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Subgraph Robustness of Complex

Networks under Attacks
Yilun Shang

Abstract—Network measures derived from empirical observa-
tions are often poor estimators of the true structure of system as
it is impossible to observe all components and all interactions
in many real world complex systems. Here, we study attack
robustness of complex networks with data missing caused by
(i) a uniform random sampling and (ii) a non-uniform random
sampling. By introducing the subgraph robustness problem,
we develop analytically a framework to investigate robustness
properties of the two types of subgraphs under random attacks,
localized attacks, and targeted attacks. Interestingly, we find
that the benchmark models such as Erdős-Rényi graphs, ran-
dom regular networks, and scale-free networks possess distinct
characteristic subgraph robustness features. We show that the
network robustness depends on several factors including network
topology, attack mode, sampling method and the amount of data
missing, generalizing some well-known robustness principles of
complex networks. Our results offer insight into the structural
effect of missing data in networks and highlight the significance
of understanding different sampling processes and their conse-
quences on attack robustness, which may be instrumental in
designing robust systems.

Index Terms—Complex networks, complex systems, sampling,
attack robustness.

I. INTRODUCTION

COMPLEX networks, such as social networks, the World

Wide Web, and gene regulatory networks, provide a com-

pact and powerful representation of the interaction structure

of a wide range of complex systems, where nodes represent

entities (e.g., people, web sites, genes) and edges represent

some type of connections (e.g., friendship, communication,

regulation) [1], [2]. To study the networks one needs to first

collect reliable large scale network data. Even with the emer-

gence of the Internet, social media, and high-throughput gene

expression analysis, in most cases data collected for complex

networks are incomplete with nodes and edges missing. In

social network analysis, this is often due to the so-called

boundary effects or respondent inaccuracy in network surveys

[3]–[5]. For example, networks arising from the popular social

network platforms are not completely mapped because of the

boundary effects; namely, there are people who do not actually

use the social networking service except setting up an account

(so-called “zombie accounts”) and so we cannot observe their

connections. Anonymous purchase in online shopping sites

also induces a similar boundary effect. Likewise, respondents
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may be absent on the day of survey administration or have

opted-out of the survey for privacy reasons, leading to unob-

served nodes in the network. In other empirical studies, having

access to all the nodes may be virtually impossible due to huge

network size or limited resources. All these situations give rise

to a sampling of the network nodes, i.e., a partially observed

subgraph of the network [6], [7].

Networks with incomplete or missing data have been probed

mainly in two directions of research. Broadly speaking, one

line of work has focused on prediction/inference of missing

edges or nodes with a view to determine the full network

structure, which is a common requirement in many graph-

mining tasks, such as community detection, belief propagation,

and influence maximization, etc. The edge oriented version

is commonly known as the link prediction problem [8]–[10],

which has various applications ranging from recommender

systems to computational biology; see the survey [11]. The

node oriented version, referred to as missing node identifica-

tion problem, has been studied recently in [12]–[15]. Important

applications in the security community, for example, include

identification of missing person in a family tree or people

wanted by the police as suspects in a crime. A node-based

incident prediction approach is proposed in [16], which has

applications in industrial control systems. This problem is

significantly more difficult than the link prediction problem

as neither the nodes nor their edges are known with certainty

[17].

On the other hand, a different vibrant line of work con-

cerning missing data deals with structural effects of missing

edges or nodes on varied measurable properties of networks,

such as degree distribution [18], [19], average degree, average

path length, assortativity, clustering coefficient [4], [20], cen-

trality [7], [21], community structure [22], and the number

of small fixed subgraphs [23], to name just a few. These

works basically address the question “what happens to network

measures when some edges or nodes are missing?” based

upon Monte-Carlo simulations. Various sampling procedures,

such as uniform random sampling [4], [7], snowball sampling

[24], respondent driven sampling [3], [25], and random walks

[22], [23], have also been developed to generate the partially

observed subnetwork. For example, the work [18] warns that

randomly sampled subnetworks of scale-free networks no

longer show scale-free properties. In general, however, the

effect of induced bias and how does it correlate with different

network topologies or levels of missing data are often not fully

understood.

In this paper, we follow the second line of research and

focus on another important network property, namely, the
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network robustness against attacks [26]–[29]. As is known,

the function and stability of networks rely crucially on the

interconnections between nodes in which failed nodes will

disable others connecting through them to the network and

may destroy or cripple the entire network. The vast majority

of previous work on network robustness assumes a complete

network, namely, all nodes and edges in the network are

observed; see, e.g. [1], [26], [30]–[33]. Motivated by the

above consideration, the goal of this paper is to investigate

analytically and by simulations attack robustness on networks

with missing nodes and edges, which we refer to as the

subgraph robustness problem.

We mention that the question addressed here is related in

concept to some previous works on attack robustness with

incomplete information. The work [34] examines the optimal

attack strategy on scale-free networks, in which a fixed portion

of nodes are unobserved. Similarly, efficient attack strategies

with missing edges are examined in [35] with the aid of

link prediction techniques. Attack robustness of networks with

uncertain or local knowledge has been investigated by some

researchers; see e.g. [36]–[38]. In these works, all edges and

nodes in the network are present, while only some information

(such as the node degree) is not fully/precisely known.

II. MODEL DESCRIPTION AND METHODOLOGIES

In studying the subgraph robustness problem, we formally

consider two types of sampling by sampling the nodes either

uniformly at random, leading to a uniform subgraph (US) or

in a non-uniform manner, leading to a non-uniform subgraph

(NS). Using percolation theory [1], we investigate the robust-

ness of US and NS under different attacks in terms of the

relative size of giant component and the critical percolation

threshold at which the giant component first collapses. The

network attacks considered here include:

• Random attack (RA), where randomly chosen nodes are

removed from the network, meaning that each node in the

network is attacked with equal probability. RA describes

random errors, system decay, or attacks without prior

knowledge of the network architecture; see e.g. [1], [26],

[32], [33], [39].

• Localized attack (LA), where nodes surrounding a seed

node are removed layer by layer, causing aggregated

damage of adjacent components limited to a specific area.

LA can be caused by natural disasters such as earthquakes

and floods, as well as mass attacks including bomb blasts

and malware infection; see e.g. [40]–[43].

• Targeted attack (TA), where nodes with a higher degree

are more vulnerable, meaning that nodes are attacked

in decreasing order of their connectivity. TA captures

sabotage on the Internet and some malicious attacks

against transportation hubs, important power stations,

etc.; see e.g. [26], [32], [44], [45].

We apply our derived theoretical frameworks to three types

of network models including Erdős-Rényi (ER) networks

[46] with a Poisson degree distribution, random regular (RR)

networks following a degenerated degree distribution, and

scale-free (SF) networks [26], [47] characterized by a power-

law degree distribution. Formally, consider a random network

captured by an arbitrary degree distribution P (k), which is

the probability that a randomly chosen node has k neighbors.

The generating function of the degree distribution is defined

as G0(x) =
∑

∞

k=0 P (k)xk [1], [48]. Here, we are interested

in networks with missing data generated in the following two

types of sampling processes (see Fig. 1):

Fig. 1. Schematic illustration of (a) US and (b) NS on square lattices. Solid
nodes and lines represent the observed subgraphs.

• Uniform random sampling, meaning that a fraction q of

nodes deployed uniformly at random in the network are

observed. This is a natural setting commonly used in

other work; see e.g. [4], [6], [19]. The induced subgraph

on the observed nodes is said to be the uniform subgraph

(US). Namely, US is constructed by removing a fraction

1 − q of unobserved nodes as well as their contributing

edges;

• Non-uniform random sampling, where a fraction 1 − q
of nodes sitting in some multi-hop neighborhood of a

random selected node cannot be observed. In other words,

the observed subgraph, referred to as the non-uniform

subgraph (NS), is obtained by removing a seed node, its

nearest neighbors, its second nearest neighbors and so

on until a fraction 1 − q of nodes in the entire network

are removed. This situation reflects networks suffering

from a single-source spreading data contamination [5],

[49] or a diffusive non-respondent bias in network surveys

[3], [21], which have been studied extensively in social

network analysis.

As we have mentioned, there are multiple ways in which

data missing can be biased. The non-uniform random sampling

considered here not only provides a comparison for the typical

random sampling but is amenable to analytical treatment for

all attack strategies we are interested in this paper. We assume

that attack is launched against the observed subgraph, i.e.,

US and NS, until a fraction 1 − p of nodes in the subgraph

are attacked. A major characteristic of network functionality

is the relative size of the giant component, denoted by P∞,

consisting of all remaining nodes that survive the attack. The

critical threshold at which the giant component first collapses,

i.e. P∞ ∼ 0, is denoted by pc. Evidently, when q = 1, we are

reduced to the usual percolation settings where all nodes in

the network are observed [1]. We will focus on the effects of

network topologies (ER, RR, SF), attack strategies (RA, LA,

TA), amount of data missing (q), and sampling methods (US,

NS) on the two measures pc and P∞.
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Obviously, irrespective of the network topology, a given

subnetwork is more vulnerable than the complete network

in the sense that a subnetwork always collapses prior to the

complete network. Hence, interpreting the attack robustness

results when only a subgraph is observed, as is often the case

in the real world, could make us, on one hand, over-optimistic

in the situations of beneficial attacks such as the regulation

of cancer stem cells or containing pandemic diseases, while

on the other hand, over-pessimistic when the attacks are

malicious, e.g., sabotage on the Internet and damage on the

infrastructures. Interestingly, we find that such illusion could

be significant in some situations while negligible in others,

depending on the interplay between the network topology, the

attack mode, the sampling method, as well as the amount of

data missing. Our extensive simulations are in good agreement

with analytical calculations. Simulation results are based on

synthetic network models with N = 106 nodes and averages

over 100 realizations. In addition to the model networks, sim-

ulations on real-world networks, including social, technical,

biological and infrastructural ones are also performed.

It is worth noting that, in addition to pc and P∞ considered

here, there have been a number of other robustness metrics

reported in the literature, but mostly based upon these two

measures as well as shortest path lengths in the networks; see

e.g. [27], [50], [51]. As such, these measures are computation-

ally more involved and not analytically tractable in general.

III. THEORETICAL FRAMEWORK ON SUBGRAPH

ROBUSTNESS

In this section, we perform the analytical study on subgraph

robustness under three types of attacks, RA, LA, and TA,

respectively. We mention that the equations derived below for

finding robustness in RA, LA, and TA have more or less been

studied in previous works, particularly, [32], [40], [44], in

the case of fully observed networks (i.e., q = 1). We show

below how these techniques can be adapted in networks with

any amount of data missing to paint a larger picture in the

framework of subgraph robustness. The results reveal non-

trivial phenomena which have not been observed in an entire

network with given degree distribution (see Section IV for

details).

A. Subgraph robustness under RA

We begin with the robustness of US under RA. In a random

attack, each node of US is occupied, i.e., remains intact, with

probability p. Therefore, RA launched on US is equivalent

to the classical node percolation on the entire network with

occupation probability pq [1]. Recall that the generating func-

tion of the degree distribution is G0(x) =
∑

∞

k=0 P (k)xk.

The generating function H1(x) of the size distribution of the

clusters that can be reached following a randomly chosen

edge satisfies a self-consistency equation H1(x) = 1 −
pq + pqxG1(H1(x)), where G1(x) = G′

0(x)/G′

0(1) [32].

Likewise, the generating function for the size of the cluster

to which a randomly chosen node belongs is generated by

H0(x) = 1 − pq + pqxG0(H1(x)). Therefore, the mean size

of small clusters is

H ′

0(1) = pq

[

1 +
pqG′

0(1)

1 − pqG′

1(1)

]

, (1)

which diverges when 1 = pqG′

1(1) marking the critical value

pc at which the giant component collapses. Noting that q >
1/G′

1(1) guarantees the existence of a giant component in US,

we have

pc(RA) = min

{

1,
1

qG′

1(1)

}

. (2)

The fraction of the giant component in the original network,

denoted by S(RA), is given by

S(RA) = 1 − H0(1) = pq[1 − G0(u)], (3)

where u = H1(1) satisfies u = 1 − pq + pqG1(u). We define

P∞ as the relative size of the giant component as a fraction of

the entire network. By definition, we have P∞(RA) = S(RA).
Clearly, when all nodes are observable, i.e., q = 1, Eqs. (2)

and (3) reduce to the usual site percolation framework [32].

Next, we turn to the robustness of NS under RA. A key

observation here is that the non-uniform sampling can be

described by the so-called localized attack procedure, where

nodes are attacked shell by shell from a random root node until

a certain fraction of nodes are removed [40], [52]. Following

[40], the generating function of the degree distribution of NS

becomes

Ĝ0(x) =
1

G0(f)
G0

(

f +
G′

0(f)

G′

0(1)
(x − 1)

)

, (4)

where f = G−1
0 (q). Let Ĝ1(x) = Ĝ′

0(x)/Ĝ′

0(1). By defining

the two generating functions Ĥ0(x) and Ĥ1(x) for the size

distributions of the clusters similarly, and following the above

site percolation procedure with occupation probability p, we

are led to the critical equation which determines the break-up

point of the giant component 1 = pĜ′

1(1). Hence, by using

(4) we obtain

pc(RA) = min

{

1,
G′

0(1)

G′′

0(f)

}

, (5)

where again f = G−1
0 (q). Note that when Ĝ′

1(1) = 1, namely,

q satisfies G′

0(1) = G′′

0(f), we have pc = 1, which is precisely

the time when a giant component first forms in NS [40].

The fraction of the giant component in NS, denoted by

S(RA), is given by

S(RA) = 1 − Ĥ0(1) = p[1 − Ĝ0(u)], (6)

where u = Ĥ1(1) satisfies u = 1−p+pĜ1(u). By definition,

we have P∞(RA) = qS(RA). Note that when q = 1, i.e., all

nodes are observed, we readily reproduce the framework in

[40] since Ĝ0(x) = G0(x).

B. Subgraph robustness under LA

In this section, we investigate another popular type of attack,

LA, which is first introduced in [40] and further developed by

some other researchers; see e.g., [41]–[43].

First, we consider the robustness of US under LA. US is

a random subgraph obtained by occupying each node with
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probability q in the original network. Following the method

introduced in [32], [44], we find the generating function for

the degree distribution of US to be

G̃0(x) =

∞
∑

k=0

P (k)(1 − q + qx)k. (7)

We then perform LA on US until a fraction 1−p of the nodes

are removed. The generating function of the degree distribution

of the remaining nodes in US can be derived as [40]

G̃0,p(x) =
1

G̃0(g)
G̃0

(

g +
G̃′

0(g)

G̃′

0(1)
(x − 1)

)

, (8)

where g = G̃−1
0 (p). Let G̃1,p(x) = G̃′

0,p(x)/G̃′

0,p(1). By

combining (7), (8) and the criterion for the network to collapse,

G̃′

1,p(1) = 1 [1], [32], we find that

pc(LA) = min{1, p̃c}, (9)

where p̃c satisfies G̃′′

0(G̃−1
0 (p)) = G̃′

0(1). Note that when q =
1/G′

1(1), we have G̃′′

0(1) = G̃′

0(1) and hence p̃c = 1, which

is precisely the time when a giant component first forms in

US.

The fraction of the giant component in US can be expressed

by

S(LA) = 1 − G̃0,p(u), (10)

where u = G̃1,p(u) [48]. By definition, we have P∞(LA) =
pqS(LA). Clearly, when q = 1, we reproduce the framework

in [40] since G̃0(x) = G0(x) by (7).

Next, we study the robustness of NS under LA. The degree

distribution of NS is generated by (4). We now perform LA

on NS until a fraction 1 − p of the nodes are removed. As in

the above case of US, the generating function of the degree

distribution of the remaining nodes in NS is shown to be given

by

Ĝ0,p(x) =
1

Ĝ0(h)
Ĝ0

(

h +
Ĝ′

0(h)

Ĝ′

0(1)
(x − 1)

)

, (11)

where h = Ĝ−1
0 (p). Define Ĝ1,p(x) = Ĝ′

0,p(x)/Ĝ′

0,p(1).
Combining (4), (11) and the criterion for the network to

collapse, Ĝ′

1,p(1) = 1 [32], we find that

pc(LA) = min{1, p̂c}, (12)

where p̂c satisfies Ĝ′′

0(Ĝ−1
0 (p)) = Ĝ′

0(1). Note that when

Ĝ′

1(1) = 1, namely, q satisfies G′

0(1) = G′′

0(G−1
0 (q)), we

have Ĝ′′

0(h) = Ĝ′

0(1) = Ĝ′′

0(1) and hence p̂c = 1, which is

precisely the time when a giant component first forms in NS.

The fraction of the giant component in NS is given by

S(LA) = 1 − Ĝ0,p(u), (13)

where u = Ĝ1,p(u). By definition, we have P∞(LA) =
pqS(LA). Noting that Ĝ0(x) = G0(x) by (4) when q = 1, we

again reproduce the usual LA attacks on the entire network.

C. Subgraph robustness under TA

In a targeted attack, a fraction 1 − p of nodes are attacked

and removed according to their degrees. Following [37], [44],

we assign to each node in the observed subgraph a value

Wα(ki) =
kα

i
∑N

i=1 kα
i

, (14)

to indicate the probability that a node i with degree ki is

attacked, where α is a real and N is the number of nodes in

the subnetwork in question. When α > 0, nodes with higher

degree have a higher probability to be removed; pushing it

to the limit α → ∞ yields the attack strategy that nodes are

removed strictly in the decreasing order of connectivity. The

case α < 0 implies the opposite strategies. Note that TA with

α = 0 is equivalent to RA with equal probability. In fact, we

have pc(TA) = pc(RA) and P∞(TA) = P∞(RA) for both

US and NS when α = 0; see below and Appendix A for a

proof.

Fix a value of α. We begin with the robustness of US under

TA. The generating function for the degree distribution of US,

denoted by P̃ (k), is given by (7). In other words, we have

G̃0(x) =
∑

∞

k=0 P̃ (k)xk =
∑

∞

k=0 P (k)(1 − q + qx)k In fact,

P̃ (k) can be explicitly calculated as P̃ (k) = 1
k!

dkG̃0(x)
(dx)k

∣

∣

x=0
=

qk
∑

∞

l=k P (l)P k
l (1 − q)l−k for k ≥ 0. Following [44], [52],

[53], we define G̃α(x) =
∑

∞

k=0 P̃ (k)xkα

and t = G̃−1
α (p),

and the degree distribution of the remaining nodes in US after

TA (but keeping the edges connecting to those removed nodes)

is generated by G̃t(x) = p−1
∑

∞

k=0 P̃ (k)tk
α

xk. Performing

another bond percolation by using the same approach as in

[1], [44], we obtain the generating function of the remaining

network as

G̃0,t(x) = G̃t(1 − pt + ptx), (15)

where pt =
[

∑

∞

k=0 P̃ (k)ktk
α
]/[

∑

∞

k=0 P̃ (k)k
]

. Define

G̃1,t(x) = G̃′

0,t(x)/G̃′

0,t(1). Combining (7), (15) and the

criterion for the network to collapse, G̃′

1,t(1) = 1, we find

that

pc(TA) = min{1, pc,t}, (16)

where pc,t satisfies t = G̃−1
α (p) and

∑

∞

k=0 P̃ (k)k =
∑

∞

k=0 P̃ (k)tk
α

k(k−1). Note that when q = 1/G′

1(1), we have

G̃′′

0(1) = G̃′

0(1) and hence pc,t = t = 1, which is precisely

the time when a giant component first forms in US.

The fraction of the giant component in US can be expressed

by

S(TA) = 1 − G̃0,t(u), (17)

where u = G̃1,t(u). By definition, we have P∞(TA) =
pqS(TA). Clearly, when q = 1, we reproduce the usual

targeted attack framework in [44], [48] since G̃0(x) = G0(x).
Finally, we consider the robustness of NS under TA.

The generating function for the degree distribution of

NS, denoted by P̂ (k), is given by (4). Therefore, P̂ (k)

can be explicitly calculated as P̂ (k) = 1
k!

dkĜ0(x)
(dx)k

∣

∣

x=0
=

[k!G0(f)]−1G
(k)
0 (f − G′

0(f)/G′

0(1)) [G′

0(f)/G′

0(1)]k for

k ≥ 0. Similarly, following [44], [52], [53], we define

Ĝα(x) =
∑

∞

k=0 P̂ (k)xkα

and s = Ĝ−1
α (p), and the degree
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Fig. 2. (a) Percolation threshold pc as a function of relative subgraph size q for ER networks with size N = 10
6 and λ = 5. Corresponding fraction of

giant component P∞ as a function of p is presented for (b) q = 0.8 and (c) q = 1. Theoretical predictions (solid lines) and simulations (symbols) for US
and NS, and for RA, LA, and TA (with α = 1), respectively, agree well with each other, where averages are taken over 100 realizations.

distribution of the remaining nodes in NS after TA (but

keeping the edges connecting to those removed nodes) is

generated by Ĝs(x) = p−1
∑

∞

k=0 P̂ (k)skα

xk. Performing a

bond percolation by using the same approach as in [1], [44],

we obtain the generating function of the remaining network

as

Ĝ0,s(x) = Ĝs(1 − ps + psx), (18)

ps =
[

∑

∞

k=0 P̂ (k)kskα
]/[

∑

∞

k=0 P̂ (k)k
]

. Define Ĝ1,s(x) =

Ĝ′

0,s(x)/Ĝ′

0,s(1). Combining (4), (18) and the criterion for the

network to collapse, Ĝ′

1,s(1) = 1, we find that

pc(TA) = min{1, pc,s}, (19)

where pc,s satisfies s = Ĝ−1
α (p) and

∑

∞

k=0 P̂ (k)k =
∑

∞

k=0 P̂ (k)skα

k(k − 1). Note that when Ĝ′

1(1) = 1, namely,

q satisfies G′

0(1) = G′′

0(G−1
0 (q)), we have Ĝ′′

0(1) = Ĝ′

0(1)
and hence pc,s = s = 1, which is precisely the time when a

giant component first forms in NS.

Similarly, the fraction of the giant component in NS is given

by

S(TA) = 1 − Ĝ0,s(u), (20)

where u = Ĝ1,s(u). By definition, we have P∞(TA) =
pqS(TA). When q = 1, we again reproduce the usual targeted

attack framework because f = 1 and Ĝ0(x) = G0(x).

IV. NUMERICAL RESULTS

In this section, we calculate numerical solutions of the

analytical expressions and compare our theoretical results with

simulations on three types of complex network benchmarks

including ER, RR, and SF networks. An ER network follows

a Poisson degree distribution P (k) = e−λλk/k! (k ≥ 0) with

average degree 〈k〉 = λ. An RR network has a degenerated

degree distribution P (k) = δk,k0
, meaning that each node

is connected to the same number k0 of neighbors. A SF

network follows a power-law degree distribution P (k) ∼ k−γ

(kmin ≤ k ≤ kmax), where γ > 0 is the scaling exponent,

kmin and kmax indicate the minimum and maximum degrees,

respectively. All the simulation results are obtained for net-

works with N = 106 nodes. We also instantiate the general

formula obtained in Section 3 in the special cases of ER

and RR networks in Appendices B and C, respectively, for

reference.

A. ER networks

The subgraph robustness results gathered in Fig. 2 for ER

network allow us to draw several interesting comments. First,

an increase in the relative subgraph size q systematically yields

an decrease in pc as well as an increase in P∞ for both US

and NS, and for all attack strategies. This means that the

larger the observed subgraph is, the longer it takes to break

it, as one would expect. Furthermore, the bias of pc caused

by the data missing is not linearly correlated with q. When

q is small, e.g., q ∈ [0.2, 0.4], pc changes dramatically, while

pc(q) is relatively close to pc(1) for q > 0.8. This suggests

that ER networks have a tolerance for mild data missing (esp.

under RA and LA), lending support to the qualitatively similar

observations for other topological properties [7], [19], [20].

Second, as predicted in Appendix B, we have pUS
c (RA) =

pNS
c (RA) = pUS

c (LA) = pNS
c (LA) and PUS

∞
(RA) =

PNS
∞

(RA) = PUS
∞

(LA) = PNS
∞

(LA) for all p and q. This

is an extension of the phenomenon discovered originally in

[40] that the two competitive factors behind LA, namely, the

factor due to heterogeneity that hubs are more likely within

the attacked area accelerating the network fragmentation and

the factor due to localization that only nodes on the surface

of the attacked area contribute to the breakdown mitigating

the fragmentation process, compensate exactly for each other

in ER networks. Our theoretical calculations (see Appendix

B) indicate that both US and NS possess the same thinned

Poisson degree distribution (namely, with smaller event rate),

which explains the equivalent effect of RA and LA on them. In

other words, the uniform sampling and non-uniform sampling

considered here for ER networks are essentially equivalent.

Third, among the three types of attacks, TA is always the

most powerful for both US and NS, as well as all p and

q. Moreover, the observed equivalence, namely, pUS
c (TA) =

pNS
c (TA) and PUS

∞
(TA) = PNS

∞
(TA), holds for all α, which

is again due to the second point mentioned above. Fourth,

from Fig. 2(b) and (c) we observe second-order percolation

transition behaviors as expected. The critical threshold at
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Fig. 3. (a) Percolation threshold pc as a function of relative subgraph size q for RR networks with size N = 10
6 and k0 = 5. Two points of intersection are

indicated by A and B. Corresponding fraction of giant component P∞ as a function of p is presented for (b) q = 0.8 and (c) q = 1. Theoretical predictions
(solid lines) and simulations (symbols) for US and NS, and for RA, LA, and TA (with α = 1), respectively, agree well with each other, where averages are
taken over 100 realizations.

P∞ = 0 coincides with the critical probability pc in Fig. 2(a)

for all attack strategies and all q considered. For instance, both

Fig. 2(a) and (b) indicate pc ≈ 0.4 for TA (with α = 1) when

q = 0.8, i.e., 80% of the nodes are observed.

B. RR networks

In Fig. 3 we show the subgraph robustness for RR networks

under various attack schemes. The behaviors observed deviate

largely from those in ER networks. First, we have pUS
c ≥ pNS

c

for any relative subgraph size q and attack strategies con-

sidered, where the equality is attained at q = 1 (see Fig.

3(a)). This means that US of RR networks is more vulnerable

against attacks than NS of the same size. Note that one of

the fundamental observations in [40], [43], putting it in our

language, that the giant component in NS of RR networks is

larger than that in US of RR networks does not imply our

result since pc is not linearly correlated with P∞.

Second, for both US and NS, TA is the most powerful

one among these attacks as one would expect. Moreover, we

observe pUS
c (RA) ≥ pUS

c (LA) and pNS
c (RA) ≥ pNS

c (LA),
and the analogous inequalities for PUS

∞
and PNS

∞
hold for

all p, meaning that RA is always more powerful than LA.

(The rigorous quantitative relationship between them can be

found in Appendix C.) When q = 1, i.e., the entire RR

network is observed, this phenomenon can be attributed to

the disappearance of heterogeneity factor behind LA, with

only the localization factor mitigating the fragmentation of

the network leading to the lower efficiency of LA [40]. Our

finding highlights that US and NS for any q ≤ 1 are still quite

homogeneous to the extent that localization factor becomes

dominant and the subnetwork in question becomes more robust

against LA than against RA.

Third, we find interestingly from Fig. 3(a) two crossover

points, namely, A of pUS
c (LA) and pNS

c (RA), and B of

pUS
c (LA) and pNS

c (TA). It is easy to verify that such crossover

points exist for all RR networks with k0 > 2 by our theoretical

derivation in Appendix C. The existence of these crossover

points indicates that, although RR networks are more resilient

against LA than against RA for a given type of subgraph

sampling, US under LA can be more fragile than NS under

RA when q < Aq, where Aq represents the value of q
corresponding to the point A. Similar results hold when

comparing LA and TA (with any given α). These phenomena

highlight that LA is not always the least harmful strategy for

RR networks when subgraph robustness is taken into account,

in sharp contrast to the robustness behavior of the entire

network [40], [43].

Fourth, comparing Fig. 3(b), (c) and Fig. 3(a), we see

that the critical threshold at P∞ = 0 again coincides with

the critical probability pc for all attack strategies and all

q considered. The behaviors of P∞ and pc are generally

consistent with each other. As in ER networks, pc(q) (and

P∞(p) at q, resp.) is quite close to pc(1) (and P∞(p) at q = 1,

resp.) when q is large, say, q ≥ 0.8. This implies that that RR

networks also have a tolerance for mild data missing.

C. SF networks

We show in Fig. 4 the subgraph robustness for SF networks

with an archetypal scaling exponent γ = 2.36 under various

attack schemes. The behaviors observed differ markedly from

those for homogeneous ones such as ER and RR networks.

First, we observe that pUS
c ≤ pNS

c for any relative subgraph

size q and attack strategies considered (see Fig. 4(a)), where

the equality is attained at q = 1 implying that US of SF

networks is more resilient against attack than NS of the same

size. Similarly as commented above, this goes beyond the

basic observation in [40], [43] that the giant component in

US of SF networks is larger than that in NS of SF networks.

It is worth mentioning that the difference between the two

curves pNS
c and pUS

c hinges on the degree of heterogeneity

of the underlying network. For instance, when the network in

question becomes more homogeneous, i.e., when it possesses

a larger γ, the inequality may reverse (the corresponding

percolation thresholds will look like Fig. 3(a) for an RR

network). We verified this by simulations for SF networks

with γ = 5. Similar crossover phenomena for SF networks

have been reported recently in [40], [42], [43] due to the

competition of the two factors behind LA.

Second, TA is again the most powerful one among these

three types of attack for both US and NS. However, in contrast
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Fig. 4. (a) Percolation threshold pc as a function of relative subgraph size q for SF networks with size N = 10
6, γ = 2.36, kmin = 2, and 〈k〉 = 5. Three

points of intersection are indicated by A, B and C. Corresponding fraction of giant component P∞ as a function of p is presented for (b) q = 0.8 and (c)
q = 1. Theoretical predictions (solid lines) and simulations (symbols) for US and NS, and for RA, LA, and TA (with α = 1), respectively, agree well with
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to ER and RR networks, we see that pUS
c (LA) ≥ pUS

c (RA)
and pNS

c (LA) ≥ pNS
c (RA), and the analogous inequalities

for PUS
∞

and PNS
∞

hold for all p, suggesting that LA is

always more powerful than RA. In the special case of q = 1,

this phenomenon is first reported in [40], attributing to the

dominance of heterogeneity factor of LA, which accelerates

the breakdown of the network under LA. Our finding reveals

that US and NS for any q ≤ 1 are still heterogenous to

the extent that heterogeneity factor remains dominant. This

phenomenon, nevertheless, again relies on the heterogeneity

of the SF network in question; namely, for SF networks with

large γ, the robustness behaviors will more or less like those

for RR networks. This is confirmed by simulations for SF

networks with γ = 5.

Third, Fig. 4(a) displays three crossover points, i.e., A of

pUS
c (LA) and pNS

c (RA), B of pUS
c (TA) and pNS

c (RA), and

C of pUS
c (TA) and pNS

c (LA). It is easy to verify numerically

that such crossover points exist for SF networks with relatively

small γ, namely, for typical heterogenous SF networks. The

existence of these crossover points suggests that, although a

typical SF network is more resilient against RA than against

LA or TA for a given type of subgraph sampling, NS under

RA can be more vulnerable than US under LA when q < Aq,

and resp., US under TA when q < Bq, where Aq and Bq

are defined as before. This means that RA is not always

the least harmful strategy for a typical SF network when

subgraph robustness is taken into account, Furthermore, TA

is not always the most powerful attack either when it comes

to different subgraph robustness. For example, NS under LA

is more fragile than US under TA (with α = 1) when q < Cq.

These phenomena highlight the importance of understanding

subgraph robustness in predicting network robustness as well

as designing resilient infrastructures.

Fourth, comparing Fig. 4(b), (c) and Fig. 4(a), we observe

that the critical threshold at P∞ = 0 coincides with the critical

probability pc for all attack strategies and all q considered.

Similarly as in ER and RR networks, the behaviors of P∞

and pc are generally consistent with each other.

Finally, distinct from ER and RR networks, we notice that

the curve pNS
c (RA) (as well as PNS

∞
(RA) at q) changes much

more prominently as compared to the other five curves for

relatively large values of q, e.g., q ≥ 0.8 (see Fig. 4(a)).

This can be intuitively explained as follows. When q decreases

gradually starting from 1 in the non-uniform way, the observed

subnetwork (NS) undergoes a change by missing possibly

a handful of hubs but in a localized way. The subgraph

robustness for LA and TA is not very sensitive to q because

the attacked nodes under these two strategies can be far away

from the missing nodes. However, for RA, the attacked nodes

are likely to escalate the damage caused by the missing nodes,

producing an evident change of the subgraph robustness with

respect to q. On the other hand, as one would expect, pUS
c is

not sensitive for large q since the missing nodes are mostly

small degree nodes having limited contribution to the network

robustness. Our result indicates that a typical SF network

may have very poor error tolerance for mild data missing in

the non-uniform way while at the same time hold relatively

strong tolerance for mild data missing in the uniform way,

complementing the celebrated robustness characteristics of SF

networks, namely, they are resilient against random error but

fragile to targeted attack [26].

D. A closer look at US and NS with data missing

The quantitative difference between uniform and non-

uniform random sampling for different network topologies

and attack strategies can be better fathomed using the ratio

pUS
c /pNS

c in Fig. 5 and the discrepancy PNS
∞

− PUS
∞

in Fig.

6. Marked signatures of ER, RR, and SF networks can be

observed. First of all, US and NS of ER networks have

precisely the same robustness in terms of pc and P∞ under

all kinds of attack strategies as discussed above.

For RR networks, NS turns out to be always more robust

than US with the peak of the ratio pUS
c /pNS

c attained at

q = (k0 − 1)−1 = 0.25 (c.f. Fig. 3(a)). The peak of the ratio

for LA is over 2.5, which is more prominent than those for

RA and TA. However, with relatively mild data missing, say,

q ≥ 0.6, the ratio for RA, LA, and TA are similar. Therefore,

if we have a subnetwork of an RR network without knowing

the sampling process, we may perform LA on it and establish
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Fig. 6. The difference PNS
∞

− PUS
∞

as a function of relative subgraph size q under (a) RA, (b) LA, and (c) TA (with α = 1) for p = 0.8 and 1. The same
ER, RR, and SF networks as above are used here.

Bayesian statistical tests to determine whether uniform or non-

uniform sampling is closer to the truth. It follows from Fig.

6 that all the three attacks are of similar efficacy on RR

networks when PNS
∞

− PUS
∞

is taken into consideration. They

are good estimators for differentiating between uniform and

non-uniform random samplings again around q = (k0 − 1)−1

(where the peaks appear in Fig. 6) with a shift towards the

larger q as the attack goes on. It is also noteworthy that, in

the event of mild data missing, e.g., q ≥ 0.7, the difference

between PNS
∞

and PUS
∞

appears negligible when the loss of

the nodes is minor, e.g., does not exceed 20% (c.f. Fig.3 (b),

(c)).

For SF networks, US is always more robust than NS as we

have explained above. The ratios pUS
c /pNS

c for LA and TA are

very similar with a negative peak at q ≈ 0.45 corresponding

to the critical value at which the giant component of NS

collapses (c.f. Fig. 4(a)). Strikingly, the ratio for RA behaves

rather differently: it has a flat and deep bottom in the interval

(approximately) q ∈ [0.2, 0.8] and increases rapidly when

q approaches 1. Due to the displayed remarkable difference

between pUS
c and pNS

c , RA can be exploited to effectively

distinguish between US and NS for both mild and severe

data missing scenarios in SF networks. We observe from Fig.

6 that the discrepancy PNS
∞

− PUS
∞

displays similar patterns

for all three attacks on SF networks; namely, a negative peak

appears at q ≈ 0.45 with a shift towards the larger q as the

attack continues. In contrast to RR networks, we find that

PNS
∞

−PUS
∞

for SF networks is the most sensitive to TA while

the least sensitive to RA among the three attacks considered.

This sheds light on the essential difficulty in dealing with TA

on SF networks, which perhaps is the most common real-life

attack situation [26]; namely, the robustness of SF networks

under TA distinctively associates to varied factors, including

the amount of data missing, the sampling methods, and the

different stages of attack.

The key contributions of this work are summarized in Table

I below.

V. APPLICATIONS ON REAL NETWORKS

The study of subgraph robustness is important for un-

derstanding appropriately the resilience of many real-world

networks since data missing is prevalent in such systems.

To illustrate the availability of our framework, we investigate

four real-world networks: (i) a friendship network based on

Brightkite social network (Friend) on N = 56739 nodes,

where nodes represent users and edges indicate the friendship

between them [54]; (ii) a road network of Pennsylvania (Road)

on N = 1087562 nodes, where nodes represent intersections

between roads and edges mean road segments [55]; (iii) a

metabolic network of the Reactome project (Metabolism) on

N = 5973 nodes, where nodes are proteins and edges are

interactions between them [56]; (iv) a computer network of
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TABLE I
SUBGRAPH ROBUSTNESS CHARACTERIZATION OF NETWORKS UNDER ATTACKS .

Main findings

ER networks

1. US and NS are equivalent;
2. Both US and NS have good tolerance for mild data
missing under all attack strategies;
3. No crossover phenomenon occurs between US and NS;

1. Attack robustness increases
with the relative subgraph size
for both US and NS;
2. TA is the most harmful
attack strategy for both US
and NS;
3. P∞ shows second-order
phase transition for both US
and NS under all attack
strategies;

RR networks

1. US is more vulnerable against attacks than NS of the
same size under all attack strategies;
(The difference is maximized in general under LA);
2. RA is more harmful than LA for both US and NS;
3. Both US and NS have good tolerance for mild data
missing under all attack strategies;
4. Two crossover points exist between US and NS
with respect to relative subgraph size;

SF networks

1. US is more resilient against attacks than NS of the
same size under all attack strategies;
(The difference is maximized in general under RA);
2. LA is more harmful than RA for both US and NS;
3. NS has very poor tolerance for mild data missing under
RA, while US and NS have good tolerance for mild data
missing under other attack strategies;
4. Three crossover points exist between US and NS
with respect to relative subgraph size;

the Skitter project (Computer) on N = 1694616 nodes, where

nodes are autonomous system on the Internet and edges are

connections [57].
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Fig. 7. The ratio pUS
c /pNS

c as a function of relative subgraph size q for four
real networks (a) Friend (b) Road (c) Metabolism (d) Computer under RA,
LA, TA (with α = 1), and TB. For each q, the result is averaged over 100
simulation runs.

In addition to RA, LA, TA, we here study the effect on

network robustness of targeted removal of nodes according to

betweenness centrality (TB for short). The betweenness cen-

trality of a node is defined as the number of geodesic paths that

pass through this node [1]. Different from degree centrality,

betweenness centrality accounts for non-local structure of the

network, where nodes with high betweenness centrality play

a key role in governing the information flow.

We simulate the ratio pUS
c /pNS

c for the four types of attack

strategies on these networks with mild data missing, i.e.,

q ∈ [0.8, 1]. The results are gathered in Fig. 7. Apparently,

Friend, Metabolism, and Computer networks show the sig-

nature of SF networks; the curve for RA is much steeper

than those for LA and TA when q approaches 1. This agrees

with our theory since the empirical statistics obtained in [54],

[56], [57] show power-law degree distributions for all these

three networks with scaling exponents γ ≈ 2.5, 1.7, and 2.3,

respectively. On the other hand, note that Road network is a

highly regular one with maximum degree 9 [55]. The curves in

Fig. 7(b) decreases gradually with respect to q. It is interesting

to observe that the ratio under LA begins to surpass that under

TA when q is getting smaller than, say, 0.85, which is in line

with our above derived result for RR.

One somewhat unexpected result is that targeting nodes

according to either degree (TA) or betweenness (TB) has much

the same effect. We contend that the similarity in effect may

find its origins in the lack of specific structural properties that

would favor betweenness centrality to be superior robustness

indicators than degree, as is observed in [57] for Computer

network. For example, although the networks considered

here have power-law or exponential degree distributions with

changing q, they are essentially random by nature and are lack

of low degree nodes acting as “bridges” connecting highly

connected parts of the networks. The correlation between TA

and TB has also been discussed and compared numerically in

[31], [58] in terms of giant component size and diameter.

VI. CONCLUSIONS

Complex networks underlying a variety of technical, bio-

logical, social, and physical systems are confronted with data

missing constantly. In this paper, we introduce the subgraph

robustness problem created from the uniform random sampling

as well as the non-uniform random sampling. We develop a

theoretical framework to investigate robustness properties of

the two types of subnetworks under random attacks, localized

attacks, and targeted attacks. We show that ER, RR, and SF

networks have their own characteristic subgraph robustness

features, which are distinct from the robustness of the entire
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networks. Our results underscore the importance of under-

standing the different sampling processes and their conse-

quences on attack robustness of various network structures

(see Table I in Section IV).

In the present study, we have shown that the evaluation

of the impact of failures on the network connectivity can be

biased by the lack of information based on a priori knowledge

of the degree distribution. Nevertheless, in most practical

cases, it is unfeasible to estimate the network properties in

advance as a means of supporting the robustness to failure

analysis. Techniques tailored for specific applications, such as

immunization and communication systems, are to be proposed

to deal with the lack of information despite the network

topology properties. On the other hand, the importance of

looking at the entire history of the disintegration process to

understand the network robustness is argued in [51]. How

data missing influences the structural robustness in this context

is to be understood. The present work may provide a useful

theoretical reference for these future quest and exploitation.

It is hoped that our results will stimulate further research

efforts on the subgraph robustness problem and other related

interesting and challenging questions.

APPENDIX A

PROOF FOR EQUIVALENCE OF RA AND TA WHEN α = 0

Let α = 0 in (14). We first prove the equivalence of

RA and TA in US. It follows from (7) and
∑

∞

k=0 P̃ (k)k =
∑

∞

k=0 P̃ (k)tk(k − 1) (see the equation below Eq.(16)) that

t =

∑

∞

k=0 P̃ (k)k
∑

∞

k=0 P̃ (k)k(k − 1)
=

G̃′

0(1)

G̃′′

0(1)
=

G′

0(1)

qG′′

0(1)
. (21)

Noting that G̃α=0(x) = x, we have pc,t = t = 1/[qG′

1(1)]
and pc(TA) = pc(RA) by (16) and (2). Now, we turn to
the relative size of the giant component. Note that t = p.

It then follows from (15) that G̃0,t(x) = G̃0(1 − t + tx) =
∑

∞

k=0 P (k)(1 − pq + pqx)k. Therefore, (17) reduces to
(

P∞(TA) = pq
ˆ

1−
P

∞

k=0 P (k)(1− pq + pqv)k
˜

,

v = G̃1,t(u) =
P

∞

k=0
(1−pq+pqv)k−1

P

∞

k=0
kP (k)

.
(22)

It is easy to see that P∞(TA) = P∞(RA) by comparing (22)

and (3) and employing the transformation u = 1 − pq + pqv.

Next, we prove the equivalence of RA and TA in NS. It

follows from (4) and
∑

∞

k=0 P̂ (k)k =
∑

∞

k=0 P̂ (k)sk(k − 1)
(see the equation below Eq.(19)) that

s =

∑

∞

k=0 P̂ (k)k
∑

∞

k=0 P̂ (k)k(k − 1)
=

Ĝ′

0(1)

Ĝ′′

0(1)
=

1

Ĝ′

1(1)
. (23)

Noting that Ĝα=0(x) = x, we have pc,s = s = 1/Ĝ′

1(1) and

hence pc(TA) = pc(RA) by (19) and (5). Note that s = p.

Using (4) and (18), we observe that (20) can be recast as






















P∞(TA) = pq[1 − Ĝs(1 − p + pv)]

= pq
[

1 −
∑

∞

k=0 P̂ (k)(1 − p + pv)k
]

,

v = Ĝ1,s(v) =
Ĝ′

0,s(v)

Ĝ′

0,s(1)
=

Ĝ′

0
(1−p+pv)

Ĝ′

0
(1)

= Ĝ1(1 − p + pv).

(24)

It is then direct to verify that P∞(TA) = P∞(RA) by compar-

ing (24) and (6) and applying the transformation u = 1−p+pv.

APPENDIX B

DERIVATION FOR SUBGRAPH ROBUSTNESS OF ER

NETWORKS

Recall that an ER network follows a Poisson degree distribu-

tion P (k) = e−λλk/k! for k ≥ 0. Hence, G0(x) = G1(x) =
eλ(x−1). By directed calculations based on the theoretical

framework developed in Section 2, we derive the following.

For US under RA, we have pUS
c (RA) = min{1, (λq)−1}.

(Here, and in what follows, we will often use the superscripts

US and NS to avoid ambiguity.) PUS
∞

(RA) = pq[1−eλ(u−1)],
where u = 1 − pq + pqeλ(u−1). Note that Ĝ0(x) = Ĝ1(x) =
eλq(x−1). Hence, for NS under RA, we have pNS

c (RA) =
min{1, (λq)−1} and PNS

∞
(RA) = pq[1 − eλq(u−1)], where

u = 1 − p + peλq(u−1).

For US under LA, we obtain pUS
c (LA) = min{1, (λq)−1}

and PUS
∞

(LA) = pq[1 − eλpq(u−1)], where u = eλpq(u−1)

by noting that G̃0(x) = eλq(x−1) and G̃0,p(x) = G̃1,p(x) =
eλpq(x−1). Similarly, we have Ĝ0,p(x) = Ĝ1,p(x) =
eλpq(x−1). Therefore, for NS under LA, we have pNS

c (LA) =
min{1, (λq)−1} and PNS

∞
(LA) = pq[1 − eλpq(u−1)], where

u = eλpq(u−1). It is easy to see that pUS
c (RA) = pNS

c (RA) =
pUS

c (LA) = pNS
c (LA) and

PUS
∞

(RA) = PNS
∞

(RA) = PUS
∞

(LA) = PNS
∞

(LA) (25)

holds for all p and q.

To better appreciate the subgraph robustness under TA, we

here focus on the special case α = 1, that is, nodes are

deleted linearly depending on their degrees. Note that P̃ (k) =
e−λq(λq)k/k! for k ≥ 0, pt = tp, and G̃t(x) = p−1eλq(tx−1).

For US under TA, we obtain pUS
c (TA) = min{1, pc,t}, where

pc,t is determined by 1 = λqt2eλq(t−1) and p = eλq(t−1). We

have G̃0,t(x) = G̃1,t(x) = eλpqt2(x−1). Hence, PUS
∞

(TA) =

pq[1−eλpqt2(u−1)], where t is determined by p = eλq(t−1) and

u is determined by u = eλpqt2(u−1). Note that P̂ (k) = P̃ (k),
s = t, and Ĝs(x) = p−1eλq(sx−1). Accordingly, we have

pNS
c (TA) = pUS

c (TA) and

PNS
∞

(TA) = PUS
∞

(TA) (26)

for all p and q. It is not difficult to see that (26) also holds

for all α.

APPENDIX C

DERIVATION FOR SUBGRAPH ROBUSTNESS OF RR

NETWORKS

An RR network has a degenerated degree distribution

P (k) = δk,k0
. Hence, G0(x) = xG1(x) = xk0 . For US

under RA, we have pUS
c (RA) = min{1, [q(k0 − 1)]−1}

and PUS
∞

(RA) = pq(1 − uk0), where u = 1 − pq +

pquk0−1. Note that Ĝ0(x) =
[

1 + q
k0−2

k0 (x − 1)
]k0

and

Ĝ1(x) =
[

1 + q
k0−2

k0 (x − 1)
]k0−1

. For NS under RA, we have

pNS
c (RA) = min

{

1,
[

(k0 − 1)q
k0−2

k0

]−1
}

and PNS
∞

(RA) =

pq

{

1 −
[

1 + q
k0−2

k0 (u − 1)
]k0

}

, where u = 1 − p +

p
[

1 + q
k0−2

k0 (u − 1)
]k0−1

.



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS 11

For US under LA, we have pUS
c (LA) =

min
{

1, [q(k0 − 1)]−
k0

k0−2

}

by noting G̃0(x) =

(1 − q + qx)k0 and p = (1 − q + qg)k0 .

PUS
∞

(LA) = pq

{

1 −
[

1 + qp
k0−2

k0 (u − 1)
]k0

}

, where u

is given by u =
[

1 + qp
k0−2

k0 (u − 1)
]k0−1

. For NS under

LA, we have pNS
c (LA) = min

{

1, q−1(k0 − 1)−
k0

k0−2

}

and

PNS
∞

(LA) = pq

{

1 −
[

1 + (pq)
k0−2

k0 (u − 1)
]k0

}

, where u is

given by u =
[

1 + (pq)
k0−2

k0 (u − 1)
]k0−1

. We find that for

all q the following relations between RA and LA hold:

pUS
c (RA)k0 = pUS

c (LA)k0−2,

pNS
c (RA)k0 = pNS

c (LA)k0−2.
(27)

For US under TA with α = 1, we have

pUS
c (TA) = min

{

1, [t2q(k0 − 1)]−
k0

k0−2

}

, where t

satisfies 1 = t2(k0 − 1)q[1 + q(t − 1)]k0−2; and

PUS
∞

(TA) = pq

{

1 −
[

1 + qt2p
k0−2

k0 (u − 1)
]k0

}

,

where u satisfies u =
[

1 + qt2p
k0−2

k0 (u − 1)
]k0−1

and t is given by p = [1 + q(t − 1)]k0 . For NS

under TA with α = 1, we derive similarly that

pNS
c (TA) = min

{

1, q−1[s2(k0 − 1)]−
k0

k0−2

}

, where s

satisfies 1 = s2(k0 − 1)q
k0−2

k0

[

1 + q
k0−2

k0 (s − 1)
]k0−2

; and

PNS
∞

(TA) = pq

{

1 −
[

1 + s2(pq)
k0−2

k0 (u − 1)
]k0

}

, where u

satisfies u =
[

1 + s2(pq)
k0−2

k0 (u − 1)
]k0−1

and s is given by

p =
[

1 + q
k0−2

k0 (s − 1)
]k0

.
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