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Abstract

Targeted therapies based on biomarker profiling are becoming a mainstream direction of cancer 

research and treatment. Depending on the expression of specific prognostic biomarkers, targeted 

therapies assign different cancer drugs to subgroups of patients even if they are diagnosed with the 

same type of cancer by traditional means, such as tumor location. For example, Herceptin is only 

indicated for the subgroup of patients with HER2+ breast cancer, but not other types of breast 

cancer. However, subgroups like HER2+ breast cancer with effective targeted therapies are rare 

and most cancer drugs are still being applied to large patient populations that include many 

patients who might not respond or benefit. Also, the response to targeted agents in humans is 

usually unpredictable. To address these issues, we propose SUBA, subgroup-based adaptive 

designs that simultaneously search for prognostic subgroups and allocate patients adaptively to the 

best subgroup-specific treatments throughout the course of the trial. The main features of SUBA 

include the continuous reclassification of patient subgroups based on a random partition model 

and the adaptive allocation of patients to the best treatment arm based on posterior predictive 

probabilities. We compare the SUBA design with three alternative designs including equal 

randomization, outcome-adaptive randomization and a design based on a probit regression. In 

simulation studies we find that SUBA compares favorably against the alternatives.
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1 Introduction

1.1 Targeted Therapy

With the rapid development in genomics and personalized medicine it is becoming 

increasingly more feasible to diagnose and treat cancer based on measurements from 

genomic interrogations at the molecular level such as gene expression [1] [2] [3], DNA copy 

numbers [4] [5], and epigenetic marks [6] [7] [8]. In particular, pairing genetic traits with 

targeted treatment options has been an important focus in recent research. This has led to 

successful findings such as the use of trastuzumab, doxorubicin, or taxanes on HER2+ breast 

cancer [9], and the recommendation against treatment with EGFR antibodies on KRAS 

mutated colorectal cancer [10]. It is now broadly understood that patients with the same 

cancer defined by classification criteria such as tumor location, staging, and risk-

stratification can respond differently to the same drug, depending on their genetic profiling.

First proposed by Simon and Maitournam [11], “targeted designs” restrict the eligibility of 

patients to receive a treatment based on predicted response using genomic information. 

Under fixed sample sizes and comparing to standard equal randomization with two-arm 

trials, the authors showed that targeted designs could drastically increase the study power in 

situations where the new treatment benefited only a subset of patients and those patients 

could be accurately identified. Sargent et al. [12] proposed the biomarker-by-treatment 

interaction design and a biomarker-based-strategy design, both using prognostic biomarkers 

to facilitate treatment allocations to targeted subgroups. Maitournam and Simon [13] further 

showed that the relative efficiency of target designs depended on (1) the relative sizes of the 

treatment effects in biomarker positive and negative subgroups, (2) the prevalence of the 

patient group who favorably responds to the experimental treatment, and (3) the accuracy of 

the biomarker evaluation. Recently, new designs have been proposed by Freidlin et al. [14], 

Simon [15] and Mandrekar and Sargent [16], among others.

BATTLE [17] and I-SPY 2 [18] are two widely known biomarker cancer trials using 

Bayesian designs. The design of BATTLE predefined five biomarker groups on the basis of 

11 biomarkers, and assigned patients to four drugs using an outcome-adaptive randomization 

(AR) scheme. AR is implemented with the expectation that an overall higher response rate 

would be achieved relative to equal randomization (ER), assuming at least one biomarker 

group has variations in the outcome distributions across arms. However, the analysis of the 

trial data revealed otherwise; the response rate was actually slightly lower during the AR 

period than during the initial ER period. This fact can be attributed to several factors such as 

possible trends in the enrolled population, or variations in the procedures for measuring 

primary outcomes. In practice, targeted agents can fail for reasons such as having no efficacy 

on the targeted patients, being unexpectedly toxic, or uniformly ineffective. There is a need 

for adaptive designs to accommodate the situations above to improve trial efficiency and 

maintain trial ethics [19, 20, 21].

Researchers are also developing new designs that allow for the redefinition of biomarker 

groups that could be truly responsive to targeted treatments. [22] and [23] developed tree-

based algorithms to identify and evaluate the subgroup effects by searching the covariate 

space for regions with substantially better treatment effects. Bayesian models are natural 
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candidates for adaptive learning of subgroups, and have been known and applied in non-

medical contexts [24] [25].

1.2 A Subgroup-Based Adaptive Design

In this paper, we propose a class of SUbgroup-Based Adaptive (SUBA) designs for targeted 

therapies which utilize individual biomarker profiles and clinical outcomes as they become 

available.

To understand and characterize a clinical trial design it is useful to distinguish between the 

patients in the trial versus future patients. There exist a number of methods that address the 

optimization for the patients in the trial. Most approaches are targeting the optimization of a 

pre-selected objective function (criterion). See, for example, [26, chapters 8 and 9]. SUBA 

aims to address both goals, successful treatment of patients in the trial and optimizing 

treatment selection for future patients. We achieve the earlier by allocating each patient on 

the basis of the patient’s biomarker profile x to the treatment with the best currently 

estimated success probability. That is, the optimal treatment t* for a patient with biomarker 

profile x is

where θ̂t(x) is the posterior predictive response rate of a patient with biomarker profile x 
under treatment t. This can be characterized as a stochastic optimization problem. In 

contrast, the optimal treatment selection for future patients is not considered as an explicit 

criterion in SUBA. It is indirectly addressed by partitioning the biomarker space into subsets 

with different response probabilities for the treatments under consideration. Learning about 

the implied patient subpopulations facilitates personalized treatment selection for a future 

patient on the basis of the patient’s biomarker profile x. The outcome of SUBA is an 

estimated partition of the biomarker space and the corresponding optimal treatment 

assignments.

The main assumption underlying the proposed design approach is that there exist subgroups 

of patients who differentially respond to treatments. For example, consider a scenario with 

two subgroups of patients that respond well to either of two different treatments, but not 

both. An ideal design should search for such subgroups and link each subgroup with its 

corresponding superior treatment. That is, a design should aim to identify subgroups with 

elevated response rates to particular treatments. The key innovations of SUBA are that such 

biomarker subgroups are continuously redefined based on patients’ differential responses to 

treatments and that patients are allocated to the currently estimated best treatment based on 

posterior predictive inference.

In summary, SUBA conducts subgroup discovery, estimation, and patient allocation 

simultaneously. We propose a prior for the partition that classifies tumor profiles into 

biomarker subgroups. The stochastic partition has the advantage that biomarker subgroups 

are not fixed up front before patients accrual. The goal is to use the data, during the trial, to 
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learn which partitions are likely to be relevant and could potentially become clinically 

useful. We define a random partition of tumor profiles using a tree-based model that shares 

similarities with Bayesian CART algorithms [27, 28]. We provide closed-form expressions 

for posterior computations and describe an algorithm for adaptive patient allocation during 

the course of the trial.

1.3 Motivating Trial

We consider a breast cancer trial with three candidate treatments. Patients who are eligible 

have undergone neoadjuvant systemic therapy (NST) and surgery. Protein biomarkers for all 

patients are measured through biopsy samples by reverse phase protein arrays (RPPA) at the 

end of NST, but before surgery. The first treatment is a poly (ADP-ribose) polymerase 

(PARP) inhibitor, which affects DNA repair and cell death programming. The second 

treatment is a PI3K pathway inhibitor, which affects cell growth, proliferation, cell 

differentiation and ultimate survival. The third treatment is a cell cycle inhibitor that targets 

the cell cycle pathway. The main goal is to identify for each of the three treatments 

subgroups of patients that will respond favorably to the respective treatment.

The paper proceeds as follows. Section 2 presents the probability model of SUBA design 

and computational details for implementing the design. Section 3 examines the operating 

characteristics based on simulation studies. We conclude with a brief discussion in Section 

4.

2 Methodology

2.1 Sampling Model

Assume that T candidate treatments are under consideration in a clinical trial. We use t ∈ Ω 
= {1, …, T} to index the treatments and i = 1, …, N to index patients. We assume a 

maximum sample size of N patients. The primary outcome for each patient is a binary 

variable yi ∈ {0, 1}. We assume that yi can be measured without delay. We denote with xi = 

(xi1, …, xiK)′ the biomarker profile of the i-th patient, recorded at baseline. We assume that 

all biomarkers xik are continous, xik ∈ ℝ. Finally, let zi denote the treatment allocation for 

patient i with zi = t if patient i is assigned to treatment t.

The underlying assumption of a biomarker clinical trial is that there exist subgroups of 

patients that differentially respond to the same treatment. For example, subgroup 1 may 

respond well to treatment t1 but not t2 while subgroup 2 may respond well to treatment t2 but 

not t1. However, the subgroups are not known before the trial and must be estimated 

adaptively based on response data and biomarker measurements from previously treated 

patients. To estimate the subgroups and their expected response rates to treatments, we 

propose a random partition model. Assuming that all K biomarker measurements are 

continuous, xik ∈ ℝ, we construct patient subgroups by defining a partition of the biomarker 

space ℝK. A partition is a family of subsets Π = {S1, S2, …, SM}, where M is the size of the 

partition and Sm are the partitioning subsets such that Sm ∩ Sl = ∅ and ∪mSm = ℝK. The 

partition of the biomarker sample space implies a partition of the patients into biomarker 

subgroups. Patient i belongs to biomarker subgroup m if xi ∈ Sm. We will construct a prior 
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probability measure for Π in the next section. In the following discussion we will 

occasionally refer to Sm as a subset of patients, implying the subset of patients that is 

defined by the partitioning subset Sm.

We define a sampling model for yi conditional on xi and Π as

(1)

where θt,m is the response rate of treatment t for a patient in subgroup Sm. Thus the joint 

likelihood function for n patients is the product of n such Bernoulli probabilities, using θt,m 

and (1 − θt,m) depending on the recorded outcomes yi. In each biomarker subgroup Sm, let 

nm = Σi I(xi ∈ Sm) count the number of patients, nmt = Σi I(xi ∈ Sm, zi = t) the number of 

patients assigned to treatment t, and nmty = Σi I(xi ∈ Sm, zi = t, yi = y) the number of patients 

in group m assigned to t with response yi = y. Here I(·) is the indicator function. Let y(n) = 

(y1, …, yn)′, , z(n) = (z1, …, zn)′, and θ = {θt,m; t = 1, …, T, m = 1, …, M}. 

Then

Adding a prior on Π and θ we complete (1) to define a 3-level hierarchical model

(2)

The last two factors define the prior model for θ and Π. We assume 

and discuss the prior for Π next. Posterior inference on Π and θ provides learning on 

subgroups and their treatment-specific response rates. Posterior probabilities for Π and θ are 

the key inference summaries that we will later use to define the desired adaptive trial design.

2.2 Random Biomarker Partition Π

We propose a tree-type random partition Π on the biomarker space ℝK to define random 

biomarker subgroups. A partition is obtained through a tree of recursive binary splits. Each 

node of the tree corresponds to a subset of ℝK, and is either a final leaf which defines one of 

the partioning subsets Sm, or it is in turn split into two descendants. In the latter case the two 

descendants are defined by first selecting a biomarker k and then splitting the current subset 

by thresholding xik. The threshold splits the ancestor set into two components. A sequence 

of such splits generates a partition of ℝK as the collection of the resulting subsets. For the 

motivating breast cancer trial, we limit the partition to at most eight biomarker subgroups in 

the random partition. We impose this constraint to limit the number of subgroups with 

critically small numbers of patients, and therefore only allow three rounds of random splits.
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An example is shown in Figure 1. The figure shows a realization of the random partition 

with K = 2 biomarkers. In each round, we consider each of the current subsets and either do 

not split it further with probability v0 or with probability vk choose biomarker k to split the 

subset into two parts. If an ancestor subset S is split by the k-th biomarker, then the resulting 

partition contains two new subsets, defined by {i : xik ≥ medk(S)} and {i : xik < medk(S)}, 

where medk(S) is the median of xik and is computed across all available data points in the 

subset S. That is, medk(S) is a conditional median which can vary during the course of the 

trial, as more data become available. In Figure 1 the sequence of splits is as follows. We first 

split on xi1. In the second round the two resulting subsets are split on xi1 and xi2, 

respectively. In a third round of splits, only one subset of the earlier four subsets is split on 

xi1 again, three others are not further split.

Let Π be the sample space of all possible partitions based on the three rounds of splits. For 

each partition Π ∈ Π, we calculate the prior probability p(Πr) based on the above random 

splitting rules. For example, the partition Π in Figure 1 has prior probability

(3)

with the three factors corresponding to the three rounds of splits.

We use a variation of the described probability model. The main rational is that, if a 

biomarker is selected for an initial split, then it is desirable to augment the probability of 

splitting it again at the subsequent levels in the tree. The goal is to facilitate the identification 

of relevant subgroups maintaining the simplicity of the partition model. To implement this, 

in each possible partition Π, we calculate K as the number of distinct biomarkers selected in 

the three rounds of splits. We then add an additional penalty term proportional to ϕK to the 

above prior probability of Π so that the prior favors partitions that repeatedly split on the 

same marker. For example, in Figure 1, the modified prior probability is

(4)

Similarly, we can calculate the prior probability for any partition Π in Π. When ϕ = 1 the two 

probability models that we described coincide while values of ϕ in (0, 1) allow one to tune 

the concentration of over partitions that split over a parsimonious number of biomarkers.

2.3 Decision Rule for Patient Allocation

A major objective of the SUBA design is to assign future patients to superior treatments 

based on their biomarker profiles and the observed outcomes of all previous patients. 

Assuming that the outcomes of the first n patients have been observed, we denote by q(t, 

xn+1) the posterior predictive probability of response under treatment t for an (n + 1)th 

patient with biomarker profile xn+1. Denoting the observed trial data  = {y(n), X(n), z(n)}, 

based on (2),
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(5)

The posterior probability p(Πr | ) can be computed as follows. Given a partition Πr = (S1, 

…, SMr) ∈ Π, all n patients are divided into Mr biomarker subgroups. Recall the definition of 

nm, nmt and nmty from Section 2.1. The posterior distribution of Πr is

where p(Πr) is the prior probability of partition Πr that can be calculated as in (4). Let B(a, b) 

= Γ(a)Γ(b)/Γ(a + b) denote the beta function, and let Be(x; a, b) ∝ xa−1(1 − x)b−1 denote a 

beta p.d.f. With independent Be(x; a, b) prior distributions for the θt,m parameters we can 

further simplify the above equation to

(6)

The conditional probability p(yn+1 = 1 | xn+1, zn+1 = t, Π, ) is the integral of (1) with 

respect to the Be(a + nmt1, b + nmt0) posterior on θt,m. Then

(7)

Let m(xn+1, Π) index the partitioning subset with xn+1 ∈ Sm(xn+1,Π). The sum over m in (7) 

reduces to just the term with m = m(xn+1, Π). Combining (6) and (7), we compute the 

posterior predictive response rate of (n + 1)th patient receiving treatment t in closed form

(8)
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Denote with  the treatment decision for the (n + 1)th patient. We choose  by 

adopting a minimum posterior predictive loss approach described in Gelfand and Ghosh 

(1998) [29]. Under a variety of loss functions (such as the 0–1 loss), the optimal rule that 

minimizes the posterior predictive loss is

(9)

See Raiffa and Robert (1961) [30] or Gelfand and Ghosh (1998) [29] for details. 

Alternatively, one could use the probabilities q(t, xn+1) in a biased randomization 

 , as proposed in Thall and Wathen (2007) [31].

2.4 The SUBA Design

Computing the posterior predictive response rates for all candidate treatments allows us to 

compare treatments and monitor the trial accordingly. If one treatment is inferior to all other 

treatments, that treatment should be dropped from the trial. If there is only one treatment left 

after dropping inferior treatments, the trial should be stopped early due to ethical and 

logistics reasons.

The SUBA design starts a trial with a run-in phase during which patients are equally 

randomized to treatments. After the initial run-in, we continuously monitor the trial until 

either the trial is stopped early based on a stopping rule, or the trial is stopped after reaching 

a prespecified maximum sample size N.

We include rules to exclude inferior treatments and stop the trial early if indicated. Recall 

that the biomarker space is ℝK. Consider the k-th biomarker and observed biomarker values 

{x1k, …, xnk}. We define an equally spaced grid of size H0 between mink and maxk, where 

mink and maxk are the observed smallest and largest values for that biomarker. Taking the 

Cartesian product of these grids we then create a K –dimensional grid x̃ of size . Let 

x̃h ∈ ℝK, h = 1, …, H, denote the list of all grid points. After an initial run-in phase with 

equal randomization, we evaluate the posterior predictive response rate q(t, x̃h) for treatment 

t for each x̃h. Any treatment t★ with uniformly inferior success probability

is dropped from the trial. That is, we removet★ from the list of treatments, Ω ≡ Ω\{t★}. 

Also, if only one treatment is left in the trial, then the trial is stopped early.

Alternatively to the construction of the grid x̃, any available data set of typical biomarker 

values x̃h ∈ ℝK could be used. For large K this is clearly preferable. If such data were 

available, it could also be used for an alternative definition of medk in the specification of 

the splits in the prior for Πr discussed earlier.

The SUBA design consists of the following steps.
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1 Initial run-in. Start the trial and randomize n < N patients equally to T treatments in the set Ω.

2 Treatment exclusion and early stopping. Drop treatment t* if q(t*, x̃h) < q(t, x̃h) for all t ≠ t* 

and h = 1, …, H. Set Ω = Ω \ {t*}. If enrollment remains active only for a single treatment t 
then stop the trial.

3 Adaptive patient allocation. Allocate patient (n + 1) to treatment  according to (9). 
When the response yn+1 is available, go back to step 2 and repeat for patients n + 2, n + 3, …, N.

Reporting patient subpopulations. Upon conclusion of the trial we report the estimated 
partition 3 together with the estimated optimal treatment allocations.

In step 4, summarizing the posterior distribution over random partitions and determining the 

best partition over a large number of possible partitions Π is a challenging problem. 

Following [32] we define an (N × N) association matrix GΠr of co-clustering indicators for 

each partition Πr. Here  is an indicator of patients i and j being in the same subgroup 

with respect to the biomarker partition Πr. [33] introduced a least-squares estimate for 

random partitions using draws from Markov chain Monte Carlo (MCMC) posterior 

simulation. Following their idea, we propose a least-square summary

where Ĝ = Σr G
Πrp(Πr | ) is the posterior mean association matrix and ||A||2 denotes the 

sum of squared elements of a matrix A. In words, ΠLS minimizes the sum of squared 

deviations of between an association matrix GΠr and the posterior mean Ĝ.

Alternatively one could report a partition that minimizes the average squared deviation, 

averaging with respect to p(Πr | ). That is, minimize posterior mean squared distance 

instead of squared distance to the posterior mean association matrix. While the earlier has an 

appealing justification as a formal Bays rule, the latter is easier to compute.

3 Simulation Studies

3.1 Simulation Setup

We conduct simulation studies to evaluate the proposed design. The setup is chosen to 

mimic the motivating breast cancer study. For each simulated trial, we fix a maximum 

sample size of N = 300 patients in a three-arm study with three treatments t = 1, 2, 3. We 

assume that a set of K = 4 biomarkers are measured at baseline for each patient and generate 

xik from a uniform distribution on [−1, 1], i.e., xik ~ Unif (−1, 1). The hyperprior parameters 

are fixed as vk = 1/(K + 1), k = 0, 1, …, K, ϕ = 0.5, a = 1 and b = 1. That is, each biomarker 

has the same prior probability of being selected for a split, and the response rates θt,m have 

uniform priors. To set up the grid x̃ for the stopping rule we select H0 = 10 equally spaced 

points on each biomarker subspace, and thus H = 10, 000 grid points in x̃. During the initial 

run-in phase, n = 100 patients are equally randomized to three treatments.
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Scenarios 1 through 6—We consider six scenarios and simulated 1, 000 trials for each 

scenario. In the first two scenarios, we assume that biomarkers xi1 and xi2 are relevant to the 

response, but not biomarkers xi3 and xi4. The simulation truth for the outcome yi is a probit 

regression. Specifically, we assume that the true response rates for a patient with covariate 

vector xi under treatments 1, 2 or 3 are θ1i = Φμ=0,σ=1.5(xi1 + 1.5xi2), θ2i = Φμ=0,σ=1.5(xi1), 

or θ3i = Φμ=0,σ=1.5(xi1 − 1.5xi2), respectively, where Φμ=0,σ=1.5 is the cumulative distribution 

function (CDF) of a Gaussian distribution with μ = 0 and σ = 1.5. Figure 2 plots the response 

rates under three treatments versus xi1 given different values of xi2. The red lines represent 

treatment 1, black lines refer to treatment 2 and green lines to treatment 3. Treatment 3 is 

always the most effective arm when xi2 < 0, the three treatments have equal success rates 

when xi2 = 0, and treatment 1 is superior when xi2 > 0. In summary, the optimal treatment is 

a function of the second biomarker, xi2. That is, xi2 identifies the optimal treatment 

selection. The response rates of three treatments increase with xi1, but the ordering of the 

three treatments does not change varying the first biomarker. Therefore, xi1 is only 

predictive of response, but ideally should not be involved for treatment selection. To assess 

the performance of SUBA under this setup, we select two scenarios. In an over-simplified 

scenario 1, we assume that all the patients have xi2 = 0.8. Thus, treatment 1 is more effective 

than 2, which in turn is more effective than 3. In scenario 2, we do not fix the values of xi2 

and randomly generate all biomarker values.

In scenario 3, we assume that biomarkers 1, 2 and 3 are related to the response and there are 

interactions. The true response rates under treatments 1, 2, or 3 are θ1i = 

Φμ=0,σ=1.5(xi1+1.5xi2 − 0.5xi3+2xi1xi3), θ2i = Φμ=0,σ=1.5(−xi1−2xi3), or θ3i = Φμ=0,σ=1.5(xi1 

− 1.5xi2 − 2xi1xi2), respectively. Figure 3 plots the response rates under three treatments 

versus (xi1, xi2) given xi3 = 0.6 (Figure 3a) and given xi3 = −0.6 (Figure 3b). Here, all three 

markers are predictive of the ordering of the treatment effects in a complicated fashion.

We design scenarios 4 and 5 with treatment 3 being uniformly inferior to treatments 1 and 2. 

We assume that the response rates under treatments 1 and 2 are 

 or . The implied 

minimum response rate for treatments 1 and 2 is 0.37 and the response rates of treatment 1 

and 2 are close for all biomarker values (differences range from −0.24 to 0.24 with the first 

quantile across biomarker profiles equal to −0.06 and the third quantile equal to 0.09). We 

assume θ3i = 0.15 in scenario 4 and θ3i = 0.3 in scenario 5, thus θ3i ≤ min(θ1i, θ2i) for all xi1 

and xi2. So we can expect that treatment 3 should be excluded in both scenarios.

Finally, Scenario 6 is a null case, in which no biomarkers are related to response. We assume 

that the response rates under the three treatments for all the patients are the same at 40%, 

that is, θ1i = θ2i = θ3i = 0.4.

Comparison—For comparison, we implement a standard design with equal randomization 

(ER), an outcome-adaptive randomization (AR) design, and a design based on a probit 

regression model (Reg). In the ER design, all patients are equally randomized to the three 

treatments and their responses are generated from Bernoulli(θti) for patient i receiving 

treatment t, t = 1, 2, 3 and i = 1, …, N. The values of θti are defined by the Gaussian CDFs 

given above. Under the AR design, we assume that three predefined biomarker subgroups 
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are fixed before the trial (similar to the BATTLE trial [17]). We assume that the three sub-

groups are defined as {xi1 < −0.5}, {−0.5 ≤ xi1 ≤ 0.5} and {xi1 > 0.5}, using the quartiles of 

the empirical distribution of biomarker xi1 as thresholds. Apparently, these subgroups are 

wrongly defined and do not match the true response curves in scenarios 1–6. The mismatch 

is deliberately chosen to evaluate the importance of correctly defining subgroups. Let ptb be 

the response rate of treatment t in subgroup b, and ntb the total number of patients receiving 

treatment t in subgroup b, t = 1, 2, 3 and b = 1, 2, 3. For this design we use the model yi | xi 

∈ b ~ Binomial(ntb, ptb). With a conjugate beta prior distribution beta(1,1) on ptb, we easily 

compute the posterior of ptb as ptb |  ~ beta(ntb1 + 1, ntb − ntb1 + 1), where ntb1 is the 

number of patients who responded to treatment t in subgroup b. Then under the AR design, 

we first equally randomize 100 patents to the three treatments, and adaptively randomize the 

next 200 patents sequentially. The AR probability for a future patient in subgroup b equal 

p̂tb/(p̂1b + p̂2b + p̂3b), where p̂tb is the posterior mean (ntb1 + 1)/(ntb + 2), alternatively other 

summaries of the (p1b, p2b, p3b) posterior can be used to adapt treatment assignment [31]. 

Under the Reg design, we model binary outcomes using a probit regression. In the probit 

model, the inverse standard normal CDF of the response rate is modeled as a linear 

combination of the biomarkers and treatment, . The 

parameters β0 and β1 = (β11, …, β1k) are obtained using maximum likelihood estimation. 

Under the Reg design, we randomize the first 100 patients with equal probabilities to the 

three treatments, and then assign the next 200 patients to the treatment with estimated best 

success probability, sequentially.

3.2 Simulation Results

Response rates—Define the overall response rate (ORR) as

which is the proportion of responders among those patients who are treated after the run-in 

phase. We summarize ORR differences between SUBA versus ER, AR, and Reg for each 

scenario in Figure 4. In our comparisons we use the same burn in period n = 100 across 

designs.

For scenarios 2 and 3, SUBA outperforms ER, AR and Reg with higher ORR in almost all 

the simulated trials. The ER and AR designs perform similarly. This suggests that no gains 

are obtained with AR when the biomarker subgroups are wrongly defined, confirming that 

for AR it is essential an upfront appropriate selection of the biomarker subgroups. In 

scenarios 1, 4 and 5, SUBA and Reg are preferable to ER and AR. SUBA exhibits a larger 

ORR value than Reg in 676 of 1,000 simulations in scenario 1, in 612 of 1,000 simulations 

in scenario 4 and in 605 of 1,000 simulations in scenario 5. In scenario 6, the true response 

rates are constant and not related to biomarkers, and the four designs show similar ORRs 

distribution across 1,000 simulations.
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Early stopping—Table 1 reports the average number of patients under the SUBA design. 

When a trial is stopped early by SUBA, there must be one last treatment left which is 

considered more efficacious than all the removed treatments. For a fair comparison with ER, 

AR and Reg which do not include early stopping, summaries in Table 2 are based on 

assignment of all remaining patients, until the maximum sample size N, to that last active 

arm.

Treatment assignment—We compute the average number of patients (ANP) assigned to 

treatment t after the run-in phase by the three designs. Denote  as the number of patients 

assigned to treatment t in dth simulated trial after the run-in phase, i.e., 

 , t = 1, 2, 3 and d = 1, …, 1000. Thus

Table 2 shows the results. In scenario 1, treatment 1 is always the most effective arm since 

the second biomarker is fixed at 0.8 (see Figure 2). We can see that most of the patients are 

allocated to treatment 1 in scenario 1 by SUBA. Scenario 6 is a null case in which the 

biomarkers are not related to response rates and the response rates across treatments are the 

same, so the patients allocation by SUBA is similar as ER, AR and Reg.

In scenario 2, we separately report the average numbers of patients assigned to three 

treatments after the run-in phase, among those whose second biomarker is positive or 

negative. We separately report these two averages to demonstrate the benefits of using the 

SUBA design since depending on the sign of the second biomarker, different treatments 

should be selected as the most beneficial and effective ones for patients. When the second 

biomarker is positive, treatment 1 is the most superior arm; when the second biomarker is 

negative, treatment 3 is the most effective arm according to our simulation settings. From 

Table 2, among the 200 post-run in patients, about 100 patients have (xi2 > 0) values of the 

second biomarker. In Table 2 we use  and  to denote sets of 

patients. Think of { } as a partition in the simulation truth. Among patients in , 

Table 2 reports that an average of approximately 73 of them are allocated to treatment 1, 18 

to treatment 2, and 9 to treatment 3. For those in , 9 are allocated to treatment 1, 18 to 

treatment 2, and 74 to treatment 3. Most of the patients are assigned to the correct superior 

treatments according to their biomarker values, highlighting the utility of the SUBA design. 

In contrast, ER, AR and Reg designs assign far fewer patients to the most effective 

treatments. These results and, similarly Figure 4, shows the utility of the SUBA approach.

In scenario 3, biomarkers 1, 2 and 3 are related to the response. In a similar fashion, we 

report patient allocations by breaking down the numbers according to three subsets that are 

indicative of the true optimal treatment allocation depending on the biomarker values. 

Denote θ̄1i = xi1 + 1.5xi2 − 0.5xi3 + 2xi1xi3, θ2̄i = −xi1 − 2xi3, and θ̄3i = xi1 − 1.5xi2 

− 2xi1xi2. According to the simulation truth, we consider three sets  and , defined as 
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 and 

. Under this assumption, the best treatment for patients in set 

is treatment t according to the simulation truth. Table 2 reports the simulation results for 

 and . We can see most of the patients are assigned to the correct superior 

treatments. In contrast, the ER, AR and Reg designs fail to do so.

In scenarios 4 and 5, biomarkers 1 and 2 are related to the response. Since treatment 3 is 

inferior to treatments 1 and 2, the biomarker space is only split to two sets  and 

according to simulation truth. Denote  . So 

 and . Table 2 again shows that SUBA assigns more patients 

to their corresponding optimal treatments than ER and AR designs, but performs similar as 

Reg. Scenarios 4–5 are two challenging cases, in which the dose-response surfaces are “U”-

shaped (plots not shown) and treatments 1 and 2 have similar true responses rates for most 

biomarker values. Treatment 3 is much less desirable to treatments 1 and 2, and is excluded 

by SUBA and Reg quickly across most of the simulations. Both designs assign similar 

numbers of patients on average to treatments 1 and 2. However, both designs assign a 

considerable number of patients to suboptimal treatments. For example, in both scenarios 

50% of the patients received a suboptimal treatment, which could be caused by false 

negative splits that failed to capture the superior subgroups for those patients. Nevertheless, 

SUBA is still markedly better than the ER and AR designs in these scenarios.

In summary, SUBA continuously learns the responce function to pair optimal treatments 

with targeted patients and can substantially outperform ER, AR and Reg in terms of OOR.

Posterior estimated partition—Figure 6 shows the least-square partition ΠLS in an 

arbitrarily selected trial for scenarios 2 and 3. The number in each circle represents the 

biomarker used to split the biomarker space. In scenario 2, biomarkers 1 and 2 are related to 

response rate. Treatment 1 is the best treatment when the second biomarker is positive and 

treatment 3 is the best one when the second biomarker is negative. The least-square partition 

ΠLS uses biomarker 2 to split the biomarker space in the first round of split, which 

corresponds to the simulation truth. In scenario 3, biomarkers 1, 2, and 3 are related to 

response rate and the least-square partition ΠLS uses these true response-related biomarkers 

to split as well.

3.3 Sensitivity Analysis

To evaluate the impact of the maximum sample size on the simulation results, we carry out a 

sensitivity analysis with N = 100, 200, 300 in scenario 1, with first n = 100 patients equally 

randomized. Recall that in scenario 1, treatment 1 has a higher response rate than treatments 

2 and 3, regardless of their biomarker values. Therefore the effect of sample size on the 

posterior inference can be easily evaluated.

Figure 5 plots the histogram of differences between treatments qN+1(1, xn+1)−qN+1(2, xn+1) 

and qN+1(1, xn+1) − qN+1(3, xn+1) after N = 100, 200, or 300 patients have been treated in 

the trial. When N = 100, treatment 1 is reported as better than treatment 2 in 752 of 1,000 
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simulations; when N = 200, treatment 1 is better than treatment 2 in 838 of 1,000 

simulations; when N = 300, treatment 1 is better than treatment 2 in 884 of 1,000 

simulations. The more patients treated, the more precise the posterior estimates and more 

accurate assignments for future patients. Similar patterns are observed for the comparison 

between treatments 1 and 3.

We also vary the values ϕ and conduct sensitivity analysis with ϕ = 0.2, 0.5, 0.8 using 

scenario 2. Table 3 shows the average numbers of patients needed to make the decision of 

stopping trials early and the average numbers of patients assigned to three treatments after 

the run-in phase in two defined subsets. In summary, the reported summaries vary little 

across the considered hyperparameter choices, indicating robustness with respect to changes 

within a reasonable range of values.

4 Discussion

We demonstrated the importance of subgroup identification in adaptive designs when such 

subgroups are predictive of treatment responce. The key contribution of the proposed model-

based approach is the construction of the random partition prior p(Π) which allows a flexible 

and simple mechanism to realize subgroup exploration as posterior inference on Π. The 

Bayesian paradigm facilitates continuous updating of this posterior inference as data 

becomes available in the trial. The proposed construction for p(Π) is easy to interpret and, 

most importantly, achieves a good balance between the required computational burden for 

posterior computation and the flexibility of the resulting prior distribution. The priors of θt,m 

are i.i.d Beta(a, b), with a = b = 1, i.e., a uniform prior in our simulation studies. If desired, 

this prior can be calibrated to reflect the historical response rate of the drug. The i.i.d 

assumption simplifies posterior inference. Alternatively, one could impose dependence 

across the θ’s; for example, one could assume that adjacent partition sets have similar θ 
values.

The proposed SUBA design focuses on the treatment success for the patients who are 

enrolled in the current trial by identifying subgroups of patients who respond most favorably 

to each of the treatments. One could easily add to the SUBA algorithm a final 

recommendation of a suitable patient population for a follow-up trial, such as ΠLS. Other 

directions of generalization include an extension of the models to incorporate variable 

selection, when a large number of biomarkers are measured.
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Figure 1. 
An illustration of p(Π) with three rounds splits. The example shows that with three rounds of 

split, the initial space of two biomarkers is partitioned into five sets {UU11, UL11, LL12, 

LUU121, LUL121}.
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Figure 2. 
Display of Scenario 2. The probabilities of response versus the measurements of the first 

biomarker given fixed values of the second biomarker. Red, black and green lines represent 

three treatments 1, 2 and 3 respectively.
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Figure 3. 
Display of Scenario 3. The probabilities of response versus the measurements of the first and 

the second biomarkers given the fixed values of the third biomarker at 0.6 (a) and −0.6 (b). 

Red, black and green lines represent three treatments 1, 2 and 3 respectively.
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Figure 4. 
The overall response rate (ORR) comparisons among the ER, AR, Reg and SUBA designs in 

1,000 simulated trials in all six scenarios. We plot the ORR differences between SUBA and 

ER, AR, Reg respectively in each scenario. The blue color represents the ORR of SUBA is 

higher than ER, AR or Reg; the red color represents lower.

Xu et al. Page 20

Stat Biosci. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
The histogram of qN+1(1) − qN+1(2) and qN+1(1) − qN+1(3) when N = 100, 200, 300. The 

right side of red vertical line indicates that the posterior predictive rate of treatment 1 is 

higher than treatment 2 or treatment 3.

Xu et al. Page 21

Stat Biosci. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
The tree-type least-square partition by SUBA design in one simulated trial in scenarios 2 and 

3. The number in the circle represents the biomarker used to split the biomarker space.
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