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Subgrid stabilization of Galerkin approximations of linear
monotone operators

J.-L. GUERMOND†

LIMSI (CNRS-UPR 3152), BP 133, 91403, Orsay, France

[Received 16 September 1998 and in revised form 17 January 2000]

This paper presents a stabilized Galerkin technique for approximating monotone linear
operators in a Hilbert space. The key idea consists in introducing an approximation space
that is broken up into resolved scales and subgrid scales so that the bilinear form associated
with the problem satisfies a uniform inf-sup condition with respect to this decomposition.
An optimal Galerkin approximation is obtained by introducing an artificial diffusion on the
subgrid scales.
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1. Introduction

This paper presents a stabilized Galerkin technique for approximating non-coercive
monotone linear operators in a Hilbert space. More precisely, let X ⊂ V ⊂ L be three
Hilbert spaces with dense and continuous embedding. The inner product of L is denoted
by (·, ·)L . This paper deals with the approximation of the following abstract problem:

For f ∈ L , find u ∈ X, ∀v ∈ X a(u, v)+ εd(u, v) = ( f, v)L , (1.1)

where ε � 0, d ∈ L(X × X;R) is X -coercive and the bilinear form a is in L(V × L;R)

and satisfies 

∃c > 0 inf

u∈V
sup
v∈L

a(u, v)

‖u‖V ‖v‖L
� c

∀v ∈ L (v �= 0) ⇒
(

sup
u∈V

a(u, v)

‖u‖V
�= 0

)
.

(1.2)

By defining the operator A : D(A) = V −→ L so that (Au, v)L = a(u, v), these
conditions are equivalent to stating that A is bijective. Furthermore, we assume that d is
associated with an unbounded operator D : D(D) ⊂ X −→ L so that (Du, v)L = d(u, v).
In practice, the situation we shall study corresponds to A being a first-order differential
operator and D being a coercive second-order differential operator (think of D = −∆ :
H2(Ω) ∩ H1

0 (Ω) −→ L2(Ω)).
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When ε = 0, problem (1.1) reduces to the following.

For f ∈ L , find u ∈ V, ∀v ∈ L a(u, v) = ( f, v)L . (1.3)

This problem can be solved efficiently by considering its least square formulation; namely,

For f ∈ L find u ∈ V, ∀v ∈ V (Au, Av)L = ( f, Av)L .

Thanks to the first inequality in (1.2), which is equivalent to ‖Aw‖L � c‖w‖V for all
w ∈ V , the bilinear form (Au, Av)L is V -coercive; hence, this formulation lends itself
quite efficiently to approximation by means of the conforming Galerkin technique.

In general, the situation is a little bit more complex, since ε is not zero but may
be arbitrarily small. As a result, coercivity may not be strong enough for the Galerkin
approximation to work properly. Consequently, the least square technique may seem to be
a good alternative to solve (1.1) also. However, since the domain of A+εD controls second
derivatives, conformity requires the least square method to work with C1 finite elements or
with the scalar product of the dual of X ; namely X ′. One way to avoid this difficulty is to
use the Galerkin/least square technique (see e.g. Brooks & Hughes, 1982; Hughes et al.,
1989). This approach consists of a linear combination of the Galerkin and the least square
formulations. More precisely, by denoting Aε = A + εD, it consists of the following.


For f ∈ L , find u ∈ X, so that ∀v ∈ X

a(u, v)+ εd(u, v)+ δ(ε, h)
∑

T∈Th

(Aεu, Aεv)L ,T = ( f, v)L + δ(ε, h)
∑

T∈Th

( f, Aεv)L ,T ,

where ∪T∈Th T is a triangulation, (·, ·)L ,T is the restriction of the L-scalar product to the
element T , and the coefficient δ(ε, h) is chosen as follows


δ(ε, h) = h, if ε � h

0 � δ(ε, h) � h, if h � ε � 2h

δ(ε, h) = 0, if 2h � ε.

This method is quite popular and works quite well. However, there are two problems:

1. There is a tuning coefficient that depends on the presence or the absence of the
coercive operator. The tuning is easily controllable in academic situations, but is a
tricky task for realistic problems (think of variable nonlinear viscosity or degenerate
elliptic operators, etc).

2. To the best of the author’s knowledge, the least square and Galerkin least
square methods cannot be generalized to time-dependent problems without using
discontinuous space–time finite elements.

The objective of the present paper is to propose a method that has the following
features. First, it has the same stability and approximation properties as the least square and
Galerkin least square methods for problem (1.1) but has no tuning coefficient that depends
on ε (see Remark 3.2 below). Second, it can be very easily generalized to approximate
linear contraction semi-groups by using standard finite element techniques.

The theory developed herein is based on two principles:
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(i) Since (1.2) guarantees the solution of problem (1.3) to be stable in the norm of
V , we introduce three approximation spaces Xh = X H ⊕ X H

h so that the triplet
(Xh, X H , a) satisfies a discrete inf-sup condition similar to (1.2). We refer to X H as
the resolved scale space and to X H

h as the subgrid scale space. The discrete inf-sup
condition in question permits the resolved scales of the approximate solution to be
controlled in the graph norm of A.

(ii) The subgrid scales can be controlled, in turn, by means of a small artificial diffusion
mechanism; the control being provided by a simple energy argument.

The outline of the paper is as follows. In §2 we concentrate on model problem (1.3).
Stability and quasi-optimal convergence results are proved. The results of §2 are
generalised in §3 to the case of (1.1). The theory presented in §2 and §3 relies on a uniform
inverse inequality (2.9) that is true for finite elements provided the mesh underlying the
approximation is quasi-uniform. This constraint being too strong for practical purposes,
since it a priori excludes local refinement and mesh adaptation, the theory is generalized
in §4 to the case of nonuniform meshes by using a local version of the inverse inequality.
Examples of applications of the present theory are shown in §5. Some of the results
presented in this paper were announced in Guermond (1999b,c).

2. Approximation of a model problem on uniform meshes

In this section, we concentrate on model problem (1.3) and we think of A as a first-order
differential operator.

2.1 A model problem

Let L be a real separable Hilbert space and V be a dense subspace continuously embedded
in L . Hereafter we identify L and its dual so that we are in the following classical situation:
V ⊂ L ≡ L ′ ⊂ V ′.

We introduce a continuous bilinear form a : V × L −→ R, and we assume that a is
monotone; that is

∀u ∈ V a(u, u) � 0. (2.1)

We introduce the symmetric part as : V × V −→ R of a as follows

∀(u, v) ∈ V × V as(u, v) = 1

2
(a(u, v)+ a(v, u)). (2.2)

It is clear that for all u in V we have a(u, u) = as(u, u) � 0; as a result, as is a symmetric
monotone bilinear form. Hereafter we shall make use of the following classical property:

LEMMA 2.1 Let E be a vector space and x : E × E −→ R be a symmetric monotone
bilinear form then

∀(u, v) ∈ E × E x(u, v) � x(u, u)1/2x(v, v)1/2.
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Furthermore, we assume that there is c > 0 so that

∀u ∈ V sup

v∈L

a(u, v)

‖v‖L
� c‖u‖2

V ,

∀v ∈ L (v �= 0) ⇒
(

sup
u∈V

a(u, v)

‖u‖V
> 0

)
.

(2.3)

This condition is equivalent to stating that the problem{
For f ∈ L , find u ∈ V so that

a(u, v) = ( f, v) ∀v ∈ L ,
(2.4)

has a unique solution. More precisely we have the following result.

THEOREM 2.1 Problem (2.4) has a unique solution and this solution satisfies

c1‖u‖V � ‖ f ‖L . (2.5)

Proof. This is a consequence of (2.3) together with a classical characterization of bijective
linear operators in reflexive Banach spaces, cf. e.g. Brezis (1983, pp 29–31). �

REMARK 2.1 When A is a first-order differential operator, problem (2.4) is essentially a
Petrov–Galerkin problem; that is, the solution space and the test space are different. The
failure of discrete Galerkin techniques to approximate properly this problem is rooted in
this basic fact. In general, the first inequality in (2.3) is not satisfied (uniformly with respect
to the mesh size) at the discrete level.

2.2 The discrete setting

To build a discrete approximation of u, we introduce X H and Xh , two finite-dimensional
subspaces of V . The indices H and h denote two positive parameters that tend to zero. In
the practical applications described in §5 we have h ≈ H/2.

The space X H is assumed to have the following approximation property: there is W , a
dense subspace of V , and there are k > 0 and c > 0 so that, for all v ∈ W

inf
wH∈X H

‖v − wH‖L + H‖v − wH‖V � cHk+1‖v‖W . (2.6)

From now on, c denotes a generic constant that does not depend on (H, h) and the value
of which may change in different occurrences.

The couple (X H , Xh) is assumed to satisfy the following discrete inf-sup condition:
there is ca > 0, independent of (H, h), such that

∀vH ∈ X H sup
φh∈Xh

a(vH , φh)

‖φh‖L
� ca‖vH‖V . (2.7)

Furthermore, we assume that X H ⊂ Xh , and there is a linear projection operator PH :
Xh −→ X H that is stable with respect to the L-norm:

∃c > 0, ∀(H, h), ∀vh ∈ Xh ‖PH vh‖L � c‖vh‖L . (2.8)
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For further references, we denote X H
h = (1 − PH )Xh , and for all vh in Xh we set vH =

PH vh and vH
h = vh − vH .

Since Xh is a finite-dimensional normed vector space, we assume that the following
inverse inequality holds:

∀vh ∈ V ‖vh‖V � ci H−1‖vh‖L . (2.9)

REMARK 2.2 It is shown in §5 that it is possible in general to find couples (Xh, X H )

satisfying the discrete condition above, where Xh can be broken up as follows: Xh =
X H ⊕ X H

h , the decomposition being L-stable. We refer to X H as the resolved scale space
and to X H

h as the subgrid scale space. This decomposition can be formally interpreted as
follows. For instance, assume that a is associated with a first-order differential operator
and assume that a finite element piecewise linear approximation of u is sought. The action
of the differential operator on any piecewise linear function generates discontinuities at
the interfaces of the finite elements. These discontinuities contain very small Fourier
modes that cannot be captured when tested against piecewise linear test functions; as a
consequence, the Galerkin technique is in general suboptimal for this class of problems
(unless the test space is finely tuned, see Baiocchi et al., 1993). On the other hand,
optimality can be recovered if subgrid scale test functions (i.e. those of X H

h ) are added to
the conventional test space composed of piecewise linear functions (i.e. X H ; the resolved
scales). The inf-sup condition (2.7) is the discrete counterpart of the first inequality in (1.2);
it warrants the resolved scales of the approximate solution to be stable in the norm of V
(i.e. to be free of spurious numerical wiggles).

REMARK 2.3 In the case of a finite element approximation, (2.9) holds uniformly if A is
a first-order differential operator, the mesh is quasi-uniform, and c1h � H � c2h. The
quasi-uniformity constraint is quite stringent since it a priori excludes local refinement
and mesh adaptation. The present theory will be extended to nonuniform meshes in §4.
The second constraint is equivalent to assuming that the dimension of X H is a fraction of
that of Xh . We shall see in §5 that in applications we have H = h or H = 2h.

2.3 The discrete problem

Having introduced subgrid scales to control the resolved scales of the approximate solution,
we are left with the problem of controlling also subgrid scales. To this purpose, we
introduce an artificial diffusion mechanism; that is, we define a bilinear form bh : X H

h ×
X H

h −→ R that satisfies the following continuity and coercivity properties: there is cB > 0
such that {

bh(vH
h , vH

h ) � H‖vH
h ‖2

b,

bh(vH
h , wH

h ) � cB H‖vH
h ‖b‖wH

h ‖b,
(2.10)

where the norm ‖ · ‖b is such that there are two constants ce1 > 0 and ce2 > 0 so that

∀vH
h ∈ X H

h ce1‖vH
h ‖V � ‖vH

h ‖b � ce2 H−1‖vH
h ‖L . (2.11)

EXAMPLE 2.1 Let ((·, ·))V denote the inner product in V . The simplest choice for bh is
bh(vH

h , wH
h ) = H((vH

h , wH
h ))V .
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EXAMPLE 2.2 Let X be a dense subspace of V , continuously embedded in V , so that
‖vH

h ‖X � ce2 H−1‖vH
h ‖L for all vH

h in X H
h ; then, by assuming that Xh ⊂ X and by

denoting ((·, ·))X the inner product in X , one can set bh(vH
h , wH

h ) = H((vH
h , wH

h ))X .

EXAMPLE 2.3 For the scalar advection equation β·∇ u = f in Ω , with suitable
assumptions on the vector field β, we have L = L2(Ω) and V = {v ∈ L2(Ω) | β·∇ v ∈
L2(Ω), v|Γ− = 0}, where Γ− is the inflow boundary (see Azerad & Pousin, 1996, or
Bardos, 1970, for technical details on this problem). Since H1(Ω) ⊂ V , the following two
definitions are possible for bh :

bh(vH
h , wH

h ) = H
∫
Ω

vH
h wH

h +
{

H
∫
Ω (β·∇ vH

h )(β·∇ wH
h ),

H
∫
Ω (∇vH

h ) · (∇wH
h ).

(2.12)

The second model may be helpful in practice to avoid cross-wind oscillations when
approximating very stiff problems.

LEMMA 2.2 There is cb > 0 such that

∀(H, h), ∀vH
h ∈ X H

h sup
wh∈Xh

bh(vH
h , wH

h )

‖wh‖L
� cb‖vH

h ‖b. (2.13)

Proof. The inverse stability property (2.11) together with the stability hypotheses (2.8)
and (2.10) yields

bh(vH
h , wH

h ) � cB H‖vH
h ‖b‖wH

h ‖b

� cBce2‖vH
h ‖b‖wH

h ‖L

� cBce2‖vH
h ‖b‖(1 − PH )wh‖L

� cBce2‖1 − PH‖ ‖vH
h ‖b‖wh‖L ·

The proof is complete. �

The discrete problem we consider hereafter is{
Find uh in Xh such that

a(uh, vh) + bh(u H
h , vH

h ) = ( f, vh) ∀vh ∈ Xh .
(2.14)

PROPOSITION 2.1 The discrete problem (2.14) has a unique solution.

Proof. Since the problem is set in a finite-dimensional vector space, it is sufficient to prove
an a priori bound on uh . By using uh as a test function in (2.14) we obtain

H‖u H
h ‖2

b � ‖ f ‖L‖uh‖L

� c‖ f ‖L‖uh‖V

� c‖ f ‖L(‖u H
h ‖V + ‖u H‖V )

� c‖ f ‖L(c−1
e1 ‖u H

h ‖b + ‖u H‖V ).
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An a priori bound on ‖u H‖V is provided by the discrete inf-sup condition (2.7),

ca‖u H‖V � sup
φh∈Xh

a(u H , φh)

‖φh‖L

� sup
φh∈Xh

f − a(u H
h , φh)− bh(u H

h , φH
h )

‖φh‖L

� ‖ f ‖L + ‖a‖‖u H
h ‖V + cb‖u H

h ‖b

� ‖ f ‖L + c−1
e1 ‖a‖‖u H

h ‖b + cb‖u H
h ‖b

� ‖ f ‖L + c‖u H
h ‖b.

As a result, by substituting this bound into the previous inequality, we have

H‖u H
h ‖2

b � c‖ f ‖L(‖ f ‖L + ‖u H
h ‖b)

� c
(

1 + c

2H

)
‖ f ‖2

L + 1

2
H‖u H

h ‖2
b,

from which we infer

‖u H
h ‖b + ‖u H‖V � c(H)‖ f ‖L ,

where c(H) depends continuously on H . This completes the proof. �

REMARK 2.4 The basic principles of the proposed technique can be summarized as
follows: introduce subgrid scales to capture the discontinuities generated by the differential
operator when acting on the approximate solution, and control the subgrid scales by an
artificial viscosity. The goal of the present paper is to show that a quasi-optimal Galerkin
approximation of problem (1.3) can be built by combining these two ideas. The notion
of scale separation and artificial dissipation of subgrid scales is rooted in many works:
e.g. subgrid modelling (Smagorinsky, 1963; Germano et al., 1991), the nonlinear Galerkin
method (Foias et al., 1988; Marion & Temam, 1990), and the stabilizing property of bubble
functions (Arnold et al., 1984; Brezzi et al., 1992; Baiocchi et al., 1993; Crouzeix &
Raviart, 1973).

2.4 Error analysis

The main convergence result of this section is

THEOREM 2.2 The discrete solution uh of (2.14) satisfies


as(u − uh, u − uh)1/2 � c inf
wH∈X H

[
H−1/2‖u − wH‖L + H1/2‖u − wH‖V

]
,

‖u − uh‖V + ‖u H
h ‖b � c inf

wH∈X H

[
H−1‖u − wH‖L + ‖u − wH‖V

]
.

(2.15)

Proof. Let us introduce some notation. Let wH be an arbitrary element in X H ; we set
ηh = u − wH , and eh = wH − uh . Note that we have u − uh = ηh + eh .
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The equation that controls eh is obtained by subtracting (2.14) from (2.4) where the
test functions span Xh :

∀vh ∈ Xh a(eh, vh)− bh(u H
h , vH

h ) = −a(ηh, vh).

Since X H is invariant under the projection PH and PH is linear, we infer

u H
h = uh − PH uh

= uh − wH − PH (uh − wH )

= −eh + PH eh

= −eH
h .

As a result, the equation that controls eh can be recast into the form

∀vh ∈ Xh a(eh, vh)+ bh(eH
h , vH

h ) = −a(ηh, vh).

By taking eh as a test function and by using the coercivity property (2.10) we obtain

as(eh, eh)+ H‖eH
h ‖2

b � −a(ηh, eh).

We control the right-hand side of the inequality above by proceeding as follows.

as(eh, eh)+ H‖eH
h ‖2

b � −a(ηh, eh)

� a(eh, ηh) − 2as(eh, ηh) (2.16)

� ‖a‖ ‖eh‖V ‖ηh‖L + γ as(eh, eh)+ 1

γ
as(ηh, ηh),

where we have used Lemma 2.1 and the inequality 2xy � γ x2 + y2/γ which is valid
for any positive constant γ . This constant will be chosen to meet our needs. Hereafter, γ

denotes a generic constant that can be chosen as small as needed and cγ is a constant that
depends on γ ; the values of γ and cγ may change at different occurrences.

To obtain a control on ‖eh‖V we use the discrete inf-sup condition (2.7),

ca‖eH‖V � sup
φh∈Xh

a(eH , φh)

‖φh‖L

� sup
φh∈Xh

−a(ηh, φh)− a(eH
h , φh)− bh(eH

h , φH
h )

‖φh‖L

� ‖a‖(‖ηh‖V + ‖eH
h ‖V )+ cb‖eH

h ‖b

� c(‖ηh‖V + ‖eH
h ‖b).

By using this bound and a triangle inequality, we obtain ‖eh‖V � c(‖ηh‖V + ‖eH
h ‖b). By

substituting this bound into (2.16), we have

(1 − γ )as(eh, eh)+ H‖eH
h ‖2

b � c(‖ηh‖V + ‖eH
h ‖b)‖ηh‖L + 1

γ
as(ηh, ηh),

� cγ ‖ηh‖V ‖ηh‖L + γ H‖eH
h ‖2

b + c′γ H−1‖ηh‖2
L .
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By choosing γ = 1/2, we obtain

as(eh, eh)+ H‖eH
h ‖2

b � cH−1(‖ηh‖2
L + H2‖ηh‖2

V ).

As a result we infer

as(u − uh, u − uh) + H(‖u − uh‖2
V + ‖u H

h ‖2
b)

� cH−1 inf
wH∈X H

[‖u − wH‖2
L + H2‖u − wH‖2

V ].

The proof is complete. �
COROLLARY 2.1 If u, the solution of (2.4), is in W , the discrete solution uh of (2.14)
satisfies {

as(u − uh, u − uh)1/2 � cHk+1/2‖u‖W ,

‖u − uh‖V + ‖u H
h ‖b � cHk‖u‖W .

(2.17)

REMARK 2.5 The bound (2.17) is optimal in the norm of V . On the other hand, if as is
L-coercive, (2.17) is not optimal in the norm of L: a factor H1/2 is missing. Actually, it can
be shown, by proceeding is in Zhou (1997) or Guermond (1999a), that optimality can be
recovered if the mesh underlying the approximation space Xh satisfies special geometric
properties.

REMARK 2.6 The estimate (2.17) is identical to the one that could be obtained by
applying the Galerkin least square method to the present problem (see Johnson et al., 1984,
or Hughes et al., 1989).

EXAMPLE 2.4 In the case of a convection problem, β·∇ u = f (under some reasonable
assumptions on β), we have ‖ ·‖L = ‖·‖0 and ‖ ·‖V = ‖·‖0+‖β·∇ ·‖0. For finite element
approximations, the convergence result reads ‖u − uh‖V � cHk‖u‖k+1, which is optimal;
see Guermond (1999a) or §5 for examples of admissible P1 and P2 finite elements.

2.5 A possible improvement in the definition of bh

The definition of the bilinear form bh can be sharpened if further assumptions on a are
made. Let us assume that a = a0 + a1 where the two bilinear forms a0 and a1 have the
following continuity properties:

∀(u, v) ∈ V × L a0(u, v) � c0as(u, u)1/2‖v‖L , (2.18)

∀(u, v) ∈ V × L a1(u, v) � c1|u|V ‖v‖L , (2.19)

where | · |V is a semi-norm in V such that

∀u ∈ V ‖u‖V � c(as(u, u)1/2 + |u|V ). (2.20)

Furthermore, we assume that a1, Xh , and X H satisfy the following property: There are
ca1 > 0, cδ � 0, independent of (H, h), such that

∀uh ∈ Xh sup
vh∈Xh

a1(u H , vh)

‖vh‖L
� ca1|u H |V − cδ[as(uh, uh)1/2 + |u H

h |V ]. (2.21)
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REMARK 2.7 Note that (2.21) is weaker that (2.7); actually, only |u H |V needs to
be controlled by the inf-sup inequality, since as(uh, uh) is already controlled by the
monotonicity of a, and |u H

h |V by the coercivity of bh .

Now we weaken slightly the definition of bh as follows:

∀(vH
h , wH

h ) ∈ X H
h × X H

h

{
bh(vH

h , vH
h ) � H |vH

h |2b,
bh(vH

h , wH
h ) � cB H |vH

h |b|wH
h |b, (2.22)

where the semi-norm | · |b is such that there are ce1 > 0 and ce2 > 0 such that

∀vH
h ∈ X H

h ce1|vH
h |V � |vH

h |b � ce2 H−1‖vH
h ‖L . (2.23)

EXAMPLE 2.5 This situation corresponds to equations like u + β·∇ u = f in Ω .
Assuming ‖div β‖0,∞ < 2, the bilinear form a is L2(Ω)-coercive. Then, instead of using
bh(vH

h , wH
h ) = H

∫
Ω vH

h wH
h + (β·∇ vH

h )(β·∇ wH
h ), one can use one of the following

definitions

∀(vH
h , wH

h ) ∈ X H
h × X H

h bh(vH
h , wH

h ) =
{

H
∫
Ω (β·∇ vH

h )(β·∇ wH
h ),

H
∫
Ω (∇vH

h ) · (∇wH
h ).

(2.24)

The main interest of the first alternative definition is that the artificial dissipation is zero
in the regions where β is zero and it does not introduce cross-wind diffusion. In both
models, the stabilizing terms are expected to be small in the regions where the gradient
of the solution is small. In other words, unlike models (2.12), models (2.24) put artificial
diffusion only where it is needed.

THEOREM 2.3 If u, the solution of (2.4), is in W , then the discrete solution uh of (2.14)
satisfies

as(u − uh, u − uh)1/2 + H1/2|u − uh |V � cHk+1/2‖u‖W . (2.25)

Proof. The proof is almost identical to that of Theorem 2.2. By taking eh as a test function
and by using the coercivity property (2.22), we obtain

as(eh, eh)+ H |eH
h |2b � a1(eh, ηh) + a0(eh, ηh)− 2as(eh, ηh).

Each term on the right-hand side is bounded from above as follows:

a1(eh, ηh) � c|eh |V ‖ηh‖L ,

a0(eh, ηh) � cas(eh, eh)1/2‖ηh‖L

� γ as(eh, eh)+ cγ ‖ηh‖2
L ,

−2as(eh, ηh) � γ as(eh, eh)+ cγ as(ηh, ηh)

� γ as(eh, eh)+ cγ ‖ηh‖V ‖ηh‖L .



APPROXIMATIONS OF LINEAR MONOTONE OPERATORS 175

By inserting these bounds into the inequality above, we obtain

as(eh, eh)+ H |eH
h |2b � c(|eh |V ‖ηh‖L + ‖ηh‖V ‖ηh‖L).

The control on the remaining term |eh |V is obtained by means of the weakened inf-sup
inequality (2.21):

ca |eH |V � sup
vh∈Xh

a1(eH , vh)

‖vh‖L
+ cδ[as(eh, eh)1/2 + |eH

h |V ]

� sup
vh∈Xh

−a0(eh, vh)− a1(eH
h , vh)− bh(eH

h , vH
h )− a(ηh, vh)

‖vh‖L

+cδ[as(eh, eh)1/2 + |eH
h |V ]

� c[as(eh, eh)1/2 + |eH
h |b + ‖ηh‖V ].

Hence, we have

|eh |V ‖ηh‖L � c(as(eh, eh)1/2 + |eH
h |b + ‖ηh‖V )‖ηh‖L

� γ [as(eh, eh) + H |eH
h |2b] + cγ [H−1‖ηh‖2

L + ‖ηh‖V ‖ηh‖L ].
Finally we obtain

as(eh, eh)+ H |eH
h |2b � c[H−1‖ηh‖2

L + H‖ηh‖2
V ].

The rest of the proof is evident. �

3. The full problem

In this section we return to the original problem (1.1). We shall treat this situation as a
perturbation of the previous one. We shall think of the operator D as a (possibly degenerate)
elliptic second-order differential operator.

3.1 The abstract framework

In addition to the two Hilbert spaces, L and V , already defined, we introduce a new
Hilbert space X that is dense and continuously embedded in L . Hereafter, we make the
identifications

V ⊂ L ≡ L ′ ⊂ V ′ and X ⊂ L ≡ L ′ ⊂ X ′.

We introduce a continuous bilinear form d : X × X −→ R, and we assume that there
is a semi-norm | · |X in X such that d(u, v) � cd |u|X |v|X for all u and v in X . In practice,
d can be a degenerate elliptic operator. We also assume that a + d is coercive with respect
to the semi-norm | · |X ; that is,

∀v ∈ V ∩ X |v|2X � as(v, v)+ ds(v, v) = a(v, v) + d(v, v). (3.1)
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We shall now consider the following problem:

For f ∈ L , find u ∈ V ∩ X , ∀v ∈ V ∩ X a(u, v)+ εd(u, v) = ( f, v), (3.2)

where ε is a positive real number which may be arbitrarily small. Hereafter, we assume
that ε is bounded from above by a constant; say ε � 1/2. This hypothesis means only that
the problem has been properly normalized. The analysis of this problem is quite difficult
in general (see Bardos, 1970, for an introduction to this type of equations). One suitable
tool to treat this class of problem consists in the viscosity method (see Barles, 1994, for an
introduction to this method) but we shall not dwell on this matter. Actually, the hypotheses
assumed up to now are not sufficient to ensure that a solution exists, even if a + d is fully
X -coercive. We propose the following counterexample. Let Ω =]0, 1[2 and consider the
following problem 


u + ∂u

∂x
− ε

∂

∂y

((
x − 1

2

)+
∂u

∂y

)
= x + 1,

u = 0, on {0}×]0, 1[,
u = 0, on ]1/2, 1[×{0, 1}.

Let

V =
{
v ∈ L2(Ω)

∣∣∣∣ ∂v

∂x
∈ L2(Ω), v{0}×]0,1[ = 0

}
and

X =
{
v ∈ L2(Ω)

∣∣∣∣ H
(
x − 1

2

)∂v

∂y
∈ L2(Ω), v]1/2,1[×{0,1} = 0

}
.

For the bilinear forms a and d we have

a(u, v) =
∫
Ω

uv + v
∂u

∂x

and

d(u, v) =
∫
Ω

H
(
x − 1

2

)∂u

∂y

∂v

∂y
.

It is clear that a + d is X -coercive, hence uniqueness is ensured, but it can be quite easily
shown that the problem considered has no solution in X ∩ V .

To guarantee that problem (3.2) is well posed it would be sufficient to assume that X is
continuously embedded in V and a+d is X -coercive, but we shall not make this hypothesis
for the time being. We shall only assume hereafter that problem (3.2) has a unique solution
in V ∩ X .

3.2 The discrete problem

Let X H and Xh be two finite-dimensional subspaces of V ∩ X . The two spaces Xh and
X H are assumed to satisfy the same hypotheses as in §2; namely, hypotheses (2.6), (2.7),
(2.8), (2.9), (2.10), and (2.11). Moreover, we assume that Xh satisfies the following inverse
inequality: there is µ(H) > 0 such that

∀vh ∈ Xh ‖vh‖X � µ(H)−1‖vh‖L . (3.3)
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REMARK 3.1 µ(H) ∼ H when d is associated with a second-order differential operator,
and µ(H) ∼ H2 when d is associated with a fourth-order differential operator.

The discrete problem we consider hereafter consists in finding uh in Xh such that

∀vh ∈ Xh a(uh, vh)+ εd(uh, vh)+ bh(u H
h , vH

h ) = ( f, vh). (3.4)

PROPOSITION 3.1 Problem (3.4) has a unique solution.

Proof. The proof is quite similar to that of Proposition 2.1. Let us prove an a priori bound
on uh . By using uh as a test function in (3.4) we obtain

as(uh, uh)+ εds(uh, uh)+ H‖u H
h ‖2

b � ‖ f ‖L‖uh‖L

� c‖ f ‖L(c−1
e1 ‖u H

h ‖b + ‖u H‖V ).

An a priori bound on ‖u H‖V is provided by the discrete inf-sup condition (2.7).

ca‖u H‖V � sup
φh∈Xh

a(u H , φh)

‖φh‖L

� sup
φh∈Xh

f − a(u H
h , φh)− bh(u H

h , φH
h )− εd(uh, φh)

‖φh‖L

� ‖ f ‖L + ‖a‖ ‖u H
h ‖V + cb‖u H

h ‖b + εcd |uh |X sup
φh∈Xh

|φh |X
‖φh‖L

� ‖ f ‖L + c−1
e1 ‖a‖ ‖u H

h ‖b + cBce2‖u H
h ‖b + εcdµ(H)−1|uh |X

� ‖ f ‖L + c‖u H
h ‖b + c′εµ(H)−1|uh |X .

As a result, by substituting this bound into the previous inequality and by using the
inequality (3.1) we obtain

ε|uh |2X + H‖u H
h ‖2

b � c‖ f ‖L(‖ f ‖L + ‖u H
h ‖b + εµ(H)−1|uh |X ),

� c‖ f ‖2
L

(
1 + c

2H
+ cε

2µ(H)2

)
+ H

2
‖u H

h ‖2
b +

ε

2
|uh |2X ,

from which we infer

‖u H
h ‖b + ‖u H‖V � c(H, µ(H))‖ f ‖L .

This a priori bound (uniform in ε) proves uniqueness of the solution to problem (3.4);
since Xh is finite-dimensional, this bound also proves existence. �

3.3 Error analysis

The main result of this section consists in the following.

THEOREM 3.1 The discrete solution of (3.4) satisfies

as(u − uh, u − uh)1/2 + ε1/2|u − uh |X � c inf
wH∈X H

[H1/2‖u − wH‖V

+ε1/2‖u − wH‖X + κ H−1/2‖u − wH‖L ], (3.5)
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‖u − uh‖V � cκ inf
wH∈X H

[‖u − wH‖V + ε1/2 H−1/2‖u − u H‖X

+ κ H−1‖u − wH‖L ], (3.6)

where we have set κ = 1 + ε1/2 H1/2µ(H)−1.

Proof. We proceed as in the proof of Theorem 2.2. Let wH be an arbitrary element in X H ,
and let us set ηh = u − wH and eh = wH − uh .

The equation that controls eh is obtained by subtracting (3.4) from (3.2) with the test
functions spanning Xh :

∀vh ∈ Xh a(eh, vh)+ εd(eh, vh)+ bh(eH
h , vH

h ) = −a(ηh, vh)− εd(ηh, vh),

where we have used u H
h = −eH

h , since X H is invariant under the projection PH and PH is
linear.

By taking eh as a test function and by using the coercivity properties (2.10) and (3.1)
we obtain

(1 − ε)as(eh, eh)+ ε|eh |2X + H‖eH
h ‖2

b � −a(ηh, eh)− εd(ηh, eh). (3.7)

Now, we have to control the right-hand side of the inequality above. First, we find a bound
by proceeding as follows.

−a(ηh, eh)− εd(ηh, eh) � a(eh, ηh)− 2as(eh, ηh)+ εcd |ηh |X |eh |X
� ‖a‖ ‖eh‖V ‖ηh‖L + γ as(eh, eh) + 1

γ
as(ηh, ηh)+ cε|ηh |X |eh |X

� ‖a‖ ‖eh‖V ‖ηh‖L + γ as(eh, eh) + γ ε|eh |2X
+cγ ‖ηh‖V ‖ηh‖L + c′γ ε|ηh |2X .

By choosing γ = (1 − ε)/2, one obtains

as(eh, eh)+ ε|eh |2X + H‖eH
h ‖2

b � c‖eh‖V ‖ηh‖L

+c′(‖ηh‖L‖ηh‖V + ε|ηh |2X ). (3.8)

The control on ‖eH‖V is provided by the discrete inf-sup condition (2.7),

ca‖eH‖V � sup
φh∈Xh

a(eH , φh)

‖φh‖L
,

� sup
φh∈Xh

−a(ηh, φh) − a(eH
h , φh)− εd(eh, vh)− εd(ηh, vh)− bh(eH

h , φH
h )

‖φh‖L
,

� ‖a‖(‖ηh‖V + ‖eH
h ‖V )+ cb‖eH

h ‖b + εcd(|eh |X + |ηh |X ) sup
φh∈Xh

|φh |X
‖φh‖L

,

� c(‖ηh‖V + εµ(H)−1|ηh |X + ‖eH
h ‖b + εµ(H)−1|eh |X ).
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The triangle inequality together with (2.11) yields ‖eh‖V � c(‖eH‖V + ‖eH
h ‖b). By

substituting this bound into the inequality (3.8) we have

as(eh, eh)+ ε|eh |2X + H‖eH
h ‖2

b � c(‖ηh‖L‖ηh‖V + ε|ηh |2X + εµ(H)−1‖ηh‖L |ηh |X )

+c′‖ηh‖L(‖eH
h ‖b + µ(H)−1ε|eh |X )

which finally yields

as(eh, eh)+ ε‖eh‖2
X + H‖eH

h ‖2
b � c[‖ηh‖2

L(H−1 + εµ(H)−2)

+H‖ηh‖2
V + ε|ηh |2X ].

The final result is a consequence of this inequality together with the definition u − uh =
eh + ηh and the a priori bound on ‖eH‖V provided by the discrete inf-sup condition. �

EXAMPLE 3.1 Let us assume that u, the solution of (3.2), is in W , and

inf
wH∈X H

‖u − u H‖L + H(‖u − u H‖V + ‖u − u H‖X ) � cHk+1‖u‖W .

Assume also that µ(H) ∼ H and ε = O(H) (which is the case of interest in practice).
These hypotheses are satisfied if problem (3.2) corresponds to a second-order PDE and
finite elements are used. Then

as(u − u H , u − u H )+ ε1/2|u − u H |X + H1/2‖u − u H‖V � c(u)Hk+1/2.

This bound is optimal in the norm of V .

The case H = O(ε) can be treated without relying on the discrete inf-sup condition if
we assume that X is continuously embedded in V .

THEOREM 3.2 Assume that X is continuously embedded in V , | · |X ∼ ‖ · ‖X and H ∼
µ(H). The solution of problem (3.4) satisfies

as(u − uh, u − uh)1/2 + ε1/2‖u − uh‖X � c inf
wH∈X H

[H−1/2‖u − wH‖L

+H1/2‖u − wH‖V + ε1/2‖u − wH‖X ]. (3.9)

‖u − uh‖V � c inf
wH∈X H

[H−1‖u − wH‖L + ‖u − wH‖X ] (3.10)

Proof. Assume first that ε � H . By proceeding exactly as in the proof of Theorem 3.1,
we obtain

as(eh, eh)+ ε‖eh‖2
X + H‖eH

h ‖2
b � c[‖ηh‖2

L(H−1 + εH−2)+ H‖ηh‖2
V + ε|ηh |2X ]

� c[H−1‖ηh‖2
L + H‖ηh‖2

V + ε|ηh |2X ].
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Now assume that H � ε. By proceeding as in the proof of Theorem 3.1 we obtain

as(eh, eh) + ε‖eh‖2
X � a(eh, ηh)− 2as(eh, ηh) − εd(ηh, eh)

� ‖a‖ ‖eh‖V ‖ηh‖L + γ as(eh, eh)+ cγ as(ηh, ηh)+ εcd‖ηh‖X‖eh‖X

� γ as(eh, eh)+ c[‖eh‖X (‖ηh‖L + ε‖ηh‖X )+ cγ ‖ηh‖V ‖ηh‖L ]
� γ as(eh, eh)+ γ ε‖eh‖2

X + cγ [ε−1‖ηh‖2
L + ε‖ηh‖2

X ]
� γ as(eh, eh)+ γ ε‖eh‖2

X + cγ [H−1‖ηh‖2
L + ε‖ηh‖2

X ].
By choosing γ = 1/2, this bounds yields

as(eh, eh)1/2 + ε1/2‖eh‖X � c[H−1/2‖ηh‖L + ε1/2‖ηh‖X ].
The estimate (3.9) is an easy consequence of this bound and the previous one.

Now, let us prove the estimate (3.10). Assume first that ε � H . The discrete inf-sup
condition (2.7) yields

‖eh‖V � c(‖ηh‖V + εH−1‖ηh‖X + ‖eH
h ‖b + εH−1‖eh‖X ).

As a result,

max(ε, H)‖eh‖2
V � H‖eh‖2

V ,

� c[H‖ηh‖2
V + ε2 H−1‖ηh‖2

X + H‖eH
h ‖2

b + ε2 H−1‖eh‖2
X ]

� c[H‖ηh‖2
V + ε‖ηh‖2

X + H‖eH
h ‖2

b + ε‖eh‖2
X ]

� c[H−1‖ηh‖2
L + H‖ηh‖2

V + ε‖ηh‖2
X ]

� c max(ε, H)[H−2‖ηh‖2
L + ‖ηh‖2

X ].
This bound yields

‖eh‖V � c[H−1‖ηh‖L + ‖ηh‖X ].
Now, let us assume H � ε,

max(ε, H)‖eh‖2
V � cε‖eh‖2

X

� c[H−1‖ηh‖2
L + ε‖ηh‖2

X ]
� c max(ε, H)[H−2‖ηh‖2

L + ‖ηh‖2
X ].

From this bound we obtain again

‖eh‖V � c[H−1‖ηh‖L + ‖ηh‖X ]·
The proof is complete. �

REMARK 3.2 Note that the bound (3.10) is uniform with respect to ε. As claimed in the
introduction, this result is obtained without having to tune a stabilizing coefficient with
respect to ε as in the Galerkin least square method.
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4. Approximation on nonuniform meshes

The main drawback of the theory presented in §2 and §3 is that it relies on the inverse
inequality (2.9). In finite element frameworks, this property is true provided the mesh
underlying the approximation is quasi-uniform (see e.g. Girault & Raviart, 1986, p 103).
This constraint may be too strong for practical purposes since it a priori excludes local
refinement and mesh adaptation. The goal of this section is to generalize §2 and §3 to the
case of nonuniform meshes by using a local version of (2.9).

4.1 The model problem

Our model problem is of the same type as (3.2); however, we sharpen slightly the
hypotheses as follows.

We assume that a ∈ L(V × L;R) and a is monotone. Furthermore, we assume the
following decomposition a = a0+a1 where the bilinear forms a0 and a1 have the following
continuity properties:

a0(v, w) � c0as(v, v)1/2‖w‖L , (4.1)

a1(v, w) � c1|v|V ‖w‖L , (4.2)

where | · |V is a semi-norm in V such that

∃c > 0, ∀v ∈ V ‖v‖V � c(as(v, v)1/2 + |v|V ). (4.3)

The bilinear form d is in L(X × X;R) and satisfies the following properties: There are
c � 0, and a semi-norm | · |X such that

∀v ∈ X |v|2X � a(v, v)+ d(v, v), (4.4)

∀(v, w) ∈ X2 d(v, w) � c|v|X |w|X . (4.5)

For the sake of simplicity we shall assume hereafter that X is continuously embedded
in V . The problem for which we want to build an approximate solution is: For f in L ,{

find u ∈ X such that,

a(u, v)+ εd(u, v) = ( f, v) ∀v ∈ X .
(4.6)

We shall assume hereafter that this problem has a unique solution.

4.2 The discrete setting

To approximate problem (4.6), we shall use X H ⊂ Xh ⊂ X two finite-dimensional
subspaces of X . We assume also that there are two sequences (Ti )i=1,...,I (H) and
(Hi )i=1,...,I (H) that satisfy the following properties:

For every subspace of L involved in the theory developed hereafter, say Y , and for
every semi-norm in Y that we shall use, say | · |Y , we have

∀v ∈ Y |v|Y =
(∑

i

|v|2Y,Ti

)1/2

. (4.7)
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We assume also that all the bilinear forms involved hereafter, say x ∈ L(Y × Z), satisfy
the following property

∀(y, z) ∈ Y × Z x(y, z) =
∑

i

xi (y, z). (4.8)

EXAMPLE 4.1 If a(v, w) = ∫
Ω vw + (β·∇ v)w, with suitable assumptions on the vector

field β, we have L = L2(Ω) and V = {v ∈ L2(Ω) | β·∇ v ∈ L2(Ω), v|Γ− = 0}. Moreover,
by assuming that X H is a finite element space based on a triangulation (Ti )i=1,...,I (H) (Ti

being tetrahedrons, hexahedrons, etc), we have |v|L ,Ti = ‖v‖0,Ti . Moreover,

a0,i (v, w) =
∫

Ti

vw, a1,i (v, w) =
∫

Ti

(β·∇ v)w,

as,i (v, w) =
∫

Ti

(1 − div β/2)vw +
∫
Γ+∩Ti

vw(β·n)/2,

and

|v|V,Ti =
(∫

Ti

(β·∇ v)2
)1/2

.

The approximation space X H satisfies the following local interpolation property: There
is W , a dense subspace of V , and there are k > 0 and c > 0 such that, for all v ∈ W

∀Ti inf
wH∈X H

‖v − wH‖L ,Ti + Hi‖v − wH‖X,Ti � cHk+1
i ‖v‖W,Ti . (4.9)

Furthermore, we assume that there is a linear projection operator PH : Xh −→ X H that
satisfies the following local L-stability:

∃c > 0, ∀(H, h), ∀vh ∈ Xh, ∀Ti ‖PH vh‖L ,Ti � c‖vh‖L ,Ti . (4.10)

We shall hereafter denote X H
h = (1− PH )Xh , and for all vh in Xh we set vH = PH vh and

vH
h = vh − vH .

Concerning the bilinear forms a, we assume the following local continuity properties:

∀(v, w) ∈ V 2, ∀Ti a0,i (v, w) � c0as,i (v, v)1/2‖w‖L ,Ti , (4.11)

∀(v, w) ∈ V 2, ∀Ti a1,i (v, w) � c1|v|V,Ti ‖w‖L ,Ti , (4.12)

and

∀v ∈ V, ∀Ti ‖v‖V,Ti � c(as,i (v, v)1/2 + |v|V,Ti ). (4.13)

We assume now that there is a subspace ⊕I (H)
i=1 Xh(Ti ) of Xh such that the bilinear form a1

and the couple (X H , Xh) satisfy the following local, discrete, inf-sup condition: there are
ca > 0, cδ � 0, independent of (H, h), such that

∀vh ∈ Xh, ∀Ti sup
φh∈Xh(Ti )

a1,i (vH , φh)

‖φh‖L ,Ti

� ca |vH |V,Ti − cδas,i (vh, vh)1/2. (4.14)
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Since X is continuously embedded in V , we assume

∃c > 0,∀v ∈ X, ∀Ti |v|V,Ti � c|v|X,Ti . (4.15)

Moreover, the finite-dimensional space Xh is assumed to satisfy the following inverse
stability property:

∀vh ∈ Xh, ∀Ti |vh |V,Ti + |vh |X,Ti � cH−1
i ‖vh‖L ,Ti . (4.16)

REMARK 4.1 In practice, this hypothesis means that, in terms of PDEs, X and V are
domains of first-order differential operators: think of X = H1

0 (Ω) and V = {v ∈
L2(Ω) | β·∇ v ∈ L2(Ω), v|Γ− = 0}.

Now we introduce the stabilizing bilinear form bh , and we assume that it satisfies the
following properties:

∀(vH
h , wH

h ) ∈ X H
h , ∀Ti

{
bh,i (v

H
h , vH

h ) � Hi |vH
h |2b,Ti

,

bh,i (v
H
h , wH

h ) � cB Hi |vH
h |b,Ti |wH

h |b,Ti ,
(4.17)

and the semi-norm | · |b is such that there are two constants ce1 > 0 and ce2 > 0 such that

∀vH
h ∈ X H

h , ∀Ti ce1|vH
h |V,Ti � |vH

h |b,Ti � ce2 H−1
i ‖vH

h ‖L ,Ti , (4.18)

Owing to (4.10), (4.17), and (4.18) we infer

LEMMA 4.1 There is cb > 0 such that

∀(H, h), ∀vH
h ∈ X H

h , ∀Ti sup
wh∈Xh(Ti )

bh,i (v
H
h , wH

h )

‖wh‖L ,Ti

� cb‖vH
h ‖b,Ti . (4.19)

The discrete problem consists in the following:{
Find uh in Xh such that

a(uh, vh)+ εd(uh, vh)+ bh(u H
h , vH

h ) = ( f, vh) ∀vh ∈ Xh .
(4.20)

4.3 The error analysis

The main convergence result of this section is summarized as follows:

THEOREM 4.1 The discrete solution to (4.20) satisfies the bounds:

as(u − uh, u − uh)1/2 + ε1/2|u − uh |X � c

[
inf

wH∈X H

∑
i

[H−1
i ‖u − wH‖2

L ,Ti

+Hi‖u − wH‖2
V,Ti

+ ε‖u − wH‖2
X,Ti

]
]1/2

.

(4.21)

[∑
i

max(Hi , ε)|u − uh |2V,Ti

]1/2

� c

[
inf

wH∈X H

∑
i

max(Hi , ε)[H−2
i ‖u − wH‖2

L ,Ti

+‖u − wH‖2
X,Ti

]
]1/2

. (4.22)
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Proof. By using the same notation as in Theorem 2.2, the equation that controls eh is
obtained by subtracting (4.20) from (4.6) with the test functions spanning Xh :

∀vh ∈ Xh a(eh, vh)+ εd(eh, vh)+ bh(eH
h , vH

h ) = −a(ηh, vh)− εd(ηh, vh),

where we have used u H
h = −eH

h .
By taking eh as a test function and by using the coercivity properties (4.17) and (4.4)

we obtain

(1 − ε)as(eh, eh)+ ε
∑

i

|eh |2X,Ti
+

∑
i

Hi |eH
h |2b,Ti

� a1(eh, ηh)+ a0(eh, ηh)

−2as(eh, ηh)− εd(ηh, eh).

We derive bounds from above for the last three terms of the right-hand side as follows:

a0(eh, ηh) � cas(eh, eh)1/2‖ηh‖L

� γ as(eh, eh)+ cγ

∑
i

‖ηh‖2
L ,Ti

,

−2as(eh, ηh) � γ as(eh, eh)+ cγ as(ηh, ηh)

� γ as(eh, eh)+ cγ

∑
i

‖ηh‖V,Ti ‖ηh‖L ,Ti ,

−εd(ηh, eh) � c
∑

i

ε|ηh |X,Ti |eh |X,Ti

� γ
∑

i

ε|eh |2X,Ti
+ cγ

∑
i

ε‖ηh‖2
X,Ti

.

By inserting these bounds into the inequality above, we obtain

as(eh, eh)+ ε
∑

i

|eh |2X,Ti
+

∑
i

Hi |eH
h |2b,Ti

� ca1(eh, ηh)

+c′
∑

i

[
‖ηh‖V,Ti ‖ηh‖L ,Ti + ε‖ηh‖2

X,Ti

]
.

(4.23)

To control the remaining term, a1(eh, ηh), we proceed as follows:

a1(eh, ηh) � c
∑

i

|eh |V,Ti ‖ηh‖L ,Ti

� c
∑

{i |ε�Hi }
|eh |X,Ti ‖ηh‖L ,Ti + c′

∑
{i |ε<Hi }

|eh |V,Ti ‖ηh‖L ,Ti

� γ
∑

{i |ε�Hi }
ε|eh |2X,Ti

+ cγ

∑
{i |ε�Hi }

H−1
i ‖ηh‖2

L ,Ti

+c′
∑

{i |ε<Hi }
|eh |V,Ti ‖ηh‖L ,Ti .
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The most critical term is |eh |V,Ti for Ti such that ε < Hi . This term is controlled by means
of the local discrete inf-sup inequality.

ca |eH |V,Ti � sup
vh∈Xh(Ti )

a1,i (eH , vh)

‖vh‖L ,Ti

+ cδas,i (eh, eh)1/2

� sup
vh∈Xh(Ti )

−a0,i (eh, vh)− a1,i (eH
h , vh)− εdi (eh, vh)− bh,i (eH

h , vH
h )

‖vh‖L ,Ti

+ sup
vh∈Xh(Ti )

−ai (ηh, vh)− εdi (ηh, vh)

‖vh‖L ,Ti

+ cδas,i (eh, eh)1/2

� c[as,i (eh, eh)1/2 + H−1
i ε|eh |X,Ti + |eH

h |b,Ti

+‖ηh‖V,Ti + H−1
i ε‖ηh‖X,Ti ].

Hence, we have∑
{i |ε<Hi }

|eh |V,Ti ‖ηh‖L ,Ti � c
∑

{i |ε<Hi }
[as,i (eh, eh)1/2 + H−1

i ε|eh |X,Ti + |eH
h |b,Ti

+‖ηh‖V,Ti + H−1
i ε‖ηh‖X,Ti ]‖ηh‖L ,Ti

� γ
∑

i

[as,i (eh, eh)+ ε|eh |2X,Ti
+ |eH

h |2b,Ti
]

+cγ

∑
{i |ε<Hi }

[H−2
i ε‖ηh‖2

L ,Ti
+ H−1

i ‖ηh‖2
L ,Ti

+‖ηh‖V,Ti ‖ηh‖L ,Ti + ε‖ηh‖2
X,Ti

]
� γ

∑
i

[as,i (eh, eh)+ ε|eh |2X,Ti
+ |eH

h |2b,Ti
]

+cγ

∑
{i |ε<Hi }

[H−1
i ‖ηh‖2

L ,Ti
+ Hi‖ηh‖2

V,Ti
+ ε‖ηh‖2

X,Ti
].

Finally we obtain

as(eh, eh)+ ε|eh |2X +
∑

i

Hi |eH
h |2b,Ti

� c
∑

i

[H−1
i ‖ηh‖2

L ,Ti
+ Hi‖ηh‖2

V,Ti

+ε‖ηh‖2
X,Ti

],

from which we infer a bound on a(u − uh, u − uh)1/2 + ε1/2|u − uh |X .
To obtain an error estimate in the semi-norm | · |V let us recall that, if ε < Hi , the

discrete inf-sup condition provides us with the bound

max(Hi , ε)|eH |2V,Ti
� c[Hi as,i (eh, eh) + ε|eh |2X,Ti

+ Hi |eH
h |2b,Ti

+Hi‖ηh‖2
V,Ti

+ ε‖ηh‖2
X,Ti

],
whereas if ε � Hi we can use

max(Hi , ε)|eh |2V,Ti
� cε|eh |2X,Ti

.
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By combining these two bounds we obtain∑
i

max(Hi , ε)|eH |2V,Ti
� c

∑
i

[H−1
i ‖ηh‖2

L ,Ti
+ Hi‖ηh‖2

V,Ti
+ ε‖ηh‖2

X,Ti
]

� c
∑

i

max(Hi , ε)[H−2
i ‖ηh‖2

L ,Ti
+ ‖ηh‖2

X,Ti
].

The proof is complete. �

COROLLARY 4.1 If u is in W , the following error estimates hold:

as(u − uh, u − uh)1/2 + ε1/2|u − uh |X � c

[∑
i

(H2k+1
i + εH2k

i )‖u‖2
W,Ti

]1/2

.(4.24)

[∑
i

max(Hi , ε)|u − uh |2V,Ti

]1/2

� c

[∑
i

max(Hi , ε)H2k
i ‖u‖2

W,Ti

]1/2

. (4.25)

REMARK 4.2 The error estimate in the V norm is quasi-optimal.

5. Examples

5.1 Preliminaries

Let Ω be an open bounded connected subset of R
d . Having in mind general second-order

PDEs dominated by a linear first-order differential operator, we consider a sequence of d
matrices (Ak)k=1,d such that Ak : Ω −→ Mm(R), where m is a strictly positive integer.
We set β = (A1, . . . , Ad) and for a smooth function u : Ω −→ R

m , we conventionally
denote by β·∇ u the function β·∇ u : Ω −→ R

m such that

1 � i � m (β·∇ u)i =
d∑

k=1

m∑
j=1

Ak
i j

∂u j

∂xk
.

For a smooth function v : Ω −→ R
m , we define v · (β·∇ u) = ∑m

i=1 vi (β·∇ u)i , and we set

the notation |u|1,β = [∫
Ω (β·∇ u) · (β·∇ u)

]1/2. We are now concerned with bilinear forms
involving terms of the following type

∫
Ω v · (β·∇ u).

EXAMPLE 5.1 Let us consider the scalar advection problem in Ω ⊂ R
d

{
µu + β · ∇u = f

u|Γ− = 0,

where we assume µ− 1
2 div β � µ0 > 0. We set m = 1,

Ak
11 = βk for 1 � k � d,
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a0(u, v) = (µu, v)0,Ω , and a1(u, v) = (β · ∇u, v)0,Ω . Furthermore, we define

L = L2(Ω),

V = {v ∈ L2(Ω) | β·∇ v ∈ L2(Ω), v|Γ− = 0},
and |u|V = |u|1,β . It is clear that hypotheses (2.18), (2.19), (2.20), and (2.21) are satisfied.

EXAMPLE 5.2 Consider the following Darcy problem in Ω ⊂ R
d .


u + ∇p = f

div u = g

p|Γ = 0.

This problem can be put within the framework defined above by setting m = d + 1 and

Ak
i j = 0, if 1 � i � m − 1, 1 � j � m − 1,

Ak
i j = δi,k, if 1 � i � m − 1, j = m,

Ak
i j = δ j,k, if i = m, 1 � j � m − 1,

Ak
i j = 0, if i = m, j = m,

where δi,k is the Kronecker symbol. Let us also set a0((u, p), (v, q)) = (u, v)0,Ω and
a1((u, p), (v, q)) = (q, div u)0,Ω + (∇p, v)0,Ω . It is clear that, owing to the definition
of the generalized vector field β, we have a1((u, p), (v, q)) = (β · ∇(u, p), (v, q))0,Ω .
Furthermore, we define

L = L2(Ω)
d × L2(Ω),

V = {v ∈ L2(Ω) |div v ∈ L2(Ω)} × H1
0(Ω),

and |(u, p)|V = |(u, p)|1,β . A simple computation yields

|(u, p)|V = (‖div u‖2
0,Ω + ‖∇p‖2

0,Ω )1/2.

It is clear that hypotheses (2.18), (2.19), (2.20), and (2.21) are satisfied. For instance,
hypothesis (2.20) is a simple consequence of the relation as((u, p), (u, p)) =
a0((u, p), (u, p)) = ‖u‖2

0,Ω , together with the definition of the semi-norm | · |V and the
Poincaré inequality for the pressure.

EXAMPLE 5.3 Let Ω ⊂ R
3 and consider the simplified Maxwell equations in Ω :


E + ∇×B = f

B − ∇×E = g

E × n|Γ = 0.

To put this problem in our classification, we set

Ak
i j = 0, if 1 � i � 3, 1 � j � 3,

Ak
i j = εi,( j−3),k, if 1 � i � 3, 4 � j � 6,

Ak
i j = −ε(i−3), j,k, if 4 � i � 6, 1 � j � 3,

Ak
i j = 0, if 4 � i � 6, 4 � j � 6,
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where εi, j,k is the Lévy–Chivita tensor. By denoting u = (E, B), it is clear that β·∇ u =
(−rot B, rot E). We introduce the Hilbert spaces

L = L2(Ω)
3 × L2(Ω)

3
,

V = {E ∈ L2(Ω)
3 | ∇×E ∈ L2(Ω)

3
, E × n|Γ = 0} × {B ∈ L2(Ω)

3 | ∇×B ∈ L2(Ω)
3},

and we consider the following bilinear form a : V × L −→ R such that

a(u, v) =
∫
Ω

u·v + v·(β·∇ u). (5.1)

We have the natural decomposition a = a0 + a1 with a0((E, B), (e, b)) = (E, e)0,Ω +
(B, b)0,Ω and a1((E, B), (e, b)) = ∫

Ω (e, b)·(β·∇(E, B)). A simple computation shows
that |(E, B)|V = (‖∇×E‖2

0,Ω + ‖∇×B‖2
0,Ω )1/2. The hypotheses (2.18), (2.19), (2.20),

and (2.21) are simple consequence of the relation

as((E, B), (E, B)) = a0((E, B), (E, B)) = ‖E‖2
0,Ω + ‖B‖2

0,Ω

together with the definition of the semi-norm | · |V .

5.2 P1 and P2 interpolations

We describe in this section four admissible discrete settings. For the sake of simplicity,
we assume hereafter that Ω is a R

d -polyhedron and TH is a regular triangulation of Ω
composed of affine simplexes, (TH ). The reference simplex is denoted by T̂ and FH :
TH −→ T̂ is the one-to-one affine mapping that maps TH onto T̂ .

P1/bubble interpolation

To build a P1 interpolation space we define X H as follows

X H = {vH ∈ H1(Ω)m | vH |TH ∈ P1(TH )m, ∀TH ∈ TH }. (5.2)

To build a simple subgrid space X H
h we proceed as follows. Let ψ̂ be in H1

0 (T̂ ) with

0 � ψ̂ � 1; ψ̂ is hereafter referred to as the bubble function (cf. e.g. Arnold et al., 1984, or
Crouzeix & Raviart, 1973). By denoting ψh = ψ̂(FH ), we define X T

h (TH ) = [span(ψh)]m
for all TH in TH , and we set

X H
h = ⊕TH X H

h (TH ). (5.3)

The couple (X H , Xh) is hereafter referred to as the P1/bubble approximation space.

P2/bubble interpolation

Another possibility that we shall also consider consists in defining X H as being the P2
finite element space (conformal in H1(Ω)m) associated with the triangulation TH :

X H = {vH ∈ H1(Ω)m | vH |TH ∈ P2(TH )m, ∀TH ∈ TH }. (5.4)
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FIG. 1. Four examples of finite elements; (left) resolved scale finite element; (right) subgrid scale finite element.
From top to bottom: P1/bubble finite element; P2/bubble finite element; two-level P1 finite element; two-level P2
finite element.

To build the subgrid scale space we introduce ψ̂1, . . . , ψ̂d+1, a family of d + 1 linearly
independent, real-valued functions in H1

0 (T̂ ). Let â1, . . . , âd+1 be the nodes of the

reference simplex T̂ . Let Ri j be the symmetry of T̂ such that Ri j (âi ) = â j and Ri j (âl) = âl

if l �∈ {i, j}. Now, we assume that the functions (ψ̂i )i=1,... ,d+1 satisfy the following
symmetry properties {

ψ̂i (Ri j ) = ψ̂ j ,

ψ̂i (R jl) = ψ̂i , if i �∈ { j, l}. (5.5)

We denote ψi,h = ψ̂i (FH ) for 1 � i � d + 1, we set X H
h (TH ) =

[span(ψ1,h, . . . , ψd+1,h)]m , and we finally define

X H
h = ⊕TH X H

h (TH ). (5.6)

The couple (X H , Xh) is referred to as the P2/bubble approximation space.

Two-level P1 interpolation

The two settings described above are not really two-level approximation spaces since X H

and X H
h are defined on the same mesh; in some sense, for these two cases h = H . We
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propose now an alternative approach that is valid in 2D (though it can can be extended to
3D). From each triangle TH ∈ TH , we create 4 new triangles by connecting the middle of
the 3 edges of TH . Let us put h = H/2 and denote by Th the resulting new triangulation.
For each macro-triangle TH we denote by P the set of continuous functions on TH that are
piecewise P1 on each sub triangle of TH and vanish at the three vertices of TH . Now we
set

X H
h = {vH

h ∈ H1(Ω)m | vH
h|TH

∈ P
m, ∀TH ∈ TH }. (5.7)

It is clear that Xh has the following simple characterisation:

Xh = {vh ∈ H1(Ω)m | vh|Th ∈ P1(Th)m, ∀Th ∈ Th}. (5.8)

We shall call the couple (X H , Xh) the two-level P1 approximation.

Two-level P2 interpolation

Now we build the P2 extension of the two-level P1 setting. We again set h = H/2, and we
denote by Th the triangulation that is obtained by dividing each triangle of TH into four
sub-triangles. For each triangle Th we denote by ψ1, ψ2, ψ3 the three P2 nodal functions
associated with the middle of each edge of Th . We define the subgrid scale space by

X H
h = {vH

h ∈ H1(Ω)m | vH
h|Th

∈ span(ψ1, ψ2, ψ3)
m, ∀Th ∈ Th}. (5.9)

Xh has the following simple characterization:

Xh = {vh ∈ H1(Ω)m | vh|Th ∈ P2(Th)m, ∀Th ∈ Th}. (5.10)

The couple (X H , Xh) is called the two-level P2 approximation. The finite elements
associated with the four settings defined above are shown in Fig. 1.

The inf-sup condition

It is shown in Guermond (1999a) that for the four P1 and P2 interpolation spaces defined
above, the decomposition Xh = X H⊕X H

h is L2-stable. Furthermore, to localize the inf-sup
condition (2.7), we introduce new definitions. For the P1/bubble and P2/bubble frameworks
we set W (TH ) = TH and Yh(TH ) = X H

h (TH ). For the other two-level settings, we set
W (TH ) = {T ′

H ∈ TH | T ′
H ∩ TH �= ∅} and Yh(TH ) = {vh ∈ Xh | supp(vh) ⊂ W (TH )}. By

reasoning as in Guermond (1999a), the following results can be proved:

LEMMA 5.1 If β is piecewise constant on each simplex TH of TH , there is cβ > 0
independent of (H, h), such that

∀u H ∈ X H , ∀TH sup
vh∈Yh(TH )

∫
W (TH )

vh · (β·∇ u H )

‖vh‖0,W (TH )

� cβ |u H |1,β,W (TH ). (5.11)
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FIG. 2. Two two-level meshes used for tests: left, h ≈ 1/10, and right, h ≈ 1/20.

COROLLARY 5.1 If β is in C1(Ω;Mm(R)d), there are cβ > 0 and cδ � 0, both
independent of (H, h), such that

∀u H ∈ X H , ∀TH sup
vh∈Yh(TH )

∫
W (TH )

(β·∇ u H )vh

‖vh‖0,W (TH )

� cβ |u H |1,β,W (TH ) − cδ‖u H‖0,W (TH ).

(5.12)

REMARK 5.1 Note that for the three model problems considered, the four finite element
frameworks presented above satisfy all the hypotheses of §4. Hence, the present
formulation allows for solving the Maxwell-like problem a(u, v) = ( f, v) with P1 or
P2 finite elements in a quasi-optimal way.

5.3 Example 1: an advection equation

To illustrate the method proposed in this paper we apply it to the following 2D problem{
∂yu = −8π sin(8πy) in Ω =]0, 1[2
u|y=0 = 1,

where u = cos(8πy) is the exact solution. We tested the two-level P1 and two-level P2
frameworks described above. Owing to Lemma 5.1, it is clear that the theory developed in
this paper applies. The artificial viscosity is introduced by means of the bilinear form

bh(vH
h , wH

h ) = cb

∑
Th∈Th

meas(Th)1/2
∫

Th

∇vH
h · ∇wH

h .

To give an idea of the coarseness of the meshes that we use, we have plotted them
in Fig. 2. The P2 calculations are performed on the coarse mesh on the left (H ≈ 1/5,
h ≈ 1/10), whereas the P1 calculations are performed on the mesh on the right (H ≈ 1/10,
h ≈ 1/20).

The results of the P1 approximation are plotted in Fig. 3 and those of the P2
approximation are plotted in Fig. 4. In both cases, isovalue contours are shown at the top
of the figure and the projection of the solution in the plane x = 0 is shown at the bottom. It
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FIG. 3. 2D advection equation: ∂yu(x, y) = −8π sin(8πy); P1 approximation with h ≈ 1/20. Isovalue of
solution (top) and projection of solution on plane x = 0 (bottom). Left, Galerkin solution; centre, two-level
stabilized P1 solution; right, P1 interpolate of exact solution.

is clear that the Galerkin solution is plagued by spurious oscillations in both cases whereas
the stabilized solution behaves correctly. Note that these tests are quite demanding since
for the P1 approximation Λ/H ≈ 5 and for the P2 approximation Λ/H ≈ 2·5, where
Λ = 0·25 is the wavelength of the solution. In both cases the stabilizing parameter cb of
the subgrid viscosity is set to 0·1.

5.4 Example 2: an advection–diffusion equation

To further illustrate the method, we apply it to the following 2D advection–diffusion
problem: {

∂yu − ν∇2u = 0 in Ω =]0, 1[2
u|y=0 = 0, u|y=1 = 0;

where u = (exp(y/ν)− 1)/(exp(1/ν)− 1) is the exact solution with ν = 0·002. The two-
level mesh that we use is composed of 952 elements and 517 nodes and the mesh size h is
of order 1/20. This mesh is depicted in Fig. 5(top left). A 3D rendering of the P1 Galerkin
solution is plotted in Fig. 5(top centre). The projection of this solution in the plane x = 0
is shown in Fig. 5(top right). Spurious numerical wiggles are clearly apparent throughout
the domain. The projection in the plane x = 0 of the P1 interpolate of the exact solution is
plotted in Fig. 5(bottom right).

The subgrid stabilized solution is shown in Fig. 5(bottom left). As expected, all the
spurious wiggles have been smoothed out except in the region of the boundary layer where
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FIG. 4. 2D advection equation: ∂yu(x, y) = 8π sin(8πy); P2 approximation with h ≈ 1/10. Isovalue of solution
(top) and projection of solution on plane x = 0 (bottom). Left, Galerkin solution; centre, P1 interpolate of
two-level stabilized P2 solution; right, P1 interpolate of exact solution.

FIG. 5. Boundary layer problem: ∂yu − 0·002∇2u = 0. Top left, finite element mesh; top centre, 3D rendering
of Galerkin solution; top right, projection on plane x = 0 of Galerkin solution; bottom left, projection on plane
x = 0 of subgrid viscosity solution; bottom centre, projection on plane x = 0 of subgrid viscosity solution +
shock capturing; bottom right, projection on plane x = 0 of P1 interpolate of exact solution.
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FIG. 6. The Bürgers problem: u∂y(u) − ν∇2u = 0. Top, projection in plane x = 0 of P1 approximation with
h ≈ 1/50 and H = 1/25; bottom, P2 approximation with h ≈ 1/25 and H = 2/25. Left, Galerkin solution;
centre, two-level stabilized solution; right, two-level stabilized solution + two-level shock capturing.

the solution is rough. The remaining localized oscillations are linked to Gibbs’ phenomena
as explained in Maday et al. (1993). To eliminate these unwelcome modes, we introduce a
subgrid shock capturing form as follows:

ch(u H
h , vh, wh) = csc

∑
Th∈Th

meas(Th)1/2
∫

Th

|u H
h |(∇vh ·∇wh).

Recall that u H
h = (1 − PH ) is the subgrid scale (i.e. the fluctuating part) of uh . In practice

we solve the following non linear problem:{
Find uh in Xh such that

a(uh, vh)+ bh(u H
h , vH

h )+ ch(u H
h , uh, vh) = ( f, vh) ∀vh ∈ Xh .

Given that the non-linearity is very mild, this problem is easily solved by means of a very
crude fixed point algorithm. The projection in the plane x = 0 of the solution to this prob-
lem is shown in Fig. 5(bottom centre). The effectiveness of the proposed shock capturing
technique is clear. The boundary layer is captured in one element by using csc = 1.

5.5 Example 3: the Bürgers equation

To further compare the effects of the proposed subgrid stabilization and those of the subgrid
shock capturing technique we propose solving the Bürgers problem:{

u∂yu − ν∇2u = 0 in Ω =]0, 1[×[−1, 1[
u|x=−1 = −1, u|x=1 = 1 u|y=0 = u|y=1.
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For the viscosity we set ν = 10−4. We test the two-level P1 and P2 approximation
techniques. For the P1 solution we use a mesh with h = 1/50, H = 1/25 and for the
P2 solution we use a mesh with h = 1/25, H = 2/25, so that in the x-direction we have
101 nodes on both fine meshes.

We have plotted the projection in the plane x = 0 of the graph of the solution in
Fig. 6. The three figures at the top are for the P1 approximation and those at the bottom
are for the P2 approximation. The Galerkin solution is on the left. For both finite elements,
the solution oscillates widely throughout the domain. The stabilized solution is shown in
the centre. Some overshoots and undershoots are still present in the vicinity of the shock.
These remaining oscillations are symptoms of Gibbs’ phenomena. Note that except near
the shock, all the spurious oscillations have disappeared. The results of the combination
of the subgrid stabilization and the shock capturing techniques are shown on the top right
and bottom (cb = 0·1 and csc = 2). The solution is very satisfactory considering the quite
coarse mesh that is used.

6. Concluding remarks

A subgrid stabilization technique has been analysed in a quite general framework. It has
been proved to yield quasi-optimal error estimates for a problem without coercivity. The
effectiveness of the method has been illustrated by means of numerical examples. A shock
capturing technique based on the subgrid scales of the solution has been proposed. It has
been shown to be numerically efficient, though its mathematical analysis remains to be
done. Hopefully, the combination of the two techniques proposed herein may contribute to
the justification of Large eddy simulation models that are popular in CFD.

Although some of the ideas on which the subgrid stabilization is based stem from the
framework of residual free bubbles, the connection between the present theory and the
RFB theory is not clear to the author (see Baiocchi et al., 1993; Brezzi et al., 1992, 1997,
for details on RFB). It seems, however, that there are major differences between the two
approaches:

(i) The subgrid scale space X H
h is composed of problem-independent shape functions,

whereas in the RFB theory these functions are problem dependent, and ‘the
computation of [these functions] could be as difficult as the original problem’
(Franca & Russo, 1996).

(ii) The RFB theory relies heavily on static condensation. Although for the P1/bubble
and P2/bubble frameworks the subgrid scales can be eliminated by static
condensation, this procedure is not feasible for the two-level P1 and P2 finite
elements.

(iii) To the author’s knowledge, the RFB analysis never refers to the inf-sup
condition (2.7). This condition is the keystone of the present theory and seems to
be new.

(iv) As the present theory only requires a to be continuous and monotone, it can be
quite readily extended to approximating linear contraction semi-groups of class
C0 without relying on the discontinuous Galerkin technique as will be shown in
a forthcoming paper.
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