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Background 
Subgroup analyses are common in randomised
controlled trials (RCTs). There are many easily
accessible guidelines on the selection and analysis
of subgroups but the key messages do not seem 
to be universally accepted and inappropriate
analyses continue to appear in the literature. 
This has potentially serious implications because
erroneous identification of differential subgroup
effects may lead to inappropriate provision or
withholding of treatment. 

Objectives

• To quantify the extent to which subgroup
analyses may be misleading.

• To compare the relative merits and weaknesses
of the two most common approaches to sub-
group analysis: separate (subgroup-specific)
analyses of treatment effect and formal 
statistical tests of interaction.

• To establish what factors affect the performance
of the two approaches.

• To provide estimates of the increase in 
sample size required to detect differential
subgroup effects.

• To provide recommendations on the analysis
and interpretation of subgroup analyses.

Methods

The performances of subgroup-specific and formal
interaction tests were assessed by simulating data
with no differential subgroup effects and deter-
mining the extent to which the two approaches
(incorrectly) identified such an effect, and simu-
lating data with a differential subgroup effect 
and determining the extent to which the two
approaches were able to (correctly) identify it. 

Initially, data were simulated to represent the
‘simplest case’ of two equal-sized treatment 
groups and two equal-sized subgroups. Data 
were first simulated with no differential subgroup
effect and then with a range of types and magni-
tudes of subgroup effect with the sample size
determined by the nominal power (50–95%) 

for the overall treatment effect. Additional
simulations were conducted to explore the
individual impact of the sample size, the magni-
tude of the overall treatment effect, the size 
and number of treatment groups and subgroups
and, in the case of continuous data, the vari-
ability of the data. 

The simulated data covered the types of outcomes
most commonly used in RCTs, namely continuous
(Gaussian) variables, binary outcomes and survival
times. All analyses were carried out using appro-
priate regression models, and subgroup effects
were identified on the basis of statistical
significance at the 5% level.

Results

While there was some variation for smaller sample
sizes, the results for the three types of outcome
were very similar for simulations with a total
sample size of ≥ 200.

With simulated simplest case data with no
differential subgroup effects, the formal tests 
of interaction were significant in 5% of cases 
as expected, while subgroup-specific tests were 
less reliable and identified effects in 7–66% of
cases depending on whether there was an overall
treatment effect. The most common type of
subgroup effect identified in this way was where
the treatment effect was seen to be significant 
in one subgroup only. When a simulated differ-
ential subgroup effect was included, the results
were dependent on the nominal power of the
simulated data and the type and magnitude 
of the subgroup effect. However, the perform-
ance of the formal interaction test was generally
superior to that of the subgroup-specific 
analyses, with more differential effects correctly
identified. In addition, the subgroup-specific
analyses often suggested the wrong type of
differential effect.

The ability of formal interaction tests to 
(correctly) identify subgroup effects improved 
as the size of the interaction increased relative to
the overall treatment effect. When the size of the
interaction was twice the overall effect or greater,
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the interaction tests had at least the same power 
as the overall treatment effect. However, power 
was considerably reduced for smaller interactions,
which are much more likely in practice. The in-
flation factor required to increase the sample size
to enable detection of the interaction with the
same power as the overall effect varied with the 
size of the interaction. For an interaction of the
same magnitude as the overall effect, the inflation
factor was 4, and this increased dramatically to 
≥ 100 for more subtle interactions of < 20% of 
the overall effect. 

Formal interaction tests were generally robust 
to alterations in the number and size of the treat-
ment and subgroups and, for continuous data, 
the variance in the treatment groups, with the 
only exception being a change in the variance in
one of the subgroups. In contrast, the perform-
ance of the subgroup-specific tests was affected 
by almost all of these factors with only a change 
in the number of treatment groups having no
impact at all. 

Conclusions

While it is generally recognised that subgroup
analyses can produce spurious results, the extent 
of the problem is almost certainly under-estimated.
This is particularly true when subgroup-specific
analyses are used. In addition, the increase in
sample size required to identify differential sub-
group effects may be substantial and the commonly
used ‘rule of four’ may not always be sufficient,
especially when interactions are relatively subtle, 
as is often the case. 

Recommendations for subgroup
analyses and their interpretation 
• Subgroup analyses should, as far as possible, 

be restricted to those proposed before data
collection. Any subgroups chosen after this 
time should be clearly identified.

• Trials should ideally be powered with subgroup
analyses in mind. However, for modest inter-
actions, this may not be feasible.

• Subgroup-specific analyses are particularly
unreliable and are affected by many factors.
Subgroup analyses should always be based 
on formal tests of interaction although even
these should be interpreted with caution.

• The results from any subgroup analyses should
not be over-interpreted. Unless there is strong
supporting evidence, they are best viewed as a
hypothesis-generation exercise. In particular, 
one should be wary of evidence suggesting that
treatment is effective in one subgroup only.

• Any apparent lack of differential effect should
be regarded with caution unless the study was
specifically powered with interactions in mind.

Recommendations for research
• The implications of considering confidence

intervals rather than p-values could be
considered.

• The same approach as in this study could be
applied to contexts other than RCTs, such as
observational studies and meta-analyses.

• The scenarios used in this study could be
examined more comprehensively using other
statistical methods, incorporating clustering
effects, considering other types of outcome
variable and using other approaches, such 
as Bootstrapping or Bayesian methods.
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The presentation of subgroup analyses in
reports of randomised controlled trials (RCTs)

is common1 and it is important that researchers 
and clinicians are able to assess their validity and 
to interpret their results. Subgroups arise in many
different settings, for example, centres in a multi-
centre trial or groups of patients defined by age,
sex and baseline risk. Inappropriate analyses of
such subgroups are widespread and many reports
put too much emphasis on subgroup analyses that
frequently lack statistical power.1–5 Guidelines are
available on the analysis and interpretation of
subgroups, but the debate as to when and how
subgroup analyses can be legitimately carried out
continues.6–9 One recent paper examined 50 con-
secutive RCT reports in four major medical journals
(British Medical Journal, Journal of the American
Medical Association, Lancet and New England Journal 
of Medicine) during a 3-month period in 1997. Over
two-thirds of the reports presented subgroup find-
ings. While only 43% of these used appropriate
statistical tests for interaction, 60% claimed differ-
ential subgroup effects with the majority reporting
it in the summary and/or conclusions.2 Even this
year, misleading reports of subgroup analyses can
be found in leading journals.10

The analysis of an RCT typically begins with the
investigation of differences in health outcomes
between patients in two (or more) treatment
groups, that is the overall treatment effect. It is then
common for further analyses to be carried out to
determine if the effects of treatment are different
across particular groups of patients. There may be
good biological reasons why such differences occur
and it is certainly important that such subgroup
analyses be considered if treatment is to be selected
appropriately for future patients. For example, a
moderately beneficial treatment effect overall may
be masking a beneficial treatment effect in one
subgroup of patients and a detrimental effect in
another.11 However, an inappropriate subgroup
analysis may lead to an incorrect conclusion, for
example, that treatment is not beneficial in a
particular group, with the result that treatment is
withheld from those who would benefit from it.12

The choice of which subgroups should be
considered in this type of analysis is not
straightforward and there are two extreme

approaches that might be adopted.13 The first
approach is to work through all possible sub-
group analyses on the basis that one or more
might reveal some differential treatment effect.
This ‘data dredging’ approach has serious impli-
cations in terms of multiple testing. Specifically,
every statistical test carries the risk of a false-
positive result (a statistically significant finding 
that is actually due to chance rather than to any
inherent difference in the comparison groups) 
and as more tests are performed the probability 
of a false-positive finding increases. The second
approach is to specify what subgroups might be of
interest, generally based on findings from similar
trials, at the design stage of the RCT and then to
look only at these in the analysis. This approach
reduces the problem of multiple testing and is
often recommended as an ideal. However, it may
be rather conservative and may rigidly test only
pre-specified hypotheses that may lead to un-
expected, yet clinically important, differences 
in treatment effects being missed.

A reasonable compromise is, perhaps, to specify a
small number of key subgroup analyses in advance
and to be much more cautious about conclusions
drawn from any other subgroup analyses that are
carried out, including being more conservative 
in terms of correcting for multiple testing. This
approach is analogous to that commonly adopted
for primary and secondary outcomes in RCTs.14

Moreover, with the emphasis on the importance 
of pre-specifying subgroup analyses in the trial
protocol, it is consistent with Consolidated Stand-
ards for Reporting of Trials (CONSORT) guide-
lines.15 The issue of how to choose subgroups 
will not be addressed in this report, although, 
in line with the above philosophy, they should, 
in general, be based on biological factors and 
not derived data.5 The issue of corrections for
multiple testing will also not be covered and 
thus the results presented here relate to a single
subgroup analysis without reference to any others
being performed. While this may be a reasonable
representation of reality for (a limited number 
of) pre-specified subgroups, it should be borne 
in mind that, particularly for other situations, 
the false-positive rates presented here may be
considered optimistic. However, the patterns of
findings would not be expected to change.

Chapter 1

Introduction 
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Having identified which subgroups are to be
compared, the next question is how this compari-
son is to be made. One frequent approach is to
conduct separate (stratified) analyses of the treat-
ment effect in each subgroup. However, it is gen-
erally accepted that a more appropriate analysis is
one in which the interaction between treatment
and subgroup is formally tested1,2,15,16 in a suitable
regression analysis. Not only does the formal test 
of interaction involve just one additional test
(regardless of the number of subgroups) while
subgroup-specific analyses involve two or more, but
also the interaction is the only approach that tests
(and estimates) the differential effect directly.

Another related issue is that of false-negative
results, that is failing to detect a true difference 
in effect. Power calculations for RCTs are generally
based on detecting the overall treatment effect.
Subgroup-specific testing requires the data to be
split and these smaller datasets will have reduced
power to detect a similar treatment effect. This
reduction in power might lead to a number of
erroneous conclusions. For example, an apparently
significant treatment effect overall may vanish, or
be apparent in only one subgroup in the secondary
analysis.17 Moreover, as confidence intervals (CIs)
around estimates of effect will be wider in the
reduced datasets, there is a reduced chance of
concluding that there is a differential treatment
effect across subgroups based on CIs. As discussed
above, formal tests of interaction are superior to
subgroup-specific tests, but the problem of false-
negatives may remain since interaction tests may be
relatively underpowered (although, due to changes
in estimates of random variation this is not always
straightforward). Again, it is unlikely that a trial
will be powered with an interaction test in mind. 

Ideally, the decision of whether and how to look
for subgroup effects should be made on the basis
of scientific advancement. However, in reality, the
pressures on researchers to publish may also be a
factor and the problems of publication bias with
respect to ‘negative’ findings are well known.18

The decision to conduct subgroup analyses may
well be influenced by the result of the analysis of
the overall treatment effect, with subgroup analyses
being more common in RCTs showing no overall
difference between treatments.19,20

There are existing guidelines available on the
analysis and interpretation of subgroups,2,21,22

which suggest that statistical tests of interaction
should be used rather than inspection of subgroup-
specific p-values. In addition, subgroup analyses
should be confined to the primary outcome, and
to a few predefined subgroups on the basis of
biologically plausible hypotheses. Subgroup find-
ings should essentially be considered exploratory
in nature and should only affect the conclusions
drawn from the trial in exceptional circumstances.
However, in spite of the existence of these recom-
mendations, inappropriate analysis, presentation
and interpretation of differential subgroup effects
continue to appear in the literature.2,10

Subgroup analyses are problematic both in terms
of false-positive and false-negative results, and
although these problems can be reduced by the
use of formal tests of interaction rather than
subgroup-specific tests they are by no means
eliminated. It is, therefore, important to
understand the extent of the problem. 

Objectives of the study

The aim of this report was to provide more
quantitative guidelines on the analysis and inter-
pretation of subgroups based on formal statistical
methods. Simulated data were analysed using
standard methods in order to explore the impact
of different strategies of analysis on false-positive
and false-negative rates. There are many factors
that might affect the outcome of subgroup
analyses, including the magnitude of the overall
treatment effect, the magnitude and type of sub-
group effect, the variability in the data and the
number and size of treatment groups and sub-
groups. Each of these was varied in a controlled
manner and their relative impact assessed. The
results of these simulations then formed the basis
of recommendations for researchers carrying out
or interpreting subgroup analyses.

The context of this study is the RCT. However,
subgroup analyses are also common in observ-
ational studies and, while issues of confounding
have been ignored, the results presented here 
are also pertinent in this context in general. 
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The rationale for using simulations
To investigate the issues surrounding the reliability
of subgroup analyses, real or simulated data could be
considered or a theoretical approach could be used.
While real data have a number of obvious advantages
in terms of the extent to which the variations in
scenarios are realistic, the disadvantage is that there
is little control over the underlying distributions.
Inevitably, more than one parameter varies at once
in an unknown way in real data making it difficult, 
if not impossible, to draw general conclusions about
their separate influences. Simulated data, on the
other hand, afford the investigator complete control
over both the underlying distributions and the
nature of the alterations to the parameters. It is
important to note that since (as described in detail
below) the simulations involve repeated random
sampling from the relevant distribution, there
remains a stochastic element. In general, about 5%
of simulated test statistics would thus be expected 
to be significant (by chance) at the 5% level, and,
hence, interest was focused on any substantial
variation from this expectation.

At the same time, simulations were not strictly
necessary for all of the calculations presented 
here. However, using theory throughout would
have been far from straightforward and, in making
the procedure less transparent, such an approach
would severely hamper interpretation for a general
audience. A consistent approach was, therefore,
used throughout the study in the form of simu-
lations developed from the simplest scenario.
Notwithstanding this, it is pointed out where
certain findings are theoretically impossible.

Simulation strategy

Separate simulations were carried out for each of 
the three main types of outcome variable commonly
encountered in RCTs: continuous (such as blood
pressure or cholesterol levels), binary (for example,
survival versus death at a given time of follow-up or
relief of symptoms versus none) and survival times
(for instance, time to death or remission). The 
exact nature of the simulated data and the analyses
depended on the outcome in question, however, the
basic strategy in each case was the same (see Figure 1).

Chapter 2

Methods 

Level 1
Specify type of outcome variable:

– continuous
– binary
– survival times

Level 2
Specify pattern of true treatment 

and subgroup effects

Level 3
Specify additional trial characteristics:

– balance
– variability
– number of subgroups

Analyse simulated data:

– overall treatment effect
– interaction test 
– subgroup-specific tests

Level 4
Specify total sample size

Generate simulated data

Calculate correct- and false-positive/
negative rates

Repeat  
100,000 times

FIGURE 1 Simulation strategy
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Firstly, streams of pseudo-random numbers between
0 and 1 were generated and then simulated data
values were obtained by applying transformations to
obtain the relevant distributional form for that type
of outcome variable (level 1 in Figure 1 ). Analyses
were then conducted using standard statistical
methods. Separate details for each type of outcome
variable are given later in this chapter.

Each round of simulations was based on a fixed 
set of parameters defining the treatment and sub-
group effects in the (hypothetical) populations
from which the simulated data were considered 
to be drawn. Repeated simulations were then
carried out to give estimates of the correct- 
and false-positive/negative rates associated with
different analytical approaches. In this way, it was
possible to explore (a) the probability of wrongly
concluding that a differential subgroup effect
exists and (b) the reduced power associated 
with subgroup-specific and interaction tests.

Initial simulations concentrated on the situation
where there were just two treatments groups and
two subgroups. For these analyses, data were gen-
erated in four distinct categories: (A) treatment
group 1 (T1), subgroup 1 (S1); (B) treatment
group 2 (T2), S1; (C) T1, subgroup 2 (S2) and 
(D) T2, S2 (see Table 1). The full definition of the
‘simplest’ case was an arrangement as in Table 1
but where, in addition, each category was of equal
size and (for continuous data) had equal variance. 

There are several factors that may impact on 
the results of a subgroup analysis and each of 
these were explored in turn by varying specific
parameters in successive simulations. Data in each
of the four categories were generated to represent
situations where an overall treatment or subgroup
effect did or did not exist (level 2 in Figure 1 ).
Further simulations explored the additional effects
of imbalance in the categories in Table 1, the vari-
ability in the data and the number of subgroups
(level 3 in Figure 1 ). Finally, all simulations were
repeated for a number of different overall sample
sizes (level 4 in Figure 1 ), that is, the total number
of data values across all four categories in Table 1.

Each simulated dataset was analysed to examine
the overall (main) treatment effect and to look 

for any evidence of subgroup effects. Subgroup
analyses were then carried out in two ways using
standard statistical techniques. The first of these
analyses concentrated on formal tests of inter-
action between treatment and subgroup using
regression techniques. The second followed the
naïve approach often seen in the literature in
which separate (stratified) analyses were carried
out for each subgroup. All tests used a cut-off 
for statistical significance of 5%, and repeated
simulations gave estimates of the associated
correct- and false-positive/negative rates 
(see below for details).

Note that, for simplicity, the current study used 
a decision-based approach based on statistical
significance to look for differential treatment
effects across subgroups. In reality, it would also 
be appropriate to consider subgroup-specific
parameter estimates and CIs. The reasons for
focusing on statistical significance were that 
(a) this approach remains very common in the
literature, especially in the context of subgroup
and interaction tests, and (b) interpreting CIs 
is highly subjective and it would, therefore, be
extremely difficult to derive a systematic method
for determining what conclusions a researcher
might reach using these quantities. Although 
the most common (5%) threshold for ‘statistical
significance’ was used, there is no reason to 
expect that the general patterns would be differ-
ent for other thresholds, and, hence, the results
can be interpreted as portraying the influences 
on the p-value itself generally, rather than being
restricted to the (arbitrary) 5% threshold. The
findings from the simulations would, therefore, 
be relevant within the paradigm of presenting 
and interpreting actual p-values, rather than
relying on the inappropriate use of 
arbitrary thresholds.23

A total of 100,000 simulations were conducted 
for each set of parameters to allow the correct- 
and false-positive/negative rates to be estimated
with sufficient precision. For instance, this 
number of repeated simulations gives a margin 
of error of 0.14% around a false-positive rate 
of 5%. In view of the large number of simu-
lations, it was important to use a programming
language offering speed and efficiency. Hence, 
all simulations (including statistical analyses) 
were programmed in FORTRAN, rather than 
using a standard statistical package. However, 
a representative sample of all analyses was 
repeated using the Stata statistical package 
to confirm that the programming 
was correct.

TABLE 1  Data categories required for the ‘simplest’ case

T1 T2

S1 A B

S2 C D
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Definition of treatment and 
subgroup effects
Each set of simulations was based on one of four
possible scenarios:

• No overall treatment effect and no subgroup-
specific effect

• Overall treatment effect but no differential
subgroup effect

• No overall treatment effect but a differential
subgroup effect

• Overall treatment effect and a differential
subgroup effect.

In the first case, data in all treatment group/
subgroup categories were based on the same
underlying distribution. In the remaining cases,
known treatment and subgroup effects were
introduced. Details for each type of outcome 
are given later in this chapter.

The overall treatment effect was controlled 
by fixing the difference between (the average 
of) categories A and C versus (the average of)
categories B and D in Table 1. In (a) and (c) 
above this difference was set to 0. In (b), differ-
ences that would be detectable at the different
powers typically considered in RCTs, namely 80, 
90 and 95%, were calculated and implemented 
in the data. In addition, consideration was also
given to the scenario where a study is substantially
underpowered, for example, at 50% power. If
patterns in error rates were similar for different
powers in the simplest case, only 80% power was
considered for further scenarios. 

In terms of the nature and magnitudes of the
differential effects specified for (c) and (d), the
simulations covered a wide range of feasible sizes
of interaction effects relative to the overall effect
and these are described in detail in chapter 3. 
In order not to confound different influences, 
the specification of differential subgroup effects 
in the simulations were considered only for 
the simplest case depicted in Table 1 in which 
the four groups were of equal size and vari-
ability. Four types of differential effects were 
considered as follows: 

(1) Treatment differences in both subgroups in
the same direction but of different magnitudes
(a ‘quantitative’ interaction), for example, the
treatment difference for A versus B is greater
than that for C versus D

(2) Treatment difference only occurs in one
subgroup (viewed here as a special case of a
quantitative interaction), for example, there 

is a treatment difference for A versus B but
not for C versus D

(3) Treatment differences in different directions
and of different magnitudes (a ‘qualitative’
interaction), for example, the treatment
difference for A versus B is greater than 
that for D versus C

(4) The effect of treatment is exactly reversed in
the two subgroups (viewed here as a special
case of a qualitative interaction), for example,
one treatment is beneficial compared with
another treatment for A versus B, but equally
harmful for C versus D.

Type 4 would be concomitant with no overall
treatment effect, whereas in the other three types
of differential effect there would also be an overall
treatment effect. 

Finally, the inflation factor for the sample size
required to yield the same power for the inter-
action as provided for the overall effect by the
original sample size was obtained for a suitable
range of interaction effects.

Additional variations
Initially, the simulations concentrated on the
simplest case described in Table 1, that is, two
treatment groups and two subgroups of equal size
with the same variance. In subsequent simulations,
factors were varied one at a time in a controlled
manner to examine their impact on the correct-
and false-positive/negative rates arising from
different analytical approaches.

Firstly, in general, it is unlikely that a subgroup
analysis would lead to the same number of observ-
ations in each of the four categories in Table 1 (the
exception to this being when the randomisation 
is stratified with respect to the subgroups and
randomisation is kept at a 1:1 ratio within each
subgroup) and any imbalance in the categories
would be likely to affect the significance level and
power of subgroup analyses. Separate simulations
were, therefore, used to examine the impact of
various types and levels of imbalance by consider-
ing separate treatment group and subgroup ratios
of 1:2, 1:3, 1:4 and 1:5. Secondly, the variance 
of the simulated data is also an issue, and its
impact in the continuous case, where the scale
parameter is specified independently of that
representing location, was assessed by altering 
the relevant variances (for more details see later 
in this chapter). Thirdly, the initial set of simu-
lations considered the situation where there were
only two subgroups, which was extended to three, 
four or five subgroups.
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In addition, all simulations were performed for 
a range of total sample sizes (specifically, the 
total number of simulated data points across all
treatment groups and subgroups). The sample
sizes were chosen to cover the range typically seen
in RCTs. For the simplest case of two treatment
groups, two subgroups, complete balance and
equal variability amongst categories, the following
24 total sample sizes were considered: 20, 40, 60,
80, 100, 150, 200, 250, 300, 350, 400, 800, 1200,
1600, 2000, 3000, 4000, 5000, 6000, 7000, 8000,
9000, 10,000 and 50,000.

A reduced number of sample sizes covering the
same range was used for additional simulations
where changes were made to the number and
balance of subgroups and the variability in the
data. This was due, in part, to the similarity of
results across the sample sizes, particularly the
larger ones, and, in part, to the extensive running
time of each set of simulations. The following 
16 total sample sizes were considered for the 
case of continuous outcomes: 20, 40, 60, 80, 100,
150, 200, 250, 300, 350, 400, 1200, 2000, 5000,
10,000 and 50,000.

The initial simulations for binary data and survival
times were conducted for the same 24 total sample
sizes as in the continuous case. However, the run-
ning times of the FORTRAN programmes for these
outcomes were even longer and any subsequent
simulations were carried out for just the following
nine total sample sizes: 60, 100, 200, 300, 400,
1200, 2000, 5000 and 10,000.

Data analyses
The statistical tests used for the analyses were
determined by the type of outcome in question,
and details are given later in this chapter. How-
ever, the basic philosophy in each case was the
same (see Figure 2 ). The simulated data were
analysed in the first instance to look for evidence
of an overall significant treatment effect – that 
is, ignoring the subgroups. Following this, two
analyses were performed to investigate subgroup
effects: a formal statistical test of interaction
between treatment and subgroup, and a naïve
approach in which separate analyses were
performed for each subgroup. The results of 
the tests for overall treatment effect and inter-
action between treatment and subgroup were
considered simply in terms of statistical signifi-
cance – more specifically, the percentages of
simulations yielding correct- or false-negative/
positive results. However, the subgroup-specific
tests for the simplest case of two treatment 
groups and two subgroups resulted in four 
possible scenarios:

• Significant treatment effect apparent in both
subgroups with treatment effect in the same
direction in both

• Significant treatment effect apparent in 
both subgroups with treatment effects in
opposite directions

• Significant treatment effect apparent in one
subgroup only

• No significant treatment effect apparent in
either subgroup.

Test of overall treatment effect
(either significant or not)

Subgroup-specific tests
of treatment effect

Both
significant

One
significant

Neither
significant

Formal test of
interaction

Same
direction

Opposite
directions

Significant Not
significant

FIGURE 2 Framework for the analyses
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These four scenarios were considered separately 
to allow the identification of common situations in
which researchers might conclude that there are
differential effects across subgroups. It is impossible
to systematically identify every case in which this
conclusion might be drawn without looking directly
at estimates of effect and CIs. However, it was
hypothesised that scenarios (b) and (c), in
particular, might be interpreted in this way. 

A similar approach was adopted in simulations
involving more than two subgroups, resulting in
the following scenarios of actual results:

(a) Significant treatment effect apparent in all
subgroups with treatment effect in the same
direction in all

(b) Significant treatment effect apparent in all
subgroups with treatment effects not in the
same direction

(c) Significant treatment effect apparent (in the
same direction) in one or more subgroups 
but not all subgroups

(d) No significant treatment effect apparent in
any subgroup.

Estimates of correct- and false-positive/negative
rates for the tests of overall treatment effect and
interaction were obtained by calculating the pro-
portion of the 100,000 simulations with a signifi-
cant result. Similar rates for the subgroup-specific
tests were calculated for each of the four scenarios
described above.

In order to mimic what might happen in reality as
closely as possible, results of the subgroup analyses
are presented separately according to whether or
not the test for the overall treatment effect was
significant or not (irrespective of whether or 
not the data were generated to have a treatment
effect). The justification for this was that the 
results of the overall treatment comparison might
influence whether and to what extent a researcher
would conduct additional subgroup analyses, for
example, a researcher finding no overall treatment
effect might search more extensively for subgroup-
specific effects in an attempt to find a ‘positive’
result for publication.

Details of analytical methods by
type of outcome variable
Continuous data
Simulated data for the category defined by treat-
ment group i and subgroup j followed a Gaussian

distribution defined by the mean (µ ij) and vari-
ance (σ ij

2). Standardised Gaussian data (µ = 0, 
σ2 = 1) were obtained for each treatment group/
subgroup category from pseudo-random numbers
(between 0 and 1) using the Box-Muller trans-
formation.24 Treatment and subgroup effects were
obtained simply by altering the means in each
category. The effect of variability was explored by
altering the variances for treatment groups and
subgroups (see chapter 3 for details). 

The continuous data were analysed using ordinary
least squares regression techniques for the com-
parison of means. Significance tests for the overall
treatment effect and subgroup-specific treatment
effects were based on univariable regression (that
is, one-way analysis of variance (ANOVA)) models.
The formal tests of interaction between treatment
and subgroup were obtained from multivariable
regression (two-way ANOVA) models.

Binary data
Simulated data in category i, j followed a binomial
distribution defined by the size of the category
(n ij) and probability of an event (π ij). In each
category n ij, pseudo-random numbers between 
0 and 1 were converted to the appropriate (0 or 1)
data values according to whether or not they ex-
ceeded the specified π ij for that category. Treat-
ment and subgroup effects were specified by
appropriately altering n ij and π ij. The variability 
of binary data is a function of n ij and π ij and thus
it was not possible to look separately at the effect 
of variability when n ij and π ij were fixed.

Analysis of the binary data was based on logistic
regression models using maximum likelihood
methods. Significance tests of overall and subgroup-
specific treatment effects were based on simple
univariable models. Formal tests of interaction
between treatment and subgroup were obtained 
by including an additional interaction term in 
a multivariable logistic regression model. 

Survival data
Survival times were generated using the
exponential distribution. This model is commonly
used in practice and represents the situation 
where the hazard is constant over time. Simulated
survival times (x) in treatment group/subgroup
category i, j were generated from pseudo-random
numbers, q, in the range 0 to 1 according to 
the equality: 

–ln (1 – q)
x = ––––––––––

λij
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where λ ij is a (positive) parameter representing 
the hazard in category i, j. Treatment and sub-
group effects were then controlled by altering 
the mean survival time,

1
–– 
λij

in each category. As in the binary case, there is no
independent measure of variability in survival data.

Analyses of survival data were based on Cox pro-
portional hazards models using maximum likeli-
hood methods. Overall, interaction and subgroup-

specific tests were obtained from univariable or
multivariable regression models as appropriate.

Alternative analytical methods

The methods described above are, at least for 
the binary and survival cases, only one possible
analytical approach that could be employed. Other
methods that might have been considered include
chi-squared (for differences in proportions),
Mantel–Haenzel and log-rank tests. The rationale
for the current choice was simply to cover the
methods most commonly used by researchers. 
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Simplest case – two subgroups,
complete balance and 
equal variability 

Data simulated with no overall
treatment or subgroup effects
Overall treatment effect found to be 
non-significant (correct-negative result)
The percentage of the 100,000 simulated datasets
in which the overall treatment effect was correctly
found to be non-significant (p > 0.05) fluctuated
about 95% as expected. Within the range con-
sidered, the total sample size had no consistent
effect on this percentage, which ranged between
94.9 and 95.3% for different sample sizes. The
reason for the lack of sensitivity to sample size is
that, while the standard errors for each test are
greater for the smaller samples, sampling variation
inherent in the simulations are correspondingly
larger (that is, there is more fluctuation in the
sample means derived from them), but still, by
definition, 5% of tests will be significant. As dis-
cussed in the methods section, additional impre-
cision through repeated sampling with 100,000
simulations would be expected to be trivial.

Within this (approximately) 95% of datasets
correctly finding no evidence of an overall
treatment effect, the percentage of interaction 

tests with a statistically significant finding also
fluctuated about 5% (4.8–5.2%) for different
overall sample sizes (Figure 3). That is, 5% of 
the 95% with a non-significant overall treatment
effect had a significant interaction.

Table 2 and Figure 4 show the results of subgroup-
specific treatment effect tests performed on the
95% of datasets correctly finding no overall
treatment effect. Unsurprisingly, given the non-
significant overall effect, none of the tests found
significant treatment effects in the same direction
within both of the subgroups. As expected, the
majority of subgroup-specific tests found the
treatment effect to be non-significant in 
both subgroups. 

However, a small percentage of subgroup-specific
tests found significant treatment effects within
both subgroups but in opposite directions. The
arrows in Table 2 (and in the rest of this report)
indicate the percentage tended to as sample 
size increased. The left arrow indicates that the
tendency was towards the lower end of the range,
the right arrow signifying the upper end of the
range and where no arrow is presented, there was
no consistent pattern across sample sizes. About
7% of subgroup-specific tests found a significant
treatment effect in only one subgroup with a
tendency towards the lower value (6.6%) as 

Chapter 3

Results – continuous outcome data 
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FIGURE 3 Simplest case: data simulated with no overall treatment or subgroup effects. Results of interaction test in datasets with a
correct-negative overall result
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FIGURE 4 Simplest case: data simulated with no overall treatment or subgroup effects. Results of subgroup-specific tests of treatment
effect in datasets with a correct-negative overall finding with (a) one subgroup significant, (b) both subgroups significant in opposite
directions, (c) neither subgroup significant
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TABLE 2  Simplest case: data simulated with no overall treatment or subgroup effects. Results of subgroup-specific tests of treatment
effect in datasets with a correct-negative overall result

Subgroup treatment effects found % with finding (range across sample sizes)

One subgroup significant ← 6.60–7.10

Both subgroups significant in opposite directions 0.12–0.15

Both subgroups significant in the same direction Theoretically impossible

Neither subgroup significant 92.70–93.30 →
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sample size increased, as indicated by the arrow 
in Table 2. Although this percentage is only margin-
ally higher than the nominal 5% significance 
level, the observed differences in treatment effects
across the subgroups are likely to be high given 
the smaller sample sizes in this situation. In this
case, there may be a much higher potential for
researchers to reach an incorrect conclusion of
differential treatment effects across the subgroups.
Moreover, such apparently large differential 
effects could be especially harmful when 
translated into practice.

Overall treatment effect found to be significant
(false-positive result, type I error)
As expected, the percentage of the 100,000
simulated datasets which (incorrectly) found the
overall treatment effect to be significant at the 
5% level (that is, a type I error) fluctuated about
5% (4.7–5.1%) for different sample sizes as 
shown in Figure 5.

Among this 5% of datasets with an incorrectly
significant overall treatment effect, the percentage
of significant interaction tests also fluctuated about
5% (4.4–5.8%) for different sample sizes.

Table 3 and Figure 6 show the results of the
subgroup-specific tests performed on the 5% 
of datasets with an incorrect significant overall
finding. As before, a large proportion of subgroup-
specific tests found the treatment effect to be non-
significant within both subgroups. However, as
expected, this percentage was lower than in the
previous section because a significant overall
treatment effect had been observed. Correspond-
ingly, there was also a slight increase in the per-
centage of subgroup-specific tests that found both
subgroups to have significant treatment effects in
the same direction. There were no instances of a
significant treatment effect in both subgroups but
in opposite directions. In contrast to the situation
where the overall treatment effect was non-
significant, a large percentage of the analyses (be-
tween 55 and 64%) found a significant treatment
effect in one subgroup only. This is potentially a
very misleading finding because it might be inter-
preted as showing treatment to be beneficial in one
group and not in the other. Also in contrast to the
previous situation, there was some evidence of a
pattern across the total sample size with the per-
centage significant within one subgroup decreasing
for sample sizes below about 80. This is the point
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20
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FIGURE 5 Simplest case: data simulated with no overall treatment or subgroup effects. Percentage of primary analyses finding a
significant overall treatment effect (false-positive result, type I error)

TABLE 3  Simplest case: data simulated with no overall treatment or subgroup effects. Results of subgroup-specific tests of treatment
effect in datasets with a false-positive overall result

Subgroup treatment effects found % with finding (range across sample sizes)

One subgroup significant 54.60–64.10 →

Both subgroups significant in opposite directions 0.00 for all

Both subgroups significant in the same direction 2.10–2.90

Neither subgroup significant ← 33.30–42.90
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below which the degrees of freedom for the
(within-subgroup) treatment comparison would 
be expected to result in more conservative tests.

Data simulated with an overall
treatment effect but no differential
subgroup effects
The overall treatment effect differences detectable
with 50, 80, 90 and 95% power for a two-sided 5%
significance level were calculated for each sample
size (see appendix 1).

Overall treatment effect found to be significant
(correct-positive result)
The percentage of primary analyses that correctly
found the overall treatment effect to be significant
fluctuated about the nominal power for all sample
sizes. For each of the respective (approximately)
50, 80, 90 or 95% of datasets that found a signifi-
cant overall treatment effect, the percentage of
formal tests of interaction that were significant
fluctuated about 5% (4.8–5.2%; Table 4). 

Table 4 and Figure 7 show the results of the
subgroup-specific tests of the treatment effect
within the datasets with a correct-positive overall
finding. No simulations for any sample size found
both subgroups to have a significant treatment
effect but in opposite directions. The percentages
of the three remaining combinations of subgroup-
specific test results varied for smaller sample 
sizes, but all became reasonably stable at about 
200 observations in total. Specifically, the percent-
age where a significant result in the same direction
was observed in both subgroups increased with
increasing power (16% for 50% power, 33% for
80% power, 44% for 90% power and 55% for 
95% power). Correspondingly, the percentage for
which only one or neither subgroup-specific test
was significant reduced as power increased. One
subgroup was significant in about 66% of cases 
for 50% power and this decreased to 57% for 
80% power, 49% for 90% power and 41% for 
95% power.

Overall treatment effect found to be non-
significant (false-negative result, type II error)
The percentage of primary analyses that failed to
detect a significant overall treatment effect were
consistent with the nominal powers, and, in each
case, the false-negative rate did not vary systematic-
ally with sample size. For each nominal power,
within the datasets that (incorrectly) found a non-
significant overall treatment effect, the percentage
of formal tests of interaction that were significant
fluctuated about 5% (4.4–5.7%; Table 5 ). 

Table 5 and Figure 8 show the results of the
subgroup-specific tests of treatment effect within
the datasets with a false-negative overall finding. 
A negligible number of simulations found both
subgroups to have a significant treatment effect 
in opposite directions. As would be expected, the
percentage where only one subgroup was signifi-
cant increased with nominal power. However,
surprisingly, given the non-significant overall effect,
this percentage was rather high (20–26%). The
percentage where neither subgroup was significant
decreased correspondingly with power, although
not appreciably so (Table 5 ).

Given the similarity of the results across the
different nominal powers, only those for 80% are
presented in the rest of this report for clarity.

Differential subgroup effects

Specification of differential effects
As described briefly in the methods, the general
strategy for generating differential effects was 
to stipulate the interaction to be detected (θ)
relative to the overall (target) effect (δ), in a 
ratio denoted by ψ (= θ/δ). For example, this 
ratio would take the value 1 for an interaction 
that is the same magnitude as the overall effect 
and 0.67 where the interaction is two-thirds as
large as the overall effect. One advantage of
specifying the differential effects in this way 

TABLE 4  Simplest case: data simulated with an overall treatment effect but no differential subgroup effects. Percentage of significant
results (range across sample sizes) in datasets with a (correct) significant overall treatment effect

Nominal % of significant % of significant subgroup-specific tests
power interaction tests

One subgroup Both subgroups in Both subgroups in Neither
only opposite directions the same direction subgroup

50% 4.80–5.20 60.10–65.50 → 0.00 for all 12.60–16.20 → ← 18.70–27.30

80% 4.80–5.20 56.70–57.50 0.00 for all 25.50–32.80 → ← 10.20–17.50

90% 4.90–5.20 ← 49.00–52.10 0.00 for all 35.60–44.20 → ← 6.50–12.30

95% 4.80–5.10 ← 40.80–46.50 0.00 for all 44.90–55.10 → ← 4.10–8.50
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TABLE 5  Simplest case: data simulated with an overall treatment effect but no differential subgroup effects. Percentage of significant
results (range across sample sizes) in datasets with a (incorrect) non-significant treatment effect (type II error)

Nominal % of significant % of significant subgroup-specific tests
power interaction tests

One subgroup Both subgroups in Both subgroups in Neither
only opposite directions the same direction subgroup

50% 4.70–5.20 15.70–16.30 0.03–0.06 Theoretically impossible 83.70–84.20

80% 4.60–5.20 20.20–21.40 0.005–0.05 Theoretically impossible 78.50–79.80

90% 4.70–5.40 22.10–24.10 0.00–0.20 Theoretically impossible 75.90–77.80

95% 4.40–5.70 23.30–26.00 0.00–0.06 Theoretically impossible 74.00–76.70
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FIGURE 8 Simplest case: data simulated with an overall treatment effect but no differential subgroup effects. Results of subgroup-specific
tests of treatment effect within datasets with a false-negative overall result (type II error) with (a) one subgroup significant, (b) both subgroups
significant in opposite directions, (c) neither subgroup significant. ■■ , 50% power; ●●, 80% power; ▲▲, 90% power; ◆◆, 95% power
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is that the ratio ψ remains constant over different
sample sizes for the same nominal power. This
follows from the manner in which the simulations
were constructed in which the true treatment
effect difference was fixed just by the nominal
power and hence reduced as the sample size
increased. The range of ratios used for the
simulations covered all the possible types of
differential effects defined in chapter 2:

(1) Treatment effect differences in the same
direction but of different magnitudes

(2) Treatment effect difference in one subgroup
only

(3) Treatment effect differences in different
directions and of different magnitudes

(4) Treatment effect exactly reversed in the 
two subgroups.

Examples of the calculation of the ratio ψ for
general quantitative and qualitative differential
effects are as follows. For a quantitative interaction
(type 1) with (standardised) treatment effects in
the two subgroups of 0.1 and 0.2 then the overall
effect (δ) would be 0.15 and the interaction (θ)
would be 0.1 given equal-sized groups, hence 
ψ = θ/δ = 0.1/0.15 = 0.67. For a qualitative inter-
action (type 3) with subgroup-specific effects of
–0.05 and 0.1, ψ = 0.15/0.025 = 6.

In almost all situations, the specification of ψ was
made in the following way. Firstly, the target overall
treatment effect was fixed by the nominal power
specified and the simulations were then performed
with this difference incorporated into the means. 
In other words, the true difference was effectively
fixed to be the same as the target difference δ. The

interaction (θ) was then specified relative to δ
in terms of ψ. The only exception to this was for
interactions of type 4, for which the overall (true)
treatment effect difference incorporated into the
simulations was, by definition, equal to zero. In this
case, setting the true overall effect to be δ would
mean that ψ is not defined. In order to retain this
special case in the general presentation of results
(however unlikely it is to occur in practice), δ was
set here to be equal to the (overall) target differ-
ence that would be detectable at the nominal power
with the sample size involved. By doing this, ψ was,
again, constant over different sample sizes for the
same nominal (overall) power, and was, therefore,
consistent with the other three types of interaction.

The possible values of ψ for the four types of
interaction defined above are as follows. For
quantitative interactions, ψ is constrained to be 
2 or below, being less than 2 for the general case 
of type 1 and always equalling 2 for the special 
case of type 2. General qualitative interactions
(type 3) have values of ψ greater than 2. Once
again, the special case of type 4 interactions 
(equal and opposite subgroup-specific effects) 
is an exception: given the method of specifying
these that were adopted, ψ for this type of
interaction can take any value.

It is reiterated that the simulations underlying 
the results that follow were all performed for 
the situation where the treatment groups and
subgroups were all of equal size. 

Performance of formal interaction tests 
Figure 9 shows the power of the interaction test 
for various values of ψ for trials powered for the
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overall treatment effect at 50, 80 and 95% levels.
For example, if the interaction effect is the same
magnitude as the overall effect (ψ = 1) then, in 
a trial with 80% power for the overall treatment
effect, the test for interaction will only have about
29% power. On the other hand, if the interaction
effect is four times as large as the overall effect
then the interaction test will have power approach-
ing 100%. As stated above, it is emphasised that
this method of specifying the overall and differ-
ential effects (δ and θ, respectively) means that the
results in Figure 9 are independent of sample size.
Moreover, considering the results underlying this
figure separately according to whether or not the

(simulated) overall test result was significant had
little effect either on the percentages of significant
interaction tests or the lack of dependence on
sample size. 

Performance of subgroup-specific tests
There was some variation with sample size in the
performance of the subgroup-specific tests. For an
example total sample size of 1200, Figures 10 and
11 present the results from subgroup-specific tests
across the range of values for ψ where the overall
treatment effect is not equal to zero (differential
effect types 1, 2 and 3). In contrast to Figure 9, the
limitations of this analytical approach mean that
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FIGURE 11 Simplest case: data simulated with differential subgroup effects. Results of subgroup-specific tests of treatment effect in
datasets with an (incorrect) non-significant overall treatment effect. ■■ , Both significant in the same direction; ▲▲, both significant in opposite
directions; ◆◆, only one significant; ●●, neither significant
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Figures 10 and 11 are for illustrative purposes
rather than practical use. Each figure depicts 
the percentage of test results in the four possible
combinations of subgroup-specific results, that is,
both significant in the same or opposite directions,
only one significant or neither significant. Figure 10
relates to the case where the observed overall treat-
ment effect was (correctly) identified as statistically
significant and Figure 11 relates to false-negative
overall results. As would be expected, the relative
likelihoods of the various results vary considerably
across the range of ψ; more importantly, apart
from exceptional circumstances, such as when 
ψ = 2 for quantitative interactions (that is, not 
type 4 interactions) or is extremely large, the
subgroup-specific tests, again, have a high chance
of leading to inappropriate conclusions.

Generally, the results for subgroup-specific tests
were unaffected by sample size. For qualitative
interactions where the interaction effect was 
more than twice the overall effect, however, 
both tests being significant in opposite directions
was observed more frequently as sample size
increased, and, correspondingly, just one signifi-
cant subgroup-specific test was a less frequent
observation. As would be expected, the other 
two eventualities (neither significant or both
significant in the same direction) occur very 
rarely in these circumstances. 

Equivalent data were simulated for type 4
differential effects and these produced very 
similar patterns. As would be expected, an
exception was the case when the overall effect 
was (correctly) non-significant and the chance 

of neither subgroup-specific test being significant
was increased compared with Figure 11. In this 
case, the chance of only one subgroup-specific 
test being significant was correspondingly lower
(below 50%).

Inflation factors for interaction tests
Figure 12 presents the factor by which the sample
size would have to be inflated in order for the
interaction test to have the same power as that
provided by the original sample size for the 
overall treatment effect. These inflation factors 
are given for a range of magnitudes of the inter-
action relative to the overall effect (ψ) up to the
value 2, by which point the inflation factor has
effectively reached unity. Given the specification
for deriving Figure 12 (in particular, that the
inflation factor applies multiplicatively to the
original sample size in order to yield the nominal
power), the inflation factors presented are
independent of the original sample size, the
nominal power it provided and the (absolute)
magnitudes of the interaction and overall
treatment effects.

One limitation of the presentation in Figure 12
is that to accommodate the very large inflation
factors required for interactions that are more
subtle than, say, half the size of the overall effect,
the scale is difficult to read for values of ψ between
0.5 and 2.0. A clearer version for practical use
employing the log scale is, therefore, given in
chapter 6. Examples of the potential use of this
figure are that for interactions of the same magni-
tude as the overall effect, sample size should be
inflated approximately four-fold, and for inter-
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actions half the size of the overall effect, the
inflation factor is about 16. As would be expected,
the inflation factor has no upper bound as ψ
approaches zero; more importantly, for inter-
actions more subtle than, say, one-third to one-
fifth of the overall effect, the inflation factor
approaches levels that are most unlikely to be
achievable in practice (about 50 or higher).

Comparison with a theoretical model
All the above figures were obtained by the use 
of simulations, as described in the methods. In
principle, at least some of them could be obtained
from a theoretical perspective, as, for example,
used previously for a binary outcome in the special
case of an interaction the same size as the overall
effect (that is, ψ = 1 in our terminology).25 The
reasons for using a simulation approach through-
out this report were given in chapter 2. Neverthe-
less, it would seem of value to investigate such an
alternative approach for a selected example here.
Partly to compare with this previous method and
partly due to ease of specification, in addition to
the simulations for a continuous outcome, the
power for the interaction test and hence the
inflation factor for ψ = 1 was obtained for a binary
outcome using the computer program Power
developed by the National Cancer Institute and
based on a model for binary outcomes.26,27

The levels of power and the inflation factors were
consistent (at about 29% and 4, respectively, for
this example) across all these analyses and with
previous work.25 However, it is stressed again that 
a value of 1 for ψ is very large and, as shown in
Figure 12, the commonly used ‘rule of four’ is 
a gross underestimate of the inflation factor
required for more subtle (and realistic) inter-
actions. The particular theoretical approach 
used previously25 needs to be re-considered for
situations where the interactions are much 
smaller than the overall effect.

The effect of modifying the
treatment group ratio
As the ratio of the size of the two treatment 
groups was varied, the subgroup ratio remained 
at 1:1 throughout and the overall sample sizes
remained as before. 

Data simulated with no overall
treatment or subgroup effects
Overall treatment effect found to be non-
significant (correct-negative result)
The percentage of the 100,000 simulated datasets
in which a non-significant overall treatment effect
was correctly observed ranged (across sample sizes)
between 94.9 and 95.1% for a treatment group
ratio of 1:2, between 94.9 and 95.2% for a ratio 
of 1:3, between 94.9 and 95.2% for 1:4 and 94.9
and 95.1% for 1:5. Table 6 shows the results of the
formal tests of interaction and subgroup-specific
tests of treatment effect. All the results were very
similar to those of the simplest case with equal-
sized treatment groups, that is, no patterns with
increasing treatment group ratio. 

Overall treatment effect found to be significant
(false-positive result, type I error)
Across the sample sizes, about 5% of the 100,000
simulated datasets resulted in an incorrect signifi-
cant overall treatment effect. The results of the
interaction and subgroup-specific tests of treat-
ment effect performed on these (false-positive)
datasets are shown in Table 7. The results are 
again very similar to those for the simplest case
with equal-sized treatment groups. 

Data simulated with an overall treatment
effect but no differential subgroup effects
Overall treatment effect found to be significant
(correct-positive result)
The percentage of the 100,000 simulated datasets
for each different sample size that (correctly)

TABLE 6  The effect of varying the treatment group ratio: data simulated with no treatment or subgroup effects. Percentage of
significant results (range across sample sizes) in datasets with a non-significant overall treatment effect

Treatment % of  % of significant subgroup-specific tests
group ratio significant  

One subgroup Both subgroups in Both subgroups in Neitherinteraction tests
only opposite directions the same direction subgroup

1:1 4.80–5.20 ← 6.60–7.10 0.12–0.15 Theoretically impossible 92.70–93.30 →

1:2 4.80–5.10 ← 6.60–7.10 0.12–0.17 Theoretically impossible 92.80–93.30 →

1:3 4.90–5.10 ← 6.60–6.90 0.12–0.15 Theoretically impossible 93.00–93.30 →

1:4 4.90–5.20 ← 6.60–7.10 0.10–0.15 Theoretically impossible 92.80–93.30 →

1:5 4.90–5.10 ← 6.70–7.00 0.12–0.15 Theoretically impossible 92.90–93.20 →
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demonstrated a significant overall treatment 
effect was consistent with the nominal power 
for the overall treatment effect difference. 
Table 8 shows the results of the interaction and
subgroup-specific tests in those datasets with 
a significant overall treatment effect, and, as
before, the results were very similar to those 
of the corresponding simplest case (with a 
1:1 treatment group ratio).

Overall treatment effect found to be 
non-significant (false-negative result,
type II error)
The percentage of datasets that failed to
demonstrate a significant overall treatment effect
was about 20% for datasets with 80% nominal
power for each of the different treatment group
ratios. Table 9 again shows that varying treatment
group ratio within equal-sized subgroups had 

TABLE 7  The effect of varying the treatment group ratio: data simulated with no treatment or subgroup effects. Percentage of
significant results (range across sample sizes) in datasets with a significant overall treatment effect

Treatment % of  % of significant subgroup-specific tests
group ratio significant  

One subgroup Both subgroups in Both subgroups in Neitherinteraction tests
only opposite directions the same direction subgroup

1:1 4.40–5.80 54.60–64.10 → 0.00 for all 2.10–2.90 ← 33.30–42.90

1:2 4.40–5.60 55.00–63.50 → 0.00–0.02 2.00–2.90 ← 34.10–42.40

1:3 4.50–5.50 59.60–62.60 → 0.00 for all 2.10–2.90 ← 35.00–38.00

1:4 4.90–5.10 56.80–63.40 → 0.00 for all 2.20–3.20 ← 34.30–41.00

1:5 4.60–5.60 59.30–63.30 → 0.00 for all 2.20–2.10 ← 34.10–38.10

TABLE 8  The effect of varying the treatment group ratio: data simulated with an overall treatment effect but no subgroup effects.
Percentage of significant results (range across sample sizes) in datasets with a significant overall treatment effect at a nominal power 
of 80%

Treatment % of  % of significant subgroup-specific tests
group ratio significant  

One subgroup Both subgroups in Both subgroups in Neitherinteraction tests
only opposite directions the same direction subgroup

1:1 4.80–5.20 56.70–57.50 0.00 for all 25.50–32.80 → ← 10.20–17.50

1:2 4.80–5.10 56.80–57.40 0.00 for all 25.80–32.60 → ← 10.40–17.10

1:3 4.90–5.10 56.90–57.60 0.00 for all 29.90–32.50 → ← 10.50–12.90

1:4 4.90–5.10 56.10–57.60 0.00 for all 27.50–32.50 → ← 10.40–16.40

1:5 4.90–5.10 56.20–57.40 0.00–0.001 31.30–32.40 → ← 10.50–12.50

TABLE 9  The effect of varying the treatment group ratio: data simulated with an overall treatment effect but no subgroup effects.
Percentage of significant results (range across sample sizes) in datasets with a non-significant overall treatment effect at a nominal
power of 80%

Treatment % of  % of significant subgroup-specific tests
group ratio significant  

One subgroup Both subgroups in Both subgroups in Neitherinteraction tests
only opposite directions the same direction subgroup

1:1 4.60–5.20 20.20–21.40 0.005–0.05 Theoretically impossible 78.50–79.80

1:2 4.60–5.20 19.40–21.10 0.01–0.05 Theoretically impossible 78.80–80.60

1:3 4.70–5.20 20.30–21.50 0.01–0.03 Theoretically impossible 78.50–79.70

1:4 4.70–5.40 19.90–21.50 0.00–0.05 Theoretically impossible 78.50–80.10

1:5 4.70–5.20 20.50–21.30 0.01–0.05 Theoretically impossible 78.60–79.50



Health Technology Assessment 2001; Vol. 5: No. 33

21

no consistent effect on the results of either the
formal tests of interaction or the subgroup-
specific tests. 

The effect of modifying the
subgroup ratio
The ratio of the size of the two subgroups was
varied while the treatment group ratio was fixed 
at 1:1 and the overall sample sizes remained 
as before.

Data simulated with no overall
treatment or subgroup effects
Overall treatment effect found to be non-
significant (correct-negative result)
The percentage of the 100,000 simulated datasets
in which a non-significant overall treatment effect
was (correctly) observed was 94.8–95.0% for a
subgroup ratio of 1:2, 94.9–95.1% for 1:3, 94.9–
95.1% for 1:4 and 94.9–95.2% for a ratio of 1:5.

The results of the interaction and subgroup-
specific tests are shown in Table 10. The percentage
of significant interaction tests ranged about 5%
across sample sizes for each subgroup ratio as in
the simplest case. The percentage finding the
treatment effect to be significant within both
subgroups but in opposite directions was very 
small for each subgroup ratio. The percentage 
that found only one subgroup to have a significant
treatment effect decreased slightly with an increase
in subgroup ratio (Figure 13 ) from the (approxi-
mately) 7% found for a 1:1 ratio. This is, presum-
ably, the net effect of two competing influences.
The first is that for, say, a 1:5 ratio, the single
(chance) large treatment effect could occur in
either the larger or the smaller subgroup but is
much less likely to be significant if it occurs in the
smaller. Secondly, for a 1:1 ratio, the observed
difference would need to be even larger to be
significant, but it would not matter in which
subgroup it was observed. However, the reduction
in this percentage was only marginal and thus, 

TABLE 10  The effect of varying the subgroup ratio: data simulated with no overall treatment or subgroup effects. Percentage of
significant results (range across sample sizes) in datasets with a non-significant overall treatment effect

Subgroup % of  % of significant subgroup-specific tests
ratio significant  

One subgroup Both subgroups in Both subgroups in Neitherinteraction tests
only opposite directions the same direction subgroup

1:1 4.80–5.20 ← 6.60–7.10 0.12–0.15 Theoretically impossible 92.70–93.30 →

1:2 4.90–5.10 ← 6.50–7.10 0.11–0.14 Theoretically impossible 92.80–93.40 →

1:3 4.80–5.10 ← 6.40–6.70 0.11–0.15 Theoretically impossible 93.20–93.50 →

1:4 4.90–5.20 ← 6.30–6.70 0.10–0.16 Theoretically impossible 93.20–93.60 →

1:5 4.90–5.20 ← 6.10–6.40 0.09–0.15 Theoretically impossible 93.40–93.80 →
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FIGURE 13 The effect of varying the subgroup ratio: data simulated with no overall treatment or subgroup effects. Percentage of
simulated datasets resulting in a non-significant overall treatment effect with a significant treatment effect in only one subgroup.
●●, 1:1; ▲▲, 1:2; ■■ , 1:3; ◆◆, 1:4; +, 1:5
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in this case, it appeared that the two competing
influences more or less cancelled out.

Overall treatment effect found to be significant
(false-positive result, type I error)
The percentage of the 100,000 simulated datasets
that found a significant overall treatment effect was
about 5% for all subgroup ratios and there was a
similar percentage of significant interaction tests.

The results of the subgroup-specific tests within
these (false-positive) overall results are shown in
Table 11. Not surprisingly, the occasions where both
tests were significant but in opposite directions
were negligible. As shown in Figure 14, compared
with the simplest (1:1) case, the proportion of
analyses in which the treatment effect was signifi-
cant in only one subgroup increased with more
extreme subgroup ratios (to about 71% for a ratio
of 1:5). Hence, the balance of influences described
previously appeared not to cancel out when there
was a (observed) significant overall treatment

effect, with the existence of a larger subgroup
having a greater effect. The proportion where both
subgroup-specific tests were significant in the same
direction was about 2.5% for all subgroup ratios.

Data simulated with an overall
treatment effect but no differential
subgroup effects
Overall treatment effect found to be significant
(correct-positive result)
As before, for each subgroup ratio, the percentage
of analyses detecting a significant treatment effect
was consistent with the nominal power assigned 
for the treatment effect difference. 

For data simulated to have 80% nominal power
and with a (correct) significant overall test result,
the interaction tests performed had approximately
5% of results significant as anticipated (Table 12 ).
As might be expected, the percentage of subgroup-
specific tests finding a significant treatment effect
in the same direction for both subgroups

TABLE 11  The effect of varying the subgroup ratio: data simulated with no overall treatment or subgroup effects. Percentage of
significant results (range across sample sizes) in datasets with a significant overall treatment effect

Subgroup % of  % of significant subgroup-specific tests
ratio significant  

One subgroup Both subgroups in Both subgroups in Neitherinteraction tests
only opposite directions the same direction subgroup

1:1 4.40–5.80 54.60–64.10 → 0.00 for all 2.10–2.90 ← 33.30–42.90

1:2 4.60–5.60 57.50–65.70 → 0.00–0.02 2.00–3.00 ← 31.80–40.10

1:3 4.50–5.90 63.80–68.20 → 0.00–0.06 2.00–2.80 ← 29.60–33.70

1:4 4.50–5.30 60.00–69.90 → 0.00–0.10 2.10–3.00 ← 27.80–37.30

1:5 4.70–5.60 67.70–71.40 → 0.02–0.21 2.00–2.70 ← 25.90–29.80
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FIGURE 14 The effect of varying the subgroup ratio: data simulated with no overall treatment or subgroup effects. Percentage of
simulated datasets resulting in a significant overall treatment effect with a significant treatment effect in only one subgroup.
●●, 1:1; ▲▲, 1:2; ■■ , 1:3; ◆◆, 1:4; +, 1:5
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decreased as the subgroup ratio was increased
(Figure 15). Conversely, the percentage where just
one subgroup-specific test was significant increased
quite dramatically as the subgroup ratio departed
from 1:1 (Figure 16 ). This is very similar to the
situation in the previous section (Table 11) where
the overall treatment effect was significant (albeit
then as a false-positive). The percentage of
subgroup-specific tests in which a significant
treatment effect was observed for both subgroups
but in opposite directions was again close to zero
irrespective of subgroup ratio. 

Overall treatment effect found to be non-
significant (false-negative result, type II error)
The percentage of datasets giving a false-negative
overall result reflected the specified nominal
power, and the percentage of interaction tests
finding a differential treatment effect across
subgroups fluctuated about 5% regardless of the
subgroup ratio (Table 13 ). Among these datasets,
the percentage where both subgroup-specific

analyses were significant was negligible (either in
the same or opposite directions). The percentage
where just one subgroup-specific test was signifi-
cant declined as the subgroup ratio increased
(Table 13 and Figure 17 ). Although the percentages
were higher overall in this case, the pattern was
similar to that observed when there was no overall
treatment effect (Table 10 ). 

The effect of modifying the
variance of the data
The impact of departing from the assumption 
of equal variances across treatment groups and
subgroups was explored. In all cases, the number
of treatment groups and subgroups was fixed at
two and the sizes of the treatment groups and
subgroups remained equal.

The variances were modified in a number of
different ways. Firstly, the variance for one of the

TABLE 12  The effect of varying the subgroup ratio: data simulated with an overall treatment effect but no subgroup effects. Percentage
of significant results (range across sample sizes) in datasets with a significant overall treatment effect at a nominal power of 80%

Subgroup % of  % of significant subgroup-specific tests
ratio significant  

One subgroup Both subgroups in Both subgroups in Neitherinteraction tests
only opposite directions the same direction subgroup

1:1 4.80–5.20 56.70–57.50 0.00 for all 25.50–32.80 → ← 10.20–17.50

1:2 4.80–5.40 ← 61.30–65.60 0.00–0.01 18.80–28.90 → ← 9.40–15.60

1:3 4.80–5.10 ← 66.80–68.70 0.003–0.02 20.40–24.40 → ← 8.30–10.90

1:4 4.90–5.20 ← 71.20–76.10 0.01–0.09 10.80–21.50 → ← 7.30–13.00

1:5 4.90–5.10 ← 74.30–78.80 0.02–0.11 12.70–19.10 → ← 6.60–8.40
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FIGURE 15 The effect of varying the subgroup ratio: data simulated with an overall treatment effect but no subgroup effects.
Percentage of simulated datasets resulting in a significant overall treatment effect with a significant treatment effect in both 
subgroups in the same direction. ●●, 1:1; ▲▲, 1:2; ■■ , 1:3; ◆◆, 1:4; +, 1:5
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FIGURE 16 The effect of varying the subgroup ratio: data simulated with an overall treatment effect but no subgroup effects.
Percentage of simulated datasets resulting in a significant overall treatment effect with a significant treatment effect in only one 
subgroup. ●●, 1:1; ▲▲, 1:2; ■■ , 1:3; ◆◆, 1:4; +, 1:5
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FIGURE 17 The effect of varying the subgroup ratio: data simulated with an overall treatment effect but no subgroup effects.
Percentage of simulated datasets resulting in a non-significant overall treatment effect with a significant treatment effect in only one
subgroup. ●●, 1:1; ▲▲, 1:2; ■■ , 1:3; ◆◆, 1:4; +, 1:5

TABLE 13  The effect of varying the subgroup ratio: data simulated with an overall treatment effect but no subgroup effects. Percentage
of significant results (range across sample sizes) in datasets with a non-significant overall treatment effect at a nominal power of 80%

Subgroup % of  % of significant subgroup-specific tests
ratio significant  

One subgroup Both subgroups in Both subgroups in Neitherinteraction tests
only opposite directions the same direction subgroup

1:1 4.60–5.20 20.20–21.40 0.005–0.05 Theoretically impossible 78.50–79.80

1:2 4.90–5.30 19.10–20.90 0.03–0.10 Theoretically impossible 79.10–80.80

1:3 4.60–5.20 18.90–20.00 0.07–0.16 Theoretically impossible 79.90–81.00

1:4 4.70–5.20 16.90–19.10 0.10–0.28 Theoretically impossible 80.70–82.80

1:5 4.60–5.20 16.10–18.50 0.16–0.36 Theoretically impossible 81.40–83.50
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treatment groups or one of the subgroups was
changed from 1 to 2 and then to 5. The alterations
to the treatment group- and subgroup-specific
variances were then made jointly (for values of
both 2 and 5), assuming that when the two vari-
ances changed together they did so multiplica-
tively. For example, if the variance in T2, S1 took
the value 2 and that for T1, S2 was 5, then the
variance in T2, S2 was taken as 10. 

It is acknowledged that some of these specifications
are somewhat extreme (particularly given the
assumption of equal variances in the regression
models). The advantage, however, is that all realistic
situations will fall between them and, in the event 
of researchers transforming their data to improve
homogeneity, their situation, if anything, would tend
towards the simplest case model already covered.

Data simulated with no overall
treatment or subgroup effects
Overall treatment effect found to be non-
significant (correct-negative result)
Within these datasets (95% of the total), altering
the variance in one of the treatment groups had
no effect on the formal interaction test, regardless
of whether or not the subgroup variances were
altered (Table 14 ). Conversely, regardless of the
pattern of variances across treatment groups,
increasing the variance of one of the subgroups
generally reduced the percentage of interaction

tests that were significant (in this correct-negative
situation), although not markedly so. 

The subgroup-specific tests of treatment effect
produced very similar findings to those of the
simplest case of equal variability (with, as might 
be anticipated, a slight widening of the ranges
across sample sizes when at least one of the
variances was relatively large).

Overall treatment effect found to be significant
(false-positive result, type I error)
Within these (5%) datasets, altering the variance 
in one of the treatment groups had almost no
effect on the interaction test or the subgroup-
specific tests (Table 15 ). However, increasing the
variance in one of the subgroups was rather more
influential. In contrast to the previous case, the
impact on the interaction test was a dramatic
increase in the number of significant tests.

Regarding the subgroup-specific tests, the per-
centages where both were significant in opposite
directions (virtually zero) and both were significant
in the same direction (about 2.5%) appeared to be
unaffected by the pattern of variances. The percent-
age where just one was significant had a similar
pattern to the interaction test in terms of the impact
of altering the variances (Table 15). This general
pattern (i.e. an impact of subgroup but not treat-
ment group variances) can be explained in the

TABLE 14  The effect of varying the variance of the data: data simulated with no overall treatment or subgroup effects. Percentage of
significant results (range across sample sizes) in datasets with a non-significant overall treatment effect

% of  % of significant subgroup-specific tests
T1, S1 T1, S2 T2, S1 T2, S2 significant

One  Both subgroups Both subgroups  Neitherinteraction
subgroup in opposite in the same subgrouptests

only directions direction

Simplest case N(0,1) N(0,1) N(0,1) N(0,1) 4.80–5.20 ← 6.60–7.10 0.12–0.15 Theoretically 92.70–93.30 →
impossible

One treatment N(0,1) N(0,1) N(0,2) N(0,2) 4.90–5.20 ← 6.60–7.40 0.12–0.16 Theoretically 92.40–93.20 →
group variance impossible
increased N(0,1) N(0,1) N(0,5) N(0,5) ← 4.90–5.60 ← 6.60–8.60 0.12–0.18 Theoretically 91.20–93.20 →

impossible

One subgroup N(0,1) N(0,2) N(0,1) N(0,2) ← 4.60–5.00 ← 6.40–7.00 0.12–0.15 Theoretically 92.90–93.40 →
variance impossible
increased N(0,1) N(0,5) N(0,1) N(0,5) ← 3.60–4.70 ← 6.10–7.10 0.12–0.14 Theoretically 92.80–93.70 →

impossible

One treatment N(0,1) N(0,2) N(0,2) N(0,4) ← 4.60–5.10 ← 6.50–7.50 0.11–0.15 Theoretically 92.30–93.30 →
group and impossible
one subgroup N(0,1) N(0,5) N(0,2) N(0,10) ← 3.60–4.70 ← 6.20–7.10 0.11–0.15 Theoretically 92.70–93.70 →
variance impossible
increased N(0,1) N(0,2) N(0,5) N(0,10) ← 4.60–5.70 ← 6.60–8.70 0.13–0.20 Theoretically 91.10–93.30 →

impossible
N(0,1) N(0,5) N(0,5) N(0,25) ← 3.60–5.30 ← 6.20–8.60 0.12–0.18 Theoretically 91.20–93.70 →

impossible
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situation of a false-positive overall treatment effect 
by the following argument. If the subgroup variances
are different but the treatment group variances are
equal, this might simply reflect a (chance) differ-
ential effect as a result of one of the larger variances
if there is an (chance) observed overall treatment
effect. However, in the case of different treatment
group but equal subgroup variances, an (chance)
overall treatment effect does not mean that a differ-
ential effect is any more likely than expected by
chance (5%). It is emphasised, however, that even
though some of the observations in Table 15 are
explained in largely artefactual terms, the error rates
remain a true reflection of the dangers of research-
ers being influenced by the overall treatment effect
result in the decisions about whether or not to
perform subgroup analyses (even interaction tests). 

In addition, the effect of small sample sizes 
(a total of less than 100) in terms of reducing 
the percentage where one subgroup test was
significant was slightly greater for the more
extreme specifications of variances (Table 15). 

Data simulated with an overall
treatment effect but no differential
subgroup effects
The overall treatment effects incorporated into
these simulations took into account not only the
power, as before, but also the (changing) variances
(see appendix 1 for details). 

Overall treatment effect found to be significant
(correct-positive result)
Within these datasets (approximately 80% of the
total), the pattern of results from the interaction

tests in Table 16 was very similar to that seen 
in Table 14 (the correct-negative case), where 
the subgroup variances had a small effect on 
the interaction tests and the treatment group
variances were not influential at all. 

However, in this case, while differences in the
treatment group variances still had no impact 
on the results of the subgroup-specific results,
altering the subgroup variances did. Specifically,
the percentage of subgroup-specific tests with 
one or both subgroup-specific treatment effects 
that were significant increased marginally 
with increasing subgroup variances while 
the percentage where neither was significant
decreased correspondingly (Table 16 ). 

Overall treatment effect found to be 
non-significant (false-negative result,
type II error)
In these (20%) datasets, an influence of 
subgroup but not treatment group variance was
again observed for the interaction tests (Table 17).
Not surprisingly, in the case of an overall false-
negative result, situations where both subgroup-
specific tests were significant (either in the same 
or opposite directions) were very rare. The per-
centage where only one subgroup-specific treat-
ment effect was significant dramatically increased
with increasing variance in one subgroup with a
corresponding decrease in the percentage where
neither subgroup-specific test was significant. 
The results for this situation were intermediate
between the correct-negative (where the trend 
by subgroup variance was very weakly in the
opposite direction) and the false-positive cases

TABLE 15  The effect of varying the variance of the data: data simulated with no overall treatment or subgroup effects. Percentage of
significant results (range across sample sizes) in datasets with a significant overall treatment effect

% of  % of significant subgroup-specific tests
T1, S1 T1, S2 T2, S1 T2, S2 significant

One  Both subgroups Both subgroups  Neitherinteraction
subgroup in opposite in the same subgrouptests

only directions direction

Simplest case N(0,1) N(0,1) N(0,1) N(0,1) 4.60–5.80 54.60–64.10 → 0.00 for all 2.10–2.90 ← 33.30–42.90

One treatment N(0,1) N(0,1) N(0,2) N(0,2) 4.60–5.60 55.00–64.30 → 0.00 for all 2.20–2.90 ← 33.40–42.20
group variance N(0,1) N(0,1) N(0,5) N(0,5) 4.60–5.70 56.10–63.00 → 0.00 for all 2.10–3.20 ← 34.20–40.60
increased

One subgroup N(0,1) N(0,2) N(0,1) N(0,2) 9.00–11.20 → 56.50–65.60 → 0.00–0.04 2.20–3.40 ← 32.10–41.20
variance N(0,1) N(0,5) N(0,1) N(0,5) 26.50–30.90 → 62.10–71.30 → 0.00–0.12 1.80–3.00 ← 26.50–34.90
increased

One treatment N(0,1) N(0,2) N(0,2) N(0,4) 9.80–11.50 → 58.10–65.20 → 0.00–0.02 2.20–2.80 ← 32.40–39.50
group and N(0,1) N(0,5) N(0,2) N(0,10) 26.60–30.60 → 61.50–71.70 → 0.00–0.12 2.20–2.90 ← 25.60–35.60
one subgroup N(0,1) N(0,2) N(0,5) N(0,10) 9.80–11.10 → 58.90–66.00 → 0.00–0.02 2.00–3.20 ← 31.80–38.00
variance N(0,1) N(0,5) N(0,5) N(0,25) 25.20–30.60 → 64.10–71.20 → 0.00–0.12 2.30–3.60 ← 26.20–32.30
increased
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seen in the previous section (where the impact 
was dramatic if essentially artefactual). This is 
likely to reflect the fact that in the current 
(false-negative) situation, there is a proportion 
of datasets where the observed difference is 
non-zero but just not large enough to 
be significant.

It should be remembered here that, for all the
simulations, only one specification was varied 
at a time. Hence, the above results for unequal
variances relate just to the case of equal treatment
group and subgroup sizes. It would be anticipated
that the impact of unequal variances would
increase for unequal group sizes.

TABLE 16  The effect of varying the variance of the data: data simulated with an overall treatment effect but no differential subgroup
effects. Percentage of significant results (range across sample sizes) in datasets with a significant overall treatment effect at a nominal
power of 80%

% of  % of significant subgroup-specific tests
T1, S1 T1, S2 T2, S1 T2, S2 significant

One  Both subgroups Both subgroups  Neitherinteraction
subgroup in opposite in the same subgrouptests

only directions direction

Simplest case N(0,1) N(0,1) N(δ,1) N(δ,1) 4.90–5.20 57.00–57.50 0.00 for all 25.50–32.50 → ← 10.20–17.50

One treatment N(0,1) N(0,1) N(δ,2) N(δ,2) 4.90–5.20 57.40–58.10 0.00 for all 24.80–31.40 → ← 10.80–17.50
group variance N(0,1) N(0,1) N(δ,5) N(δ,5) ← 4.90–5.60 57.90–59.90 0.00–0.001 23.70–28.20 → ← 12.20–18.50
increased

One subgroup N(0,1) N(0,2) N(δ,1) N(δ,2) ← 4.60–5.00 58.10–59.10 0.00 for all 26.40–34.40 → ← 8.40–15.00
variance N(0,1) N(0,5) N(δ,1) N(δ,5) ← 3.70–4.80 61.20–64.00 0.00–0.001 29.80–36.40 → ← 2.20–6.20
increased

One treatment N(0,1) N(0,2) N(δ,2) N(δ,4) ← 4.50–5.10 58.60–59.20 0.00 for all 26.00–32.50 → ← 8.70–15.20
group and N(0,1) N(0,5) N(δ,2) N(δ,10) ← 3.70–5.00 61.40–63.90 0.00–0.001 29.50–35.80 → ← 2.80–6.70
one subgroup N(0,1) N(0,2) N(δ,5) N(δ,10) ← 4.60–5.60 59.60–60.90 0.00–0.001 24.40–29.40 → ← 10.20–16.00
variance N(0,1) N(0,5) N(δ,5) N(δ,25) ← 3.90–5.80 62.80–63.30 0.00–0.002 28.90–33.30 → ← 3.70–8.00
increased

TABLE 17  The effect of varying the variance of the data: data simulated with an overall treatment effect but no subgroup effects.
Percentage of significant results (range across sample sizes) in datasets with a non-significant overall treatment effect at a nominal
power of 80%

% of  % of significant subgroup-specific tests
T1, S1 T1, S2 T2, S1 T2, S2 significant

One  Both subgroups Both subgroups  Neitherinteraction
subgroup in opposite in the same subgrouptests

only directions direction

Simplest case N(0,1) N(0,1) N(δ,1) N(δ,1) 4.60–5.20 20.20–21.40 0.005–0.04 Theoretically 78.50–79.80
impossible

One treatment N(0,1) N(0,1) N(δ,2) N(δ,2) 4.70–5.30 20.00–21.20 0.01–0.05 Theoretically 78.80–80.00
group variance impossible
increased N(0,1) N(0,1) N(δ,5) N(δ,5) 4.80–5.80 19.80–22.10 0.008–0.05 Theoretically 77.80–80.20

impossible

One subgroup N(0,1) N(0,2) N(δ,1) N(δ,2) 6.10–6.60 34.30–36.40 0.01–0.08 Theoretically 63.50–67.60
variance impossible
increased N(0,1) N(0,5) N(δ,1) N(δ,5) 8.20–9.10 71.50–78.50 0.07–0.17 Theoretically 21.40–28.30

impossible

One treatment N(0,1) N(0,2) N(δ,2) N(δ,4) 6.00–6.50 32.90–35.40 0.02–0.08 Theoretically 64.60–67.00
group and impossible
one subgroup N(0,1) N(0,5) N(δ,2) N(δ,10) 8.00–8.60 70.60–77.60 0.07–0.20 Theoretically 22.30–29.30
variance impossible
increased N(0,1) N(0,2) N(δ,5) N(δ,10) 5.70–6.40 32.00–33.00 0.02–0.09 Theoretically 66.90–67.90

impossible
N(0,1) N(0,5) N(δ,5) N(δ,25) 7.10–8.00 66.00–73.40 0.10–0.20 Theoretically 26.50–33.80

impossible
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The effect of modifying the
number of subgroups
All simulations up to this point were restricted to 
the simplest case of two equal-sized treatment groups
and two equal-sized subgroups. In this section, the
effect of having more than two subgroups was
explored. An additional complication was then that
the actual results from subgroup-specific tests could
take a number of different forms. As a simplification,
just the four types described in the methods section
were distinguished for the following tables. This
complication does not arise for the interaction test,
which is a global test of differences between the
subgroup-specific effects across all subgroups.

Data simulated with no overall
treatment or subgroup effects
Overall treatment effect found to be non-
significant (correct-negative result)
The percentage of the 100,000 simulated datasets
with a correct non-significant overall treatment effect
fluctuated about 95% as expected (94.8–95.2% for
three, four and five subgroups), and the formal
interaction test resulted in a significant finding in
about 5% of cases, again as anticipated (Table 18 ).

In terms of subgroup-specific tests of the treatment
effect, the percentage where all subgroup-specific
analyses resulted in a significant treatment effect,
either in the same or different directions, was
unsurprisingly negligible (Table 18). In addition,
the percentage finding no subgroups to have a
significant treatment effect decreased with
increasing numbers of subgroups. Correspond-
ingly, the percentage with one or more but not 
all subgroups being significant increased quite

considerably with increasing numbers of sub-
groups, from about 7% for two subgroups to 
about 21% for five subgroups (Figure 18 ).

Overall treatment effect found to be significant
(false-positive result, type I error)
Within these datasets (approximately 5% of the
total), the interaction test was significant approxi-
mately 5% of the time. Other than for the case of
two subgroups already discussed, the percentages
where all subgroup-specific tests were significant 
(in the same or opposite directions) were negligible.
In contrast to the preceding section, the number of
subgroups did not appreciably affect the percent-
ages of either no subgroup-specific tests being sig-
nificant (tending to 35% for total sample sizes over
200) or of one or more but not all results being
significant (tending to 65% over 200; Table 19 ). 
The patterns across sample sizes were consistent
with those seen in the simplest case. 

Data simulated with an overall
treatment effect but no differential
subgroup effects
Overall treatment effect found to be significant
(correct-positive result)
Within these datasets (approximately 80% of the
total), the interaction test was again significant
approximately 5% of the time. As was the case for
two subgroups, significant results in all subgroups
but in inconsistent directions were virtually never
observed (Table 20). As would be expected, the per-
centage where all subgroup-specific treatment effects
were significant in the same direction reduced
dramatically with the number of subgroups from
about 33% for two subgroups to < 1% for four or
more subgroups (with these and the other limits in
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FIGURE 18 The effect of varying the number of subgroups: data simulated with no overall treatment or subgroup effects. Percentage of
simulated datasets resulting in a non-significant overall treatment effect with a significant treatment effect in one or more but not all
subgroups. ●●, two subgroups; ▲▲, three subgroups; ◆◆, four subgroups; +, five subgroups 
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TABLE 19  The effect of varying the number of subgroups: data simulated with no overall treatment or subgroup effects. Percentage of
significant results (range across sample sizes) in datasets with a significant overall treatment effect

Number of % of  % of significant subgroup-specific tests
subgroups significant  

One or more All subgroups in All subgroups in Nointeraction tests
but not all opposite directions the same direction subgroups
subgroups

2 4.40–5.80 54.60–64.10 → 0.00 for all 2.10–2.90 ← 33.30–42.90

3 4.60–5.50 47.30–64.40 → 0.00–0.06 0.00–0.80 ← 35.60–52.60

4 4.50–5.60 47.80–64.80 → 0.00–0.02 0.00–0.02 ← 35.20–52.20

5 4.40–5.60 40.50–65.70 → 0.00 for all 0.00 for all ← 34.30–59.50

TABLE 20  The effect of varying the number of subgroups: data simulated with an overall treatment but no subgroup effects. Percentage
of significant results (range across sample sizes) in datasets with a significant overall treatment effect at a nominal power of 80%

Number of % of  % of significant subgroup-specific tests
subgroups significant  

One or more All subgroups in All subgroups in Nointeraction tests
but not all opposite directions the same direction subgroups
subgroups

2 4.80–5.20 56.70–57.50 0.00 for all 25.50–32.80 → ← 10.20–17.50

3 4.90–5.20 67.00–80.70 → 0.00–0.01 2.30–6.30 → ← 13.30–30.80

4 4.80–5.20 68.30–84.70 → 0.00–0.01 0.20–0.90 ← 14.50–31.50

5 4.90–5.10 54.80–84.80 → 0.00–0.003 0.01–0.10 ← 15.10–45.20

TABLE 18  The effect of varying the number of subgroups: data simulated with no overall treatment or subgroup effects. Percentage of
significant results (range across sample sizes) in datasets with a non-significant overall treatment effect

Number of % of  % of significant subgroup-specific tests
subgroups significant  

One or more All subgroups in All subgroups in Nointeraction tests
but not all opposite directions the same direction subgroups
subgroups

2 4.80–5.20 ← 6.60–7.10 0.10–0.20 Theoretically impossible 92.70–93.30 →

3 4.70–5.00 ← 11.50–12.60 0.002–0.02 Theoretically impossible 87.40–88.50 →

4 4.90–5.20 ← 16.00–17.00 0.00–0.002 Theoretically impossible 83.00–84.00 →

5 4.90–5.20 ← 20.30–21.90 0.00–0.001 Theoretically impossible 78.10–79.70 →

TABLE 21  The effect of varying the number of subgroups: data simulated with an overall treatment but no subgroup effects. Percentage
of significant results (range across sample sizes) in datasets with a non-significant overall treatment effect at a nominal power of 80%

Number of % of  % of significant subgroup-specific tests
subgroups significant  

One or more All subgroups in All subgroups in Nointeraction tests
but not all opposite directions the same direction subgroups
subgroups

2 4.60–5.20 20.20–21.40 0.005–0.05 Theoretically impossible 78.50–79.80

3 4.70–5.30 23.00–27.50 → 0.01–0.05 Theoretically impossible ← 72.50–77.00

4 4.70–5.20 27.30–31.50 → 0.00–0.005 Theoretically impossible ← 68.50–72.70

5 4.70–5.20 28.50–35.70 → 0.00 for all Theoretically impossible ← 64.30–71.50
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Table 20 reached for total sample sizes over about
80). The percentage of no subgroup-specific test
results being significant slightly increased in corres-
pondence with the number of subgroups (from
about 10% with two subgroups to about 15% for five
subgroups). In addition, the percentage with one or
more but not all subgroup-specific results being
significant increased with the number of subgroups.
However, this increase was not linear and for more
than two subgroups the percentage seemed to con-
verge rapidly to about 85% (Table 20 and Figure 19 ).

Overall treatment effect found to be non-
significant (false-negative result, type II error)
Within these datasets (approximately 20% of the
total), the interaction test was again significant

approximately 5% of the time (Table 21 ). In terms
of subgroup-specific tests, not surprisingly, the
percentages where all subgroup-specific analyses
resulted in a significant treatment effect, either in
the same or different directions, were negligible.
In addition, as might be expected, the percentage
finding no subgroups to have a significant treat-
ment effect decreased with an increasing number
of subgroups. Correspondingly, the percentage
with one or more but not all subgroups significant
increased with increasing numbers of subgroups,
from about 21% for two subgroups to about 36%
for five subgroups (Figure 20 ).

The main findings and conclusions of chapter 3
are summarised and discussed in chapter 6.

90

80

70

60

50

20 40 60 80 100 150 200 250 300 350 400 1200 2000 5000 10,000 50,000

Total sample size

% of test results

FIGURE 19 The effect of varying the number of subgroups: data simulated with an overall treatment but no subgroup effects.
Percentage of simulated datasets resulting in a significant overall treatment effect with a significant treatment effect in one or more 
but not all subgroups. ●●, two subgroups; ▲▲, three subgroups; ◆◆, four subgroups; +, five subgroups 
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FIGURE 20 The effect of varying the number of subgroups: data simulated with an overall treatment but no subgroup effects.
Percentage of simulated datasets resulting in a non-significant overall treatment effect with a significant treatment effect in one or more
but not all subgroups. ●●, two subgroups; ▲▲, three subgroups; ◆◆, four subgroups; +, five subgroups 
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The performance of subgroup analyses
conducted on binary data was very similar 

to that of the continuous case. For brevity, only 
the results for the simplest case (two equal-sized
treatment groups and two equal-sized subgroups)
are summarised in this chapter. The variation
observed in the percentages for sample sizes less
than 200 was greater than that for the continuous
case and this increased fluctuation amongst small
datasets means that researchers should be very
cautious of the findings of subgroup-specific tests
for binary outcomes with total sample sizes below
200, and especially those below 100. 

The results presented in Tables 22 to 25 are the
approximate values tended to for total sample 
sizes over 200, with the proportion positive on 
the binary outcome set (essentially arbitrarily) at
0.5 for one or both treatment groups. ‘Reference’
values other than 0.5, such as 0.1 and 0.2, were 
also specified for the simulations, but this had 
no appreciable effect on the findings and, in
particular, on the percentages for larger 
sample sizes.

Simplest case – two subgroups 
and complete balance 
Data simulated with no overall
treatment or subgroup effects
The percentage of the 100,000 simulated datasets
within which the overall treatment effect was correctly
found to be non-significant fluctuated about 95%,
and 5% (incorrectly) found the overall treatment
effect to be significant (type I error) as expected.
Tables 22 and 23 present the results of the interaction
and subgroup-specific tests within the corresponding
datasets. The findings are very similar to those seen
for the continuous case (see Tables 2 and 3).

Data simulated with an overall
treatment effect but no differential
subgroup effects
Treatment effect differences that would be
detectable with 80% power were calculated for
each sample size considered (see appendix 1).

The percentage of analyses that correctly found
the overall treatment effect to be significant

TABLE 22  Simplest case: data simulated with no overall treatment or subgroup effects. Results of interaction and subgroup-specific
tests of treatment effect in datasets with a correct-negative overall result

Test results Approximate % tended to

Interaction test significant 5.0

Subgroup-specific tests
One subgroup significant 7.0

Both subgroups significant in opposite directions < 1.0

Both subgroups significant in the same direction Theoretically impossible

Neither subgroup significant 93.0

TABLE 23  Simplest case: data simulated with no overall treatment or subgroup effects. Results of interaction and subgroup-specific
tests of treatment effect in datasets with a false-positive overall result

Test results Approximate % tended to

Interaction test significant 5.0

Subgroup-specific tests
One subgroup significant 63.0

Both subgroups significant in opposite directions 0.0

Both subgroups significant in the same direction 2.5

Neither subgroup significant 34.0

Chapter 4

Results – binary outcome data 
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fluctuated about 80% (or lower for a sample size 
of 40) and about 20% (incorrectly) found a non-
significant overall treatment effect (type II error).
Tables 24 and 25 present the corresponding results
of the interaction and subgroup-specific tests in

datasets with each of these overall findings. The
findings are very similar to those seen for the 80%
powered continuous case (see Tables 4 and 5). As 
a result of this similarity, 90 and 95% powers were
not considered for the binary outcome case.

TABLE 24  Simplest case: data simulated with an overall treatment effect but no differential subgroup effects. Results of interaction and
subgroup-specific tests of treatment effect in datasets with a correct-positive overall result

Test results Approximate % tended to

Interaction test significant 5.0

Subgroup-specific tests
One subgroup significant 57.0

Both subgroups significant in opposite directions 0.0

Both subgroups significant in the same direction 33.0

Neither subgroup significant 10.0

TABLE 25  Simplest case: data simulated with an overall treatment effect but no differential subgroup effects. Results of interaction and
subgroup-specific tests of treatment effect in datasets with a false-negative overall result

Test results Approximate % tended to

Interaction test significant 5.0

Subgroup-specific tests
One subgroup significant 21.0

Both subgroups significant in opposite directions < 0.1

Both subgroups significant in the same direction Theoretically impossible

Neither subgroup significant 79.0
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The performance of subgroup analyses 
carried out on survival data was very similar 

to that of the continuous case. The results of 
the interaction tests and subgroup-specific tests 
for the survival case are summarised in this
chapter. The percentages presented in Tables 26
to 29 are the approximate values tended to for
total sample sizes over 200 due to the extent 
of the fluctuation for sample sizes smaller than
this, although this fluctuation was less for sur-
vival data than for binary data. However, there
remained a degree of fluctuation for larger 
sample sizes.

The results presented here are based on a total
follow-up period of 60 months and a median
survival time of 36 months. Simulations based on
much shorter median survival times (for example,
6 months) were also performed. Although small
systematic differences were seen in terms of
absolute values (as the median survival time
declined, the ability of the Cox proportional
hazards model to reject the null hypothesis

declined slightly), the general conclusions
remained the same.

Only the results of the simplest case (two equal-
sized treatment groups and two equal-sized
subgroups) are presented here. 

Simplest case – two subgroups
and complete balance

Data simulated with no overall
treatment or subgroup effects
The percentage of the 100,000 simulated 
datasets within which the overall treatment 
effect was correctly found to be non-significant
fluctuated about 95%, and 5% (incorrectly) found
the overall treatment effect to be significant (type I
error). Tables 26 and 27 present the results of the
interaction and subgroup-specific tests within
datasets of each type of overall test result. The
findings were very similar to those seen for the
continuous case (see Tables 2 and 3).

TABLE 26  Simplest case: data simulated with no overall treatment or subgroup effects. Results of interaction and subgroup-specific
tests of treatment effect in datasets with a correct-negative overall result

Test results Approximate % tended to

Interaction test significant 5.0

Subgroup-specific tests
One subgroup significant 6.5

Both subgroups significant in opposite directions < 1.0

Both subgroups significant in the same direction Theoretically impossible

Neither subgroup significant 93.0

TABLE 27  Simplest case: data simulated with no overall treatment or subgroup effects. Results of interaction and subgroup-specific
tests of treatment effect in datasets with a false-positive overall result

Test results Approximate % tended to

Interaction test significant 5.0

Subgroup-specific tests
One subgroup significant 61.0

Both subgroups significant in opposite directions 0.0

Both subgroups significant in the same direction 2.5

Neither subgroup significant 36.0

Chapter 5
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Data simulated with an overall
treatment effect but no differential
subgroup effects
Treatment effect differences detectable with 
80% power were calculated for each sample size
considered (see appendix 1). The percentage 
of analyses that correctly found the overall
treatment effect to be significant fluctuated 

about 80%, and about 20% (incorrectly) 
found a non-significant overall treatment effect
(type II error). Tables 28 and 29 present the 
results of the interaction and subgroup-specific
tests in datasets with each of these overall test
results. The findings were very similar to those
seen for the continuous case (see Tables 4
and 5). 

TABLE 28  Simplest case: data simulated with an overall treatment effect but no differential subgroup effects. Results of interaction and
subgroup-specific tests of treatment effect in datasets with a correct-positive overall result

Test results Approximate % tended to

Interaction test significant 5.0

Subgroup-specific tests
One subgroup significant 57.0

Both subgroups significant in opposite directions 0.0

Both subgroups significant in the same direction 32.0

Neither subgroup significant 11.0

TABLE 29  Simplest case: data simulated with an overall treatment effect but no differential subgroup effects. Results of interaction and
subgroup-specific tests of treatment effect in datasets with a false-negative overall result

Test results Approximate % tended to

Interaction test significant 5.0

Subgroup-specific tests
One subgroup significant 21.0

Both subgroups significant in opposite directions < 0.1

Both subgroups significant in the same direction Theoretically impossible

Neither subgroup significant 79.0
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Influence of the type of outcome
The findings of the continuous, binary and survival
outcome data were very similar with the exception
of greater instability in the percentages for smaller
sample size with binary and survival data. The
reason for the high degree of stability across sample
sizes in the results for the continuous outcome data
was that the data for these simulations were drawn
from a (theoretical) Gaussian distribution and 
thus the behaviour of summary statistics from the
(simulated) samples did not rely upon the central-
limit theorem. In other words, the performance of
the test statistics did not depend on sample size.
The factor that was influential with respect to
stability was the number of simulations performed
for each test statistic. A total of 100,000 simulations
were chosen (and used for all sample sizes) to
provide adequate precision of the estimates of 
the percentages that were statistically significant,
irrespective of total sample size.

For the binary and survival cases, the (theoretical)
distributions from which data were sampled are
clearly not Gaussian. Even using maximum likeli-
hood methods (that is, using measures of deviance
for tests), the approximation of the distribution 
of test statistics to chi-squared distributions is an
asymptotic result, and, hence, some dependency
on sample size would be anticipated.

Other than this, due to the overall similarities be-
tween the findings for the three different types of
outcome data, the results summarised in this con-
cluding chapter are drawn from the continuous
case. The rationale for this is that, as explained in
chapters 4 and 5, chapter 3 covered a more compre-
hensive set of scenarios for changing specifications.
Moreover, there was greater consistency in the speci-
fications for the simulations in the continuous case,
for example, in terms of true differential effects.
However, it remains that the general patterns and,
in many cases, the absolute findings were very
similar for the other types of outcome data. 

Practical considerations

The aim of this study was to quantify the extent 
to which subgroup analyses may be misleading.

However, in addition to the percentages presented
in this report, it is also important to consider how
the results from subgroup analyses might be inter-
preted and translated into practice. Of particular
concern is the scenario in which subgroup-specific
tests indicate that treatment is effective in one
subgroup only. If this situation arises then treat-
ment may be erroneously withheld in one group
and, moreover, the effectiveness of the treatment
in the other group is likely to be over-estimated. 
As a result of this potential impact, even a small
increase in the number of misleading results 
has serious implications for the provision of
suitable treatment.

In chapters 3, 4 and 5, the results were presented
according to whether or not the simulated data
were generated with the relevant (overall or
differential) treatment effect and, within each 
of these two underlying scenarios, whether or 
not the overall test was significant. The reason 
for this approach was two-fold. Firstly, when simu-
lating data, the underlying distributions for the
treatment group/subgroup categories, the overall
treatment effects and any differential effects must
be specified. Secondly, at least initially, it was valu-
able to keep the various eventualities (for example,
correct-negative, false-positive, correct-positive,
false-negative) separate because the impact 
on the results was marked in general. 

However, in practice, it is stressed that the nature 
of the real effects will not be known. The results
are, therefore, summarised here distinguishing only
between the situations where the relevant overall
test either is or is not (observed to be) statistically
significant. The rationale for retaining this latter
distinction in the results is the high chance that the
overall test result (that is, whether the treatment
groups differ significantly on the primary intention-
to-treat analysis) will influence, at least to some
degree, the extent to which subgroup analyses 
are conducted. Although it might have been more
useful to combine the two separate situations (for
example, false-positive and correct-positive) in a
numerical fashion, this was not possible as the
correct weighting of the two percentages was
unknown (and, indeed, unknowable in practice).
The results are, therefore, summarised here 
as a range across the possible situations.

Chapter 6

Discussion 
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The exception to this approach is in the case of
the different types of differential effects, where 
the results are so dependent on the type of inter-
action that summarising the conclusions across
them would be meaningless. To some extent, this
makes the absolute figures in the relevant section
artificial (since it relies on knowing the type of
interaction), but researchers will have strong
theoretical or prior observational expectations 
of the likely pattern in most cases in practice.
Moreover, when this is not the case, there is a
serious doubt about the wisdom of performing
subgroup analyses in the first place.

Summary of results for the
simplest case
No differential effects
Irrespective of the overall test result, the inter-
action test generally performed well in the sense
that it yielded approximately 5% false-positives
(Figures 21 and 22). The performance of the
subgroup-specific tests was rather more erratic.
Irrespective of the overall result, there were almost
no instances where both tests were significant in
opposite directions. However, if the overall finding
was significant, the chance of finding just one
subgroup significant could be as high as two in
three (Figure 22 ). While there is an inevitable
element of supposition as to how researchers
might interpret this latter eventuality (i.e. as a

differential effect or not), the finding of signifi-
cance in just one subgroup would be quite likely 
to be misinterpreted. If the overall test result was
non-significant (Figure 21), then the chance of 
just one subgroup-specific test being significant 
was still at least 7% and could be as high as 21%
(depending on whether or not there was a 
true overall effect).

All these probabilities were calculated consider-
ing a single subgroup analyses and ignoring the
issue of multiple testing, and it could, therefore, 
be argued that these risks relate to ‘best-case’
scenarios. As discussed in the simulation strategy
section, it is emphasised that while the absolute
values quoted here correspond to the nominal 
5% threshold for statistical significance, they 
would be expected to show the same general
influences on all levels of significance.

Differential effects
When a differential subgroup effect was 
included, the results were dependent on the
nominal power of the simulated data and the 
type and magnitude of the subgroup effects.
However, the performance of the formal inter-
action test was generally superior to that of 
the subgroup-specific analyses, with more
differential effects correctly identified using
interaction tests. In addition, the subgroup-
specific analyses often suggested the wrong 
type of differential effect.

Test of overall treatment effect
(not significant)

Subgroup-specific tests
of treatment effect

Both
significant

One
significant
(7–26%)

Neither
significant
(74–93%)

Formal test of
interaction

Same
direction

(Not applicable)

Opposite
directions

(< 1%)

Significant
(5%)

Not
significant

(95%)

FIGURE 21 Summary of results for the simplest case (overall test result not significant).This figure combines the results from data
simulated with no overall treatment effect and with a true overall treatment effect detectable at nominal powers of 50, 80, 90 and 95%
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Nominal power levels of 50 to 95% were
considered for the overall treatment effect, 
and, in each case, the ability of interaction tests 
to (correctly) identify subgroup effects improved 
as the size of the interaction increased relative to
the overall treatment effect. When the size of the
interaction was twice the overall effect or greater,
the interaction tests had at least the same power 
as the overall treatment effect. However, power 
was considerably reduced for smaller interactions,
which are much more likely to occur in practice.
This is demonstrated by the percentage of
significant interaction tests given in Figure 23
for an example 80% nominal power for the 
overall effect. For instance, an interaction of the
same magnitude as the overall effect (which is 
still quite large) has only a 29% chance of 
being detected.

Also presented in Figure 23 is the inflation factor as
detailed in chapter 3, but here it is given on a log
scale for interactions up to twice the magnitude of
the overall effect. This is the factor required to
increase the sample size to detect the interaction
with the same power as the overall effect. As it can
be seen, this varied with the size of the interaction
but was independent of the power and sample size.
For an interaction of the same magnitude as the
overall effect, this inflation factor was 4. This
increased dramatically to 100 or greater for more
subtle interactions that were smaller than 20% of
the overall effect. 

Varying the trial specifications
Modifying the treatment group ratio had no
noticeable effect on either the interaction or
subgroup-specific tests, regardless of the overall
test result. Although altering the subgroup ratio
did not affect the performance of the interaction
test, it did have an impact on the subgroup-specific
test results. Specifically, as the ratio became more
extreme the percentage of subgroup-specific tests
where only one subgroup was significant increased
among those with a significant overall test result.

Increasing the variance in one treatment group 
did not alter the findings. In contrast, a larger
variance within one subgroup (much more likely
in practice for an RCT) marginally reduced the
percentage of significant interaction tests when 
the overall test was correctly non-significant or
correctly significant and dramatically increased 
the percentage when the overall test was
incorrectly non-significant or incorrectly signifi-
cant. When the overall test was correctly non-
significant, the results of subgroup-specific tests
were not altered (apart from greater instability
across sample sizes for relatively extreme differ-
ences in variances). When the overall test result
was significant or incorrectly non-significant, the
percentage of subgroup-specific analyses where
only one subgroup was significant increased
marginally with increasing differences in
(subgroup-specific) variances.

Test of overall treatment effect
(significant)

Subgroup-specific tests
of treatment effect

Both
significant

One
significant
(41–66%)

Neither
significant
(4–33%)

Formal test of
interaction

Same
direction
(2–55%)

Opposite
directions

(0%)

Significant
(5%)

Not
significant

(95%)

FIGURE 22 Summary of results for the simplest case (overall test result significant).This figure combines the results from data
simulated with no overall treatment effect and with a true overall treatment effect detectable at nominal powers of 50, 80, 90 and 95%
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As the number of subgroups from a potential
effect-modifier increased, the interaction test 
was unaffected. For subgroup-specific tests, the 
percentage finding one or more but not all
subgroups significant increased with increasing
numbers of subgroups.

How realistic are the scenarios
covered by the simulations?
The scenarios covered by the simplest case (two
equal-sized treatment groups and two equal-sized
subgroups) and that of varying the subgroup 
ratio are perhaps the most realistic in the sense 
of being most likely to occur in practice. The 
only exception to this is possibly the assumption 
in these scenarios of equal variability, although, 
in practice, this is often reasonable even if trans-
formations are necessary for it to hold. Unequal
treatment (randomisation) groups may also occur
in practice, but this did not affect the findings of
subgroup analyses, either in the form of inter-
action or subgroup-specific tests in this study.

In terms of the extent of the variations applied 
to both the treatment group and subgroup 

ratios, altering these from 1:1 to 1:5 would
certainly cover all practical situations with 
respect to the randomisation ratio. Moreover,
changing the population in one of the subgroups
from 50% to about 15% would cover most
situations in which subgroup analyses would be
considered. Likewise, including scenarios with
between two and five subgroups covers most
practical situations.

By definition, in the context of RCTs, differential
variability is much more likely across subgroups
than across the (randomised) treatment groups. 
In other study designs, both subgroup and
treatment group variability may alter but only
subgroup variability appears to affect the results 
of subgroup analyses. The alterations considered 
(up to a 25-fold ratio across treatment group/
subgroup category) were quite extreme and 
much more than is likely in practice, and the
results presented here should certainly en-
compass the ‘worst-case’ scenario. In practice,
researchers might attempt to ameliorate such
differences in variability using appropriate trans-
formations, or alternative statistical methods may
be implemented that do not make assumptions 
of equal variance.
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Further investigations
While the coverage of the various scenarios
employed for the above simulations has been 
both realistic and reasonably comprehensive
(particularly for continuous outcomes), a number
of further investigations beyond the immediate

project would seem to be worthwhile. As already
stated, not all of these extensions would be
expected to have a major influence on the 
findings and, if anything, those already con-
sidered are likely to be best-case situations. 
The possibilities for further research are 
discussed in chapter 7. 
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I t is acknowledged that the following recom-
mendations are a combination of established

(prior) views on subgroup analyses and the find-
ings from the simulations presented in this report.
However, the main contribution of the current
project has been to quantify the risks involved 
for different approaches and the summary of
results in chapter 6 should be disseminated 
widely amongst trialists, readers of published trials 
and those attending courses on trial design and
analysis. The conclusions are summarised under
the headings of implications for design, analysis,
presentation and interpretation.

Recommendations for 
future research
Existing scenarios could be covered
even more comprehensively
As discussed briefly in the alternative analytical
methods section, other methods of statistical data
analysis could be considered in the same way as 
the three types of regression models covered here
(namely multiple regression, logistic regression
and Cox’s proportional hazards regression).
Examples of extensions are chi-squared tests for
differences in proportions, tests for trends across
ordered categories defined by the subgroups,
Mantel–Haenzel tests and the log-rank test, but
major changes to the findings in this report 
would not be anticipated in these cases. Clustering
effects could also be incorporated, where the
assumptions of independent observations within
the simulated samples are modified.

In addition to the consideration of under- and
over-dispersion, entirely different distributions 
for the outcome variables could be considered,
including relaxing the imposed (exactly Gaussian)
distribution for continuous outcomes, considering
non-parametric tests and generalising the distri-
bution for survival times to the Weibull distribution
(of which the exponential distribution, covered
here, is a special case) with survival outcome data.
In the Weibull distribution, there is an additional
(shape) parameter (equal to one in the case of 
the exponential). Concomitantly, the assumption
for the Weibull case is that the hazard function
increases or decreases monotonically through 

time, whereas that for the exponential is constant
over time.

Finally, other types of outcome variable could 
be considered although, again, there is no reason
to suppose that the results would differ markedly
from those presented here. Two obvious additional
outcomes are (a) counts of an outcome event for
which Poisson regression would be appropriate 
or (b) categorical outcomes with more than two
levels for which either the proportional odds or
multinomial regression would be appropriate,
depending on whether or not the (three or 
more) categories were ordered.

The same general approach could be
applied to a wider set of contexts
The most obvious extension would be to cover
observational studies by relaxing the ‘allocation’ 
of treatment groups from the presumption of
randomisation involved in this project. While 
this is covered structurally by the simulations
presented here, there is the additional compli-
cation of confounding. If residual confounding
were low, either by chance, design (for instance,
matching/stratification) and/or analysis (multi-
variable adjustment for confounders) then very
similar results would be expected. However, 
this is unlikely in practise and the problem of
unknown residual confounding is likely to remain.
Where residual confounding is high, it would 
be expected that the situation would be worse 
than that for the RCT since any (observed)
differential effects could be a consequence of
(residual) confounders not taken into account 
in the analysis.

Secondly, the approach could be extended to
quantitative synthesis of research evidence and, 
in particular, to meta-analyses of RCTs. This is
especially worthwhile because it is often con-
sidered that there is more scope for subgroup
analyses in the context of meta-analyses, since 
the available sample sizes are considerably greater.
Specific issues that might be addressed are
‘stratified’ analyses where subgroups of subjects 
are analysed separately across trials; analyses of
subsets of trials according to global assessments,
such as trial quality; and the optimal use of 
meta-regression techniques.

Chapter 7

Recommendations 
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An alternative general approach could
be adopted
For the reasons given in the simulation strategy
section, the present study concentrated on p-values
rather than CIs. Further work could, therefore,
redress this balance with more attention paid to
CIs. In particular, attention could focus on their
widths and the degree to which subgroup-specific
intervals overlap. However, the identification of
differential effects based on CIs is likely to have
even more scope for misinterpretation than that
based solely on p-values, and the results presented
here are, therefore, likely to represent best-case
scenarios. There are, of course, other approaches
that could be adopted, such as Bootstrap simu-
lations and Bayesian methods, although it is
unlikely that the fundamental conclusions would
alter for any of these alternative approaches or
further investigations.

Implications for study design

• If possible, the study should be powered to cater
for the subgroup analyses to be carried out,
using Figure 23 for instance.

• Ideally, subgroup analyses should be restricted
to those proposed in advance of any data
analysis, and the choices should be based on
clinical interest and previous findings to avoid
data dredging.

• The study should have as few subgroups within 
a potential effect-modifier as possible while
continuing to make clinical sense. 

Implications for data analysis

• Only formal tests of interaction should be
performed – subgroup-specific tests should 
be avoided.

• The results portrayed in Figures 21 and 22
should be disseminated widely across trialists
and be appreciated generally, specifically in
scenarios with no (true) differential effects.
These results indicate that:
– subgroup-specific tests are anti-conservative
– the extent of this problem (i.e. where a

differential effect may be incorrectly
presumed) is exaggerated in situations 
with a significant overall treatment effect 
(in these cases, the treatment effect will be
significant in just one subgroup up to 66% 
of the time)

– even with a non-significant overall effect, 
just one subgroup will be significant in 
up to about 26% of occasions.

• Any differences in variability across subgroups
should be investigated. If these are seen then
attempts should be made to ameliorate them 
by appropriate transformations. If this is not
possible then extreme caution should be used
when interpreting the results of any test of
differential effects. (At the same time, it should
be recognised that any transformation of scale,
such as the log, may affect the existence of
differential effects.)

Implications for the presentation
of subgroup analyses
• Any lack of differential effect should be

interpreted with caution unless the trial was
specifically powered with interactions in 
mind or the differences are expected to 
be substantial. 

• Subgroup-specific effects and CIs can be 
helpful in interpreting differential effects but
these should only be used after a formal test 
of interaction.

• Clear distinction should be made between
subgroup analyses defined in advance and those
identified, for whatever reason, once the main
trial analyses have been performed.

• The findings of any subgroup analyses should
not be over-emphasised. Unless there is a strong
prior hypothesis for a given differential effect,
any findings might be best viewed in the context
of a hypothesis-generation exercise.

• In the presentation of RCTs, emphasis should
almost always remain on the overall treatment
effect rather than the subgroup analyses.

Interpretation of published
subgroup analyses
• Published subgroup analyses should be

interpreted with caution, especially those not
accompanied by a formal test of interaction.
Spurious apparent differential effects can be
very common for subgroup-specific tests,
especially if the overall test result is significant.

• Any subgroup analyses that have not been
clearly proposed in advance should be viewed
with extreme caution.

• Unless the study has been specifically powered
to detect interactions, lack of statistical signifi-
cance for interaction tests is a far from secure
way of excluding differential effects (Figure 9 ).

• All subgroup effects should be interpreted in
the full context of the literature with respect to
both corroboration and biological plausibility.
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Continuous outcome data
Generation of data
The Box-Muller transformation24 generates a vari-
able from the Gaussian distribution by transfor-
mation of a random variable from the uniform
distribution U (0,1). The random variable Y has a
Gaussian distribution if its probability distribution
function is defined by:

1 (y – µ)2

f (y) = –––––– exp [– –––––– ] – ∞ < y < ∞
σ √2 π 2 σ 2

where µ (mean) and σ (standard deviation) are
parameters satisfying – ∞ < µ < ∞ and 0 < σ < ∞.
Briefly we say that Y is N(µ, σ 2). 

Methods of analyses
The regression models used to perform the
subgroup-specific tests of treatment effect and 

the formal test of interaction are detailed in 
Tables 30 and 31.

Calculating treatment effect differences
Equal-sized treatment groups
In order to ascertain what treatment effect
difference could be detected for different sample
sizes at different powers, the following formula28

was used (fixing sample size):

2(z 1 – α/2 + z 1 – β)
2σ 2 z 1 – α/2

n i = –––––––––––––––– = ––––––– i = 1, 2
δ 2 4

where n i = size of each of the two treatment groups
(assuming the two treatment groups are of equal
size); z 1 – α/2 = significance level; z 1 – β = power; 
δ = clinically relevant treatment effect difference; 
σ = standard deviation (assumed to be the same in
each treatment group, unless otherwise stated, in
which instance a pooled estimate29 was used).

Appendix 1

Generation and analysis of data 

TABLE 31  Interaction two-way ANOVA model – formal test of interaction – (yijk = β0 + βi + βj + βij + εijk )

Source of variation SS df MS = SS/df F-statistics

Due to treatment ∑i ni.(––yi.. – –y...)
2 r – 1 MS (treatment) MS (treatment)

–––––––––––––
MSE

Due to subgroup ∑j n.j(––y.j. – –y...)
2 c – 1 MS (subgroup) MS (subgroup)

–––––––––––––
MSE

Due to interaction between ∑ij nij(––yij. – –y i.. – –y .j. + –y ...)
2 (r – 1) (c – 1) MS (treatment MS (treatment x subgroup)

treatment and subgroup x subgroup) ––––––––––––––––––––––
MSE

Residual ∑ijk (––yijk – –yij.)
2 n.. – rc MSE

Total ∑ijk (––yijk – –y...)
2 n.. – 1

TABLE 30  Main effect one-way ANOVA model – subgroup-specific treatment effect tests – (yik = β0 + βi + εijk )

Source of variation Sum of squares (SS) Degrees of Mean square F-statistics
freedom (df) (MS) = SS/df

Due to treatment ∑i ni(––yi. – –y )2 r – 1 MS (treatment) MS (treatment)
–––––––––––––
MSE

Residual ∑ik (––yik – –yi.)
2 n – r MSE

Total ∑ik (––yik – –y )2 n – 1

SS, sum of squares; df, degrees of freedom; MS, mean square; MSE, mean square error
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Unequal-sized treatment groups
When varying the treatment group ratio to give
two unequal-sized groups, an adjustment is
necessary.30 Firstly, N was calculated as n 1 + n 2,
using the above formula, assuming equal-sized
treatment groups. A modified sample size N ′
was then calculated. 

If k = n 1/n 2 is the ratio of the sample sizes in 
the two groups, then the required total sample 
size is:

N(1 + k)2

N ′ = ––––––––
4k

and the two sample sizes are given by N ′ / (1 + k)
and kN ′ / (1 + k). 

In the simulations varying treatment group ratio,
N ′ remains the same as N whilst the ratio k varies
between 2 and 5. Thus to calculate the adjusted
treatment effect difference, a new N was calculated
from N ′: 

4kN ′
N = –––––––

(1 + k )2

Then N/2 is implemented as n in: 

2(z 1 – α/2 + z 1 – β)
2σ 2 z 1 – α/2

n i = –––––––––––––––– = ––––––– i = 1, 2
δ 2 4

Binary outcome data

Generation of data
The random variable Y has a binomial distribution
if its probability distribution function is defined by:

n !
f (y) = ––––––––– p y(1 – p)n – y,

y ! (n – y)!

y = 0, 1, 2, ..., n = number of events

We say that y is b (n, p), and each individual event,
say x, comes from a Bernoulli distribution b (1, p)
and has the value 0 or 1 depending on whether 
an event has occurred or not.

f (x) = p x(1 – p)(1 – x), x = 0, 1

From n ij random variates with a uniform
distribution U (0, 1), n ij b (1, p ij) variates are 

then generated according to whether or not 
they exceed the specified p ij for that category. 

Methods of analyses
The likelihood function of Y from the binomial
distribution is:

y n

L = ∏ p i ∏ (1 – p i)
i = 1 i = y + 1

The logistic regression model, including a term 
for treatment, subgroup and interaction, can 
be written as:

p
log (–––– ) = α + β1x 1i + β2x 2i + β3x 1ix 2i

1 – p

We can abbreviate the right-hand side of this
model to α + βx i and it can be shown that:

e (α + βxi )

p = –––––––––
1 + e (α + βxi )

1
and 1 – p = –––––––––

1 + e (α + βxi )

Therefore:

y
e (α + βxi ) n

1
L = ∏ (–––––––––) ∏ (–––––––––)i = 1 1 + e (α + βxi ) i = y + 1 1 + e (α + βxi )

Before maximising this function, it is easier to use
the log-likelihood function:

y y

log (L) = ∑ (α + βx i) – ∑ log(1 + e (α + βxi)) – 
i = 1 i = 1

n

∑ log (1 + e (α + βxi)),
i = y + 1

which equates to:

y n

log (L) = ∑ (α + βx i) – ∑ log (1 + e(α + βxi))
i = 1 i = 1

FORTRAN maximises this function. For an 
overall-effects model and subgroup-specific
models, α + βx i becomes:

p
log (–––––) = α + βx 1i

1 – p
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Calculating treatment effect differences
The nQuery Advisor 3.0 software31 was used to
calculate p 2 (probability of an event within
treatment group 2) that would lead to an odds
ratio detectable with 80% power for different
sample sizes (for the majority of cases p 1 was 
set to equal 0.5). This uses the formula:

[z1 – α/2√2 –p(1 – –p) + z1 – β√p 1(1 – p 1)+ p 2(1 – p 2)]2

n = ––––––––––––––––––––––––––––––––––––––––––
(p 1 – p 2)

2

p 2(1 – p 1)
where the odds ratio ϕ = ––––––––––

p 1(1 – p 2)

Unequal-sized treatment groups
The same adjustment is made as for the
continuous outcome case detailed above.

Survival outcome data

Generation of data
Survival times were generated as detailed in the
survival data section of chapter 2, using a mean
survival time of 36 months. Data were simulated
assuming a follow-up period of 60 months, thus
any survival times generated to be greater than 
60 months were taken to be censored due to the
end of the follow-up period.

Methods of analyses
Maximum likelihood methods were used to
maximise the partial log-likelihood function for
the Cox-proportional hazards model.

D

ln(L) = ∑ { ∑ x kβ – dj ln [ ∑ exp (x iβ)]}
j = 1 k ∈ Dj i ∈ Rj

where D is the total number of events, D j is the set
of observations that fail at time j (this will contain
only one observation unless there are ties), d j is
the number of events at time j and R j is the set of
observations still at risk at time j (the risk pool).

Calculating treatment effect differences
The nQuery Advisor 3.0 software31 was used to
calculate λ 2 (hazard rate for treatment group 2)
that would lead to an odds ratio detectable with
80% power for different sample sizes (λ 1 was set 
to equal 0.0278, that is 1/36 – a mean survival 
time of 36 months). This uses the formula:

(z 1 – α/2 + z 1 – β)
2(ϕ + 1)2

n = ––––––––––––––––––––
(2 – π1 – π2)(ϕ – 1)2

where ϕ = λ 1 = hazard ratio and πi = proportion
––
λ 2

experiencing an event by the end of follow-up
(assumed in the simulations to be 60 months).
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