heuristic search planners. In the last decade or so, the subgoaling principle
has underpinned the design of an abundance of relaxation-based heuristics whose formula-
tions have greatly extended the reach of classical planning. This paper extends subgoaling
relaxations to support numeric state variables and numeric conditions. We provide both
theoretical and practical results, with the aim of reaching a good trade-off between accu-
racy and computation costs within a heuristic state-space search planner. Our experimental
results validate the theoretical assumptions, and indicate that subgoaling substantially im-
proves on the state of the art in optimal and satisficing numeric planning via forward
state-space search.

1. Introduction

Automated planning is the field of Artificial Intelligence that studies the development of
intelligent agents capable of choosing and organising a sequence of actions to achieve a given
set of objectives, ideally at minimal execution cost. Automated planning is model based;
the planning model describes the conditions under which each action can be applied, and
the effects such an action has on the world if executed. Given a description of the initial
state and the goals that need to be achieved, a typical planning question asks whether there
exists a plan that is executable and brings the agent to a state where the goal is satisfied.

Over the past decades, research has shown that the high worst-case computational com-
plexity of classical (propositional) planning (Bylander, 1994) can be effectively managed, by
exploiting the structure of the problem, as captured by its representation (Geffner, 2011).
The most prominent approach aimed at exploiting such a structure in a systematic way is

©2020 AI Access Foundation. All rights reserved.

Scala, Haslum, Thiébaux, & Ramirez

to relax the target problem into an easier problem to solve and use the relaxed solution cost
as a heuristic (Bonet & Geffner, 2001; Geffner, 2018; Pearl, 1984).

In the last two decades, several relaxations for propositional representations have been
proposed and explored (e.g., Bonet & Geffner, 2001; Haslum & Geffner, 2000; Helmert &
Geffner, 2008; Helmert & Domshlak, 2009; Pommerening, Röger, Helmert, & Bonet, 2015;
Domshlak, Hoffmann, & Katz, 2015), leading to planners that scale to instances of realistic
size. Less has been done to address more expressive problem classes, such as planning with
numeric information (Fox & Long, 2003). Since planning agents often have to deal with
limited resources or geometrical constraints, the ability to deal with this information is
essential to address a wider class of real-world problems.

Numeric state variables were introduced into the de-facto standard planning language
(PDDL) through the notion of numeric fluents (Fox & Long, 2003). A numeric fluent
is a function mapping a tuple of objects to a rational number. Numeric fluents are a
convenient device to model quantitative properties of object(s), such as their position,
their distance, their cost. Our main intuition is that, even though the introduction of
numeric variables complicates planning substantially (numeric planning is undecidable in
general (Helmert, 2002) while classical planning is “only” PSPACE-complete), numeric
variables and numeric conditions allow for more compact descriptions of certain planning
problems, which, if exploited properly, can lead to more powerful reasoning. For instance,
imagine we wish to encode a domain involving a state variable x that models the position
of the agent through time. Let us assume that x ranges from 0 to 10 and we only wish
to model its integer representation. In order to encode such knowledge using propositional
variables we need to enumerate each of its possible values from 0 to 10, so having a total
of 11 propositional variables {P0, P1, ..., P10}. This not only causes a rapid explosion of
the number of variables to consider, but also makes them orthogonal and incomparable.
In particular, in a purely propositional representation, we would need to introduce further
propositions such as {lessP1P2 , lessP1P3 , ..., lessP8P9} to re-axiomatize the simple ordering
relation; therefore, any kind of reasoning that involves such information would require to
rebuild that structure. It is therefore only natural to study how to capture numeric aspects
directly, possibly using some kind of relaxation and heuristic approach. Our aim in this
paper is therefore to focus on the reasoning and algorithmic aspects of planning languages
supporting a numeric representation, so as to provide corresponding planners with novel
relaxation-based heuristics capable of delivering the same benefits that they have achieved
in classical planning. Although, in principle, we could exclude propositional variables and
conditions by compiling them into suitable numeric variables and numeric conditions, our
approach will still consider propositional structures as such, alongside numeric ones. This
is because, when certain aspects of the problem at hand are more conveniently modelled
using purely qualitative conditions, compilation into (infinite) numeric variables obscures
their underlying structure, and reconstructing it requires additional reasoning effort.

Other researchers have investigated the solution of numeric planning problems through
relaxation-based heuristic search before (e.g., Hoffmann, 2003; Coles, Coles, Fox, & Long,
2012, 2013). However, in all of these approaches, the well-known interval-based relaxation
(Hoffmann, 2003) underlies the heuristic. An exception is the work by Eyerich (2009),
which is founded on the context-enhanced additive heuristic (Helmert & Geffner, 2008). In
contrast, we take inspiration from the h1 relaxation presented for classical planning (Haslum

692

Subgoaling Techniques for Satisficing and Optimal Numeric Planning

& Geffner, 2000), and use its underlying decomposition principle to capture the numeric
structure of the problem. Rather than looking at sets of values that numeric variables may
attain (as in the interval-based relaxation), we start from the numeric subgoals, meaning
elementary numeric conditions in formulae representing the goal and action preconditions,
that need to be reached, and consider the operators that affect them. Differently from
classical planning where atomic subgoals are propositional literals, numeric subgoals can
constrain sets of numeric state variables together; therefore even classical notions such as
that of an achiever (i.e. an action that contributes positively towards achieving a subgoal)
need to be revised.

The techniques we investigate support mixed propositional–numeric reasoning: where
propositional and numeric variables co-occur in the definition of the problem, the jus-
tification for including actions in a relaxed solution may derive from both “quantitative”
(numeric) and “qualitative” (propositional) subgoals. Numeric conditions in particular may
justify the presence of some action, which takes the role of a possible achiever. How to define
and compute such possible achievers is not obvious, and we present a method to do so using
a closed-form arithmetic computation that is obtained in a number of steps, including a
Mixed Integer Program formulation and its continuous relaxation. This formulation applies
to what we call simple numeric conditions. Through possible achievers, we show how to
devise a variety of heuristics for optimal and satisficing planning. Interestingly, even the
most basic one proves superior to previous interval-based relaxations. Moving from atomic
subgoals to conjunctive subgoals, we also provide an extended version of possible achiev-
ers that we call conjunctive achievers. Conjunctive achievers account for the simultaneous
achievements of sets of subgoals, including mixed propositional and numeric conditions.
They can be computed using a novel Mixed Integer Program formulation. The paper shows
how to use this characterisation to get a novel lower bound that can be used as an admissible
heuristic.

We study these relaxations and heuristics both from a theoretical and practical view-
point. Our theoretical analysis shows that the computational issues arising from the formu-
lation can be tamed without loosing too much information nor compromising admissibility.
From a practical perspective, our results over a number of numeric planning problems,
taken from previous work on numeric planning and the from International Planning Com-
petition suite, indicate that the presented heuristics often translate to great guidance and
substantially extend the reach of forward search in numeric planning.

1.1 Contribution

This work extends our previous conference paper on the topic (Scala, Haslum, & Thiébaux,
2016a) in a number of respects:

• We provide a more in-depth analysis of the subgoaling theoretical framework. Not
only proofs are extended, but also new theorems are reported to better analyse the
complexities and the benefits of the new formulations.

• We report a novel, revised admissible estimate, which accounts for a limited form
of assignment operations and is more informed because it considers a narrow set of
reachable actions.

693

Scala, Haslum, Thiébaux, & Ramirez

• We provide a novel relaxation schema based on the idea of subgoaling. Such a re-
laxation makes heavy use of a Linear Program formulation to capture conjunctive
reasoning. This leads to an expensive but quite informed admissible estimate that is
evaluated on optimal planning tasks.

• We conduct an extended experimental analysis, with more insights and discussions
encompassing the implications of the novel conjunctive relaxation, with comparisons
not only against numeric planning, but also against classical planning reformulations
of a bounded numeric planning problem.

• We extend our related work analysis, and consider in greater depth previous work
on heuristic search, other approaches to numeric planning via Satisfiability Modulo
Theory, and links to other research fields such as that of linear time systems.

1.2 Outline

In Section 2, we start by describing the language we use to model numeric planning prob-
lems. Then our discussion proceeds through the following steps. First, in Section 3, we
provide the first formulation of a numeric h1 relaxation, and the computational conse-
quences of a direct encoding via standard regression. In Section 4, we explain how this can
be made computable and then tractable in the case of what we call simple numeric condi-
tions, and in Section 5, we use this novel formulation to obtain admissible and inadmissible
estimates. In Section 6 we compare the novel relaxation with the well-known interval-based
relaxation in terms of reachability accuracy. In Section 7, we describe a transformation
aimed at tightening the presented relaxation through redundant constraints. In Sections
8 and 9, we then present a more systematic approach to tightening the relaxation using a
much more sophisticated (yet expensive) Linear Program based schema. The novel method-
ological contribution of the paper ends with Sections 10 and 11, which show how to exploit
decomposition to also consider more general numeric constructs in the subgoaling schema;
this requires a slight extension of the notion of possible achiever. Sections 12 and 13 report
on related work and on the experimental evaluation of our contributions, respectively.

2. Numeric Planning Problems

We are concerned with sequential numeric planning problems described in PDDL2.1 – level
2; see (Fox & Long, 2003; Haslum, Lipovetzky, Magazzeni, & Muise, 2019) for a more
detailed presentation of the language and modelling examples.

2.1 Syntax

We work with the grounded problem representation, where a numeric planning problem is
described as a tuple Π =̇ 〈F,X, I,G,C,A, γ〉1 consisting of the following elements:

F is a set of Boolean variables (the propositional variables). X is a set of rational-valued
variables (the numeric variables). A state is a total mapping from F to {>,⊥} and from

1. We will in the remaining sections use the symbol ‘ =̇ ’ to differentiate the equality by definition with the
standard equality ‘=’.

694

Subgoaling Techniques for Satisficing and Optimal Numeric Planning

X to Q ∪ {⊥} 2 Propositional variables assigned to ⊥ in a state are false in that state
whilst numeric variables assigned to ⊥ are referred to as undefined. I is the initial state. G
describes the goal that the final state of any solution plan must satisfy, and C the global state
constraints that must be satisfied by all states reached at any step of a valid plan. Both G
and C are formally represented as formulae in Negation Normal Form (NNF), inductively
defined as follows:

(i) a propositional condition v = >, such that v ∈ F , is a (atomic) formula;

(ii) a numeric condition 〈ξ,D, 0〉, where ξ is an arithmetical expression over X and D ∈
{>,≥,=} is a comparison operator, is a (atomic) formula;

(iii) if ψ is a formula as defined by items (i) or (ii) above, ¬ψ is a formula;

(iv) if ψ and ψ′ are formulae, so are ψ ∧ ψ′ and ψ ∨ ψ′.

We use Greek letters (generally ψ) to indicate formulae, whether atomic or compound.
When no confusion arises, we use the term literal in place of a propositional condition or its
negation, and use v and ¬v as a shorthand for v = > and v = ⊥, respectively. Moreover,
for convenience, we write c ∈ ψ when the formula ψ is either a conjunction or a disjunction,
to indicate that the sub-formula c appears as a conjunct/disjunct of ψ.

A is the set of actions and γ is a function that associates each action with a non-
negative rational cost. Each action a ∈ A is described by a tuple 〈name(a),pre(a), eff(a)〉,3
where name(a) is the (unique) name of the action, pre(a) is the formula (as defined above)
representing the precondition that must be true of the state for the action to be executable,
and eff(a) is a set of assignments over F and X representing the effects of the action in
the resulting state. Assignments are defined as follows: an assignment to a propositional
variable v ∈ F is of the form v:=> or v:=⊥; an assignment of a numeric variable x ∈ X
is of the form 〈x, op(e), ξ〉 where x ∈ X is the affected variable, ξ is a numeric expression,
and op(e) is one of += (increase), −= (decrease) or := (assign).4 Given an effect e, we
use lhs(e) to refer to the affected variable and rhs(e) to the expression used to update that
variable. We disallow the occurrence of conflicting effects, i.e. of two effects {e, e′} ⊆ eff(a)
with e 6= e′ and lhs(e) = lhs(e′).5 In the following, we use subscripts to distinguish the

2. Other works (Fox & Long, 2003; Scala, Haslum, Thiébaux, & Ramı́rez, 2016b; Cashmore, Magazzeni, &
Zehtabi, 2020) consider numeric variables that take real values. Note that, even though some conditions
can only be satisfied by real values (e.g. x ∗ x = 2), our formulation and PDDL2.1 preclude reaching
states satisfying such conditions: PDDL2.1 does not allow initial states with non-rational values (initial
state assignments must have final decimal expansions) nor does it allow writing action effects that will
yield non-rational values in a finite number of steps. The situation would be different if we allowed
non-rational value assignments in action effects, such as x:=

√
2.

3. Later in the text we will often use actions as simple pair of precondition and effects when the name of
the action is not important.

4. Note that, in principle, an increase or decrease operation can be defined in terms of assignment, e.g.,
x+= ξ is equivalent to x:=x + ξ. However, this kind of transformation hides some structure, namely
additivity, which we exploit to a great extent in this paper.

5. PDDL allows actions to have conflicting propositional effects, taking an interpretation called Delete
Before Adding (DBA) where the positive statement (v:=>) prevails over the negative one (v:=⊥). We
disallow the occurrence of such conflicting effects. Note that PDDL2.1 does not allow actions with
conflicting effects on numeric variables.

695

Scala, Haslum, Thiébaux, & Ramirez

propositional and numeric parts of action effects, writing effprop(a) for the propositional
effects and effnum(a) for the numeric effects of a.

2.2 Semantics

The semantics of numeric planning is defined as follows. We write [v]s for the value of
variable v ∈ F ∪ X in state s and [ξ]s for the value of numeric expression ξ in state s.
Any numeric expression containing an undefined numeric variable is undefined. A numeric
expression of the form ξ/o is also undefined in s if [o]s = 0, i.e., division by zero is undefined.
For a numeric condition, s |= 〈ξ,D, 0〉 iff [ξ]sD0 evaluates to true. A numeric condition,
and the negation of a numeric condition, containing a numeric expression that is undefined
in state s is not satisfied in s. Given these building blocks, the evaluation of the rest of the
language describing formulae follows the usual semantics of propositional logic.

An action a is applicable in state s iff s |= pre(a) and all numeric expressions in eff(a)
are defined in s. The state s′ = s[a] resulting from applying an (applicable) action a in s is
defined as follows. For all v ∈ F ∪X:

• [v]s
′

= rhs(e) if ∃e ∈ effprop(a) with lhs(e) = v (Propositional Effect)

• [v]s
′◦= [rhs(e)]s if ∃e ∈ effnum(a) with lhs(e) = v and op(e) = ◦= (Numeric Effect)

• [v]s
′

= [v]s otherwise (Frame Axiom)

A plan is a finite sequence of actions 〈a0, a1, ..., an−1〉 such that for all i ∈ {0, . . . , n− 1}
ai is applicable in si, where s0 = I and si+1 = si[ai]. A valid plan is one that satisfies the
global constraints C throughout its execution, i.e., ∀i ∈ {0, . . . , n}si |= C; a solution plan
is a valid plan that also reaches the goal, i.e., such that sn |= G. We say that a state s is
reachable if there exists some valid plan that leads from the initial state to s. We say that

a solution plan π is optimal if it minimises the overall cost
∑|π|−1

i=0 γ(ai).

2.3 Small Example

To illustrate these definitions and as a running example for the rest of the paper, let us
consider a very simple Sailing navigation domain, which is however representative of a
variety of domains featuring multi-variable numeric conditions.

There is a sailing boat whose task is to rescue people in an unbounded area of the ocean.
The positions of the boat and people to be rescued are described by their x-y coordinates in
Q2. Note that these coordinates are not bounded a priori, making a propositional represen-
tation impossible. The boat can sail in 7 possible directionsDir=̇{NE,E,SE,S,SW,W,NW}
(see Figure 1; the boat cannot sail straight into the wind). To save a person, the boat must
reach an area described by one or more linear inequalities. Once the boat reaches any point
within this area, the boat can rescue the castaway.

A numeric planning formulation of the problem uses two numeric variables X =̇ {x, y}
to model the position of the sailing boat and actions A =̇ {ad | d ∈ Dir} for each of the 7
possible movements of the boat. These actions have an empty precondition, and numeric
effects defined as a function of the direction that the action is modelling, that is:

eff(ad) =̇

{
〈x, :=, x+ kd,x〉
〈y, :=, y + kd,y〉

696

Subgoaling Techniques for Satisficing and Optimal Numeric Planning

Figure 1: Points of sail (https://en.wikipedia.org). There are 7 possible directions for the
boat to move with respect to a stable wind. The goal is to cross the dotted line
to the side indicated by the red dot.

where kd,x, kd,y are constants associated with moving a certain distance in the particular
direction (d). Actions therefore model translations in Q2.

The initial state is an assignment to the numeric variables x, y, say 〈x = 1, y = 1〉, while
the goal is defined as a target region, specified by a conjunction of linear constraints. For
instance, the goal region depicted in Figure 1 may be defined by G =̇ 〈x + y,≥, 10〉. If we
assume that the translation coefficients of all actions (kd,x and kd,y for all d) are equal to
1, an optimal plan for this problem is to apply action aNE five times.

The other structures of our numeric planning problem can be left empty for the task
of modelling the movement of the sailboat. The modelling of multiple rescues in different
regions O =̇ r0, · · · , rm can be done by introducing an action ai for each such region, whose
precondition is the numeric constraints defining the area of interest, i.e., pre(ai)=̇

∧
c∈ri〈ξc,≥

, 0〉, and whose effect records the fact that the rescue in ri has been accomplished, i.e.,
effprop(ai) =̇ (rescued ri). The goal is then the conjunction of rescued propositions for all
regions in O, that is G =̇

∧
r∈O(rescued r).

Throughout this paper, we will investigate the structure of the computational prob-
lem made explicit by the language of numeric planning just introduced in order to study
conditions for the development of informed but tractable heuristics. Analogously to the
propositional case, our analysis focuses on determining why certain actions are required,
but also, additionally here in the numeric case, counting how many times they need to be
executed. Later, we explain how the techniques we develop for a restricted class of prob-
lems combines with more general cases, and how these can be used in well known search
algorithms.

3. From Classical to Numeric Subgoaling Relaxation

We start our discussion with a generalised formulation of the hmax and hadd heuristics
(Bonet & Geffner, 2001) for classical planning; in this formulation, action preconditions

697

Scala, Haslum, Thiébaux, & Ramirez

and goals are not restricted to sets of propositions, but can instead be arbitrary formulae
in Negation Normal Form (NNF). Following this, we extend this reformulation to account
for numeric information.

3.1 hmax for NNF formulae in Classical Planning

hmax can be extended to handle NNF subgoals directly, without rewriting by splitting
actions (in the case of disjunctions) or introducing artificial propositions to capture negative
literals via positive ones. Let ψ be a propositional condition, that is, either v or ¬v for some
v ∈ F : ach(s, ψ) denotes the set of achievers of ψ in state s. In the classical case, these
are simply the actions that make ψ true, i.e., that add the variable if the literal is positive
or delete it if the literal is negative. This is independent of the state s. However, because
numeric effects can be state-dependent, the set of achievers of a numeric condition – defined
below – can depend on s, and for this reason we incorporate the state into ach(s, ψ) to make
the similarity between the two settings clearer. The hmax estimate for an arbitrary NNF ψ
in s can now be defined as follows: 6

hmax(s, ψ) =̇

0 if s |= ψ

min
a∈ach(s,ψ)

(hmax(s, pre(a)) + γ(a)) if ψ is a literal

min
ψ′∈ψ

(hmax(s, ψ′)) if ψ is ∨

max
ψ′∈ψ

(hmax(s, ψ′)) if ψ is ∧

(1)

Besides the base case which gives an estimate of zero when ψ is already satisfied in s,
the reasoning implemented by Eq. 1 depends on whether ψ is a simple literal or a more
complex conjunction or disjunction. In the former case, Eq. 1 recursively calls itself against
the regression of ψ through each a ∈ ach(s, ψ), and as for the original hmax, selects the
option that leads to minimising the cost of executing the action plus the estimated cost
(via hmax) of achieving its precondition. When instead the condition is complex, hmax calls
itself recursively on each subgoal of ψ in isolation and either minimises or maximises over
the results, depending on whether ψ was a disjunction or a conjunction.

3.1.1 Properties

It is well known that the hmax formulation induces a relaxation of the problem being
solved. Such a relaxation, which is known as the subgoaling relaxation (Haslum, Bonet,
& Geffner, 2005), is based on the following decomposition principle: given a conjunction
or a disjunction of literals ψ, the achievement of a literal l ∈ ψ is considered as completely
independent from the achievement of any other literal l′ ∈ ψ such that l′ 6= l. Because
this is indeed a proper relaxation, it is safely pruning, meaning that the relaxed problem
has no solution only if the original planning problem has no solution. This also means

6. Rintanen (2006) also extends hmax to arbitrary preconditions and, additionally, to conditional effects.
Our formulation and motivation are different: we build directly on the original recursive formulation
proposed by Bonet and Geffner (2001) with the aim of focusing on the underlying decomposition power
of this framework and transferring it to the numeric context.

698

Subgoaling Techniques for Satisficing and Optimal Numeric Planning

that heuristics based on the relaxation, such as hmax and hadd, have infinite values only for
goals that are unreachable from the given state. Moreover, it is known that hmax, which
estimates the cost of a conjunction by that of the most costly subgoal, is an admissible
heuristic, meaning that hmax(s, ψ) ≤ h∗(s, ψ), where h∗(s, ψ) denotes the actual optimal
cost of achieving ψ from s, for any s and ψ.

3.1.2 Computational Aspects

The solution to Eq. 1 can be computed in time polynomial in the number of conditions
and actions using an iterative procedure that updates the cost estimate associated with
each formula ψ involved in the problem, until a fix-point is reached (this can be seen easily
extending (Haslum & Geffner, 2000)). Such a fix-point is guaranteed to exist by the simple
observation that each action needs to be considered at most once, when the estimated
cost of its precondition becomes known. A way to do this is by using a label-correcting
algorithm (for example, the Bellman-Ford Algorithm (Bellman, 1958)), or, more efficiently
since there are no negative costs, organising the updating process using a priority queue
in a Uniform Cost Search (UCS). The priority queue keeps track of the cheapest condition
and the causal chain of actions needed to achieve it, following the update rules given by
Eq. 1. The procedure terminates when either the goal condition is popped from the priority
queue or when the priority queue becomes empty. An obvious benefit of UCS over a pure
label correcting algorithm is that it restricts the iterations to those conditions belonging
to actions that are relaxed reachable and relevant for the estimation of the final optimal
cost associated with the goal. Because UCS guarantees optimality on expansion, the cost
associated to the goal is guaranteed to be the minimal one when the goal is popped out of
the queue.

3.2 hmaxhbd and haddhbd: h
max and hadd with numeric conditions

The recursion mina∈ach(s,ψ) h
max(s, pre(a))+γ(a) in the definition of hmax can be explained

as the result of regressing the condition ψ through possible actions and taking the least
cost of the resulting formulae (Haslum et al., 2005). The restriction of the minimisation to
achievers only simply excludes regression through actions that have either no or a detrimen-
tal effect on ψ and therefore will never attain the minimum. Thus, the first step towards
extending Eq. 1 to planning with numeric information is a definition of regression for numeric
conditions and action effects. Numeric regression can be formulated as the computation of
the so called weakest precondition, and relies on a simple manipulation of the expressions
involved in the numeric condition against the effects of the action (see (Scala, 2013) or
more generally (Hoare, 1969)). Let ψ =̇ 〈ξ,D, 0〉 be a numeric condition and a an action;
the regression of ψ through a is computed by substitution (’[]’) of the affected variables:

Definition 1 (Effect Regressor). Given a numeric condition ψ =̇ 〈ξ,D, 0〉 and an action a,
the effect regressor ψr(a) transforms ψ into 〈ξ[x1/τ(a, x1), . . . , xk/τ(a, xk)],D, 0〉 where

τ(a, xi) =̇

ξ′ if ∃〈xi, :=, ξ′〉 ∈ effnum(a)

xi + ξ′ if ∃〈xi,+=, ξ′〉 ∈ effnum(a)

xi − ξ′ if ∃〈xi,−=, ξ′〉 ∈ effnum(a)

xi Otherwise

699

Scala, Haslum, Thiébaux, & Ramirez

and x1, . . . , xk are the numeric variables affected by a. The substitution (denoted by ‘/’
symbol) of x1, . . . , xk in ψr(a) is simultaneous. Variables among x1, . . . , xk, indeed even xi,
can appear in the right-hand side of the effect of a on xi, and in this case will appear in
τ(a, xi), but these occurrences are not replaced.

ψr(a) represents the necessary and sufficient condition for ψ to be true in the state resulting
from applying the effects of a. To complete the notion of regression requires only that this
state is defined, i.e., that the actions precondition is also true:

Proposition 3.1 (Numeric Regression). Let a be an action and ψ a numeric condition.
s[a] |= ψ iff s |= ψr(a) ∧ pre(a). ψr(a) ∧ pre(a) denotes the regression of ψ through a.

Proof. (Sufficiency). Because s |= pre(a), the successor state s[a] is well defined. s[a] is
by definition created by substituting for each variable affected by a the right hand-side of
the effect modifying it, if any – remember here that we cannot have conflicting effects, i.e.
there is at most one effect affecting each variable. ψr(a) is by definition constructed by
substitution: it contains, for each affected variable, the right-hand side of the effect of a on
that variable. Now, because s |= ψr(a) we can substitute the variable modified by a on both
sides yielding s[a] |= ψ.
(Necessity). Because s[a] |= ψ, s[a] must be a well defined state which implies that s |=
pre(a). That s |= ψr(a) follows from s[a] |= ψ follows an argument analogous to that used
for the sufficiency part.

Having defined regression for numeric conditions, the introduction of numeric information
into the subgoaling relaxation becomes straightforward: it suffices to distinguish proposi-
tional conditions from numeric conditions in the recurrence relation of Eq. 1, and treat
each of them with the proper regression. Eq. 2 and Eq. 3 formalise this hybrid case for the
admissible (analogous of hmax) and inadmissible and additive (analogous of hadd) settings.
NCs stands for the set of numeric conditions and PCs for the set of propositional conditions.

hmaxhbd (s, ψ) =̇

0 if s |= ψ

min
a∈ach(s,ψ)

(hmaxhbd (s, pre(a)) + γ(a)) if ψ ∈ PCs

min
a∈A

(hmaxhbd (s, pre(a) ∧ ψr(a)) + γ(a)) if ψ ∈ NCs

min
ψ′∈ψ

hmaxhbd (s, ψ′) if ψ is ∨

max
ψ′∈ψ

hmaxhbd (s, ψ′) if ψ is ∧

(2)

haddhbd(s, ψ) =̇

0 if s |= ψ

min
a∈ach(s,ψ)

(
haddhbd(s, pre(a)) + γ(a)

)
if ψ ∈ PCs

min
a∈A

(haddhbd(s, pre(a) ∧ ψr(a)) + γ(a)) if ψ ∈ NCs

min
ψ′∈ψ

haddhbd(s, ψ′) if ψ is ∨∑
ψ′∈ψ

haddhbd(s, ψ′) if ψ is ∧

(3)

700

Subgoaling Techniques for Satisficing and Optimal Numeric Planning

Unfortunately, the introduction of numeric conditions makes the recurrence relation much
more complicated from a computational standpoint. While there is an obvious fix-point for
tasks involving only propositional variables, the existence of such a fix-point is not clear in
the numeric setting. This is due to the following facts:

First, numeric action effects may depend on the state in which the action is applied,
which complicates the definition of which actions are achievers of a numeric condition. In
general, we cannot look at actions in isolation to determine whether they contribute to
achieving a numeric condition. For example, consider the question whether the condition
ψ=̇〈x−10,≥, 0〉 can be achieved from from state s=̇{x = 0, y = 0} using actions 〈a0, ∅, y +=
10〉 and 〈a1, ∅, x += y〉. It is obvious that neither action, when applied in s, can make ψ
satisfied; indeed neither action changes the value of x. Yet the condition is achieved by the
sequence 〈a0, a1〉 of both actions.

In certain numeric planning domains, such as our Sailing domain for example, this
situation does not arise. Even though the numeric effects of actions are still state-dependent,
in the sense that the value of a numeric variable after the application of an action’s effects
can depend on the value it had before, whether the action makes a positive or negative
contribution with respect to the numeric conditions they are affecting is not. Considering
again the numeric condition x ≥ 10, it is clear that an action effect of the form 〈x,+=, 1〉
makes a positive contribution towards achieving the condition, regardless of the current
state, as long as it is not already satisfied. This is the type of property that we will exploit
in the next section.

In difference to the propositional case, the regression of a numeric condition through
an action is not limited to the action’s precondition only, but carries the remaining part
of the regressed condition into the recursive evaluation of hmaxhbd (and haddhbd). For example,
regressing ψ=̇〈x−10,≥, 0〉 through the effect 〈x,+=, 1〉 results in ψr(a) = 〈(x+1)−10,≥, 0〉,
and thus considering an action a with this effect as a possible achiever in hmaxhbd leads to the
recursive estimation hmaxhbd (s, pre(a) ∧ 〈(x+ 1)− 10,≥, 0〉). In contrast, in the propositional
case, the regression of a single literal through an action achieving it results in considering
only the action precondition. This also means that any negative effect that the action may
have on a conjunction that the literal is part of is ignored – that is the subgoaling relaxation
– which is not always true in the numeric case.

The main implication of these two observations is computational; this is not completely
surprising, since numeric planning is undecidable even with planning problems involving
just one goal (Helmert, 2002). To overcome this computational barrier, we will first analyse
regression of linear conditions and effects in greater depth, and then focus our attention on
a further restricted class of numeric planning problems.

4. Regression and Action Repetition for Simple Numeric Conditions

Unlike in classical planning, actions with numeric effects are not necessarily idempotent,
meaning that the repeated application of an action in a state can, in general, result in
a state different from that reached by a single application of the action.7 Dually, this is
also true of numeric regression: that s 2 ψr(a) does not imply that s 2 ψr(a)r(a) , or indeed

7. Though note that the same is true of actions with conditional effects in classical planning.

701

Scala, Haslum, Thiébaux, & Ramirez

that s 2 ψ

m times︷ ︸︸ ︷
r(a)...

r(a)

for some m. This is particularly relevant since many numeric planning
problems feature accumulation of resources or translation in geometrical spaces (e.g., the
Sailing domain seen in Section 1). While the current state may not satisfy the result of a
regressing a condition once, it is possible that it will eventually satisfy the condition after
a number of action repetitions.

Restricting the form of action effects and their relations to the conditions they are
interacting with allows us to formulate repeated regression in closed form. In this section
we present the relevant restriction, and conclude with a notion of possible achiever that
exploits the closed form to infer necessary conditions for the reachability of a numeric
condition.

4.1 Intuition

To start with a specific example, consider the fully instantiated action aNE from the Sailing
domain. Say aNE’s precondition remains empty and that its effects are:

eff(aNE) =̇

{
〈x,+=, 4〉
〈y,+=, 3〉

Assume that the condition ψ =̇ (x − y) − 3 ≥ 0 needs to be satisfied, and let us assess the
conditions that must hold for achieving ψ via regression through aNE. Regressing ψ through
aNE once gives us:

ψr(aNE) = ((x+ 4)− (y + 3))− 3 ≥ 0

After a second regression we obtain:

ψr(aNE)r(aNE)
= ((x+ 8)− (y + 6))− 3 ≥ 0 (4)

For a more general example, consider an action 〈a, ∅, xk =
∑

x∈X wa,xk,xx+ ka,xk〉 and
the numeric condition ψ =̇ 〈

∑
x∈X wψ,xx+ kψ,D, 0〉. Note that expressions in the action

effect and the left-hand side of the condition are both linear. All coefficients w(·,·,·), w(·,·), k(·,·)
and k(·) are rational constants and their subscripts refer to the objects the coefficients depend
on. In the action effect coefficients wa,xk,x, the subscript includes the action a containing
the effect, the variable xk affected, and the variable x the coefficient relates to in the right-
hand side of the effect. Similarly ka,xk denotes the constant contribution of the effect of
a on xk. For each condition coefficient wψ,x the subscript indicates the condition ψ the
coefficient relates to, and the variable the coefficient is associated with, and similarly kψ
is the constant in the condition expression. Note that, in the following, we intend indexed
summation (“

∑
”) to take precedence over simple addition (“+”); that is, when we write∑n

i=1 ai+b it should be understood as (
∑n

i=1 ai)+b. We explicitly parenthesise the summed
term when it is itself a sum, as in

∑n
i=1 (ai + b).

Having defined precisely what these components are, we can see that regressing ψ
through a equates to:

ψr(a) = 〈
∑

x∈X\{xk}

wψ,xx+ kψ + wψ,xk

(∑
x∈X

wa,xk,xx+ ka,xk

)
,D, 0〉

702

Subgoaling Techniques for Satisficing and Optimal Numeric Planning

and that if we regress the regressed condition ψr(a) through the action again we obtain:

ψr(a)r(a) = 〈
∑

x∈X\{xk}

wψ,xx+ kψ

+ wψ,xk

 ∑
x∈X\{xk}

wa,xk,xx+ ka,xk + wa,xk,xk

(∑
x∈X

wa,xk,xx+ ka,xk

) ,D, 0〉
which is equivalent to:

ψr(a)r(a) = 〈
∑

x∈X\{xk}

wψ,xx+ kψ

+ wψ,xk

(1 + wa,xk,xk)

 ∑
x∈X\{xk}

wa,xk,xx+ ka,xk

+ w2
a,xk,xk

xk

 ,D, 0〉 (5)

The conditions obtained in equations 4 and 5 can be used to determine whether ψ is achieved
by two repetitions of the same action (aNE or a) from some state s. For instance, in the
Sailing example, if ψ is the condition (x−y)−3 ≥ 0 and s is the state 〈x = 0, y = 0〉, then

[ψr(aNE)r(aNE)
]s evaluates to −1 ≥ 0 which is false. If, instead, the state s is 〈x = 2, y = 0〉

it evaluates to 1 ≥ 0, meaning that applying aNE twice in this state will satisfy ψ.

4.2 Possible Achievers of Numeric Conditions

The intuition underlying the above examples can be generalised to a variable number m of
action repetitions. For the class of so called linear and self-interference free (LSF) actions,
which we define now, we give a formula for the generalised repeated regression.

Definition 2 (Self-interfering effects). An action a is said to have self-interfering effects
whenever ∃ e, e′ ∈ effnum(a) : e 6= e′ and lhs(e) occurs in rhs(e′).

Definition 3 (Linear effects). An action has linear effects if ∀e ∈ effnum(a), e can be written
as 〈x, :=,

∑
y∈X wa,x,yy + ka,x〉, with wa,x,y, ka,x ∈ Q, where x is the variable modified by e.

An action is said to be LSF (Linear and Self-interference Free) if it has linear effects and
does not have self-interfering effects.

We are now in a position to define the m-times effect regressor as the closed form
expression for the regression of a numeric condition through an indeterminate number of
repetitions of the effects of an LSF action:

Definition 4 (m-times effect regressor). Given a linear numeric condition ψ=̇
∑

x∈X wψ,xx+
kψ D 0, where wψ,x, kψ ∈ Q, and an LSF action a, the m-times effect regressor for a and ψ,
denoted by ψr(a,m) is

ψr(a,m) =̇

(∑
x∈X

wψ,x(fx,a(m)) + kψ

)
D 0

703

Scala, Haslum, Thiébaux, & Ramirez

where

fx,a(m) =̇
m−1∑
k=0

wka,x,x

 ∑
y∈X\{x}

wa,x,yy + ka,x

+ wma,x,xx

is the value of x after applying action a m times.

Note that m appears in the exponent of the last term of fx,a(m); thus, the function is
non-linear if wa,x,x is different from 0 and 1.

Theorem 4.1 (Correctness of m-times effect regressor). The m-times effect regressor rep-
resents m repetitions of the effect regressor . That is, for all states s:

s |= ψ

m times︷ ︸︸ ︷
r(a)...

r(a)

⇔ s |= ψr(a,m)

Proof. To prove the theorem it is sufficient to show that the two conditions are equiva-

lent, i.e., that ψ

m times︷ ︸︸ ︷
r(a)...

r(a)

≡ ψr(a,m). The proof is by induction on m. For the base case
(m = 1), note that ψr(a,1) is the result of substituting fx,a(1) for x in ψ, and that fx,a(1) is
simply the right-hand side of the effect of a on x. Thus, ψr(a,1) ≡ ψr(a). For the inductive
case let us assume that the equivalence holds for some m = z − 1 with z ≥ 2; by induc-

tive hypothesis we have that ψr(a,z−1) ≡ ψ

(z-1)times︷ ︸︸ ︷
r(a)...

r(a)

. The proof reduces to showing that

ψr(a,z−1)r(a) ≡ ψr(a,z). Since the right-hand side and comparison of the condition is not
changed by regression, we only need to focus on the expression on left-hand side. Consider

fx,a(z) =

lx,a(z)︷ ︸︸ ︷
z−1∑
k=0

wka,x,x

 ∑
y∈X\{x}

wa,x,yy + ka,x

+wza,x,xx; for convenience, we introduce the

abbreviation lx,a(z) for the left term of the formula. The left hand side of ψr(a,z−1) is

lhs(ψr(a,z−1)) =
∑
x∈X

wψ,x
(
lx,a(z − 1) + wz−1

a,x,xx
)

704

Subgoaling Techniques for Satisficing and Optimal Numeric Planning

Since the action does not have self-interfering effects, any variable y with a non-zero coeffi-
cient in the sum

∑
y∈X\{x}wa,x,yy is unchanged by regression through a; hence,

lhs(ψr(a,z−1)r(a)
) =

∑
x∈X

wψ,x

lx,a(z − 1) + wz−1
a,x,x(

∑
y∈X

wa,x,yy + ka,x)

+ kψ

=
∑
x∈X

wψ,x

lx,a(z − 1) + wz−1
a,x,x(

∑
y∈X\{x}

wa,x,yy + ka,x) + wza,x,xx

+ kψ

=
∑
x∈X

wψ,x
(
lx,a(z) + wza,x,xx

)
+ kψ

=
∑
x∈X

wψ,x(fx,a(z)) + kψ = lhs(ψr(a,z))

Proposition 4.1 (Sufficient and Necessary Condition for Reachability of a Condition). A
numeric condition ψ is reachable from a state s by repeated applications of an LSF action a
only if there exists an m ∈ N ∪ {0} such that s |= ψr(a,m) and s |= pre(a) (necessary part).
This condition is also sufficient if the action does not modify any variable occurring in its
precondition.

Proof. This is proved quite directly as a consequence of Theorem 4.1, and Proposition 3.1.
Necessity. If the condition ψ is reachable through a from s this implies the existence of a

finite t for which s

t︷ ︸︸ ︷
[a] · · · [a] |= ψ. This, in turn, implies that:

(i) s |= pre(a)

(ii) s

t−1︷ ︸︸ ︷
[a] · · · [a] |= ψr(a) (using Proposition 3.1) till

(iii) s |=

t︷ ︸︸ ︷
ψr(a)···r(a)

≡ ψr(a,t) (using Theorem 4.1)

In particular (iii) implies the existence of a m ∈ N ∪ {0} such that s |= ψr(a,m).
Sufficiency under hypothesis that action a does not affect any variable in its
precondition. s |= ψr(a,m) and s |= pre(a) implies that s[a] |= ψr(a,m−1); now, since

s[a] |= pre(a) we have that s[a][a] |= ψr(a,k−2) till s

m︷ ︸︸ ︷
[a] · · · [a] |= ψr(a,0) ≡ ψ.

Definition 5 (Possible Achiever). An LSF action a is said to be a possible achiever of a
numeric condition ψ from s whenever there exists an m ∈ N+ such that s |= ψr(a,m).

From Theorem 4.1 it follows that a is a possible achiever of ψ =̇
∑

x∈X wψ,xx+kψD0 from
state s iff there exists m such that[∑

x∈X
wψ,xfx,a(m) + kψ

]s
D 0 (6)

705

Scala, Haslum, Thiébaux, & Ramirez

In the following, we use ach(s, ψ) to denote the set of possible achievers of ψ from s.

Even with the restriction to linear numeric effects, using the closed form requires rea-
soning over an exponential function that can be non-monotonic in m (if the coefficient of
the affected variable is negative). To overcome this complication, in the next section we
introduce simple numeric conditions, and in Section 5 show that, for this class, efficient,
admissible but still informed heuristics can be devised.

4.3 The Simple Numeric Condition Case

We define simple numeric conditions as linear inequalities that are only affected by actions
having constant increase and decrease effects:

Definition 6 (Simple Numeric Condition). Let ψ =̇ 〈ξ,B, 0〉. ψ is said to be a simple
numeric condition (SC) if: (i) ∀e ∈ {e′|e′ ∈ effnum(a), a ∈ A, ξ ∩ lhs(e′) 6= ∅}, e can be
equivalently written on the form 〈x,+=, ka,x〉 with ka,x a constant in Q; (ii) B ∈ {>,≥},
i.e., ψ is not an equality condition; and (iii) ξ is linear.

In the following a simple numeric planning problem is one in which every numeric condition
is simple.

Note that the restriction on the effects of actions affecting variables appearing in a
simple numeric condition is that they are equivalent to an increase by a constant (which
may be negative); effects of the form 〈x,−=, ka,x〉 and 〈x, :=, x + ka,x〉 obviously satisfy
this condition. Also note that while atomic simple numeric conditions are restricted to
inequalities, an equality can be expressed as the conjunction 〈ξ,≥, 0〉 ∧ 〈ξ,≤, 0〉.

Despite the restrictions, the class of simple numeric planning problem is as hard as gen-
eral numeric planning, viz. undecidable. Helmert (2002) proved the undecidability of several
restricted classes of numeric planning by reductions from known undecidable problems, in-
cluding for the case of planning with numeric preconditions of the forms 〈x, {<,=, >}, 0〉
and effects of the forms 〈x,+=, 1〉 or 〈x,−=, 1〉 (Helmert, 2002, Theorem 12). With the
reformulation of equality comparisons into conjunctions of two inequalities, his reduction
results in a simple numeric planning problem. The restriction to simple numeric conditions
is motivated by several useful properties that they have:

First, every action that affects a variable in ψ is LSF. Effects are clearly linear, and
no variable other than the affected variable appears in the right-hand side of an effect.
This implies that the m-times regression of ψ through the effects of any action a can be
computed in closed form: If a affects any variable appearing in ψ, then a is LSF and ψr(a,m)

is given by Definition 4. Moreover, the functions fx,a(m) in ψr(a,m) all have the simple form
fx,a(m) = mka,x + x; since ψ is linear, the m-times regression ψr(a,m) is also linear. If, on
the other hand, a has no effect on any variable appearing in ψ, then clearly ψr(a,m) ≡ ψ.

Second, to determine if a is a possible achiever of an SC ψ = 〈
∑

x∈X wψ,xx+kψ,B, 0〉 it
suffices to see whether the combined effect of all numeric effects of a will increase, decrease,
or leave unchanged the left-hand side of ψ. The m-times regression of ψ is

ψr(a,m) ≡
∑
x∈X

wψ,x(mka,x + x) + kψ B 0

706

Subgoaling Techniques for Satisficing and Optimal Numeric Planning

Rearranging the terms, we have

ψr(a,m) ≡ m

Nψ,a︷ ︸︸ ︷ ∑
x=lhs(e),e∈effnum(a)

wψ,xka,x

+

ξψ︷ ︸︸ ︷(∑
x∈X

wψ,xx

)
+ kψ B0 (7)

where the first term (Nψ,a) represents the net effect of each application of action a on the
left-hand side of ψ, and the second term (ξψ) is simply the left-hand side of ψ. Note that
Nψ,a is a constant, and that ψr(a,m) is also a simple numeric condition.

If [ξψ]sB0, then ψ is already satisfied in state s. If that is not the case, since the number
of repetitions m is non-negative it follows that Eq. (7) has a solution – and, in other words,
that a is a possible achiever of ψ, in the sense of Definition 5 – if and only if Nψ,a > 0.
Recall, however, Proposition 4.1: this is a necessary, but not sufficient, condition for the
reachability of ψ from s since it does not take into account whether a is in fact applicable
(once or m times).

The number of repetitions that are needed depends on the value of ξψ in the current
state (and the rate of change), but that a finite number exists does not. In this sense, the
effect of actions on SCs is state-independent. In fact, we can write a closed-form expression
for the number of repetitions of the effects of a required to achieve ψ from state s:

rep(a, ψ, s) =

0 if s |= ψ⌈

−[ξψ]s

Nψ,a

⌉
else if a ∈ ach(ψ)

∞ otherwise

(8)

A consequence of the above properties is that the number of relevant numeric condi-
tions that can be generated by the hmaxhbd (and haddhbd) recurrence is finite. Relevant numeric
conditions are those generated by regressing through possible achievers only.

Theorem 4.2 (Termination with SCs). If numeric conditions are regressed only through
possible achievers, then computation of hmaxhbd and haddhbd with only SCs terminates in a finite
number of steps.

Proof. The number of numeric conditions that can be generated in the recursive evaluation
of the heuristics is finite because it starts only from the finite number of conditions present
in the problem (action preconditions and goal) and only actions having a positive effect on
them are considered. Each regression through a possible achiever is in fact closing the gap
w.r.t. the target of the condition, and, since the contribution is constant (we are dealing
only with simple numeric conditions), it does not get infinitesimal. Thus, if at least one
possible achiever exists, the base case in which the condition is satisfied will be reached (Eq.
2, line 1) at some point. Otherwise the cost for that condition is infinity, and this can only
be true if there is no possible achiever for the condition.

It also follows that ψ is relaxed reachable, i.e., that hmaxhbd (s, ψ) is finite, iff there exists
some action a that has a positive effect on ψ such that hmaxhbd (s, pre(a)) is also finite. In other
words, the relaxed reachability of a SC can be demonstrated by considering only a single
achiever. Finding the minimum relaxed cost, i.e., the value of hmaxhbd (s, ψ) (or haddhbd(s, ψ)),

707

Scala, Haslum, Thiébaux, & Ramirez

may however require considering a combination of achievers. To see why, consider two
actions 〈a0, ∅, x = x + 0.9〉 and 〈a1, ∅, x = x + 1.1〉, with costs γ(a0) = 1 and γ(a1) = 1.5,
and the cost of achieving the condition ψ = 〈x − 2,≥, 0〉 from a state where x = 0. The
minimum cost using only repetitions of one action is 3 (either three times a0 or two times
a1), while the minimum cost of 2.5 is achieved using each action once. In general, an
exponential number of regressions may be required to find the minimum cost combination
of achievers. Thus, the fact that hmaxhbd with SCs can be computed in finite time does not
imply that the heuristic can be computed efficiently.

The next section shows how to obtain approximations of hmaxhbd and haddhbd that support ef-
ficient reasoning over different combinations of actions. To do this, we exploit that the
m-times effect regression of an SC through different actions is commutative; that is,
ψr(a,n)r(b,m) ≡ ψr(b,m)r(a,n) for any SC ψ and actions a and b affecting it. To see why,
note that if a variable x is affected by both a and b, then the value of x after applying first
b m times and then a n times is mkb,x + fx,a(n) = mkb,x + nka,x + x, which is clearly the
same as nka,x + fx,b(m), or the value of x after first applying a n times and then b m times.

We characterise the above optimisation task using a Mixed Integer Program, and then
elaborate upon its continuous relaxation to devise tractable inadmissible and admissible
estimates, which are numeric analogues of hadd and hmax.

5. Tractable Heuristics via Explicit Regression

Although finite, a naive implementation of both hmaxhbd and haddhbd is not tractable. In this
section, we will derive approximations of both heuristics that can be computed in time
polynomial in the problem representation, i.e., the number of actions, propositions and
numeric conditions that appears in it. Our tractable approximation ĥmaxhbd of hmaxhbd is still

admissible, and our tractable approximation ĥaddhbd of haddhbd is inadmissible but more informed.

5.1 An Inadmissible Estimate: ĥaddhbd

The core of the intractability of haddhbd lies in the recursive minimisation over combinations of
possible achievers of numeric conditions. To address it, we will first turn it into an explicit
minimisation problem, and then relax that problem until it can be solved efficiently.

The commutativity of the m-times regressor makes it possible to formulate haddhbd using
a linear combination of each action’s contribution8:

Theorem 5.1 (Explicit Regression for haddhbd). Let ψ be a simple numeric condition.

haddhbd(s, ψ) = min
m1,..,mn=|A|∈N

s|=ψr(a1,m1)
..r(an,mn)

∑
j=1..n

mj [h
add
hbd(s, pre(aj)) + γ(aj)]

Proof. Let P =̇ 〈a0, · · · , az〉 be a sequence of actions whose combined effects achieve ψ, and
let c(P) =̇

∑
a∈P(haddhbd(s, pre(a)) + γ(a)) be the associated cost. haddhbd(s, ψ) finds, among all

such finite sequences the one with minimum cost, i.e., P∗. Thus, haddhbd(s, ψ) = c(P∗). Note
that P∗ is such that:

8. This can be seen as lifting up the sequencing problem to action counting, drawing this way a nice relation
with the line of research on operator counting (Pommerening, Röger, Helmert, & Bonet, 2014)

708

Subgoaling Techniques for Satisficing and Optimal Numeric Planning

(i) the action effects on ψ are commutative with each other; and

(ii) the same action can be repeated a number ma ≥ 0 of times.

Therefore, let MS(P∗) be the set of pairs (a,ma) where a is an action in P∗ and ma the
number of occurrences of this action in P∗; we can rewrite c(P∗) as follows:

c(P∗) =̇
∑
a∈P

(haddhbd(s, pre(a)) + γ(a)) =
∑

(a,ma)∈MS(P∗)

(
ma ·

(
haddhbd(s, pre(a)) + γ(a)

))
It is easy to see that the cost of the optimal sequence found by the explicit regression of
the theorem is equivalent to the cost of the optimal sequence (i.e., c(P∗)) found solving the
recursive regression.

Note that what Theorem 5.1 gives is a formula for calculating haddhbd(s, ψ) given the esti-
mated costs haddhbd(s, pre(aj)) for all relevant actions. This formula can be used to perform
a single update-step in the computation of haddhbd, whether in a label-correcting algorithm
or a uniform-cost search, as described in Subsection 5.3. However, this formula has two
problems: First, the hybrid additive heuristic haddhbd suffers from over-counting, in the same
way as the classical hadd heuristic does, but in the numeric case this is exacerbated because
the estimated cost of an action’s preconditions is added for every repetition of the action.
Second, because it involves a minimisation problem over n = |A| integer variables, it can-
not be solved efficiently. As we shall now show, the resolution of both problems is linked,
through a process of two approximations to the original formula.

First, to reduce the overly pessimistic estimate that this results in, we consider a more
optimistic variant where the estimated precondition cost of actions used in the solution are
counted only once. That is, we replace

∑
j=1..nmj [h

add
hbd(s, pre(aj)) + γ(aj)] with the more

optimistic estimate
∑

j=1..n
s.t. mj>0

[haddhbd(pre(aj)) + mjγ(aj)]. We denote this modified update

formula with update′(ψ):

update′(ψ) =̇ min
m1,..,mn=|A|∈N

s|=ψr(a1,m1)
..r(an,mn)

∑
j=1..n

s.t. mj>0

(haddhbd(s, pre(aj)) + γ(aj)mj)

The solution to update′(ψ) can be computed by solving the following Mixed Integer Pro-
gram:

minimise
∑
a∈A

(
haddhbd(s, pre(a)) · acta + γ(a)ma

)
subject to

∑
x∈X

wψ,x

(∑
a∈A

maka,x + [x]s

)
+ kψ B 0

ma ≤ acta ·Ma, ∀a ∈ A
acta ∈ {0, 1},ma ∈ N,∀a ∈ A

(9)

The decision (integer) variable ma, as before, represents the number of times that action
a is used in the optimal solution, while acta is a 0/1 variable that takes the value 1 iff

709

Scala, Haslum, Thiébaux, & Ramirez

ma > 0, i.e., iff a is used at all. The constants are taken from the condition (wψ,x, kψ), the
actions (γ(a), ka,x) and the state s from which the heuristic is computed ([x]s). For the
formulation to be correct, we have to choose the constant Ma to be a number greater or
equal to the maximum number of repetitions of a that may be used in any optimal solution;
as detailed in Section 4.3, we can simply find for each possible achiever a the number of
repetitions needed to satisfy ψ from s using only a, rep(a, ψ, s), which is an upper bound
on the number of times that a may be used in an optimal solution. If there is no achiever
of ψ from s the MIP is infeasible; in this case update′(ψ) =∞.

However, solving the optimisation problem in Eq. 9 is NP-complete:

Theorem 5.2. Computing update′(ψ) is NP-complete.

Proof. The problem is in NP, as it can be formulated using Eq 9. The problem is also NP-
hard as its decisional version is equivalent to the decisional variant of the famous unbounded-
knapsack problem (Martello & Toth, 1990), as the following shows. Let us first formulate
our optimisation problem as a decision problem. In the decision version we set an upper-
bound K to the cost and use a lower-bound T to determine valid solutions. The decision
problem asks whether there is a number of repetitions for each action in A such that the
cost is within K, and the lower bound T still in check. Formally:

∀a ∈ A ∃ma ≥ 0 |
∑
a∈A

γ(a)ma ≤ K and
∑
a∈A

Nψ,ama ≥ T

where T =̇ − [ξψ]s =̇ − [
(∑

x∈X wψ,xx
)

+ kψ]s, and Nψ,a =̇
∑

x∈X wψ,xka,x. (T is the target
value, obtained by separating the evaluation of the left-hand side expression of ψ on the
state s from the contribution of the action effects Nψ,a, and bringing the resulting value on
the right-hand side of the inequality.)

An unbounded-knapsack problem (which is a well known NP-complete problem) consists
in determining a subsets of non-negative integer variables S′ ⊆ S = {e0, ..., en} such that
each can be added an arbitrary number of times so as to maximise benefit (

∑
vi(ei)) keeping

the overall weight in check (
∑
wi(ei) ≤ W). It is straightforward to see that its decision

version can be solved using our machinery: it suffices to use one action to model the adding
of a particular element. The benefit of this element corresponds to the action contribution
(Nψ,a), and the weight to its cost (γ(a)). This proves the NP-hardness of our problem.

5.1.1 Relaxation of the MIP and its Implications

Because computing update′(ψ) is intractable, we further approximate it by allowing the ma

variables to take rational rather than integral values, i.e., replacing the constraint ma ∈ N
with ma ≥ 0 for all a in MIP 9. We denote this relaxation with update′′(ψ), and the
heuristic that results from replacing the right-hand side of the case for (simple) numeric
conditions in the haddhbd recurrence (3) with update′′(ψ) by ĥaddhbd.

The resulting problem is still a MIP, because the acta variables remain integral. How-
ever, as we will show in Theorem 5.3 below, there always exists an optimal solution to
the continuous relaxation of the MIP that uses only one achiever; in other words: there
is no need to look for combinations of actions to satisfy a given condition. This means
that the optimum can be found in polynomial time, without invoking a MIP solver. Our
implementation of ĥaddhbd makes use of this.

710

Subgoaling Techniques for Satisficing and Optimal Numeric Planning

Theorem 5.3. An optimal solution to the relaxation of MIP 9 with fractional ma variables
can be found by minimising over each possible achiever in isolation:

update′′(ψ) =

0 if s |= ψ

min
a∈ach(s,ψ),m̂∈Q≥0

s|=ψr(a,m̂)

(m̂ · γ(a) + ĥaddhbd(pre(a))) otherwise

Proof. If the condition is already satisfied in state s, the minimum in both the formula
above and the relaxation of MIP 9 is zero. If there is no achiever of ψ in s, update′′(ψ) =∞
by definition. Thus, suppose s 6|= ψ and ach(s, ψ) 6= ∅, and let f∗ be the minimum cost of
achieving the condition using a single achiever, that is:

f∗ = mina∈A{
T

Nψ,a
· γ(a) + ĥaddhbd(pre(a))}

where T =̇ − [ξ]s, i.e., the gap that needs to be closed to achieve the condition. A possible
achiever requires Nψ,a > 0; in that case, T

Nψ,a
· γ(a) + ĥaddhbd(pre(a)) represents the relaxed

minimum cost of achieving ψ with a alone. Let a∗ be the action that attains the minimum.
Assume for contradiction that f∗ is not the optimal solution to MIP 9. This implies

the existence of some other action a′ contributing to the satisfaction of ψ. Let us refer to
this cheaper cost with f+. Suppose, for simplicity, that the solution with cost f+ uses two
actions, a∗ and a′. This means that

f+ =
T − T ′

Nψ,a∗
· γ(a∗) +

T ′

Nψ,a′
· γ(a′) + ĥaddhbd(pre(a′)) + ĥaddhbd(pre(a∗))

where T ′ is the part of the gap that is closed by some fractional number of repetitions of
action a′, and T − T ′ the part closed by a∗. Since the solution is optimal, we must have
T ′ ≤ T and T ′ > 0. Since f+ < f∗, we can deduce that:

T − T ′

Nψ,a∗
·γ(a∗) +

T ′

Nψ,a′
·γ(a′) + ĥaddhbd(pre(a′)) + ĥaddhbd(pre(a∗)) <

T

Nψ,a∗
·γ(a∗) + ĥaddhbd(pre(a∗))

which yields

T − T ′

Nψ,a∗
· γ(a∗) +

T ′

Nψ,a′
· γ(a′) + ĥaddhbd(pre(a′)) <

T

Nψ,a∗
· γ(a∗)

Subtracting the first term from both sides and simplifying the right-hand side, we can
deduce that

T ′

Nψ,a′
γ(a′) + ĥaddhbd(pre(a′)) <

T ′

Nψ,a∗
γ(a∗)

which, observing that the precondition cost of an action is always non-negative, implies

T

Nψ,a′
γ(a′) + ĥaddhbd(pre(a′)) <

T

Nψ,a∗
γ(a∗) + ĥaddhbd(pre(a∗))

for any non-negative T . This contradicts the assumption that f∗ is the minimum single-
achiever solution cost. If the optimal solution uses more than two actions, we can simply
apply the same argument to show that all but one can be eliminated, since actions’ contri-
butions are additive.

711

Scala, Haslum, Thiébaux, & Ramirez

Let us return to the the example of Section 4.3 with actions 〈a0, ∅, x = x + 0.9〉 and
〈a1, ∅, x = x+1.1〉, with costs γ(a0) = 1 and γ(a1) = 1.5, and the condition ψ = 〈x−2,≥, 0〉.
The optimal cost of achieving ψ from a state with x = 0 is 2.5, by applying each action
once, while using either action alone results in a cost of 3 (either three times a0 or two times
a1). However, if we allow for fractional action repetitions, the optimal solution is to apply
action a0 2 + 2/9 times, for a cost of 2 + 2/9. Using action a1 requires 1 + 9/11 repetitions,
for a cost of 2 + 8/11.

From now on, we will use r̂ep(a, ψ, s) to denote the minimum fractional number of
repetitions of the effects of an action a that are needed to satisfy ψ, starting from s. That
is:

r̂ep(a, ψ, s) =

0 if s |= ψ
−[ξψ]s

Nψ,a
else if a ∈ ach(ψ)

∞ otherwise

(10)

where ξψ is the expression on the left hand side of the condition. Note that this is the same
as Eq. 8 except that the fraction is not rounded up. After having gone through these steps,
let us report the resulting ĥaddhbd heuristic:

ĥaddhbd(s, ψ) =̇

0 if s |= ψ

min
a∈ach(s,ψ)

(
ĥaddhbd(s, pre(a)) + γ(a)

)
if ψ ∈ PC

min
a∈ach(s,ψ)

(r̂ep(a, ψ, s) · γ(a) + ĥaddhbd(pre(a))) if ψ ∈ SC

min
ψ′∈ψ

ĥaddhbd(s, ψ′) if ψ is ∨∑
ψ′∈ψ

ĥaddhbd(s, ψ′) if ψ is ∧

(11)

Note that, ĥaddhbd(s, ψ) will never give a greater estimate than that computed by its integral

and more pessimistic variant haddhbd(s, ψ). This is because ĥaddhbd(s, ψ) only counts preconditions
of an action once (regardless of whether multiple repetitions of the same action are required),
and uses the continuous relaxation of update′(ψ), i.e., update′′(ψ).

5.2 An Admissible Estimate: ĥmaxhbd

To get a practical and admissible version of hmaxhbd , we will go through three main steps.
First, observe that a lower bound on the cost of achieving condition ψ is given by the
optimal solution to a slight reformulation of the MIP in Eq. 9 where we drop precondition
cost:

minimise
∑

a∈ach(s,ψ)

γ(a)ma

subject to
∑
x∈X

wψ,x

(∑
a∈A

maka,x + [x]s

)
+ kψ B 0

ma ∈ N ∀a ∈ A

(12)

712

Subgoaling Techniques for Satisficing and Optimal Numeric Planning

Second, we take the continuous relaxation of the above problem. The relaxation is tractable
and, as observed previously, lower bounds the integer version. Also in this case optimal
solutions to the continuous relaxation can be found by looking at actions in isolation (i.e.,
ma > 0 for just one a ∈ ach(s, ψ)).

Third, we improve this estimate by considering only relaxed reachable actions and their
precondition costs. Let A+ ⊆ A denote this set. However, to maintain admissibility we can
only add the smallest precondition cost among the possible achievers of the condition.

Combining these steps and letting s and ψ be a state and a simple numeric condition,
we obtain the following expression for the cost update:

ĥmaxhbd (s, ψ) =̇

(
min

a∈A+∩ach(s,ψ)
r̂ep(a, ψ, s) · γ(a)

)
+

(
min

a∈A+∩ach(s,ψ)
ĥmaxhbd (s, pre(a))

)
(13)

where A+ = {a ∈ A | ĥmaxhbd (s, pre(a)) <∞} is the set of relaxed reachable actions.

Theorem 5.4 (Admissibility). For simple numeric planning problems, ĥmaxhbd (s, ψ) ≤ h∗(s, ψ).

Proof. To prove the statement we consider the different cases that can arise:

1. ψ is already satisfied in s;

2. ψ is a single simple numeric condition;

3. ψ is a single propositional condition;

4. ψ is a conjunction.

When ψ is satisfied in s (case 1), ĥmaxhbd (s, ψ) = 0, which is a valid lower bound. Case 3 follows
directly from the original formulation of hmax. Assuming that cases 2 and 3 are valid lower
bounds, maximising over a set of valid lower bounds (case 4) will also be a lower bound.
The only slightly tricky case is 2. Let π∗ be an optimal plan to achieve ψ from s. We can
decompose π∗ into several sub-sequences of actions. π∗ must contain a multi-set of achievers
of ψ, whose combined effects are sufficient to make ψ true from s; call this sub-sequence
π∗A, and let A be its total cost. Let a0 be the action in π∗A that appears first in π∗, let π∗B
be the sub-sequence of actions in π∗ that are necessary for achieving the preconditions of
a0, and let B be its total cost. Since every action in π∗B appears before every action π∗A in

the plan, the two are disjoint and the total cost of π∗ is at least A+B. The ĥmaxhbd estimate
is likewise made up of two terms. The first term in Eq. 13 lower-bounds the minimum cost
of any combination of actions that can achieve ψ from s, i.e., it lower-bounds A. (That the
optimal solution to the linear relaxation of MIP 12 is attained by considering at most one
achiever follows by the same reasoning as in the proof of Theorem 5.3.) The second term
in Eq. 13 lower-bounds the cost of achieving the preconditions of the first achiever of ψ in
an optimal plan, i.e., it lower-bounds B. Hence, ĥmaxhbd (s, ψ) ≤ A+B ≤ γ(π∗).

However, Eq. 13 is too optimistic, in that it allows the minimum in the first term to
use any possible achiever a whose current precondition cost estimate is finite, even when
the estimated precondition cost ĥmaxhbd (s, pre(a)) is greater than what the minimum of the
first term over actions excluding a would be. This is caused by the decoupling of the two
minimisation problems.

713

Scala, Haslum, Thiébaux, & Ramirez

To overcome this issue we restrict the set of actions considered in both minimisation
problems to only those ones whose precondition cost does not exceed the cost of achieving
the numeric condition at hand without using them. Let ĥmaxhbd (A′, s, ψ) denote the heuristic
estimate taken using only the set of actions A′ ⊆ A. We define the set

R(A, s, ψ) =̇ {a | a ∈ A+ ∩ ach(s, ψ), ĥmaxhbd (A \ {a}, s, pre(a)) < ĥmaxhbd (A \ {a}, s, ψ)}

and redefine the heuristic update equation as follows:

ĥmaxhbd (s, ψ) =̇

(
min

a∈R(A,s,ψ)
r̂ep(a, ψ, s) · γ(a)

)
+

(
min

a∈R(A,s,ψ)
ĥmaxhbd (s, pre(a))

)
(14)

It is important to observe that this restriction does not violate admissibility of the heuristic.
The revised formulation only makes sure that we do not consider actions that make the
estimate unnecessary low. The only actions discarded from the minimisation are those
having an estimated precondition cost which is at least as high as the cost of achieving the
target condition without them. Of course, this restriction of the set of actions makes the
new estimate more accurate than its original formulation. Now we are ready to summarise
the ĥmaxhbd heuristic:

ĥmaxhbd (s, ψ) =̇

0 if s |= ψ

min
a∈ach(s,ψ)

(
ĥmaxhbd (s, pre(a)) + γ(a)

)
if ψ ∈ PC

min
a∈R(A,s,ψ)

r̂ep(a, ψ, s) · γ(a) + min
a∈R(A,s,ψ)

ĥmaxhbd (s, pre(a)) if ψ ∈ SC

min
ψ′∈ψ

ĥmaxhbd (s, ψ′) if ψ is ∨

max
ψ′∈ψ

ĥmaxhbd (s, ψ′) if ψ is ∧

(15)

5.3 Computational Aspects of ĥmaxhbd and ĥaddhbd

The approximations introduced in the previous two sections provide tractable ways of com-
puting best achievers, without generating new numeric conditions that do not appear in
the problem (either as preconditions or goals). As in the case of the propositional hmax and
hadd heuristics, this enables us to use a Uniform Cost Search procedure to compute these
heuristics in polynomial time.

Theorem 5.5 (Tractability). ĥmaxhbd and ĥaddhbd can be computed in time polynomial in the
size of the problem.

Alg. 1 shows a polynomial algorithm proving the previous. The procedure is basically
a blind search over the relaxed reachable actions of the problem. η(a) denotes the current
estimate for satisfying precondition of action a. ω(ψ) denotes the cost of achieving a single
terminal ψ. Each condition in ψ gets an estimate of 0 or ∞ depending on whether it is
satisfied or not in the state. The priority queue, Q, serves the purpose of organising the
expansion of the reachable actions according to their heuristic cost given by function η.

714

Subgoaling Techniques for Satisficing and Optimal Numeric Planning

Algorithm 1: ĥ
max/add
hbd computation

1 computeCost(ψ- Formula):
2 if ψ is literal then
3 return ω(ψ)

4 if ψ is ∨ then
5 return minc∈ψ computeCost(c)

6 if ψ is ∧ then
7 if max setting then
8 return maxc∈ψ computeCost(c)

9 return
∑

c∈ψ computeCost(c)

10 Main(A - Actions, G - Goals):
11 ω, η = init costs(A,G)
12 Q = PriorityQueue({(a, 0)|a ∈ A, η(a) = 0});
13 A = A ∪ {Ga} ;
14 closed = ∅
15 poss = ∅;
16 while Q 6= ∅ do
17 a = pull(Q);
18 if Ga == a then
19 return η(Ga)

20 closed = closed ∪ {a}
21 foreach ψ | r̂ep(a, ψ, s) <∞, ψ ∈ NCs do
22 k = r̂ep(a, ψ, s);
23 if Admissible then
24 poss = poss ∪ (a, ψ);
25 ω(ψ) = min(ω(ψ), k · γ(a) + min(a′,ψ)∈poss(η(a′));

26 else
27 ω(ψ) = min(ω(ψ), k · γ(a) + η(a))

28 foreach ψ | a ∈ ach(ψ), ψ ∈ PCs do
29 ω(ψ) = min(ω(ψ), γ(a) + η(a))

30 foreach a ∈ A do
31 η(a) = computeCost (pre(a));

32 A′ = {a ∈ A | η(a) 6=∞, a /∈ closed};
33 update queue(Q,A′,η);
34 return ∞

Alg. 1 makes use of a dummy action Ga having the goal as precondition and empty
effects. This is a simple expedient to have homogeneous elements in the priority queue.
Every time a new action is pulled from Q, unless it is Ga (in which case the algorithm
can terminate with the cost associated to it), the algorithm updates the η cost for every

715

Scala, Haslum, Thiébaux, & Ramirez

action of the problem. This is triggered in case the action a just pulled from Q has indeed
affected at least a meaningful condition. This can be made efficient by carefully triggering
only those actions whose preconditions have been touched by the action. Then, routine
update queue updates the queue for all those reachable actions that have not being closed
yet. The procedure eventually terminates as the queue will empty (actions are never re-
added). However, the procedure may also end earlier, as soon as Ga is pulled from Q
9 . Note that the update of the cost of a condition needs to take into account actions
already expanded that are though achievers of the condition object of the update (line
25). The additive version and the admissible version are obtained switching appropriately
between maximising and summing in the computeCost routine, which explores the action
precondition formula using the cases defined for the two cases as for Equations 11 and 15,
but considering the recursive calls as updates instead of actual recursions. The recursion
within the computeCost function only serves the purpose of properly exploring the formula,
which for simplicity is hereby represented as a tree.

Because the algorithm is an optimal search over the heuristic cost of each action, when-
ever an action is popped out from the priority queue, its associated cost will be the minimum
possible cost according to the update rule defined by the specific setting (admissible or ad-
ditive).

The computational complexity of the procedure is bounded polynomially by the number
of actions in A, and the number of conditions in C. The intuition is that the main loop
(the priority queue) needs to iterate at most |A| times; once an action is popped out from
the priority queue, it will never be re-inserted again. This is ensured by using the “closed”
set in the algorithm; then, at most there are |C| updates to be performed, and relative
actions to be added in the priority queue if it is necessary. The small minimisation task
performed for action preconditions of possible achievers of numeric condition (line 25) can
also be optimised by using another map that keeps track of the precondition contribution.

6. Over-Approximation Guarantees and Relation with IBR

We conclude this first part by observing that all the heuristics presented so far are safe-
pruning heuristics, meaning that they give infinite values only for problems that are actually
unsolvable. This holds under the condition that all the subgoals of the problems are simple
numeric conditions.

Theorem 6.1. For simple numeric planning problems, ĥmaxhbd and ĥaddhbd are safe-pruning

heuristics, i.e. ĥ
max/add
hbd =∞⇒ h∗ =∞

Proof. First, note that both hmaxhbd and haddhbd are based on the same 1-subgoaling relaxation
h1
hbd, so have the same pruning power. Let Π be a numeric planning task, with initial state
I and goal G, and π a solution plan. Regressing the goal G through π yields a condition
that is satisfied in the initial state I (cf. Proposition 3.1). Likewise each precondition of
each action appearing in π regressed through the preceding segment of π yields a condition
satisfied in I. Thus hmaxhbd (I,G) and haddhbd(I,G) are both finite.

9. The algorithm is similar to Liu’s implementation (2002), yet in this version we also include the numeric
effects and their implication on the numeric conditions of the problem, and we iterate over actions instead
of iterating over conditions.

716

Subgoaling Techniques for Satisficing and Optimal Numeric Planning

We now turn our attention to the relationship between h1
hbd (the relaxation underlying

both ĥmaxhbd and ĥaddhbd) and the interval-based relaxation of Π (Scala et al., 2016b; Aldinger,
Mattmüller, & Göbelbecker, 2015), denoted Π+. It is easy to see that problems that are
solvable in h1

hbd are also solvable in Π+: The set of achievers that is used in the solution
to the h1

hbd equation can be used to solve Π+ in an obvious way: achievers can be applied
to extend state intervals up to the point where all the conditions they can possibly achieve
become satisfied. Thus, any problem detected as unsolvable by Π+ is also detected as
unsolvable by h1

hbd. However, the converse is not true: there are problems solvable in Π+

that are detected as unsolvable by h1
hbd. This is because internal interactions within an

action are relaxed in Π+, but some are considered by h1
hbd. Consider the following example:

the initial state is I =̇ 〈x = 0, y = 0〉, the goal is G =̇ x+ y > 0, and there is a single action
a =̇ 〈∅, {x = x+1, y = y−1}〉. The interval-based relaxation Π+ of this problem is solvable.
The initial state in Π+ is I =̇ 〈x = [0, 0], y = [0, 0]〉. Applying action a (trivially executable
in the initial state) generates the relaxed state I[a] = 〈x = [0, 1], y = [−1, 0]〉. Following
terminology from Scala et al. (2016b), we have that [lhs(G)]I[a] : [−1, 1], which implies that
I[a] |=+ G. With h1

hbd, the problem is instead trivially unsolvable because the action a is
not a possible achiever of G.

Our Sailing domain instance shown in Figure 1 (Section 2.3), presents another example:
the rescue requires satisfying x + y ≥ 10 starting from position 〈x = 1, y = 1〉. In the
interval-based relaxation, any action that increases at least one of the variables x or y can
be used to achieve the goal, and therefore is considered helpful by heuristics based on this
relaxation. This includes the two actions aNE and aW, but also the two misleading actions
aNW and aSE. The latter two actions increase either x or y but decrease the other by the
same amount, and thus fail to bring the state any closer to satisfying x + y ≥ 10. Thus,
ignoring the interaction of action effects not only leads to weaker heuristic estimates but
also can make irrelevant actions appear helpful.

However, even though the h1
hbd subgoaling relaxation captures some of the interactions

among actions’ effects, it still considers satisfaction of multiple conditions in conjunction
independently. In the next three sections of the paper we describe two ways of remedying
this issue. The first is a simple technique based on the adoption of redundant constraints
(Section 7). The second is a more sophisticated approach that revises the notion of possible
achievers to better account for conjunctive constraints (Sections 8–9).

7. Redundant Constraints

The subgoaling relaxation, as presented thus far, assumes and exploits strong independence
among subgoals appearing in conjunctions. Depending on whether we are interested in
admissibility or informativeness, we maximise or sum (respectively) the contribution of
each conjunct. It is by reasoning over those basic elements that, for the admissible case,
we obtain a numeric equivalent of the so called critical-paths necessary to achieve each
goal. However, even though this form of reasoning gives us a way to devise admissible and
tractable estimates, it ignores interactions between subgoals.

To illustrate the consequences, imagine a planning problem modelling an agent tasked
with pouring a given amount L of water into an empty bucket in less than T seconds. The
agent has a single action, pour : each time it is executed, it increases the level of water

717

Scala, Haslum, Thiébaux, & Ramirez

by one unit and increases the time spent by one second. Consider an instance with goal
(T ≤ 10) ∧ (L ≥ 11), and initial state 〈T = 0, L = 0〉. Clearly, the problem is unsolvable:
there is no way of filling the bucket in less than 11 seconds. The pouring action has a
positive effect on the second goal (it is one of its possible achievers), but has an irreversible
negative side effect on the time constraint. However, the subgoaling relaxation of the task
is solvable. A relaxed plan for this problem is to execute 11 times the refilling action. The
relaxation monotonically assumes that once a subgoal is satisfied, as T ≤ 10 is in the initial
state, then this subgoal remains satisfied at all future steps.

In order to overcome this problem in some situations, we propose a simple problem
reformulation technique whose aim is to make some of the hidden numeric structure of
the problem explicit. More precisely, let c be a precondition or a goal, we modify c by
introducing redundant constraints that are implied by the simultaneous satisfaction of each
pair of (numeric) conditions in any conjunction set in c. Let c1 =̇ 〈ξ,B, 0〉 and c2 =̇ 〈ξ′,B′, 0〉
be two SCs appearing in a conjunction. The implied redundant constraint that we add
to the conjunction is 〈ξ + ξ′, weaker(B,B′), 0〉, where weaker(B,B′) denotes the less strict
of the two relations B and B′; that is, if one of them is strict inequality and the other
a non-strict inequality, the redundant constraint uses the non-strict relation. This is to
ensure that the implied constraints remain a necessary condition for the satisfiability of the
conjunction of its implicants. We denote the redundant constraint implied by two SCs ψ
and ψ′ with red(ψ,ψ′). Note that the implied constraint is also an SC.

In the example above, the conjunction of the two inequalities −T+10 ≥ 0 and L−11 ≥ 0
imply the constraint L− T − 1 ≥ 0. Because the pouring action has no net effect on L− T
(it increases both variables by 1), applying the m-times effect regressor to this constraint
results in m−m−1 ≥ 0, which is not satisfiable. Thus, the pouring action is not a possible
achiever of the implied constraint, and therefore also not of the original conjunctive goal.
Situations like this are quite frequent in numeric planning problems.

We define variants of our heuristics by reformulating the problem with the addition of
redundant constraints for each pair of numeric conditions in conjunctions: we denote with
ĥrmaxhbd the extended admissible estimate (the ’r’ stands for redundant constraints), and with

ĥraddhbd the inadmissible version. Eq. 16 and 17 below formalise ĥrmaxhbd and ĥhraddhbd . red(ψ′, ψ′′)
denotes the redundant condition implied by ψ′ and ψ′′, as defined above.

ĥrmaxhbd (s, ψ) =̇

0 if s |= ψ

min
a∈ach(s,ψ)

(
ĥrmaxhbd (s, pre(a)) + γ(a)

)
if ψ ∈ PC

min
a∈R(A,s,ψ)

r̂ep(a, ψ, s) · γ(a) + min
a∈R(A,s,ψ)

ĥrmaxhbd (s, pre(a)) if ψ ∈ SC

min
ψ′∈ψ

ĥrmaxhbd (s, ψ′) if ψ is ∨

max

max
ψ′∈ψ

ĥrmaxhbd (s, ψ′), max
ψ′,ψ′′∈ψ∩NC,

ψ′ 6=ψ′′

ĥrmaxhbd (s, red(ψ′, ψ′′))

 if ψ is ∧

(16)

718

Subgoaling Techniques for Satisficing and Optimal Numeric Planning

ĥraddhbd (s, ψ) =̇

0 if s |= ψ

min
a∈ach(s,ψ)

(
ĥraddhbd (s, pre(a)) + γ(a)

)
if ψ ∈ PC

min
a∈ach(s,ψ)

(r̂ep(a, ψ, s) · γ(a) + ĥraddhbd (pre(a))) if ψ ∈ SC

min
ψ′∈ψ

ĥraddhbd (s, ψ′) if ψ is ∨∑
ψ′∈ψ

ĥraddhbd (s, ψ′) +
∑

ψ′,ψ′′∈ψ∩NC,
ψ′ 6=ψ′′

ĥraddhbd (s, red(ψ′, ψ′′)) if ψ is ∧

(17)

The reformulation could be further strengthened in certain cases by including redundant
constraints over conjunctions that are implied by more complex formulae. For example,
(¬b∨d)∨(b∧c) implies c∧d and therefore also red(c, d), if c and d are both SC. We could also
create redundant constraints from conjunctions of numeric and propositional conditions, by
augmenting the problem with a numeric encoding of propositions and propositional action
effects that parallels the original formulation, similar to van den Briel et al. (2007), Coles
et al. (2013) and others.

From a practical perspective, Alg. 1 can be modified to account for redundant con-
straints. In our implementation, we compute the redundant constraints for each action’s
preconditions upfront, then treat them as regular numeric conditions.

It is very easy to see that ĥrmaxhbd dominates ĥmaxhbd , as the redundant constraints simply
extend the set of conditions that are maximised over in Eq. 15. There is, however, a
computational overhead: the number of conditions to evaluate, and therefore the number
of updates to consider in Alg. 1, is potentially much larger. Finally, it is also easy to
see that ĥrmaxhbd remains admissible: since the redundant constraints are implied by the
satisfaction of the original conjunction, making them explicit does not reduce the space of
possible solutions. However, in the inadmissible heuristic ĥraddhbd , the addition of redundant
constraints may again worsen the problem of over-counting, and unnecessarily inflate the
heuristic estimate.

Redundant constraints have proven useful to prune the search space of invalid partial
solutions in areas such as constraint-based scheduling (Getoor, Ottosson, Fromherz, & Carl-
son, 1997). Our experimental analysis will show that their use in numeric planning can be
beneficial as well.

In the following two sections we introduce a different way of tackling conjunctive goals.
This new method uses a different formulation of our notion of a possible achiever, consid-
ering sets of actions as achievers of conjunctions of (numeric) conditions. In Section 9 we
further extend this notion to hybrid achievers of conjunctions of numeric and propositional
conditions.

8. Generalised Subgoaling: From Atoms to Conjunctions

To show the limits of what can be accomplished with redundant constraints, we extend the
“filling the bucket” example from the previous section. Suppose that the agent is not only

719

Scala, Haslum, Thiébaux, & Ramirez

constrained by a time limit, but also needs to satisfy a constraint on total cost, C ≤ 10. The
slow pouring action has no cost (i.e., does not increase C). There is also a quicker but more
expensive action fill, fills the whole bucket (i.e., L = L+ 11) in just one second (T = T + 1)
but at a cost of 11 (C = C + 11). The problem remains unsolvable, but the introduction of
pair-wise redundant constraints shown in the previous section fails to capture this situation:
The filling action can achieve the constraint red(L ≥ 11, T ≤ 10) = L− T − 1 ≥ 0, and the
pouring action is an achiever of red(L ≥ 11, C ≤ 10) = L − C − 1 ≥ 0. Even combing all
three subgoals yields the redundant constraint L− T − C + 9 ≥ 0, which is satisfied in the
initial state. Therefore, even equipped with redundant constraints, the relaxation fails to
detect that the problem is unsolvable. Again, the problem lies in the difficulty of predicting
whether and how a set of conditions can all be simultaneously satisfied in some future state.

Previous work in propositional planning proposed to deal with conjunctive reasoning
through mutex relations (Blum & Furst, 1997), and through higher-order versions of the
subgoaling relaxation, such as the hm family (Haslum, 2009). In this section, we introduce a
method that shares the objective of strengthening the relaxed reasoning over conjunctions,
but focusing on the numeric components of numeric planning problems and exploiting,
as much as possible, the numeric properties underlying the formulation. We propose a
formulation that can be implemented in a tractable algorithm. Intuitively, we achieve these
objectives by capturing simultaneous validity within a constraint-based representation that
still adopts the decomposition principle given by the subgoaling relaxation. The key idea is
to lift the subgoaling principle from the single atomic subgoals to conjunction of subgoals.
To achieve that, rather than seeking optimal values by minimising over different regressions
action by action (Haslum, 2009), we propose to bundle several m-times effect regressors
together into a single mathematical formulation that can be delegated to an LP solver.
Intuitively, our formulation approximates the cost of achieving a conjunction, such as an
action’s preconditions, and it is used in an incremental fashion. Each time a new action
is made reachable because its preconditions become relaxed satisfied, this action will be
used, together with the actions already reached, in order to reach new preconditions at
potentially lesser cost. As we will see, this yields a tighter, but computationally more
expensive, relaxation than those we have presented so far. In the following subsections, we
develop this idea through the notion of conjunctive achiever, which we then use to design a
new admissible heuristic.

For ease of presentation, in the rest of this section we consider only conjunctions of simple
numeric conditions. We extend this to conjunctions of mixed numeric and propositional
conditions in Section 9. In the same way as we have shown earlier in the paper, the more
general case of arbitrary NNF formulae can be dealt with recursively, by minimising each
formula in a disjunction separately.

8.1 Conjunctive Achievers

Intuitively, a conjunctive achiever is a set of actions that can be used to achieve a conjunc-
tion of numeric conditions. Formally:

Definition 7 (Conjunctive Achiever). Given a conjunction ψ =̇ ψ1 ∧ ψ2 ∧ . . . ∧ ψn and
a state s, the set A =̇ {a1, .., ak} is said to be a conjunctive achiever of ψ iff there exists

m1, ...,mk ∈ N such that for all i, s |= ψ
r(a1,m1)...

r(ak,mk)

i

720

Subgoaling Techniques for Satisficing and Optimal Numeric Planning

The crucial difference w.r.t. the notion of a possible achiever (Def. 5) is that a con-
junctive achiever set considers not only what (and how many) actions are needed to achieve
each condition, but also how these actions affect the other conjuncts via negative and/or
positive side-effects. As it can be seen from the definition, the statement asks for values
for the action counters such that the m-times effect regressor of each conjunct through
all actions, with the given repetitions, is satisfied. This means each conjunct is regressed
through not only those actions that are needed for that specific condition, but also those
that are necessary to achieve some other conjunct. However, the existence of a conjunctive
achiever is still a relaxation of the reachability of the conjunction, since the regression does
not consider whether there is any order that allows the multi-set of actions that make up
the conjunctive achiever to be executed without violating any action’s precondition. We
will use Ξ(A′, s, ψ) to denote the set of possible conjunctive achievers of ψ from a given
state s using only the set of actions A′. (We will use conjunctive achievers obtained from a
restricted set of actions in the definition of the heuristic and incrementally add to this set
new actions found to be relaxed reachable - see later Algorithm 2.)

Because we are still focusing on the simple numeric condition case and are not consid-
ering action preconditions, the order in which the regressions are applied is irrelevant:

Proposition 8.1. Let A =̇ {a1, .., ak} be a conjunctive achiever of ψ =̇ ψ1 ∧ ψ2∧, ...,∧ψn.
The order in which actions are regressed does not matter, i.e., given m1, ...,mk ∈ N:

ψ
r(a1,m1)r(a2,m2)

...r(ak,mk)

i ≡ ψr(a2,m2)r(a1,m1)
...r(ak,mk)

i ≡ ψr(ak,mk)r(ak−1,mk−1)
...r(a1,m1)

i ≡ ...

Proof. This is a direct consequence of pair-wise action commutativity shown in Section
4.3.

Our interest is not only in determining the existence of conjunctive achievers, but also
in determining optimal conjunctive achievers, that is those minimising the sum of action
costs; the computation of this cost is crucial for getting valid lower bounds. For this task
also, we formulate a Mixed Integer Program, Eq. 18 below. Input to the MIP formulation
is the set of conditions, ψi, in the conjunction, the set of actions A′ that may be part of the
conjunctive achiever (this may be the entire set of actions, or a subset), and the state s from
which it is computed. The solution to the MIP determines the action counters {ma}a∈A′ ,
and implicitly also the subset of actions that make up the conjunctive achiever (those for
which ma > 0).

minimise
∑
a∈A′

γ(a)ma

subject to
∑
x∈X

wψ1,x

(∑
a∈A′

maka,x + [x]s

)
+ kψ1 B 0

...∑
x∈X

wψn,x

(∑
a∈A′

maka,x + [x]s

)
+ kψn B 0

ma ∈ N ∀a ∈ A′

(18)

721

Scala, Haslum, Thiébaux, & Ramirez

The MIP in Eq. 18 has one constraint for each conjunct ψi of the conjunction, corre-

sponding to the condition that s |= ψ
r(a1,m1)...

r(ak,mk)

i . The decision variables of the MIP
are ma, for each a ∈ A′, and the remaining constants in the inequalities are taken from the
conjunct (wψi,x, kψi), actions (ka,x, γ(a)), and the state s ([x]s). The sum over actions in
each constraint links each action’s contribution with the number of repetitions required to
achieve the corresponding conjunct. Note that in this sum, actions are considered regard-
less of whether they are possible achievers of the conjunct or not. This way, if an action is
required to achieve some conjunct ψj , its (possibly negative) effects are also considered in
the condition for satisfying every other conjunct ψk. Therefore, even conditions already true
in the state where the heuristic is calculated, if negated by some action in the conjunctive
achiever may require further actions to bring them in check again. The objective function
simply sums the repetitions of each action that is used, weighted by the action’s cost.

To illustrate, let us continue the “filling the bucket” problem from the beginning of this
section. The conjunction for which we need to compute the optimal conjunctive achievers
is (T ≤ 10) ∧ (L ≥ 11) ∧ (C ≤ 10). Formulating the MIP for this conjunction with actions
{pour,fill} (both having a cost of 1) and the initial state 〈L = 0, T = 0, C = 0〉 results in
the following:

minimise mpour +mfill

subject to (−1 ·mpour +−1 ·mfill + 0) + 10 ≥ 0 (to satisfy T ≤ 10)
(1 ·mpour + 11 ·mfill + 0)− 11 ≥ 0 (to satisfy L ≥ 11)
(−1 ·mpour +−11 ·mfill + 0) + 10 ≥ 0 (to satisfy C ≤ 10)

This MIP does not admit any solution, showing that there is no conjunctive achiever
using only these two actions.

Given a state s, conjunctive condition ψ and set of actions A′, we denote by Ξ∗(A′, s, ψ)
the cost of the minimum-cost conjunctive achiever of ψ from s using only actions in A′;
in other words Ξ∗(A′, s, ψ) is the optimal objective value of the MIP in Eq. 18. As in
the case of achievers of a single condition, the optimal objective value of the MIP can be
lower-bounded by its continuous relaxation, allowing fractional action repetitions, which is
a linear program and thus can be solved in polynomial time. We denote the optimal value
of the continuous relaxation with Ξ̂∗(A′, s, ψ). Unfortunately, it is not clear whether there
are more practical ways of computing Ξ̂∗(A′, s, ψ), or any other reasonable lower bound
on Ξ∗(A′, s, ψ), than by solving this LP (e.g., using actions in isolation). We leave this
aspect for future investigation. The next subsection shows how conjunctive achievers are
incorporated into the hmax

hbd formulation to devise a concrete admissible heuristic.

8.2 The hgen Formulation

Given a planning problem Π=̇〈I, A,G,C, F,X, γ〉 only involving simple numeric conditions,
we define an admissible estimate which exploits the notion of conjunctive achievers and
which we call the Generalised Subgoaling heuristic or hgen. This estimate is defined by
substituting the conjunctive case within Eq. 2, leading to the following equation:

722

Subgoaling Techniques for Satisficing and Optimal Numeric Planning

hgen(s, ψ) =̇

0 if s |= ψ

Ξ̂∗(A+, s, ψ) + min
a∈A

∃ψ′∈ψ|a∈ach(s,ψ′)

hgen(s, pre(a)) if ψ is ∧ (19)

The first term lower-bounds the cost of satisfying formula ψ, and is the optimal objective
value of the continuous relaxation of the MIP in Eq. 18. Same as in the definition of hmax

hbd ,
the action set A+ is the set of actions that have a finite estimated precondition cost, i.e.,
A+ = {a ∈ A | hgen(s, pre(a)) <∞}. The second term in Eq 19 strengthens the bound by
including the lowest precondition cost among all achiever actions for the conditions in ψ.

Theorem 8.1 (Admissibility). For simple numeric planning problems, hgen is an admissible
heuristic. Let s be a state and ψ an NNF formula. Then hgen(s, ψ) ≤ h∗(s, ψ).

Proof.

We first consider the case when ψ is a conjunction of SCs, by induction on cost. (We
assume for simplicity that action costs are strictly positive; to account for zero-cost actions,
the induction order can be modified by tie-breaking on plan size.) Consider an optimal plan
for achieving ψ from s, and let M be the multi-set of actions appearing in this plan. Let
M ′ ⊆ M be the multi-set of actions whose effects are necessary and sufficient to achieve
ψ, disregarding the achievement of actions’ preconditions. Unless s |= ψ (in which case
hgen(s, ψ) = h∗(s, ψ) = 0), M ′ is non-empty. The set of actions in M ′, with action counters
set to the number of repetitions of each action in the plan, is a conjunctive achiever of ψ,
and therefore its total cost, C ′ is greater than or equal to the optimal solution, C, to the
continuous relaxation of the corresponding MIP 18. Every action a that has a non-zero
count ma in the optimal solution to MIP 18 is an achiever of some ψi ∈ ψ; if it were not,
the action count could be removed from the conjunctive achiever (i.e., ma set to 0) without
violating any of the constraints, resulting in a conjunctive achiever with lower cost. Let
B = mina∈A:∃ψ′∈ψ,a∈ach(s,ψ′) h

gen(s, pre(a)). If M ′ = M , i.e., there are no actions in the
optimal plan other than those in the conjunctive achiever M ′, then at least one of these is
applicable in s; hence B = 0. Otherwise, there is some action a′ in M ′ such that one or more
of the actions in M \M ′ are necessary to achieve pre(a′); since h∗(s, pre(a′)) < h∗(s, ψ) we
have hgen(s, pre(a′)) ≤ h∗(s, pre(a′)) by inductive assumption, and since a′ is an achiever of
some ψi ∈ ψ, B ≤ hgen(s, pre(a′)). Thus, hgen(s, ψ) = C +B ≤ h∗(s, ψ).

The case of an NNF formula with SCs as atomic conditions follows simply from the fact
that hgen (like hmax

hbd) minimises cost over disjunctions.

We can strengthen the hgen estimate in the same way as we did hmax
hbd , by further restrict-

ing the action set A+ used in Ξ̂∗(A+, s, ψ) to include only those actions a whose precondition
cost does not exceed the cost of achieving ψ without using a. This is obtained by updating
the cost of each conjunction in an incremental fashion.

8.3 Computing hgen

Algorithm 2 presents a modified version of the blind search schema in Algorithm 1 that
computes hgen. Again, we use a priority queue to explore actions according to their esti-
mated cost η. The search starts with the actions applicable in the state; these are initially

723

Scala, Haslum, Thiébaux, & Ramirez

pushed in the queue with an associated cost of 0. Each action pulled from the priority queue
Q enlarges the set of relaxed reachable actions A′. For each non-expanded action a′ whose
(conjunctive) precondition can be achieved using actions in A′, the algorithm computes
Ξ̂∗(A′, s,pre(a)), the lower bound on the cost of a conjunctive achiever pf pre(a) obtained
from the LP-relaxation of MIP 18. Then the action with this associated cost is pushed onto
Q and a new iteration starts. The algorithm terminates when the priority queue empties
(the problem is not solvable) or when the goal action ga is pulled out from the queue.

Algorithm 2: Computing hgen(s,G)

1 Closed = ∅
2 A′ = ∅
3 foreach a ∈ A ∪ {ga} do
4 if s |= pre(a) then
5 η(a) = 0

6 else
7 η(a) =∞

8 Q = PriorityQueue({(a, 0)|a ∈ A, η(a) = 0});
9 while Q 6= ∅ do

10 a = pull(Q);
11 if a == ga then
12 return η(a)

13 A′ = A′ ∪ {a};
14 Closed = Closed ∪ {a};
15 foreach a′ : a′ /∈ Closed do

16 η(a′) = Ξ̂∗(A′, s, pre(a′)) + mina′′∈A(η(a′′)));
17 if a′ ∈ Q then
18 update queue(Q,a′,η(a′));

19 else
20 push(Q,a′,η(a′));

21 return ∞

The algorithm is guaranteed to terminate as the number of actions is finite. The com-
putational cost is polynomially bounded by the number of actions and by the resolution of
the LP, which is also polynomial. More formally:

Theorem 8.2. The computational complexity of hgen is polynomial in the problem size.

Proof. Note that there will be at most |A| iterations (each action is popped out from the
queue at most once), and each iteration i solves an LP at most (|A| − i) times, hence the
computational complexity is bounded by O(|A|2 · LP). Moreover, because the generated
LP contains a number of variables that is linear in the number of actions of the problem
and a number of constraints that is linear in the size of the conjunctive formula, the overall
complexity is polynomial in the size of the problem.

724

Subgoaling Techniques for Satisficing and Optimal Numeric Planning

The next section shows how the heuristic can be combined with propositional variables
and global constraints.

9. Hybridisation with Propositional Conditions: Conjunctive Hybrid
Achievers

In this section, we extend the notion of conjunctive achievers and the generalised subgoal-
ing heuristic to the hybrid case, where the subgoals in a conjunction can be both simple
numeric and propositional conditions. Furthermore, we show how the heuristic integrates
in a beneficial way with global constraints, which are conditions that must be satisfied in
every state traversed by a plan.

9.1 Conjunctive Hybrid Achievers

The extension of conjunctive achievers to hybrid propositional conditions and numeric con-
ditions is straightforward:

Definition 8 (Conjunctive Hybrid Achiever). Given a conjunction ψ =̇ψ1∧ψ2∧, ...,∧ψn of
literals and simple numeric conditions, and a state s, the set A =̇ {a1, .., ak} is said to be a
conjunctive hybrid achiever, or simply a hybrid achiever of ψ iff there exists m1, ...,mk ∈ N
such that for every ψi ∈ ψ

• if ψi is a numeric condition, then s |= ψ
r(a1,m1)...

r(ak,mk)

i

• if ψi is a literal, and s 2 ψi then
∑

j|aj∈ach(s,ψi)
mj ≥ 1

Intuitively, a hybrid achiever must contain actions whose effects, if executed a sufficient
number of times, are sufficient to satisfy each conjunct, numeric and propositional. For
propositional conditions we only require that they are achieved by at least one action, if not
already satisfied in the current state. We use Ξhbd(A

′, s, ψ) to represent the set of hybrid
achievers for ψ from a given state s, using actions from set A′.

The existence of a conjunctive hybrid achiever is a necessary, but not sufficient, condition
for ψ being reachable: It does not take into account whether the actions’ preconditions are
reachable, or if some actions in the achiever have negative effects on the precondition of
others. There is a certain asymmetry, in that negative side-effects on numeric subgoals
are considered, but not on propositional conditions. For example, consider the conjunction
p ∧ (x ≥ 0): if the action achieving p also decreases x (below 0), a hybrid achiever for the
conjunction will be forced to also include actions that restore x ≥ 0. This way, some of the
negative interference will be taken into account. On the other hand, if the action required
to increase x deletes p, this is not considered. The reason for this is that effects on simple
numeric conditions commute, but propositional effects, which are assignments, do not.

Given the conjunction ψ =̇ ψ1 ∧ . . .∧ ψn ∧ . . .∧ l1 ∧ . . .∧ lt where ψi are simple numeric
conditions and lj propositional literals, the least-cost hybrid achiever can be computed by

725

Scala, Haslum, Thiébaux, & Ramirez

the following slight revision of the MIP formulation from Eq. 18:

minimise
∑
a∈A′

γ(a) ·ma

subject to
∑
x∈X

wψ1,x

(∑
a∈A′

maka,x + [x]s

)
+ kψ1 B 0

...∑
x∈X

wψn,x

(∑
a∈A′

maka,x + [x]s

)
+ kψn B 0

∑
a∈A′∩ach(s,l1)

ma ≥
{

1 if [l1]s = ⊥
0 otherwise

... ∑
a∈A′∩ach(s,lt)

ma ≥
{

1 if [lt]
s = ⊥

0 otherwise

ma ∈ N ∀a ∈ A′

(20)

The only difference between this MIP and the earlier is the presence of the constraints
ensuring that for each propositional literal li that is not already satisfied in state s, at
least one achiever is executed at least once (i.e., ma ≥ 1). Synergies between achievers
are accounted for automatically, since the decision variables (action counters) are shared
between all constraints. That is, if some action contributes to achieving multiple conjuncts,
whether propositional or numeric, the optimal solution to the MIP still determines the
minimum number of repetitions of the action that is needed.

Again, we denote the cost of a minimum-cost hybrid achiever, i.e., the optimal objective
value of the MIP in Eq. 20, with Ξ∗hbd(A

′, s, ψ), and the optimal objective value of the

continuous relaxation of the MIP with Ξ̂hbd
∗
(A′, s, ψ). With this in hand, the hybrid version

of hgen, denoted hgenhbd , is defined analogously:

hgenhbd(s, ψ) =̇

0 if s |= ψ

Ξ̂hbd
∗
(A+, s, ψ) + min

a∈A
∃ψ′∈ψ|a∈ach(s,ψ′)

hgenhbd(s, pre(a)) if ψ is ∧ (21)

This equation is identical to Eq. 19 but for the fact that we replace Ξ̂∗(A+, s, ψ) with

Ξ̂hbd
∗
(s, ψ); in practice, this means that the minimum-cost hybrid achiever is computed

using the LP-relaxation of MIP 20. Note also that the minimum precondition cost in the
second term is over all achievers of any subgoal in ψ, propositional as well as numeric. It
is easy to see that hgenhbd is also admissible, and that its computation is polynomial in the
problem size.

9.2 Enforcing Global Constraints

Global constraints are conditions that must be satisfied in every state traversed by the plan.
In other words, they act as additional preconditions of every action, and as a conjunct to the

726

Subgoaling Techniques for Satisficing and Optimal Numeric Planning

goal. Global constraints are a convenient way to express, for example, bounds on variables
that model resources, or plan safety constraints.

Global constraints are neglected in the standard h1 relaxation because they are already
satisfied in each state where the heuristic is computed. However, because conjunctive hybrid
achievers support conjunctions of numeric conditions, and take into account some negative
interactions, it suffices to adjoin the global constraints (assuming these also are conjunc-
tions of simple numeric conditions) with any conjunctive condition that is evaluated. The
estimated cost of achieving the condition will then also account for any additional cost of
keeping the global constraint satisfied. Formally, only a small change to the hgenhbd equation
is needed:

hgen,Chbd (s, ψ) =̇

0 if s |= ψ

Ξ̂hbd
∗
(A+, s, ψ ∧ C) + min

a∈A
∃ψ′∈ψ|a∈ach(s,ψ′)

hgen,Chbd (s, pre(a)) if ψ is ∧ (22)

where C is the global constraint, a conjunction of simple numeric constraints. The only
change from Eq. 21 is that instead of an estimate of the cost of a hybrid achiever of ψ, we
use the estimated cost of a hybrid achiever of ψ ∧ C, the conjunction of the condition and
the global constraint. The heuristic remains admissible: The addition of global constraints
is equivalent to a problem reformulation where each action’s precondition and the goal are
replaced with their conjunction with C.

10. Handling Assignment Operations in Subgoaling

The restriction to simple numeric conditions does not allow for action effects that assign
a numeric variable a constant value. To be simple, a condition can only be affected by
constant increases and decreases. This can be a limitation of the heuristic for domains
having even very simple assignments. For instance, consider the case in which one wants to
model the action of replenishing a water tank to its full capacity T . This can be modelled
in numeric planning with an action, “refill”, that sets the amount v of water in the tank
with the constant numeric effect 〈v, :=, T 〉.

Let us focus on the case where each action has at most one effect that interacts with a
linear numeric condition, and this effect is an assignment with a constant right-hand side.
In this situation it is possible to use the Effect-Regressor ψr(a) to infer whether action a
achieves ψ or not. More precisely, let e =̇ 〈xk, :=, ka,xk〉 be the numeric effect of a. The
regression of the linear condition ψ =̇ 〈

∑
x∈X wψ,xx+kψ,B, 0〉 through a yields a condition:

ψr(a) = 〈
∑

x∈X\{xk}

wψ,xx+ kψ + wψ,xkka,xk ,B, 0〉 (23)

Since in this case the action a is idempotent, we can say that a is an achiever of ψ in a state
s iff s |= ψr(a). Moreover, noting that B ∈ {≥, >}, we can also observe that a necessary (but
insufficient) state-independent condition for a to be an achiever for ψ is that wψ,xkka,xk ≥ 0.
When this holds we will say, with a slight abuse of terminology, that a is an assignment
achiever for ψ. Similarly to what we did for Simple Numeric Conditions, this notion can be

727

Scala, Haslum, Thiébaux, & Ramirez

used in a relaxation schema, extending the subgoaling heuristics seen so far to also account
for what we call Direct Assignment Conditions:

Definition 9 (Direct Assignment Condition.). Let ψ =̇ 〈
∑

x∈X wψ,xx+ kψ,B, 0〉. ψ is said
to be a Direct Assignment Condition (DC) if there is only one achiever of it, and this
achiever has a single numeric effect which is an assignment with a constant value.

Direct Assignment Conditions can be used in the recursive schema of ĥmaxhbd and ĥaddhbd,
by devising a specific treatment that differs from that used for Simple Numeric Conditions.
More precisely, when a Direct Assignment Condition ψ is not satisfied in a state s, we
check the satisfaction of the regressed condition through its assignment achiever ach(ψ)
(which is unique given Def. 9) and use the recursive call to get an estimate of the achiever’s
precondition cost. For convenience, we report the extended formulation in Equation 24,
where bold is used for highlighting the new supported case. The additive heuristic is
extended in the analogous manner.

ĥmaxhbd (s, ψ) =̇

0 if s |= ψ

min
a∈ach(s,ψ)

(
ĥmaxhbd (s, pre(a)) + γ(a)

)
if ψ ∈ PCs

min
a∈R(A,s,ψ)

r̂ep(a, ψ, s) · γ(a) + min
a∈R(A,s,ψ)

ĥmaxhbd (s, pre(a)) if ψ ∈ SCs

ĥmaxhbd (s, pre(ach(ψ))) + γ′(ach(ψ), ψ, s) if ψ ∈ DCs
min
ψ′∈ψ

ĥmaxhbd (s, ψ′) if ψ is ∨

max
ψ′∈ψ

ĥmaxhbd (s, ψ′) if ψ is ∧

(24)

In this formulation, γ′(a, ψ, s) is a function that given the condition of interest and a state,
returns the cost γ(a) of the action if s |= ψr(a), and∞ otherwise. In other words, the actual
achievement of a direct condition is determined when the recurrence relation is solved.

Proposition 10.1. If all numeric conditions of the problem are either Direct Assignment
Conditions or Simple Numeric Conditions, ĥmaxhbd provides an admissible estimate. Likewise,

ĥaddhbd is safe-pruning.

Proof. The optimal plan to achieve a Direct Assignment Condition is lower-bounded by the
cost of its achiever (which is unique) plus the lower bound on the cost of its precondition.
As matter of fact, if we take as inductive hypothesis in ĥmaxhbd that the precondition cost
of each action is indeed a lower bound, it is easy to prove the lower bound for the Direct
Assignment Condition. This can in fact be either (i) supported by the state where the
heuristic is computed, or is supported (ii) by at least one execution of its unique achiever.
For case (i) we get the obvious lower bound of 0; for case (ii) we know that since the
precondition cost of each action computed by ĥmaxhbd is a valid lower bound to get to this
precondition, the sum of this cost plus the cost of executing the achiever for a Direct
Assignment Condition is a lower bound for achieving the Direct Assignment Condition too.
There is in fact no alternative path to get to it. Finally, as ĥaddhbd is equivalent to ĥmaxhbd in
reachability, it will always be safe-pruning.

728

Subgoaling Techniques for Satisficing and Optimal Numeric Planning

It is very likely that more general conditions could be handled by extending the theory
proposed in this section. For instance, one can think of generalising to the case in which
the achiever set is not a singleton, but where each action in this set is restricted to affect
the same variable (but may have quite different preconditions and effects). We leave this
and other extensions as future work.

11. Integration with AIBR for More General Action Models

By integrating our results with other relaxation schema, it is possible to handle more gen-
eral numeric conditions, even when these are affected by actions with non-constant additive
effects. In the following definition, we further partition the numeric condition set to differ-
entiate between simple, direct assignment and Hard Numeric Conditions (HC). HCs denotes
the set of numeric conditions that are neither Simple Numeric Conditions (Def. 6) nor Di-
rect Assignment Conditions (Def. 9). We handle HCs using the relaxed solution given by
the interval-based relaxation (Scala et al., 2016b).

ĥaddhbd+(s, ψ) =̇

0 if s |= ψ

min
a∈ach(ψ)

(ĥaddhbd+(s, pre(a)) + γ(a)) if ψ ∈ PCs

min
a∈A+

(r̂ep(a, ψ, s) · γ(a) + ĥaddhbd+(s, pre(a))) if ψ ∈ SCs

ĥaddhbd(s, pre(ach(ψ))) + γ′(ach(ψ), ψ, s) if ψ ∈ DCs∑
a∈π′

π′∈sol(<s+,A+,G,X>)

(ĥaddhbd+(s, pre(a)) + γ(a)) if ψ ∈ HCs

∑
ψ′⊂ψ:|ψ′|=1

ĥaddhbd+(s, ψ′) if |ψ| > 1

(25)

The subscript hbd+ denotes the support for HCs. Each subgoal type (PCs, SCs, DCs,
HCs) is treated using the appropriate specialised reasoning, independently of other subgoals.

The implementation of the interval-based relaxation follows our previous work (Scala
et al., 2016b). The procedure is split into a reachability and a plan computation phase.
The former performs a fix-point analysis using actions reachable for ĥaddhbd+ (A+), which
returns the actions sufficient to reach each complex condition, and then preconditions are
recursively evaluated using ĥaddhbd+.10 There is no extraction of a relaxed plan so the heuristic
can be less accurate than Metric-FF-like heuristics (Hoffmann, 2003; Coles et al., 2012).
Note that, in this formulation different relaxations can interleave in computing the cost of
a subgoal; if in fact an action includes some simple numeric precondition, the evaluation is
done with the more accurate estimate.

From a computational standpoint, the integration of the AIBR is achieved by calling
the relaxation and its estimate whenever an action contributing (indirectly or directly) to
the condition is popped out from the queue in Alg. 1. This can be expensive and we leave
more efficient implementation as object of study for future work.

10. As a difference w.r.t. previous work in this context (Aldinger et al., 2015; Hoffmann, 2003), the reachabil-
ity analysis in (Scala et al., 2016b) does not require the transitive closure of the action effects dependency
relation.

729

Scala, Haslum, Thiébaux, & Ramirez

Also note here that the formulation hereby presented does not consider the notion
of conjunctive achievers. Although possible from a theoretical standpoint, we have not
implemented this aspect yet and it is not clear how efficient and practical it could be.

An admissible formulation (ĥmaxhbd+) can be obtained by using any admissible approxima-
tion of the interval-based relaxation for HCs – the simplest one being to just assign them an
estimate of zero – while using the lower bound ĥmaxhbd for SCs and maxing over subgoals. All
the above heuristic variants provide safe pruning, giving infinite values only for unsolvable
problems.

12. Related Work

Planning with numeric information has been tackled by others using different approaches,
two of which have gained the majority of the attention: heuristic search, and compilation to
other models. Our related work discusses thoroughly the heuristic search approach which
is the closest to our method. We then draw connections with compilation approaches that
have been used in other contexts, but share similarities with our techniques. We conclude
with a discussion of other, less similar approaches.

12.1 Numeric Planning via Heuristic Search

Heuristic search is a well established approach to solving planning problems (Pearl, 1984;
Geffner & Bonet, 2013), which underlies the majority of the top performer planners at
the International Planning Competitions (Vallati, Chrpa, Grzes, McCluskey, Roberts, &
Sanner, 2015). One of the powerful ideas behind previous and current approaches is to
devise heuristics from a computationally effective relaxation or abstraction of the targeted
problem. In particular, the solution of the relaxed problem can be used as a means to
estimate the actual distance or cost to the problem goal

Pioneered by Hoffman (2003), the interval-based relaxation (Aldinger et al., 2015; Gre-
gory, Long, Fox, & Beck, 2012) has been the principle most used to extract such a heuristic
information in the numeric extension to classical planning. These heuristics come in differ-
ent flavours, including as metric extensions of the relaxed planning graph (Koehler, 1998;
Hoffmann, 2003; Gerevini, Saetti, & Serina, 2008; Coles et al., 2012, 2013).

The interval-based relaxation approximates the value of each numeric state variable
using an interval enclosing all the possible values that this variable may eventually reach.
Intervals for expressions are calculated using Interval Analysis (Moore, Kearfott, & Cloud,
2009), and a numeric condition is satisfied if at least one value in the expression’s interval
satisfies the condition. Applicable action effects monotonically widen the bounds of the
intervals, hence a relaxed solution can be computed by extending intervals until the goal is
reached, and then extracting from these intervals a set of relaxed actions. Monotonicity is
achieved taking the convex union between the interval representing the possible values of
the variable before the action execution, and the interval representing the effect expression.
It follows that any condition previously satisfied will also be satisfied in the successor state.

Aldinger et al. (2015) showed that termination and safe pruning can be ensured when
the dependency relation between numeric variables in the planning task is acyclic. For such
tasks, the set of reachable states are the fixed point intervals computed by executing appli-
cable actions as many times as necessary, in the order defined by the dependency relation

730

Subgoaling Techniques for Satisficing and Optimal Numeric Planning

between numeric variables. Scala et al. (2016b) subsequently removed this restriction and
extended the interval-based relaxation to numeric planning tasks with cyclic dependencies,
as long as numeric effects are additive. In addition, they observed that any planning task
can be transformed to have only additive effects, at the price of a further relaxation of state
dependent assignment operations.

Our approach differs from this relaxation in a very substantial way. The subgoaling
technique we present here reasons about relevant subgoals, by regression, instead of reachable
values. As Keyder and Geffner (2008) point out regarding the classical case, cost-sensitive
additive and inadmissible estimates can be obtained this way without a planning graph. By
approaching the problem using a decomposition approach, the present work has been the
first to provide a heuristic design leading to admissible estimates for numeric planning.

Analogously to the classical delete-relaxation, the interval-based relaxation fails to cap-
ture any negative interactions between numeric variables. Coles et al. (2013) proposed
the use of a Mixed-Integer Program (MIP) to tighten the bounds on intervals for problems
that model resources as numeric variables and feature only specific patterns of interac-
tion between preconditions and effects (actions are consumers or producers of resources).
This addresses one important weakness of interval-based heuristics, by forcing intervals to
capture changes to resource variables. However, this does not account for other kinds of
negative interactions, such as those illustrated by the Sailing domain. The heuristic and
the planner developed by Coles et al., namely LPRPG, demonstrates good performance
over this specific class of numeric planning problems, which is a subclass of simple numeric
planning. It is, however, not applicable to any problem outside of the producer–consumer
class. It is an open and interesting question how resource-flow reasoning can be effectively
integrated into our subgoaling relaxation; a possible way to do so would be by injecting the
resource flow constraints arising from the producer–consumer pattern in the constraints of
the hgen formulation. We leave this aspect as a future work.

Eyerich et al. (2009) proposed another approach to devising heuristics for numeric plan-
ning, which extends the context-enhanced additive heuristic. In this approach, numeric
conditions are justified only qualitatively, completely abstracting away from the counting
problem. While this can be powerful in domains where only one repetition of numeric ac-
tions is necessary (e.g., in ZenoTravel the refuelling action only needs to be executed once),
in many other domains this abstraction is too coarse and looses all numeric information in
the problem. Temporal fast downward, which is the heuristic search planner employing this
heuristic, was not able to solve any of the instances of our Sailing problem. Illanes and
McIlraith (2017) also use a qualitative abstraction of the numeric aspects of the problem.
They construct a classical planning problem by replacing numeric conditions with proposi-
tions and use a classical planner to devise a partial policy, which is used to guide the search
for a plan in the numeric planning problem. Our subgoaling approach captures numeric
structures, enabling inferences that would be difficult to do with only propositional vari-
ables. However, it should be possible to integrate our heuristics with abstraction approaches
so as to accelerate even further the search. This is an aspect definitely worth exploring in
future work.

Regression – the ability to find sufficient and necessary conditions under which an action
achieves a given goal – has been widely used in many areas of planning (McDermott, 2003;
Fikes, Hart, & Nilsson, 1972; Hoare, 1969; Rintanen, 2008; Scala, 2014). The very first

731

Scala, Haslum, Thiébaux, & Ramirez

heuristic that makes use of regression to estimate goal distance is due to McDermott (1996);
this idea has been used extensively in the work by Bonet and Geffner (2001) and in the work
by Haslum and Geffner (2000). Our approach builds on the declarative and decomposition-
based formulation of heuristics of the latter two.

12.2 SMT Based Approaches

Another successful approach to numeric planning is based on the compilation of the planning
problem into the problem of finding a model satisfying a given SMT formula (Scala, Ramı́rez,
Haslum, & Thiébaux, 2016c; Hoffmann, Gomes, Selman, & Kautz, 2007; Shin & Davis,
2005). As for SAT-based planning in the classical planning case (Kautz & Selman, 1999;
Rintanen, 2012), SMT-based planning stems from the idea of capturing all the possible
trajectories for a bounded version of the planning problem in a quantifier-free formula having
numeric and propositional conditions as terms. Such a formula is responsible for capturing
all those transitions that are consistent with the dynamics of the system (represented in
the actions), the initial state and the goals to be achieved. A challenging aspect for this
approach is to find a compact representation of such possible trajectories; this is usually
obtained by allowing multiple actions to share the same timepoint, and reconstructing the
sequence of operations only when a model for the formula is found. To achieve this objective,
previous work has exploited different ways of decomposing the problem, e.g. through the
identification of independent actions, or encodings that encapsulate ordered sequences of
actions (Wehrle & Rintanen, 2007). Whilst this has been a fruitful line of work in classical
planning that has led to efficient SAT-based planning systems (Rintanen, 2012), less has
been done, relatively speaking, in the context of numeric planning.

There are two exceptions worth mentioning. In our previous work (Scala et al., 2016c),
we have used the same m-times regressor as in this paper to capture unbounded sequences
of actions within a single time step, and found conditions under which these sequences of
actions represent valid transitions. Devising powerful heuristics can also be beneficial in the
framework of compilation into other theories. This has been shown elsewhere (Rintanen,
2012).

Looking into the potential of integrating planning as satisfiability, optimisation and
mathematical programming is an old idea, of which two early examples are the LPSAT
planner, due to Wolfman and Weld’s (2001), and Shin and Davis’s (2005) TMLPSAT.
Both planners are built around “proto”-SMT solvers, based on a decision procedure, either
DPLL (Davis, Logemann, & Loveland, 1962) or CDCL (Zhang, Madigan, Moskewicz, &
Malik, 2001), suitably modified so that some clauses are not represented in propositional
logic, but in an auxiliary theory, and still able to take advantage of both unit propagation
and conflict-directed clause learning. Both planners are strictly more expressive than any of
the planners we propose in this paper, as we consciously trade-off expressiveness for perfor-
mance. A “second wave” of approaches based on this integration followed the formalisation
of SMT into abstract decision procedures (Nieuwenhuis, Oliveras, & Tinelli, 2006; Kroening
& Strichman, 2008) and the availability of powerful, scalable implementations of impor-
tant fragments of first-order logic such as linear constraints and difference logic (Dutertre
& de Moura, 2006). Examples of these later systems, which all use slight reformulations
of Shin and Davies’ encoding, are dReal (Bryce, Gao, Musliner, & Goldman, 2015) and

732

Subgoaling Techniques for Satisficing and Optimal Numeric Planning

SMTPLAN (Cashmore et al., 2020). Parallel to these, other planning systems exist which
depart significantly from this line of research, that also support in limited, incidental ways,
numeric effects like the ones discussed in this paper. Inspired by well-established practices
in Optimisation (Hooker, 2003), there is the work due to Rintanen (2017) on clock-based
SMT encodings for temporal planning with numeric and propositional resources. Also, fol-
lowing up the notion of chronicles (Ghallab, Nau, & Traverso, 2004), Bit-Monnot (2018)
puts forward a very efficient SMT encoding that compares very favourably with other SMT-
based approaches. Note that most of these systems address temporal, as well as numeric,
planning. All, though, ultimately struggle with problems where there is a strong interaction
between the subproblem of achieving individual goals separatedly, and that of determining
their ordering so as to avoid interference between temporal actions and minimise makespan.
This was addressed via the integration of domain-independent heuristics into the process of
compiling temporal problems into Constraint Programming (CP) (Vidal & Geffner, 2006).
In this paper we address directly the problem of goal ordering, or subgoaling, in the context
of numeric planning, and propose effective heuristic methods that could be used to enhance
the capabilities of existing SMT-based temporal-numeric planners in an analogous way as
Vidal & Geffner did.

SMT-based planning approaches suffer from the same limitations as SAT-based planning
approaches. First, encodings based on Kautz and Selman’s (1999) seminal contribution,
have trouble dealing with unsolvable planning problems, as they need to test satisfiability
for an upper bound on plan length or makespan. Finding a tight upper bound is as hard as
solving the planning task itself (Bylander, 1994), and naive upper bounds lead to SAT en-
codings with huge numbers of variables and clauses. Recent work on alternative SAT-based
approaches (Suda, 2014; Eriksson & Helmert, 2020), that rely on Bradley’s (2011) notion
of Property Directed Reachability (PDR), overcome the limitations inherent in Kautz &
Selman’s encoding on completeness with respect to refutation, and propose practical algo-
rithms to produce certificates of unsolvability for propositional planning. Second, and for
similar reasons, controlling the quality of solution along arbitrary finite horizons while pro-
ducing succinct SAT encodings is not trivial, as noted by Rintanen (2012). Our formulation
can guarantee admissible estimates to find optimal plans also in the numeric setting. Note
that the admissible estimates presented in this paper are the first of their kind.

12.3 Similar Problems and Methods

Analysis of discrete, linear time invariant systems. The notion of planning operators
to abstract the behaviour 11 of a dynamical system has a long history in planning. An
early example, which is closely related to the methods discussed in this paper, is the idea
by E. P. D. Pednault (1987) to associate with action effects an integral equation that
describes successor states after a set amount of time. In this work we limit ourselves to
linear dynamics, and therefore, established results from the theory of discrete-linear systems
(Edward, 1996; Borrelli, Bemporad, & Morari, 2017) are particularly relevant to our work.
Given a formulation of how a variable evolves given in terms of a linear function of some other
variables, the future of this variable is given by the exponentiation of the matrix formed

11. A behaviour in control is the set of trajectories that are compatible with a set of differential path
constraints.

733

Scala, Haslum, Thiébaux, & Ramirez

by the coefficients in the linear functions given. However, a) computing such a matrix
exponentiation is computationally expensive, b) the number of possible configurations, and
therefore, behaviours of the system, depend on how actions are ordered in plans. The
closed-form expression presented in this paper is valid for simple numeric conditions, and in
particular the m-times effect regressor , as it exploits the factored representation of numeric
planning problems. We see this as a special case of the general setting of discrete-linear
systems with variables that only change because of actions, and do not interfere (the self-
interference effect free assumption). In terms of the theory developed by Borrelli et al. on
Model Predictive Control (MPC) for linear systems, this corresponds to having the natural
response always set to 1 for each variable. We believe that this special case can still capture
very interesting problems with guarantees such as computational cost and admissibility
if desired. Once this connection has been drawn, we look forward to further refine our
understanding of the relationship between the contributions reported in this paper and
well-established results from Systems and Optimal Control theory.

Heuristics for classical planning The problem of capturing the number of times an
action has to appear in the solution plan is well known in the purely classical planning liter-
ature. State of the art heuristics for optimal classical planning are based on the framework
of operator counting (Pommerening et al., 2015). Our heuristic can be seen as an exten-
sion of this framework to the numeric case. Interestingly, it seems that the combination
of our heuristic hmaxhbd with the generalised form hgen captures information in a similar way
the lm-cut and the state equations combine with each other (Helmert & Domshlak, 2009;
Bonet & Helmert, 2010).Understanding the expressive power of our formulation against
the classical planning version, together with understanding how to benefit from the various
characterisations in a comprehensive way are however all object of interesting future work.

13. Experimental Analysis

Our experimental analysis has been conducted to evaluate the usefulness of the heuristics
presented in this paper for both satisficing and optimal planning. We employed such heuris-
tics in a forward state space search planner guided by two different informed search algo-
rithms: Greedy Best First Search (GBFS) for the satisficing setting, and A∗ for the optimal
setting. In the satisficing setting ties are broken to favour nodes with lower g-values; in the
optimal setting ties are broken to favour nodes with higher g-values. The implementation
is part of the ENHSP planning system (https://sites.google.com/view/enhsp/),
which is a JAVA implementation containing all the necessary functionalities developed. For
solving the linear programs in the hgenhbd formulation we used CPLEX 12.6.3.

The impact of heuristics on the planner is measured along two main dimensions: CPU-
time to produce a valid (or optimal) solution, and length of the produced plans (for satis-
ficing planning). Since we assess our heuristics in a state-space planner, we also report the
number of node expansions as the number of times a node is popped out from the priority
queue. Intuitively, the smaller the number of expansions, the less search was required to
find a solution. We seek an understanding of whether and when fewer expansions translate
into a faster convergence to the solution. Moreover, we want to understand how the inad-
missible heuristics behave in terms of plan length. In our experiments, all actions have unit
cost, therefore the optimal plans are those with the shortest length.

734

Subgoaling Techniques for Satisficing and Optimal Numeric Planning

For comparison, we ran experiments on heuristics based on the Interval Based Relaxation
(IBR) and with a simple (yet much faster) goal sensitive heuristic. In the satisficing setting,
we take MetricFF (Hoffmann, 2003) as representative of IBR based heuristic search numeric
planners. In the optimal setting, the goal sensitive heuristic giving 0 to goal states and
1 to non-goal states is run with our A∗ implementation. In our experiments we do not
compare with the LPRPG planner (Coles et al., 2013) because its heuristic is designed only
for handling producer–consumer resource problems (a subclass of simple numeric planning,
see Section 12), and we assume that it will be more effective than search with any of the
more general heuristics that we consider for problems that fall within that specific class.
Therefore, since the results of an experimental comparison are quite predictable, we do not
see it as necessary to carry out that comparison.

Our experiments were run under Ubuntu on an Intel(R) Xeon(R) CPU E3-1240 v3 @
3.40GHz and 8Gb of Ram with a timeout of 1800 secs. per problem.

In the following, we first introduce the domains used for our experiments; then we discuss
the results obtained in the satisficing and optimal planning settings.

13.1 Domains

Our evaluation is carried out i) on a variety of standard numeric domains from the In-
ternational Planning Competition (IPC)12 and the LPRPG benchmark suite (Coles et al.,
2013), ii) on numeric planning reformulations of Functional STRIPS problems (Francès &
Geffner, 2015) (F-STRIPS), and iii) on two sequential numeric domains called Sailing
and Farmland introduced in our previous work (Scala et al., 2016a).

From the IPC, we only include domains where numeric variable(s) are included in at
least one action precondition or goal.

F-STRIPS’s domains, Sailing and Farmland are heavily numeric domains and our
evaluation puts a greater emphasis on them. This is to better understand the role played by
our heuristics in dealing with the numeric structure of the problem. A detailed description
of these domains follow.

13.1.1 F-STRIPS Domains

Counters. This domain revolves around the idea of controlling the values of a set of
counters {X1, ..., Xn} in order to satisfy a set of constraints. The domain of each counter
goes from 0 to a MAX value that changes depending on the number of counters, and is set in
order to make the problem solvable. The domain comes with three sets of instances, whose
goals always require a total order among the counters i.e.: {X1 < X2, ..., Xn−1 < Xn}. In
the first set of instances (Counters), counters are all initially set to 0, in the second set
(Count-Rnd), their values are set randomly, while in the last set of instances (Count-Inv)
the values are set in such a way that they all need to be reversed in order for the goal to be
satisfied. For the first set we have 11 instances; for the random variant we have 33 instances;
for the reversed variant 11 instances. Differently to the original formulation, our counters are
represented using numeric fluents, and the domains of such counters are encoded either via
appropriate action preconditions, or via global constraints. We will study the two different
versions. Even though the domain is very simple, the number of actions in the optimal

12. http://icaps-conference.org/index.php/main/competitions

735

Scala, Haslum, Thiébaux, & Ramirez

plan grows quadratically with the number of counters, and common heuristics based on the
Interval Based Relaxation (IBR) do not capture even the simplest interactions between the
actions that are needed to set the counters. In the IBR, the goal is reached after one step
of parallel execution. This unfortunately happens also in our subgoaling relaxation, but not
in our extended formulations (i.e., using redundant constraints or conjunctive achievers).

Gardening. This domain models an agent in a 2D grid. This agent is tasked to water
a number of plants scattered within the grid. The agent can carry water with a bucket;
however, as this bucket has limited capacity, the agent may need to refill it multiple times
to water all the plants. The goal specifies which plants need to be watered and, for each
of them, the amount of water that has to be poured. In our formulation, both the position
of the agent in the 2-D space and the amount of water carried are represented by numeric
state variables. Optimal plans for this problem are the ones where the agent maximises the
use of the bucket while she is moving, and at the same time minimises the number of moves
to get to the plants and to the tap position for refilling. A greedy solution would be to
consider each plant in isolation, refilling the bucket sufficiently to water a plant, and then
going back to refill the bucket for the next plant. A greedy solution would however make
the plans unnecessarily longer; it is in fact much better to reason over multiple plants at
once, and therefore to refill the bucket with more water each time. In this domain, instances
scale up to grids of size 20× 20, and three plants to water.

Grouping. Finally, Grouping is the problem of pushing boxes in a grid-based domain
which is entirely represented using numeric variables to denote boxes’ position. The agent’s
goal is to group subsets of these boxes together; the goal formula makes heavy use of
disjunctions to compactly representing the allowed and disallowed configurations. Instances
scale on the number of boxes to be moved (from 2 to 10) and size of the grid (from 5 × 5
to 100× 100).

13.1.2 Sailing and Farmland

These two domains were originally introduced by Scala et al. (2016a).

Sailing. This is the domain presented in Section 2.3, and depicted in Figure 1. Goals in our
instances are given as a set of sites to be reached. As we have seen before, we have an action
for each person to rescue, and the difficult part of this problem is to get the precondition
of these actions satisfied. The satisfaction of a precondition implies that the sailing boat
is close enough to rescue the castaway. Instances generated for this domain scale on the
number of boats (from 1 to 4) and the number of people to rescue (from 1 to 10). Since
the positions to be reached by the boats can be quite far away, plans in this problem can
be quite long (we measured plans up to 1000 actions). An optimal plan corresponds to
the fastest possible tour reaching all the designed locations; in this regards this problem is
similar to the Travelling Salesperson Problem (Flood, 1956).

Farmland. The Farmland domain models the problem of allocating manpower to farms,
with a hard constraint on a metric measuring benefit. The contribution of each farm to the
benefit is a function of the number of workers assigned. In our instances, each farm requires
at least one worker. The number of workers ranges from 100 to 1000, and the number of
farms from 2 to 10. In this domain plans can be quite long; each action models the single

736

Subgoaling Techniques for Satisficing and Optimal Numeric Planning

movement of each worker. The accuracy of the heuristic becomes crucial to deal with such
a problem.

13.2 Satisficing Planning

We evaluate three GBFS planners, differing from each other on the particular heuristic
employed13:

• GBFS(ĥaddhbd+): GBFS with the optimistic variant of the inadmissible heuristic given
in Eq. 11.

• GBFS(ĥraddhbd+): GBFS with the previous heuristic plus redundant constraints. A
redundant constraint is added to approximate the conjunctive satisfaction of each
pair of numeric conditions in the goal and in any action precondition, following the
schema given in Section 7.

• GBFS(IBR). This has been obtained by using the best-first-search implemented in
MetricFF with helpful actions disabled. This configuration yields quite a distilled
version of the planner against with we can compare the heuristic proposed in this
paper. For simplicity, we will use the term IBR to refer to this particular configuration
of MetricFF.

Note that the two implementations with the h1 based heuristic pay some handicap in that:
i) unlike MetricFF, they do not transform the task into a LNF (the LNF transformation
induces a better analysis of the state spaces by avoiding the exploration of states which are
dominated by other states already seen) ii) they are implemented in ENHSP, which is in
JAVA, while MetricFF is written in C.

13.2.1 Subgoaling Heuristics Analysis

Table 1 reports the data obtained using the two satisficing heuristics presented in this
paper. Redundant constraints help capture action interactions (e.g, Counters) but have
two main drawbacks: overestimation and computational cost. In the variants of Counters,
heuristic that incorporates redundant constraints largely dominates its rival due to the high
number of interacting goals: redundant constraints do capture those interactions to some
extent, whereas the pure additive version does not. The result is a substantial reduction of
the number of expanded nodes, which overcomes ĥraddhbd+’s higher computational cost. Plan
length is comparable, although it seems that adding redundant constraints tends to favour
deeper solutions. This is not surprising however, as the ĥraddhbd+’s estimate could be highly

inadmissible, much more than ĥaddhbd+.

The situation in the Sailing domain is more interesting; here GBFS(ĥraddhbd+) solves just
29 problems, yet there are instances where it expands fewer nodes. A deeper analysis on the
raw data revealed that the adoption of redundant constraint was particular beneficial on
the instances involving only a single boat. For these instances, the reduction of expanded
node is substantial: the configuration with redundant constraints expands on average 4225.9

13. Note here that other search engines can be used. Yet, our analysis is restricted to GBFS with the purpose
of deepening our understanding on the informativeness of our relaxation and derived heuristics.

737

Scala, Haslum, Thiébaux, & Ramirez

nodes, while ĥaddhbd+ expands 20640.8 and still obtains plans of slightly worse quality. Redun-
dant constraints in this domain are generated starting from the convex set of constraints
delimiting zones to be reached. In the instances with more than one boat, a large number of
the generated constraints turned out to be dominated by the cost of the others. Summing
them together results in a higher estimation that misled the planner when navigating the
search space in many situations.

In the IPC domains, redundant constraints are only generated for ZenoTravel and
TPP. In particular, in ZenoTravel, redundant constraints lead to the generation of non
simple numeric conditions, causing a substantial drop in performance of the planner. Al-
though this signals the potential harm of redundant constraints, it has to be noted that it
can be easily avoided by not enforcing redundant constraints between constraints that are
affected by assignment operations. In that case, the performance of ZenoTravel would
equate again the performance obtained by ĥaddhbd+. In the other domains (Rovers, Satel-
lite, Depots) there are no redundant constraint so the minor differences are only due to
small perturbations in the running of the experiments.

Redundant constraints are also generated for most of the resource-flow domains, i.e.,
HydroPower, MarketTrader, Pathways, Sugar, Pathways. However, apart from
a small advantage in node expansion in Settlers and Pathways, their contribution seems
to only bring overhead. It is likely that other forms of redundant constraints should be
generated in order to better capture the numeric flows arising from these domains.

Coverage Planning Time Expanded Nodes Plan Length

Domain ĥaddhbd+ ĥraddhbd+ ĥaddhbd+ ĥraddhbd+ ĥaddhbd+ ĥraddhbd+ ĥaddhbd+ ĥraddhbd+

Counters (11) 6 8 71.64 15.95 74653.17 2373.00 68.50 80.17
Grouping(192) 179 97 9.09 329.49 83.09 84.73 82.08 82.15
Count-Inv (11) 6 9 101.56 3.60 99094.00 339.67 110.50 120.50
Count-Rnd (33) 25 28 71.73 18.32 37156.24 1175.84 180.84 185.60
Gardening(51) 51 29 2.03 98.70 11080.52 30379.90 329.90 226.79
Sailing (40) 38 29 85.94 69.91 109441.04 115581.89 803.61 847.64
Farmland(50) 50 50 1.25 3.09 308.64 303.98 301.74 302.44
ZenoTravel(23) 18 7 1.15 116.51 14.57 14.57 11.29 11.29
Rovers(20) 10 10 25.94 25.86 14155.80 14155.80 22.60 22.60
Depots(22) 5 5 17.66 13.57 230.00 230.00 18.80 18.80
Satellite(20) 10 11 120.63 102.13 9569.40 9569.40 45.80 45.80
TPP(40) 9 7 128.97 291.56 40.57 46.57 18.71 18.86
Settlers(20) 4 2 39.24 155.91 5706.50 2973.00 40.00 41.50
Mprime(30) 26 26 66.51 99.76 214.38 214.38 7.50 7.50
HydroPower(30) 5 5 566.88 578.02 8602977.00 8602977.00 41.20 41.20
MarketTrader(20) 6 6 872.58 1224.61 457140.33 457120.33 5384.83 5384.83
Sugar(20) 5 4 32.40 131.37 19686.00 19686.67 29.33 30.00
Pathways(30) 3 3 208.41 45.11 488764.67 61423.67 32.67 36.00

Total 456 336

Table 1: In-Depth comparison of our heuristics along 3 different dimensions: Planning
Time, Plan Length and number of Expanded Nodes. The data is averaged over
instances solved by all configurations.

738

Subgoaling Techniques for Satisficing and Optimal Numeric Planning

13.2.2 Subgoaling VS Interval Based Relaxation

Table 2 compares the ĥaddhbd+ heuristic with the IBR obtained using MetricFF.

Coverage Planning Time Expanded Nodes Plan Length

Domain ĥaddhbd+ IBR ĥaddhbd+ IBR ĥaddhbd+ IBR ĥaddhbd+ IBR

Counters (11) 6 11 71.64 0.11 74653.17 87.00 68.50 86.00
Grouping(192) 179 10 0.87 13.42 14.80 19.30 13.80 18.30
Count-Inv (11) 6 2 0.83 0.05 8.50 10.50 7.50 9.50
Count-Rnd (33) 25 4 0.66 0.07 3.75 3.75 2.75 2.75
Gardening(51) 51 0 NA NA NA NA NA NA
Sailing (40) 38 0 NA NA NA NA NA NA
Farmland(50) 50 0 NA NA NA NA NA NA
ZenoTravel(23) 18 6 1.10 0.02 16.00 15.67 13.17 14.67
Rovers(20) 10 2 0.65 299.72 11.00 350337.00 9.00 14.00
Satellite(20) 5 1 1.48 0.03 12.00 12.00 11.00 11.00
Depots(22) 10 2 119.57 1.10 130.00 17.50 34.00 NA
TPP(40) 9 6 50.00 0.02 29.67 12.67 13.83 11.67
Settlers(20) 4 1 2.82 0.01 222.00 1.00 26.00 NA
Mprime(30) 26 11 2.82 0.11 94.09 9.09 6.64 8.09
HydroPower(30) 5 0 NA NA NA NA NA NA
MarketTrader(20) 6 0 NA NA NA NA NA NA
Sugar(20) 5 0 NA NA NA NA NA NA
Pathways(30) 3 0 NA NA NA NA NA NA

Total 456 56

Table 2: Experimental analysis comparing ĥaddhbd+ with IBR. The data is averaged over in-
stances solved by all configurations. NAs report situations where the intersection
of instances solved by all configurations is empty.

Apart from the first set of instances of Counters and instances from TPP, the sub-
goaling heuristic developed largely outperforms the classical interval based relaxation im-
plemented by MetricFF. There are however a number of interesting findings.

It is in fact not only the different relaxations employed by the two heuristics (ĥaddhbd+

vs IBR) that affect the performance, but also the way the heuristic estimate is actually
calculated. On the one hand, ĥaddhbd+ pessimistically sums the contribution of each (sub)goal,
thus neglecting any positive interactions among the actions needed to achieve them; On
the other hand, IBR used in MetricFF is based on a plan-extraction mechanism that, as
it happens for the propositional setting, alleviates the additive pessimistic assumption by
using sometimes the same action to achieve multiple conditions. We have also observed some
technical issues, with MetricFF showing unexpected behaviour over some of the numeric-flow
instances. In particular for MarketTrader, MetricFF wrongly claims some of the instances
to be unsolvable.

In problems like ZenoTravel, assuming complete independence between subgoals (as
for ĥaddhbd+) pays off, and it is also beneficial in Sailing and Farmland. These two domains
are particularly interesting. Indeed, only the subgoaling based heuristics are able to capture
some of the internal interferences occurring among the actions. Several conditions in these
two domains encompass more than one variable, a situation for which, as we have seen
in our motivating example, the subgoaling relaxation is provably tighter than the interval

739

Scala, Haslum, Thiébaux, & Ramirez

Plan Length Planning Time

Instance IBR ĥaddhbd+ IBR ĥaddhbd+

2 1 1 0.01 0.57
4 11 6 0.01 0.59
8 41 28 0.01 0.84
12 87 66 0.03 2.28
16 149 120 0.10 20.47
20 227 190 0.41 311.64
24 321 NA 1.21 TO
28 431 NA 3.03 TO
32 557 NA 6.91 TO
36 699 NA 15.04 TO
40 857 NA 25.88 TO

Table 3: IBR vs ĥaddhbd+ on Counters

based one, since it reasons on regressed subgoals rather than on reachable values. Therefore,
ĥaddhbd+ will likely results more accurate than IBR. As it is possible to observe from the table,
none of the instances is solved using MetricFF.

The situation in the Gardening domain is more intricate. It seems that MetricFF gets
stuck quite immediately. To understand this behaviour, we also tried to run it with the
standard configuration (enforced hill climbing plus helpful actions pruning), and it solved
all the instances. We ascribe the reason for this behaviour to the very specific way ties
are broken in MetricFF. The data for Counters, and in particular the subset of instances
where all counters are initially set to zero, is also somewhat difficult to explain. MetricFF
seems to dominate in terms of coverage, even if it produces longer plans on average. Table
3 shows the results for individual instances.

To investigate this behaviour more in depth we studied the effect of tie breaking in the
search of our planner. More precisely, we changed the tie breaking to favour higher g-values
also in the satisficing setting. In the Counters domain there are no dead-ends so being
greedy cannot harm too much in terms of the ability to find some plan, but it could in terms
of the ability to find short plans. Table 4 reports the data collected with this setting, and the
comparison with MetricFF. This data partly justifies our intuition about the possible causes
of the discrepancies between the two systems, but not fully. It seems in fact that MetricFF
is not using a deterministic tie-breaking strategy, as sometimes it acts more conservatively
resulting in plans slightly longer than those produced by our implementation.

Our experimental analysis for the satisficing setting concludes with another experiment
where we measure the performance of our best heuristic against MetricFF with all the func-
tionalities enabled (enforced hill climbing plus helpful actions). This experimental setting
was meant to understand to what extent a tighter relaxation influences the overall system.
The analysis focuses on the Sailing domain. In Sailing we have evidence that the relax-
ation is actually tighter. Out of 40 instances submitted, MetricFF was able to solve just 5 of
them within a 1800 secs timeout. This shows the great importance of a careful exploitation
of numeric structures in the heuristic.

740

Subgoaling Techniques for Satisficing and Optimal Numeric Planning

Plan Length Planning Time

Counters IBR ĥaddhbd+ + LGTB IBR ĥaddhbd+ + LGTB

2 1 1 0.01 0.81
4 11 6 0.01 0.67
8 41 28 0.01 0.98
12 87 66 0.03 1.42
16 149 120 0.10 1.64
20 227 190 0.41 2.17
24 321 276 1.21 2.26
28 431 378 3.03 2.47
32 557 496 6.91 3.12
36 699 630 15.04 4.05
40 857 780 25.88 6.23

Table 4: IBR vs ĥaddhbd+ with modified tie-breaking on Counters

13.3 Optimal Planning

We evaluate 3 planners based on A∗ which differ by the heuristics they are equipped with:

• A∗ (ĥmaxhbd+): A∗ with the admissible heuristic described in Eq. 15

• A∗ (ĥrmaxhbd+): A∗ with the admissible heuristic plus redundant constraints, Eq. 16

• A∗ (hgenhbd): A∗ with the generalised subgoaling procedure presented in Eq. 22.

As a baseline, we run A∗ with a blind goal-sensitive heuristic that gives 0 to goal states,
and the value of 1 to non-goal states.

Experiments focus on a selection of domains, namely Gardening, Counters, Farm-
land and Sailing. For some of these, we also introduce a variant where we make use
of global constraints (see next subsection). For this optimal setting, Counters instances
consist of 2 up to 9 counters, for a total of 8 instances. This lets us analyse the experiments
with a finer level of granularity. We refer to this new set with SmallCounters. For the
other domains, we use the same set of instances as Scala et al. (2016a).

Coverage Planning Time Expanded Nodes

ĥmaxhbd+ ĥ
rmax
hbd+ hgenhbd Blind ĥmaxhbd+ ĥ

rmax
hbd+ hgenhbd Blind ĥmaxhbd+ ĥrmaxhbd+ hgenhbd Blind

SmallCounters(8) 7 7 7 7 14.6 19.5 29.7 96.5 582670 242926 18946.7 2685633.7
Count-Inv (11) 2 2 11 2 0.7 0.5 0.5 1 415 160.5 8.5 1373.5

Count-Rnd (33) 6 7 32 6 0.5 0.4 0.5 0.8 13.3 5.5 5.5 280.3
Gardening(63) 63 63 62 63 2.6 2.7 108.8 1.9 35786.8 25959 32620.9 135477.5

Sailing (40) 6 17 7 6 5.5 0.9 152.1 88.3 92349.2 3114.8 94201 4512638
Farmland(50) 30 30 30 12 0.6 0.6 1.9 24.2 430.5 426.8 359.1 1495061.8

Total 114 126 149 96

Table 5: Coverage for the different heuristics. In parenthesis the number of instances for
each domain.

741

Scala, Haslum, Thiébaux, & Ramirez

Table 5 gives an overview of the performance of each heuristic when the planner is run
on the original domain definition (without global constraints). The coverage of the various
heuristics differ for Sailing, Count-Inv and Count-Rnd. In Sailing the formulation
using redundant constraints dominates the other heuristics quite considerably, including
the sophisticated generalised subgoaling formulation hgenhbd . The issue with hgenhbd is due to an
interesting phenomenon occurring in the Sailing domain, which we call the precondition
hiding phenomenon. In this domain, each goal predicate needs a goal marking action which
has a single propositional effect, but quite complex precondition. In fact, its execution
is only possible when a set of numeric constraints is satisfied. The generalised form hgenhbd
does capture the simultaneous satisfaction of the conditions, but only adds the minimum
precondition cost over all the possible achievers of every condition present in the goals G.
In Sailing, the cost of each goal g ∈ G will always be one plus the cheapest cost of the
precondition of some action that is achieving any goal g′ in G, even if g′ 6= g. Therefore,
the action precondition cost that is actually needed may be actually hidden by the cost
of some less expansive action. This phenomenon is somehow less evident in the ĥmaxhbd+

case. Considering subgoals in isolation enables us to add the lower bound of the minimum
precondition cost of the possible achievers of only a single condition (cf. Eq. 14). Looking
at the raw data for Sailing, it emerges that for the problem where there is a large number
of boats, hgenhbd performs better than ĥmaxhbd+. However, in problems where the number of

propositional goals is higher, ĥmaxhbd+, but in particular ĥrmaxhbd+ estimates much better than
hgenhbd . In SmallCounters, hgenhbd expands much fewer nodes than the other heuristics on
average; however, this does not translate into an overall speed up. With the exception
of one Count-Rnd instance, neither ĥmaxhbd+ nor its extension with redundant constraints

(i.e., ĥrmaxhbd+) outperform the blind heuristic in terms of coverage. Yet, they both reduce the
number of expanded nodes.

The performance of hgenhbd on Count-Rnd and Count-Inv is magnificent. Considering

the results obtained by both ĥmaxhbd+ and ĥrmaxhbd+ for all the versions of Counters, it is clear

that, although ĥrmaxhbd+ expands fewer nodes, ĥmaxhbd+ is generally faster.
This suggests us that the redundant constraints that we generate do not bring enough

information in this domain. It is possible that more powerful forms of redundant constraints
could be constructed, possibly by exploiting more directly the structure of the problem.
Studying how to do this systematically is an interesting research direction.

13.3.1 Experiments with Global Constraints

Global constraints have been added in the following two domains:

• Counters. Each counter has de-facto a domain of possible values; global constraints
make this explicit.

• Gardening. The agent cannot cross the boundary of the grid. Moreover, the agent
cannot carry a negative amount of water nor one that exceeds the actual capacity of
the bucket. Both conditions are encoded using conjunctive global constraints.

We did not come up with any interesting global constraint for either the Sailing or the
Farmland problem. We leave this as future work, as well as the exploitation of such global

742

Subgoaling Techniques for Satisficing and Optimal Numeric Planning

constraints automatically (which is what we would need here when such global constraints
are not so easy to formulate).

Global constraints can play two roles in our planners. The first is in the actual search
as they can prune away portions of the search space which are not interesting. The second
is in the heuristic, whenever such a heuristic actually includes them in its reasoning. We
implemented constraints that do not prune any reachable state; they just make the structure
of our problem more explicit. Note that both ĥmaxhbd+ and ĥrmaxhbd+ ignore global constraints,
thus the only goal of this experimental evaluation is to measure the impact of hgenhbd .

Table 6 reports the results for Gardening (using the same problem instances as for
the previous analysis) and SmallCounters. There is nothing surprising here, apart from
the exceptional performance of the hgenhbd formulation in SmallCounters. The heuristic
perfectly estimates the optimal cost for all the instances provided. We have also evaluated
this with larger instances, and hgenhbd is indeed perfect with this domain. Table 7 reports the
results instance by instance.

hgenhbd performs also quite well in Gardening. The tighter relaxation behind hgenhbd , and
in particular the intersection with global constraints is highly beneficial to the overall time,
bringing its coverage in line with that of the other heuristics. Table 9 presents raw data for
Gardening. Interestingly hgenhbd almost always reduces (up to an order of magnitude) the
number of expanded nodes. However, this almost never translates into an overall speed up.
We only observed hgenhbd outperforming ĥrmaxhbd+ on 4 out of 63 instances (instances ’9 2 3’, ’5
3 1’, ’7 1 2’, and ’7 3 3’). It is only when the reduction of node expansions is prominent
that hgenhbd performs better than ĥrmaxhbd+ also in terms of planning time. Otherwise hgenhbd ’s
reasoning benefits are nullified by its computational cost. A careful analysis of the raw
data reveals that there could even be situations where the less sophisticated ĥrmaxhbd+ results
in more informed estimates (e.g., instance ’8 1 2’). The issue here can be tracked down to
the fact that hgenhbd can be dominated by ĥrmaxhbd+ .

Coverage Planning Time Expanded Nodes

ĥrmaxhbd+ hgenhbd ĥrmaxhbd+ hgenhbd ĥrmaxhbd+ hgenhbd
SmallCounters(8) 7 8 21.5 0.7 242926 13

Gardening(63) 63 63 4.2 32.2 34443.7 6379

Table 6: Analysis with Global Constraints

13.3.2 Numeric vs Classical Planning

Our experimental analysis concludes with an experiment where we tried to answer the
following question: to what extent a sophisticated heuristic such as hgenhbd can make ENHSP
competitive with highly optimised classical planners? To this end we encoded Counters
in propositional planning. Each integer number in this propositional encoding has been
modelled with an object, and arithmetic axiomatized using actions and further predicates.
Table 8 reports a comparison between hgenhbd and Fast-Downward (Helmert, 2006) with the
LM-CUT heuristic configuration14. Surprisingly, despite the huge number of expanded
nodes, LM-CUT is competitive in the first 6 instances. However, while hgenhbd ’s run-time

14. The code has been obtained from http://www.fast-downward.org/IpcPlanners

743

Scala, Haslum, Thiébaux, & Ramirez

Planning Time Expanded Nodes

Counters hgenhbd ĥrmaxhbd+ Blind hgenhbd ĥrmaxhbd+ Blind

2 0.64 0.62 0.50 2 2 2
3 0.70 0.64 0.52 4 4 6
4 0.73 0.62 0.51 7 19 91
5 0.85 0.91 0.70 11 231 1332
6 0.92 1.32 2.19 16 3752 27963
7 0.97 6.69 13.07 22 71980 670859
8 1.23 141.16 TO 29 1624494 TO
9 1.33 TO TO 37 TO TO

Table 7: Focus on smaller instances of the Counters domain

Planning Time Expanded Nodes

hgenhbd LM-Cut hgenhbd LM-Cut

2 0.39 5× 10−5 2 3
3 0.38 0.001 4 8
4 0.39 0.003 7 30
5 0.45 0.029 11 273
6 0.57 0.836 16 3962
7 1.42 37.494 22 71214
8 0.89 1435.98 29 1× 106

9 1.08 TO 37 TO

Table 8: LM-Cut vs hgenhbd on a selection of instances from the Counters domain. In these
instances all Counters are initially set to 0 and should be ordered such that
c1 ≤ c2 ≤ ... ≤ cn, where n is the number of counters considered.

remain almost constant across the instances, LM-CUT run-time grows exponentially. In
fact, LM-CUT only scales up to instance number 8.

14. Conclusion and Future Work

We have presented decomposition techniques based on the subgoaling principle previously
developed for classical planning. These decompositions induce safe relaxations of numeric
planning problems, which can be used to obtain both admissible and inadmissible yet more
informed heuristics estimates. The key ideas behind the notions presented in this paper
derive from a more direct exploitation of some of the numeric properties that arise in numeric
planning problems, with a particular emphasis on those problems where only simple numeric
conditions occur. Even though we investigate them in the context of the development of
heuristics, these ideas may have a wider influence on all those reasoning tasks involving
a real-world problem modelled at a greater level of detail. For instance, one can think of
adopting the same relaxations to speed up SMT-based planning (Scala et al., 2016c; Bofill,

744

Subgoaling Techniques for Satisficing and Optimal Numeric Planning

Planning Time Expanded Nodes

S P V ĥrmaxhbd+ hgenhbd ĥrmaxhbd+ hgenhbd

4 1 1 0.59 1.41 67 40
4 1 2 0.81 1.11 477 66
4 1 3 0.62 0.99 166 30
4 2 1 0.75 0.95 267 26
4 2 2 1.58 3.70 4926 136
4 2 3 1.88 2.99 2675 230
4 3 1 2.66 7.89 9097 620
4 3 2 4.79 16.90 51531 3760
4 3 3 6.81 15.78 61176 735
5 1 1 0.54 0.83 27 30
5 1 2 0.76 1.39 529 224
5 1 3 0.83 1.48 416 199
5 2 1 1.23 8.30 1875 1110
5 2 2 2.42 9.25 8649 1974
5 2 3 1.26 3.66 2250 704
5 3 1 9.19 6.41 84418 515
5 3 2 1.15 4.91 782 730
5 3 3 4.01 7.63 18530 744
6 1 1 0.82 1.37 815 139
6 1 2 0.91 1.55 837 215
6 1 3 0.58 0.84 39 24
6 2 1 0.64 1.00 69 52
6 2 2 1.71 6.19 5055 1587
6 2 3 1.03 3.11 1103 451
6 3 1 17.82 181.01 204185 51124
6 3 2 11.59 40.63 110120 5458
6 3 3 2.42 19.58 5845 4339

Planning Time Expanded Nodes

S P V ĥrmaxhbd+ hgenhbd ĥrmaxhbd+ hgenhbd

7 1 1 0.49 0.82 6 22
7 1 2 1.64 1.43 705 51
7 1 3 0.79 2.01 557 471
7 2 1 1.41 2.98 3134 357
7 2 2 1.94 3.89 5498 287
7 2 3 1.08 6.59 1172 1280
7 3 1 1.86 12.15 3369 1958
7 3 2 1.29 4.79 1120 470
7 3 3 13.81 10.33 168119 1711
8 1 1 0.67 1.05 239 37
8 1 2 0.61 0.78 7 33
8 1 3 0.98 1.01 1131 31
8 2 1 1.38 3.04 1797 336
8 2 2 2.07 16.05 3883 4947
8 2 3 0.79 1.91 244 169
8 3 1 2.81 30.25 8724 3284
8 3 2 10.88 104.25 105328 22047
8 3 3 7.16 124.24 59227 26440
9 1 1 1.08 1.78 264 81
9 1 2 1.00 1.57 16 100
9 1 3 0.54 0.84 12 49
9 2 1 3.08 36.72 21782 11503
9 2 2 1.82 20.91 5540 4656
9 2 3 2.36 1.74 2871 97
9 3 1 1.41 12.29 1997 2494
9 3 2 8.86 194.34 81558 39767
9 3 3 14.67 48.87 142269 5624
10 1 1 0.86 1.01 696 29
10 1 2 0.84 1.32 755 116
10 1 3 0.71 1.28 334 147
10 2 1 2.11 3.37 6672 270
10 2 2 4.26 62.97 37106 18740
10 2 3 3.32 18.98 14474 6553
10 3 1 52.33 334.31 560494 52532
10 3 2 1.65 10.76 2088 1374
10 3 3 32.62 596.37 350839 118552

Table 9: Data on Gardening, optimal planning instances. S, P and V in the table stand
for size of the grid, number of plants and specific ’variant’. For each pair S and V
we generated 3 random instances where we vary the structure of the problem.

Espasa, & Villaret, 2017), much as delete-free relaxations have helped in providing shorter
encodings in SAT-based planning (Rintanen, 2012) through existential semantics.

The paper discusses these novel techniques theoretically, and also practically in combi-
nation with informed search strategies such as A∗ and GBFS. Results report a substantial
advancement on the state of the art. Some of the notions presented here, and in partic-
ular the notion of possible achievers of numeric conditions have provided the foundations
of other heuristics and relaxations recently discussed in the literature, such as hybrid land-
marks (Scala, Haslum, Magazzeni, & Thiébaux, 2017) and LP- and IP-based heuristics

745

Scala, Haslum, Thiébaux, & Ramirez

(Piacentini, Castro, Ciré, & Beck, 2018). These new techniques, which extend the reach of
numeric planning even further, would not have been possible without the notions presented
in this paper.

This work can be extended in many ways. First, the notion of possible achiever can be
extended to consider more complex formalisms. That could start a completely new relax-
ation framework aimed at better exploiting the actual structure of certain mathematical
functions natively (differently from compilation-based techniques, such as that by Li, Scala,
Haslum, & Bogomolov, 2018). One of this extension could be the support for non-linear
functions, such as quadratic functions. Second, the restriction on assignment operations in
this paper is also very conservative and can be relaxed to account for multiple assignments
to the same variable; we do not know however the implications of this relaxation. The
problem of estimating numeric condition cost is already NP-complete with additive effects
only, so it is likely to be at least as hard for assignments. Moreover, it is not clear whether
a continuous relaxation of the underlying computational problem will be as informed as it
is for additive effects. Third, the conjunctive relaxation investigated in this paper opens the
way to much more powerful heuristics, however with a more unbalanced trade-off between
computational cost and time. New forms of helpful actions and incrementality should be
explored in order for such novel heuristics to be informed and effective at the same time.

Acknowledgments

This work was supported by ARC project DP140104219, ‘Robust AI Planning for Hybrid
Systems’. We also want to thank the anonymous reviewers for their useful feedback and
comments.

746

Subgoaling Techniques for Satisficing and Optimal Numeric Planning

References

Aldinger, J., Mattmüller, R., & Göbelbecker, M. (2015). Complexity of interval relaxed
numeric planning. In Hölldobler, S., Krötzsch, M., Peñaloza, R., & Rudolph, S. (Eds.),
KI 2015: Advances in Artificial Intelligence - 38th Annual German Conference on AI,
Dresden, Germany, September 21-25, 2015, Proceedings, Vol. 9324 of Lecture Notes
in Computer Science, pp. 19–31. Springer.

Bellman, R. (1958). On a routing problem. Quarterly of applied mathematics, 16 (1), 87–90.

Bit-Monnot, A. (2018). A constraint-based encoding for domain-independent temporal
planning. In International Conference on Principles and Practice of Constraint Pro-
gramming.

Blum, A., & Furst, M. L. (1997). Fast planning through planning graph analysis. Artificial
Intelligence, 90 (1-2), 281–300.

Bofill, M., Espasa, J., & Villaret, M. (2017). Relaxed exists-step plans in planning as SMT.
In Sierra, C. (Ed.), Proceedings of the Twenty-Sixth International Joint Conference
on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August 19-25, 2017, pp.
563–570. ijcai.org.

Bonet, B., & Geffner, H. (2001). Planning as heuristic search. Artificial Intelligence, 129,
5–33.

Bonet, B., & Helmert, M. (2010). Strengthening landmark heuristics via hitting sets. In
Coelho, H., Studer, R., & Wooldridge, M. (Eds.), ECAI 2010 - 19th European Confer-
ence on Artificial Intelligence, Lisbon, Portugal, August 16-20, 2010, Proceedings, Vol.
215 of Frontiers in Artificial Intelligence and Applications, pp. 329–334. IOS Press.

Borrelli, F., Bemporad, A., & Morari, M. (2017). Predictive control for linear and hybrid
systems. Cambridge University Press.

Bradley, A. R. (2011). Sat-based model checking without unrolling. In Jhala, R., & Schmidt,
D. A. (Eds.), Verification, Model Checking, and Abstract Interpretation - 12th Inter-
national Conference, VMCAI 2011, Austin, TX, USA, January 23-25, 2011. Proceed-
ings, Vol. 6538 of Lecture Notes in Computer Science, pp. 70–87. Springer.

Bryce, D., Gao, S., Musliner, D. J., & Goldman, R. P. (2015). Smt-based nonlinear PDDL+
planning. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelli-
gence, January 25-30, 2015, Austin, Texas, USA., pp. 3247–3253.

Bylander, T. (1994). The computational complexity of propositional strips planning. Arti-
ficial Intelligence, 69 (1-2), 165–204.

Cashmore, M., Magazzeni, D., & Zehtabi, P. (2020). Planning for hybrid systems via
satisfiability modulo theories. Journal of Artificial Intelligence Research, 67, 235–283.

Coles, A. J., Coles, A., Fox, M., & Long, D. (2012). COLIN: planning with continuous
linear numeric change. Journal of Artificial Intelligence Research, 44, 1–96.

Coles, A. J., Coles, A., Fox, M., & Long, D. (2013). A hybrid LP-RPG heuristic for modelling
numeric resource flows in planning. Journal of Artificial Intelligence Research, 46,
343–412.

747

Scala, Haslum, Thiébaux, & Ramirez

Davis, M., Logemann, M., & Loveland, D. (1962). A machine program for theorem-proving.
Communications of the ACM, 5 (7), 394–397.

Domshlak, C., Hoffmann, J., & Katz, M. (2015). Red-black planning: A new systematic
approach to partial delete relaxation. Artificial Intelligence, 221, 73–114.

Dutertre, B., & de Moura, L. (2006). A fast linear-arithmetic solver for DPLL(T). In 18th
International Conference on Computer Aided Verification (CAV), pp. 81–94. Springer.

Edward, R. S. (1996). Invitation to dynamical systems. Prentice Hall, Inc. A Simon &
Schuster Company, Upper Saddle River, New Jersey, 7458, 231–316.

Eriksson, S., & Helmert, M. (2020). Certified unsolvability for SAT planning with property
directed reachability. In Beck, J. C., Buffet, O., Hoffmann, J., Karpas, E., & Sohrabi, S.
(Eds.), Proceedings of the Thirtieth International Conference on Automated Planning
and Scheduling, Nancy, France, October 26-30, 2020, pp. 90–100. AAAI Press.

Eyerich, P., Mattmüller, R., & Röger, G. (2009). Using the context-enhanced additive
heuristic for temporal and numeric planning. In Proceedings of the 19th Interna-
tional Conference on Automated Planning and Scheduling, ICAPS 2009, Thessaloniki,
Greece, September 19-23, 2009.

Fikes, R., Hart, P. E., & Nilsson, N. J. (1972). Learning and executing generalized robot
plans. Artificial Intelligence, 3 (1-3), 251–288.

Flood, M. M. (1956). The traveling-salesman problem. Operations research, 4 (1), 61–75.

Fox, M., & Long, D. (2003). Pddl2.1: An extension to pddl for expressing temporal planning
domains. Journal of Artificial Intelligence Research, 20, 61–124.

Francès, G., & Geffner, H. (2015). Modeling and computation in planning: Better heuristics
from more expressive languages. In Proceedings of the Twenty-Fifth International
Conference on Automated Planning and Scheduling, ICAPS 2015, Jerusalem, Israel,
June 7-11, 2015., pp. 70–78.

Geffner, H. (2011). The model-based approach to autonomous behavior: Prospects and
challenges. Intelligenza Artificiale, 5 (2), 163–169.

Geffner, H. (2018). Model-free, model-based, and general intelligence. In Lang, J. (Ed.),
Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intel-
ligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden, pp. 10–17. ijcai.org.

Geffner, H., & Bonet, B. (2013). A Concise Introduction to Models and Methods for Auto-
mated Planning. Synthesis Lectures on Artificial Intelligence and Machine Learning.
Morgan & Claypool Publishers.

Gerevini, A., Saetti, I., & Serina, A. (2008). An approach to efficient planning with numerical
fluents and multi-criteria plan quality. Artificial Intelligence, 172 (8-9), 899–944.

Getoor, L., Ottosson, G., Fromherz, M. P. J., & Carlson, B. (1997). Effective redundant
constraints for online scheduling. In Proceedings of the Fourteenth National Conference
on Artificial Intelligence and Ninth Innovative Applications of Artificial Intelligence
Conference, AAAI 97, IAAI 97, July 27-31, 1997, Providence, Rhode Island., pp.
302–307.

748

Subgoaling Techniques for Satisficing and Optimal Numeric Planning

Ghallab, M., Nau, D. S., & Traverso, P. (2004). Automated planning - theory and practice.
Elsevier.

Gregory, P., Long, D., Fox, M., & Beck, J. C. (2012). Planning modulo theories: Extending
the planning paradigm. In McCluskey, L., Williams, B. C., Silva, J. R., & Bonet,
B. (Eds.), Proceedings of the Twenty-Second International Conference on Automated
Planning and Scheduling, ICAPS 2012, Atibaia, São Paulo, Brazil, June 25-19, 2012.
AAAI.

Haslum, P. (2009). hm(P) = h1(Pm): Alternative characterisations of the generalisation
from hmax to hm. In Gerevini, A., Howe, A. E., Cesta, A., & Refanidis, I. (Eds.), Pro-
ceedings of the 19th International Conference on Automated Planning and Scheduling,
ICAPS 2009, Thessaloniki, Greece, September 19-23, 2009. AAAI.

Haslum, P., Bonet, B., & Geffner, H. (2005). New admissible heuristics for domain-
independent planning. In Proceedings, The Twentieth National Conference on Artifi-
cial Intelligence and the Seventeenth Innovative Applications of Artificial Intelligence
Conference, July 9-13, 2005, Pittsburgh, Pennsylvania, USA, pp. 1163–1168.

Haslum, P., & Geffner, H. (2000). Admissible heuristics for optimal planning. In Chien,
S. A., Kambhampati, S., & Knoblock, C. A. (Eds.), Proceedings of the Fifth Inter-
national Conference on Artificial Intelligence Planning Systems, Breckenridge, CO,
USA, April 14-17, 2000, pp. 140–149. AAAI.

Haslum, P., Lipovetzky, N., Magazzeni, D., & Muise, C. (2019). An Introduction to the
Planning Domain Definition Language. Synthesis Lectures on Artificial Intelligence
and Machine Learning. Morgan & Claypool Publishers.

Helmert, M. (2002). Decidability and undecidability results for planning with numerical
state variables. In Ghallab, M., Hertzberg, J., & Traverso, P. (Eds.), Proceedings of
the Sixth International Conference on Artificial Intelligence Planning Systems, April
23-27, 2002, Toulouse, France, pp. 44–53. AAAI.

Helmert, M. (2006). The fast downward planning system. Journal of Artificial Intelligence
Research, 26, 191–246.

Helmert, M., & Domshlak, C. (2009). Landmarks, critical paths and abstractions: What’s
the difference anyway?. In Gerevini, A., Howe, A. E., Cesta, A., & Refanidis, I.
(Eds.), Proceedings of the 19th International Conference on Automated Planning and
Scheduling, ICAPS 2009, Thessaloniki, Greece, September 19-23, 2009. AAAI.

Helmert, M., & Geffner, H. (2008). Unifying the causal graph and additive heuristics.
In Rintanen, J., Nebel, B., Beck, J. C., & Hansen, E. A. (Eds.), Proceedings of the
Eighteenth International Conference on Automated Planning and Scheduling, ICAPS
2008, Sydney, Australia, September 14-18, 2008, pp. 140–147. AAAI.

Hoare, C. A. R. (1969). An axiomatic basis for computer programming. Commun. ACM,
12 (10), 576–580.

Hoffmann, J. (2003). The metric-ff planning system: Translating ”ignoring delete lists” to
numeric state variables. Journal of Artificial Intelligence Research, 20, 291–341.

Hoffmann, J., Gomes, C. P., Selman, B., & Kautz, H. A. (2007). SAT encodings of state-
space reachability problems in numeric domains. In IJCAI 2007, Proceedings of the

749

Scala, Haslum, Thiébaux, & Ramirez

20th International Joint Conference on Artificial Intelligence, Hyderabad, India, Jan-
uary 6-12, 2007, pp. 1918–1923.

Hooker, J. N. (2003). Planning and scheduling by logic-based benders decomposition. Op-
erations Research, 55 (3), 588–602.

Illanes, L., & McIlraith, S. A. (2017). Numeric planning via abstraction and policy guided
search. In Sierra, C. (Ed.), Proceedings of the Twenty-Sixth International Joint Con-
ference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August 19-25,
2017, pp. 4338–4345. ijcai.org.

Kautz, H. A., & Selman, B. (1999). Unifying sat-based and graph-based planning. In Dean,
T. (Ed.), Proceedings of the Sixteenth International Joint Conference on Artificial
Intelligence, IJCAI 99, Stockholm, Sweden, July 31 - August 6, 1999. 2 Volumes,
1450 pages, pp. 318–325. Morgan Kaufmann.

Keyder, E., & Geffner, H. (2008). Heuristics for planning with action costs revisited. In
Ghallab, M., Spyropoulos, C. D., Fakotakis, N., & Avouris, N. M. (Eds.), ECAI 2008 -
18th European Conference on Artificial Intelligence, Patras, Greece, July 21-25, 2008,
Proceedings, Vol. 178 of Frontiers in Artificial Intelligence and Applications, pp. 588–
592. IOS Press.

Koehler, J. (1998). Planning under resource constraints. In Prade, H. (Ed.), 13th European
Conference on Artificial Intelligence, Brighton, UK, August 23-28 1998, Proceedings.,
pp. 489–493. John Wiley and Sons.

Kroening, D., & Strichman, O. (2008). Decision Procedures: An Algorithmic Point of View
(2nd edition). Springer.

Li, D., Scala, E., Haslum, P., & Bogomolov, S. (2018). Effect-abstraction based relaxation
for linear numeric planning. In Lang, J. (Ed.), Proceedings of the Twenty-Seventh
International Joint Conference on Artificial Intelligence, IJCAI 2018, July 13-19,
2018, Stockholm, Sweden., pp. 4787–4793. ijcai.org.

Liu, Y., Koenig, S., & Furcy, D. (2002). Speeding up the calculation of heuristics for
heuristic search-based planning. In Proceedings of the Eighteenth National Conference
on Artificial Intelligence and Fourteenth Conference on Innovative Applications of
Artificial Intelligence, July 28 - August 1, 2002, Edmonton, Alberta, Canada., pp.
484–491.

Martello, S., & Toth, P. (1990). Knapsack Problems: Algorithms and Computer Implemen-
tations. John Wiley & Sons, Inc., New York, NY, USA.

McDermott, D. V. (1996). A heuristic estimator for means-ends analysis in planning. In
Proceedings of the Third International Conference on Artificial Intelligence Planning
Systems, Edinburgh, Scotland, May 29-31, 1996, pp. 142–149.

McDermott, D. V. (2003). Reasoning about autonomous processes in an estimated-
regression planner. In Giunchiglia, E., Muscettola, N., & Nau, D. S. (Eds.), Proceedings
of the Thirteenth International Conference on Automated Planning and Scheduling
(ICAPS 2003), June 9-13, 2003, Trento, Italy, pp. 143–152. AAAI.

Moore, R. E., Kearfott, R. B., & Cloud, M. J. (2009). Introduction to Interval Analysis.
SIAM.

750

Subgoaling Techniques for Satisficing and Optimal Numeric Planning

Nieuwenhuis, R., Oliveras, A., & Tinelli, C. (2006). Solving SAT and SAT modulo theories:
From an abstract davis-putnam-logemann-loveland procedure to dpll(t). Journal of
the ACM, 53 (6), 937–977.

Pearl, J. (1984). Heuristics - intelligent search strategies for computer problem solving.
Addison-Wesley series in artificial intelligence. Addison-Wesley.

Pednault, E. P. (1987). Formulating multiagent, dynamic-world problems in the classical
planning framework. In Reasoning about actions & plans, pp. 47–82. Elsevier.

Piacentini, C., Castro, M. P., Ciré, A. A., & Beck, J. C. (2018). Linear and integer
programming-based heuristics for cost-optimal numeric planning. In McIlraith, S. A.,
& Weinberger, K. Q. (Eds.), Proceedings of the Thirty-Second AAAI Conference on
Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial Intel-
ligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artifi-
cial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018, pp.
6254–6261. AAAI Press.

Pommerening, F., Röger, G., Helmert, M., & Bonet, B. (2014). Lp-based heuristics for
cost-optimal planning. In Chien, S. A., Do, M. B., Fern, A., & Ruml, W. (Eds.),
Proceedings of the Twenty-Fourth International Conference on Automated Planning
and Scheduling, ICAPS 2014, Portsmouth, New Hampshire, USA, June 21-26, 2014.
AAAI.

Pommerening, F., Röger, G., Helmert, M., & Bonet, B. (2015). Heuristics for cost-optimal
classical planning based on linear programming. In Yang, Q., & Wooldridge, M.
(Eds.), Proceedings of the Twenty-Fourth International Joint Conference on Artificial
Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015, pp. 4303–4309.
AAAI Press.

Rintanen, J. (2006). Unified definition of heuristics for classical planning. In Brewka, G.,
Coradeschi, S., Perini, A., & Traverso, P. (Eds.), ECAI 2006, 17th European Confer-
ence on Artificial Intelligence, August 29 - September 1, 2006, Riva del Garda, Italy,
Including Prestigious Applications of Intelligent Systems (PAIS 2006), Proceedings,
Vol. 141 of Frontiers in Artificial Intelligence and Applications, p. 600. IOS Press.

Rintanen, J. (2008). Regression for classical and nondeterministic planning. In ECAI 2008 -
18th European Conference on Artificial Intelligence, Patras, Greece, July 21-25, 2008,
Proceedings, pp. 568–572.

Rintanen, J. (2012). Planning as satisfiability: Heuristics. Artificial Intelligence, 193, 45–86.

Rintanen, J. (2017). Temporal planning with clock-based SMT encodings. In Sierra, C.
(Ed.), Proceedings of the Twenty-Sixth International Joint Conference on Artificial
Intelligence, IJCAI 2017, Melbourne, Australia, August 19-25, 2017, pp. 743–749.
ijcai.org.

Scala, E. (2013). Numeric kernel for reasoning about plans involving numeric fluents. In
Baldoni, M., Baroglio, C., Boella, G., & Micalizio, R. (Eds.), AI*IA 2013: Advances
in Artificial Intelligence - XIIIth International Conference of the Italian Association
for Artificial Intelligence, Turin, Italy, December 4-6, 2013. Proceedings, Vol. 8249 of
Lecture Notes in Computer Science, pp. 263–275. Springer.

751

Scala, Haslum, Thiébaux, & Ramirez

Scala, E. (2014). Plan repair for resource constrained tasks via numeric macro actions. In
Chien, S. A., Do, M. B., Fern, A., & Ruml, W. (Eds.), Proceedings of the Twenty-
Fourth International Conference on Automated Planning and Scheduling, ICAPS
2014, Portsmouth, New Hampshire, USA, June 21-26, 2014. AAAI.

Scala, E., Haslum, P., Magazzeni, D., & Thiébaux, S. (2017). Landmarks for numeric
planning problems. In Sierra, C. (Ed.), Proceedings of the Twenty-Sixth International
Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August
19-25, 2017, pp. 4384–4390. ijcai.org.

Scala, E., Haslum, P., & Thiébaux, S. (2016a). Heuristics for numeric planning via subgoal-
ing. In Proceedings of the Twenty-Fifth International Joint Conference on Artificial
Intelligence, IJCAI 2016, New York, NY, USA, 9-15 July 2016, pp. 3228–3234.

Scala, E., Haslum, P., Thiébaux, S., & Ramı́rez, M. (2016b). Interval-based relaxation for
general numeric planning. In ECAI 2016 - 22nd European Conference on Artificial
Intelligence, 29 August-2 September 2016, The Hague, The Netherlands - Including
Prestigious Applications of Artificial Intelligence (PAIS 2016), pp. 655–663.

Scala, E., Ramı́rez, M., Haslum, P., & Thiébaux, S. (2016c). Numeric planning with dis-
junctive global constraints via SMT. In Proceedings of the Twenty-Sixth International
Conference on Automated Planning and Scheduling, ICAPS 2016, London, UK, June
12-17, 2016., pp. 276–284.

Shin, J., & Davis, E. (2005). Processes and continuous change in a sat-based planner.
Artificial Intelligence, 166 (1-2), 194–253.

Suda, M. (2014). Property directed reachability for automated planning. Journal of Arti-
ficial Intelligence Research, 50, 265–319.

Vallati, M., Chrpa, L., Grzes, M., McCluskey, T. L., Roberts, M., & Sanner, S. (2015). The
2014 international planning competition: Progress and trends. AI Magazine, 36 (3),
90–98.

van den Briel, M., Benton, J., Kambhampati, S., & Vossen, T. (2007). An LP-based heuristic
for optimal planning. In Proc. 13th Int. Conf. on Principles and Practice of Constraint
Programming (CP), pp. 651–665.

Vidal, V., & Geffner, H. (2006). Branching and pruning: An optimal temporal POCL
planner based on constraint programming. Artif. Intell., 170 (3), 298–335.

Wehrle, M., & Rintanen, J. (2007). Planning as satisfiability with relaxed $-step plans.
In AI 2007: Advances in Artificial Intelligence, 20th Australian Joint Conference on
Artificial Intelligence, Gold Coast, Australia, December 2-6, 2007, Proceedings, pp.
244–253.

Wolfman, S. A., & Weld, D. S. (2001). Combining linear programming and satisfiability
solving for resource planning. The Knowledge Engineering Review, 16 (1), 85–99.

Zhang, L., Madigan, C. F., Moskewicz, M. H., & Malik, S. (2001). Efficient conflict driven
learning in a boolean satisfiability solver. In IEEE/ACM International Conference on
Computer Aided Design (ICCAD), pp. 279–285. IEEE.

752

