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Abstract

Identifying subgroups of treatment responders through the different phases of clinical trials

has the potential to increase success in drug development. Recent developments in sub-

group analysis consider subgroups that are defined in terms of the predicted individual treat-

ment effect, i.e. the difference between the predicted outcome under treatment and the

predicted outcome under control for each individual, which in turn may depend on multiple

biomarkers. In this work, we study the properties of different modelling strategies to estimate

the predicted individual treatment effect. We explore linear models and compare different

estimation methods, such as maximum likelihood and the Lasso with and without random-

ized response. For the latter, we implement confidence intervals based on the selective

inference framework to account for the model selection stage. We illustrate the methods in a

dataset of a treatment for Alzheimer disease (normal response) and in a dataset of a treat-

ment for prostate cancer (survival outcome). We also evaluate via simulations the perfor-

mance of using the predicted individual treatment effect to identify subgroups where a novel

treatment leads to better outcomes compared to a control treatment.

1 Introduction

With the advent of personalized medicine, there has been an increasing interest in identifying

baseline characteristics (biomarkers) of the subjects under study that are associated with a

greater benefit of the treatment or better tolerance. Both regulatory agencies U.S. Food and

Drug Administration and European Medicines Agency have recently released guidelines on

the investigation of subgroups defined by such biomarkers in confirmatory trials; highlighting,

among other issues, the problems of data-driven methods to identify subgroups [1, 2]. It is

stated, for example, that subgroup selection when a signal of relevant efficacy is apparent in a

subgroup may provide unreliable estimates of subgroup effects. Nevertheless, methods aimed

at selecting the most promising subgroups in a data-driven manner may suggest trends that

could be confirmed in subsequent clinical trials. Moreover, if treatment effect heterogeneity is

a concern, exploratory subgroup analysis may lead to insights to regulators and payers when

deciding on drug approvals or reimbursement.
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It is widely accepted that subgroup analyses should rely not only on demonstrating a treat-

ment effect in the subgroup but also on modelling the interaction effect between treatment

and the biomarkers that define such subgroups [3]. In this sense, it is important to differentiate

biomarkers that are prognostic, predictive or both. While prognostic biomarkers are associ-

ated with the outcome (independently of which treatment the patients receive), predictive bio-

markers identify patients which are more likely to benefit from a treatment.

A vast amount of literature is dedicated to univariate subgroups, that is when the subgroups

are defined by one baseline covariate or biomarker. In this case, a set of covariates may be

investigated marginally by assessing their interactions with treatment. Methodological

approaches in this situation may include standardization [4], Bayesian modelling [5], bias

reduction via bootstrap [6], and model averaging [7, 8].

Over the last years, there has been an increasing interest in obtaining individualized treat-

ment effect estimates from randomized controlled trials. Building on principles of causal infer-

ence, this framework uses a set of baseline covariates to predict the effect of the treatment

being tested relative to the control on an individual patient level. These individual treatment

effects can be useful to aid treatment decisions, but also can form the basis for identifying a

subgroup of responders. There exists extensive literature on machine learning for targeting the

PITE through the so-called blip-function [9]. For example, the Super Learner [10] method is

a prediction method for creating a weighted combination of many candidate learners, both

parametric and non-parametric, which is not limited to randomized clinical trials but could

also be used in observational or registry datasets [11, 12]. An overview of several methods for

obtaining the predicted individual treatment effect (PITE), including machine learning algo-

rithms and non-parametric models such as tree-based methods is provided by Lamont et.al.

[13].

Our work focuses on the multiple regression framework to estimate the individual treat-

ment effects and of importance are those approaches that allow finding subgroups defined by a

combination of multiple predictive biomarkers through their interactions with treatment. Lip-

kovich et.al. [14] classify these methods in the category of subgroup discovery while calling for

“principled data-driven strategies, where all elements are explicitly stated and implemented

using solid statistical principles”. Within this framework of parametric models, Zhao et.al. [15]

study a parametric scoring system as a function of multiple baseline covariates to estimate sub-

ject-specific treatment differences. This work is followed by Li et.al. [16], who propose a two-

step predictive enrichment procedure using such a scoring system. Schnell et.al. [17] provide a

Bayesian framework for the scoring procedure making use of a Bayesian hierarchical model

and propose investigating credible subgroup pairs, which allows controlling for the multiplic-

ity. Most of these parametric procedures can be comprised in a general statistical framework

[18]. Choosing a parametric model, however, can be a challenging task. If the true model is

not contained in the assumed model class, biased estimators may result. The methods we pro-

posed, however, are flexible and one may incorporate not only covariates linearly but also

transformations of them or high order interactions.

The benefit of the PITE strategy to define subgroups by multiple factors can be doomed by

the availability of “too many” biomarkers. For example, the analysis may result in subgroups

that can be hard to interpret. In diseases like Alzheimer, the cost of obtaining biomarkers may

be prohibitively high [19, 20], and therefore one may be interested in using treatment rules

with as few biomarkers as possible. In this work, we use penalized regression with a Lasso-type

penalty [21] as a model selection and estimation technique. This has the advantage of provid-

ing parsimonious models while also providing stable and accurate predictions via shrunken

estimates of the model parameters, which becomes even more relevant in cases where the

number of predictors to include in the analysis is large. We compare the performance of the
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Lasso to a maximum likelihood approach that considers all of the available biomarkers to esti-

mate the PITE.

Another issue arising from most of the proposed methods in the literature is that only

point estimates are considered, while the uncertainty or precision of such estimates is often

unknown. Our aim is to provide confidence intervals for the individual treatment effect and

account for the model selection stage. These confidence intervals may then be used to identify

subgroups of patients as in [17], where the authors obtain ‘credible subgroup pairs’ in a Bayes-

ian framework [17, 22]. For example, for a disease where no treatment is available, we may be

interested in a subgroup in which we include patients with at least some chance of benefit. In

this case, we may choose the subset of patients for which the upper bound of the confidence

interval is larger than a clinically relevant threshold, even when their point estimate is not. In

another scenario, when pharmaceutical companies are negotiating reimbursement with a

payer, the identified subgroups may be used to set priorities. Subjects with exceptional benefit,

which translates to having the lower bound of the confidence intervals for the individual treat-

ment effect above a certain threshold, may be given the highest priority. Rather than establish-

ing arbitrary cut-off points, the subsets based on confidence intervals allow one to quantify

and control the uncertainty of the predictions due to sampling errors.

Specifically, we build on recent developments in inference after selection, also called selec-

tive inference [23–25]. We evaluate the performance of confidence intervals for the PITE

conditioning on the selection stage or selected model by the Lasso. Since the model is chosen

by the data, this conditioning often results in wide confidence intervals [26]. We also evalu-

ate a state-of-the-art method that uses a randomized response for the Lasso [27] and proved

to be more powerful, which is expected to translate to narrower confidence intervals. Using

the Lasso is then attractive because of the available methods in selective inference. Other

modelling techniques, such as forward selection and elastic net, also allow for inference

using the same framework. We further explore using the PoSI framework [24, 28], which

provides post-selection inference that is universally valid under all possible model selection

procedures.

In summary, we make use of recently developed tools to cope with both mentioned issues:

selecting the right biomarkers for defining the PITE and providing the uncertainty of the point

estimates. Then, we identify subgroups of treatment responders based on estimates of the

PITE and its uncertainty.

This article is structured as follow: In Section 2 we introduce the methodology, model

assumptions, and estimation methods for a normally distributed outcome. Section 3 illustrates

the procedure in a dataset from a clinical trial for a treatment for Alzheimer disease and show

the results of a simulation study we perform to evaluate the properties of the methodology.

Extensions to time to event and binary endpoints are considered in Section 4, while Section 5

concludes with a discussion and recommendations.

2 Methodology

Consider a randomized clinical trial with a parallel group design evaluating the effect of a treat-

ment (z = 1) vs. control (z = −1), with nT + nC = n patients. Let y be the response variable and

X = (x1, � � �, xK) a set of covariates or biomarkers measured at baseline. The predicted individ-

ual treatment effect (PITE), for a subject with covariates X = x is then defined as the difference

between the expected value under treatment and the expected value under control:

DðxÞ ¼ E½yjz ¼ 1;X ¼ x� � E½yjz ¼ � 1;X ¼ x�:

Subgroup identification in clinical trials via the predicted individual treatment effect
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2.1 Subgroup identification

We wish to identify the set of subjects B with predicted individual treatment effect larger than

a certain threshold of clinical interest, Δ. This set is defined by the characteristics of the sub-

jects x, such that B = {x|D(x) > Δ}.

A point estimate D̂ðxÞ of D(x) may be considered to identify the subgroup of subjects B.

However, creating the subgroup in this manner ignores the uncertainty around the estimate

D̂ðxÞ. We will therefore also consider B̂l;a, the set of subjects for whom the lower bound of the

two-sided (1 − α)100% confidence interval for D(x), D̂l;aðxÞ, is larger than Δ; and the subgroup

B̂u;a of subjects for whom the upper bound of the confidence interval for D(x), D̂u;aðxÞ, is larger

than Δ. That is:

B̂ ¼ fx; D̂ðxÞ > Dg;

B̂l;a ¼ fx; D̂l;aðxÞ > Dg; and

B̂u;a ¼ fx; D̂u;aðxÞ > Dg:

ð1Þ

The choice of the criterion will depend on the setting, the level of confidence required or

the trade-off between overlooking a difference and falsely claiming one.

2.2 Model assumptions and estimation methods

We consider a multiple regression model in which the response y is related to the treatment

received, K biomarkers and the treatment-biomarker interactions:

y ¼ aþ bz þ
XK

k¼1

gkxk þ z
XK

k¼1

dkxk þ �: ð2Þ

We further assume that the error term � is normally distributed with mean 0 and variance σ2.

Under model (2), the PITE for a subject with X = x is given by

DðxÞ ¼ 2 bþ
XK

k¼1

dkxk

 !

:

Denoting with θ = (α, β, γ1, . . ., γK, δ1, . . ., δK), the p-dimensional vector of all parameters

of the linear predictor, and l0 = (0, 2, 0, . . ., 0, 2x1, 2x2, . . ., 2xK), the PITE can be written in the

matrix form l0θ.

Below we consider the following approaches to estimate the PITE and its confidence inter-

vals: Maximum Likelihood without model selection (Section 2.2.1), Lasso for model selection

with post-selection confidence intervals (Section 2.2.2), Maximum Likelihood with the

reduced model selected by the Lasso (Section 2.2.3), Scheffé confidence bounds with the

reduced model selected by the Lasso (Section 2.2.4), and Lasso with randomized response for

model selection (Section 2.2.5).

2.2.1 Maximum likelihood under the full model (full). Let W = [1, Z, X, ZX] denote the

design matrix that includes treatment, prognostic, predictive effects, and θ̂ ¼ ðW0WÞ� 1W0y
the maximum likelihood estimator for θ. Then, the maximum likelihood estimator for the

Subgroup identification in clinical trials via the predicted individual treatment effect

PLOS ONE | https://doi.org/10.1371/journal.pone.0205971 October 18, 2018 4 / 22

https://doi.org/10.1371/journal.pone.0205971


PITE for a subject with X = x is

D̂ðxÞ ¼ l 0θ̂ ¼ 2 b̂ þ
XK

k¼1

d̂kxk

 !

� NðDðxÞ; t2ðxÞÞ;

where t2ðxÞ ¼ Var½D̂ðxÞ� ¼ s2l 0ðW0WÞ� 1l:
We therefore obtain an estimate for the variance of the PITE by estimating σ2 with

S2 ¼
1

n � d
ðy0y � θ̂ 0W0yÞ; ð3Þ

where d = 2K + 2. This allows to construct a 100(1 − α)% confidence intervals for D(x) using

CIML ¼ l0θ̂ � tn� d;1� a=2ðS
2l0ðW0WÞ� 1lÞ1=2

h i

where tn−d,1−α/2 is the 100(1 − α/2) percentile of the tn−d distribution [29]. The confidence

intervals for the ML method have the property:

Pθðl
0θ 2 CIMLÞ ¼ 1 � a:

2.2.2 The Lasso with post-selection confidence intervals (Lasso). To improve the pre-

diction accuracy and interpretation in the case where many biomarkers are investigated, one

may perform model selection in the linear model. The Lasso is a regularization technique for

simultaneous estimation and automatic variable selection [21]. The Lasso estimates are defined

as

θ̂ ¼ arg min
θ

1

n
ky � Wθk2

2
þ lkθk1

� �

ð4Þ

where k.kp denotes the Lp-norm and λ is a non-negative regularization parameter or penalty.

The Lasso starts with the same model as in (2) but provides automatic model selection

through shrinkage of the estimates of the model coefficients to the extent that some coefficients

will be set to zero, resulting in a set of active predictors E = {i|θi 6¼ 0}. Obtaining confidence

intervals for the parameters in the selected model E, and for the corresponding PITE is not

straightforward. Recent developments in selective inference [23] have provided new tools for

developing confidence intervals for Lasso estimates. The key idea is to perform inference

based on the construction of post-selection reference distributions. Conditional on selection of

a specific model E, y is an element of a polyhedron {Ay� b}. Lee et.al. [25] provide expressions

for A and b for linear regression models with L1 penalty and showed that tests for linear func-

tions of y can be based on truncated normal distributions with known limits that depend on A

and b. Confidence intervals that take into account the selection stage can be obtained by

inverting such tests. In our work, we use the selective inference results in the context of esti-

mating PITE.

It is important to note here the implications of performing such conditional inference.

While conditioning on the event that a specific model E is selected, our target of inference

changes [24]. Instead of considering the full model with linear predictor Wθ as the generative

model, we are now making inference towards a possibly reduced model WEθE, where WE is a

submatrix of W and θE a subvector of θ, containing only the elements corresponding to the

terms selected in the model. Note that in the event where no variables involved in the calcula-

tion of the PITE are selected, the inference target is equal to zero and the confidence interval

Subgroup identification in clinical trials via the predicted individual treatment effect
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reduces to {0}, thus always containing the target on this event [28]. These confidence intervals

are designed to have a coverage such that

PθE
ðl0EθE 2 CILassojEÞ ¼ 1 � a;

that is, conditioning on the selected model E.

A usual approach for choosing the Lasso regularization parameter is to select the λ that

yields to the minimum cross-validation error. However, the confidence intervals in [25]

assume a fixed penalization parameter. For this work, we follow the approach in the

selectiveInference package [30] and choose the penalization parameter to be deter-

mined by the design matrix using:

l ¼
l
n
EðkW0�k

1
Þ; � � Nð0; s2IÞ; ð5Þ

where kxk1 = maxi |xi| and l is a multiplier for λ. Taking l = 2 yields to a desirable consis-

tency and known convergence rates in terms of the ℓ2-error [31, 32].

When implementing the Lasso, it is well-known that the predictors should be standardized

so that they all have the same variance and therefore penalized equally. However, performing

the Lasso with interactions poses an additional challenge. In this case, the variables should first

be standardized before forming the interactions with treatments. Failing to do so, may lead to

inconsistent results when using different coding strategies. Additionally, fitting the Lasso with

interactions may not follow soft or hard hierarchy principles, that is, that one or both main

effects, respectively, must be included if the interaction is in the model. Not respecting these

hierarchy principles may lead to interpretation problems when there is a strong biological

rationale that only prognostic biomarkers can be predictive. This may be solved by adding dif-

ferent penalizations to the parameters in the model and leaving the main effects unpenalized.

In these cases the conditioning event change and this needs to be taken into account when per-

forming inference.

2.2.3 Maximum likelihood under the reduced model selected by the Lasso (reduced).

For this method, we first use the Lasso to select the predictors to be included in the model

and then recalculate the estimates for the coefficients in the reduced model using maximum

likelihood.

Naively calculating maximum likelihood boundaries for the estimates under the reduced

model is not appropriate after selecting such a model based on the observed data. This is

because the maximum likelihood estimates ignore the selection stage as if the predictors that

we use for inference were selected before seeing the data. However, we include this method for

comparison purposes. Specifically, we compare the width of the resulting intervals and quan-

tify their coverage.

2.2.4 Scheffé confidence bounds (reduced-Scheffe). Another approach for constructing

confidence intervals after selection is provided within the Post Selection Inference (PoSI)

framework by [24]. In their work, they argue that to provide universally valid post selection

inference, one should perform simultaneous inference in the form of family-wise error control

for all parameters in all possible submodels. One way to accomplish this is using Scheffé-type

confidence bounds, which provide simultaneous intervals for all possible linear combinations

of the parameters.

Subgroup identification in clinical trials via the predicted individual treatment effect
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Let

L ¼

l0
1

l0
2

..

.

l0n

2

6
6
6
6
6
4

3

7
7
7
7
7
5

and d = 2K + 2, the number of terms in the full model. The Scheffé confidence region fo Lθ is

given by:

u :
ðLθ̂ � uÞ0½LðW0WÞ� 1L0�� 1

ðLθ̂ � uÞ
dS2

� Fad;n� d

( )

;

where S2 is an estimate of σ2 and Fad;n� d corresponds to the α-quantile of the F distribution with

d, n − d degrees of freedom. Therefore, the simultaneous confidence intervals for l0θ are:

CISch ¼ ½l
0θ̂ � ðdFad;n� dS

2l0ðW0WÞ� 1lÞ1=2
�

We use an estimate from the full model (3) for S2 as suggested in [24]. This implies that the

Scheffé confidence intervals cannot be calculated when the number of predictors is larger than

the sample size.

These confidence intervals are simultaneous and therefore have the advantage of also

accounting for the fact that we are making inference for n estimable functions l0θ, one for each

subject in the dataset. That is,

P sup
l2spanðlÞ

ðl0θ̂ � l0θÞ2

S2l0ðW0WÞ� 1l
� dFad;n� d

 !

¼ 1 � a:

2.2.5 Randomized Lasso (rLasso). The disadvantage of the selective inference framework

in Section 2.2.2 is that it may result in very wide confidence intervals since the conditioning is

a very stringent constraint. Recently, the use of a randomized response in the Lasso was pro-

posed to obtain more powerful tests and narrower confidence intervals [27]. The gain in

power, however, comes at the cost of the quality of the model selection, since it is less likely to

select the right covariates when random noise is added in the model fitting process. Instead of

using the original response y to select the model, the procedure involves drawing ω� Q from

a known distribution Q and choose the model using y� = y + ω via the Lasso. Specifically, the

subset of predictors in the selected model E is obtained by solving

θ̂ ¼ arg min
θ

1

n
ky� � Wθk2

2
þ lkθk

1

� �

and taking E = {i|θi 6¼ 0}. Inference is then carried out using the original data, after adjusting

for the selection by considering again the conditional distribution of the estimates in a similar

fashion as in the Lasso in Section 2.2.2. However, now one has to condition on the event that a

specific model E is selected and the added noise, which has a known distribution.

For this work, we considered the distribution of the noise Q to be Normal with zero mean

and standard deviation qσ, with q> 0.

Subgroup identification in clinical trials via the predicted individual treatment effect
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3 Results

3.1 Application: The Alzheimer dataset

To illustrate the proposed methods, we use a clinical trial of an Alzheimer’s disease treatment

developed by AbbVie. The data was used in [17] and is available on its online supplementary

materials. The dataset contains n = 41 subjects, where 25 received treatment and 16 received

placebo, and four baseline covariates: severity of disease (continuous), age (from 58 to 90

years), sex (binary), and carrier (binary, the presence of a genetic biomarker). The response of

interest is the negative change in severity from baseline to end of the study, where higher val-

ues indicate a better outcome. In this example, we also generate 6 normally distributed covari-

ates with mean 0, standard deviation 1, and no effect on the response, having a total of 10

possible predictive biomarkers. The full model includes a term for the overall treatment effect,

the main effects for the 10 covariates and their interactions with treatment. The treatment vari-

able is coded (-1, 1) and we standardize the other variables so that they have zero mean and

unit standard deviation.

We fit the Lasso and randomized Lasso using the glmnet package [33] in the R software

[34]. For both cases, the shrinkage parameter λ = 0.1654 is obtained by (5) using l = 1/2 (For

comparison purposes, the glmnet cross-validated λmin for this example is 0.0865 and the λ1se

is 0.1661). In the randomized Lasso, the noise added to the response corresponds to q = 0.2.

For constructing the post-selection confidence intervals for the PITE, we extended the func-

tions in the selectiveInference package [30]. This modification allows the user to get

the confidence intervals for an arbitrary input contrast vector, instead of only those vectors

that yield to the coefficients of the selected model, as it is implemented in the original package.

We use the default options except for the tol.beta parameter in the non-randomized

Lasso, which is increased so that terms with estimates with an absolute value larger than 0.1/N
are retained in the model. We show simulation results in the Supplementary Material with the

default value of tol.beta as well, which leads to substantially wider confidence intervals

(see Sections 9-12 in S1 File).

The estimated coefficients and the resulting two sided 95% confidence intervals are pre-

sented in Fig 1A. The variables sex and age are selected in the score after variable selection

with the Lasso and randomized Lasso. The Lasso, however, also selected the interactions of

three of the simulated variables that are not predictive. If using the full model, the ten covari-

ates need to be considered to define the subgroups.

The PITE for selected combinations of the covariates age and sex is shown Fig 1B. The

confidence intervals for the Lasso procedures are similar to those those constructed with ML

under the full model in terms of their width. Under the reduced model, the confidence inter-

vals are narrower, but we show in the simulations that they do not have the desired coverage.

3.2 Simulation study

We carry out a simulation study using a similar set up to the provided example. The methods

described in Section 2 are applied to simulated datasets to evaluate their statistical properties.

Usual choices to measure the validity of the PITE estimates are the bias and the mean squared

error (MSE), which are defined as E½E½D̂ðXÞ � DðXÞ�� and E½E½ðD̂ðXÞ � DðXÞÞ2��, respec-

tively. The inner expectation is with respect to the distribution of the covariate vector X of a

future patient and the outer expectation with respect to the (independent) distribution of the

data set based on which the model is fit. The MSE is, in fact, the most relevant measure to

assess the quality of prediction as it accounts for the error made by introducing too few predic-

tors into the model (and thus shrinking the PITE estimates) as well as the variability of the

Subgroup identification in clinical trials via the predicted individual treatment effect
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predictions due to the variation in the estimates of the coefficients because of the limited sam-

ple size.

Also of interest are the properties of the confidence intervals. The selective inference proce-

dure aims to control the conditional coverage probability PðD̂lðxÞ < DEðxÞ < D̂uðxÞjEÞ for

all fixed covariate vectors x, being DE(x) the true value for the PITE under the selected model

E, which may be different for each estimation method. In the results, we report the overall

expected coverage probability, i.e. PðD̂lðXÞ < DEðXÞ < D̂uðXÞÞ where we average over the dis-

tribution of the data the model is fitted with and also over the distribution of the covariate vec-

tor X of a future patient.

To give an idea on how well the methods perform to identify the subgroup B, we calculate sen-

sitivities and specificities. These quantities are defined as PðX 2 B̂jX 2 BÞ and PðX =2 B̂jX =2 BÞ,
respectively. We take Δ = 0 to define the subgroups (1).

We use total sample sizes n = 40, 100, 220 and 350 with allocation ratio 1:1 (nC = nT = n/2).

The response yi for subject i is simulated such that yi = μi + �i, i = 1, . . ., n, with �i� N(0, 1).

Fig 1. Estimates and confidence intervals for (A) standardized coefficients in the score and (B) four selected subjects (for models that include other

covariates besides sex and age, they were set to the mean on the dataset for those covariates).

https://doi.org/10.1371/journal.pone.0205971.g001
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The mean μi depends on the baseline covariates through:

mi ¼ aþ bzi þ g1x1i þ g2x2i þ d1x1izi þ d2x2izi

where zi 2 (−1, 1) is the treatment variable (-1:control; 1:experimental treatment). The two

covariates are simulated from standardized distributions with zero mean and unit variance,

being x1i a binary variable with equal probability coded as (−1, 1), and x2i uniformly distrib-

uted ½�
ffiffiffi
3
p

;
ffiffiffi
3
p
�. In addition to these two covariates, 8 normally distributed biomarkers with

zero mean and unit standard deviation are simulated, resulting in K = 10. These additional bio-

markers have no effect on the response. The results section includes two choices for θ = (α, β,

γ1, γ2, δ1, δ2): a predictive scenario and a null scenario (Table 1). In the Supplementary Mate-

rial (S1 File), we show additional cases for θ and total number of biomarkers K = 20, 50, 100

and 1000. These scenarios illustrate cases where the number of predictors is larger than the

sample size. We also include two scenarios in which the biomarkers are correlated (AR1 corre-

lation with ρ = 0.9 and a block correlation structure with two blocks where the correlation

within blocks is 0.5).

The full model contains the treatment effect, the main effects for the covariates and their

interactions with treatment. All confidence intervals are two-sided with 95% confidence

(α = 0.05). We use two degrees of noise, q = 0.2 and q = 0.8, for the randomized Lasso and

denote them rLasso-1 and rLasso-2, respectively.

In addition to the methods described in Section 2 and for comparison purposes, we include

in our simulations a method for a model without interactions. In this method, the PITE is esti-

mated using the adjusted average treatment effect (ATE), that is 2b̂ for all individuals, from

the following model:

y ¼ aþ bz þ
XK

k¼1

gkxk þ �: ð6Þ

For each scenario, we simulate 1000 datasets and fit their respective models. To calculate

the empirical counterparts of the diagnostic measures, we simulate an additional out-of-sam-

ple subject for each dataset.

The simulation results are presented in Table 2. An important point to remark is that the

MSE is smaller for the ATE method compared to more complicated models when having

small sample sizes. Only for larger sample sizes, the models with interactions improve the esti-

mate. While the full model provides unbiased estimates, the mean square error is larger and

the confidence intervals wider compared to other methods. The fact that all the variables that

one considers are included in the score and involved in the calculation of the confidence inter-

vals is a disadvantage of this method. On the other hand, performing model selection with the

Lasso provides biased estimates but with a gain in terms of the MSE. The selective inference

confidence intervals for the Lasso can become quite wide, particularly when the sample size is

small. In this sense, the randomized version of the Lasso provides a superior alternative. The

Table 1. Simulation scenarios: Parameters for model 2 used to simulate the datasets. In the null case there are no predictive biomarkers while in the predictive case X1

and X2 are predictive.

Case α β γ1 γ2 δ1 δ2

1: Null 0.00 0.00 0.00 0.00 0.00 0.00

2: Predictive 0.12 0.12 0.12 0.29 0.12 0.29

https://doi.org/10.1371/journal.pone.0205971.t001
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Table 2. Diagnostic measures for 1000 simulations in each null and predictive case. Columns 4 and 5 show the bias and the
ffiffiffiffiffiffiffiffiffiffi
MSE
p

for the point estimate of the PITE.

The sixth column shows the median width of the confidence intervals for the PITE, and the last columns the proportion of subjects in the identified subgroup when consid-

ering the using the limits of the confidence intervals and the point estimates. Since methods reduced and reduced-Scheffe have the same point estimate, bias and MSE are

equal.

Case n Method Bias
ffiffiffiffiffiffiffiffiffiffi
MSE
p

Width Proportion of subjects in subgroup

% in B̂l % in B̂ % in B̂u
% in B

Null 40 ATE 0.01 0.38 1.48 1.6 53.8 96.0 0.0

40 full -0.01 1.65 6.35 2.0 48.5 97.5 0.0

40 Lasso -0.00 0.35 5.24 0.6 45.0 93.6 0.0

40 reduced 0.01 0.87 1.56 15.9 45.5 77.8 0.0

40 reduced-Scheffe 0.01 0.87 5.80 0.0 45.5 94.1 0.0

40 rLasso-1 0.00 0.86 3.37 1.4 46.9 94.0 0.0

40 rLasso-2 -0.01 0.78 2.49 1.6 45.3 93.5 0.0

100 ATE -0.00 0.21 0.84 2.1 49.3 97.5 0.0

100 full 0.02 0.76 2.90 2.2 50.7 97.8 0.0

100 Lasso 0.01 0.22 3.00 0.9 48.0 93.4 0.0

100 reduced 0.02 0.56 1.02 17.1 47.2 79.9 0.0

100 reduced-Scheffe 0.02 0.56 3.24 0.0 47.2 94.7 0.0

100 rLasso-1 0.01 0.54 2.20 1.9 48.1 94.9 0.0

100 rLasso-2 0.02 0.46 1.61 1.6 51.2 95.6 0.0

220 ATE 0.01 0.13 0.54 1.3 52.2 98.3 0.0

220 full 0.00 0.47 1.79 3.1 49.9 97.7 0.0

220 Lasso 0.00 0.16 2.15 1.2 47.2 92.9 0.0

220 reduced -0.01 0.38 0.73 14.2 47.2 78.0 0.0

220 reduced-Scheffe -0.01 0.38 2.21 0.0 47.2 93.8 0.0

220 rLasso-1 -0.01 0.37 1.48 2.7 49.5 94.7 0.0

220 rLasso-2 0.00 0.34 1.11 2.1 47.6 93.8 0.0

350 ATE -0.01 0.11 0.43 1.7 46.7 97.1 0.0

350 full 0.01 0.39 1.40 2.8 50.7 97.3 0.0

350 Lasso 0.00 0.13 1.60 1.3 46.3 93.9 0.0

350 reduced 0.00 0.31 0.56 16.0 46.4 79.5 0.0

350 reduced-Scheffe 0.00 0.31 1.65 0.0 46.4 95.7 0.0

350 rLasso-1 0.01 0.30 1.09 2.4 48.8 94.3 0.0

350 rLasso-2 0.00 0.28 0.86 2.3 48.2 93.8 0.0

Predictive 40 ATE 0.01 0.75 1.57 10.9 75.2 98.8 64.7

40 full -0.03 1.67 6.37 4.8 55.3 97.7 64.7

40 Lasso -0.19 0.62 6.15 2.2 54.1 96.3 64.7

40 reduced -0.10 0.97 1.85 24.7 54.7 81.7 64.7

40 reduced-Scheffe -0.10 0.97 6.72 0.0 54.7 97.6 64.7

40 rLasso-1 -0.10 0.97 4.02 3.4 54.8 96.2 64.7

40 rLasso-2 -0.14 0.90 3.02 3.9 53.8 94.0 64.7

100 ATE 0.00 0.68 0.88 18.9 86.2 100.0 62.3

100 full 0.02 0.76 2.90 13.3 61.1 95.6 62.3

100 Lasso -0.14 0.47 3.00 11.4 59.6 93.9 62.3

100 reduced -0.03 0.61 1.31 33.1 59.0 83.4 62.3

100 reduced-Scheffe -0.03 0.61 4.10 0.1 59.0 99.8 62.3

100 rLasso-1 -0.04 0.61 2.52 10.6 60.0 94.0 62.3

100 rLasso-2 -0.08 0.59 1.94 13.5 57.7 91.1 62.3

220 ATE 0.01 0.65 0.57 44.2 96.3 100.0 61.5

220 full -0.00 0.47 1.79 22.1 61.0 91.4 61.5

220 Lasso -0.14 0.34 1.97 16.5 58.6 89.9 61.5

220 reduced -0.02 0.41 0.99 39.2 60.7 81.7 61.5

220 reduced-Scheffe -0.02 0.41 2.96 2.3 60.7 99.6 61.5

220 rLasso-1 -0.04 0.42 1.70 19.3 59.0 89.5 61.5

(Continued)

Subgroup identification in clinical trials via the predicted individual treatment effect

PLOS ONE | https://doi.org/10.1371/journal.pone.0205971 October 18, 2018 11 / 22

https://doi.org/10.1371/journal.pone.0205971


reduced model provides the narrowest confidence intervals, although they should not be used

as they do not have the desired coverage (Fig 2). For this reason, these confidence intervals are

then not considered when evaluating sensitivity and specificity. The conservativeness of the

reduced model with the Scheffé bounds is reflected in wide confidence intervals and their

over-coverage for the PITE.

The sensitivity and specificity for the methods are presented in Fig 3. When sample size is

small, all methods do not have much sensitivity to identify the subgroup of true treatment

responders B if one uses the lower bound of the confidence intervals. The sensitivity increases

when considering larger sample sizes, with the randomized Lasso achieving similar levels of

sensitivity as the full model, and being worse for the Lasso. When considering subgroups

obtained with the point estimate or the upper bound of the confidence intervals, shrinkage

Table 2. (Continued)

Case n Method Bias
ffiffiffiffiffiffiffiffiffiffi
MSE
p

Width Proportion of subjects in subgroup

% in B̂l % in B̂ % in B̂u
% in B

220 rLasso-2 -0.07 0.43 1.36 24.6 60.0 85.6 61.5

350 ATE 0.01 0.63 0.45 57.5 97.8 100.0 63.5

350 full 0.01 0.39 1.40 27.5 63.4 90.9 63.5

350 Lasso -0.13 0.29 1.40 24.1 58.1 88.8 63.5

350 reduced -0.02 0.33 0.80 41.0 61.8 79.9 63.5

350 reduced-Scheffe -0.02 0.33 2.38 7.2 61.8 98.7 63.5

350 rLasso-1 -0.02 0.33 1.28 27.6 60.8 88.0 63.5

350 rLasso-2 -0.05 0.35 1.10 29.5 60.1 84.0 63.5

https://doi.org/10.1371/journal.pone.0205971.t002

Fig 2. Average coverage of the confidence intervals for the PITE in (A) the null case and (B) the predictive case. The solid line at 95% indicates the target coverage

and the bands (dotted lines below and above) indicate ±1.96 standard error for the simulations.

https://doi.org/10.1371/journal.pone.0205971.g002
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slightly improves the specificity of the subgroup while the sensitivity is similar across the

methods.

The results in the Supplementary Material show that when the number of biomarkers is

substantially larger than the sample size the shrinkage methods offer a clear advantage in the

PITE estimation (see Section 6 in S1 File). The Lasso not only allows to obtain the estimates

and their confidence intervals for the PITE in the less than full rank case, but it also provides

better sensitivity and specificity across the different scenarios. It is worth noting that in the

completely exploratory setting (very large number of biomarkers and small sample size), the

Fig 3. Sensitivity and specificity for (A) the null case and (B) the predictive case. The reduced method is not shown in this figure since the confidence intervals do

not meet the desired coverage and the point estimate is the same as for the reduced-Scheffe method. In the null case, it is not possible to calculate sensitivity as no

subjects have a positive PITE.

https://doi.org/10.1371/journal.pone.0205971.g003
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uncertainty of the model selection, may lead to considerably wide confidence intervals that

may not be informative. The results for the case of correlated biomarkers are similar to those

in the independent case (see Section 7 and 8 in S1 File).

4 Extensions to time to event and binary endpoints

In many occasions, studies use either binary or time to event endpoints to determine efficacy.

By choosing appropriate models relating outcomes to parameters and covariates, the Lasso is

also applicable to these cases [35]. Moreover, both the glmnet and selectiveInference
packages in R have the option to fit logistic and Cox proportional hazards models [36]. The

randomized Lasso for binary response is considered in [27] by adding perturbation to the

parameters in the objective Lasso function to minimize. However, we are not aware of a soft-

ware implementation of randomized Lasso in time-to-event settings.

In these settings, there is a change in the interpretation of the models. In the survival case,

the PITE will be defined in terms of the log hazard ratio. We consider a proportional hazards

model that contains all covariates in the model and their interactions with treatment:

lðt; x; zÞ ¼ l0ðtÞ exp bz þ
XK

k¼1

gkxk þ z
XK

k¼1

dkxk

( )

:

An additional assumption of independent censoring is needed in this case to obtain a valid

causal estimate. If this assumption is violated, one may need to consider methods such as dou-

bly robust estimation [9, 37]. In what follows, we assume only administrative censoring occurs

in the trial. Under this model the PITE is defined as:

DðxÞ ¼ loglðt; x; 1Þ � loglðt; x; � 1Þ ¼ 2� bþ
XK

k¼1

dkxk

 !

:

We wish to identify the set of subjects with covariate vector X = x, such that the PITE is

below zero, that is with a reduction in the hazard:

B ¼ fx;DðxÞ < Dg:

We consider the subgroup of subjects:

B̂ ¼ fx; D̂ðxÞ < Dg

B̂l ¼ fx; D̂lðxÞ < Dg

B̂u ¼ fx; D̂uðxÞ < Dg

ð7Þ

where D̂lðxÞ and D̂uðxÞ are the lower and upper bound of the confidence interval for D(x).

For the binary endpoint case, one may work with the PITE using the log odds ratio. Let

π(x, z) = P(Y = 1|x, z) and logistic regression model:

log
pðx; zÞ

1 � pðx; zÞ

� �

¼ aþ bz þ
XK

k¼1

gkxk þ z
XK

k¼1

dkxk:

The PITE is then defined as:

DðxÞ ¼ logORðxÞ ¼ log
pðx; 1Þ

1 � pðx; 1Þ

� �

� log
pðx; � 1Þ

1 � pðx; � 1Þ

� �

¼ 2� bþ
XK

k¼1

dkxk

 !
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In the following section, we present an example using time to event data and simulations to

evaluate the performance with this type of endpoint.

4.1 Application: The prostate cancer dataset

We use a prostate carcinoma dataset from a clinical trial [38] which is available on the web

[39]. The data has been analyzed several times in the literature before, and [6] used it to illus-

trate subgroup analysis by model selection. The dataset consists of 475 subjects randomized to

a control group or diethylstilbestrol. The p-value of the log-rank test for the test of the differ-

ence in survival between treatment and control was 0.103.

We are interested in identifying subgroups of patients that may benefit from the treatment

using the PITE. There are K = 6 variables to consider: existence of bone metastasis (bm), dis-

ease stage (3 or 4), performance (pf), history of cardiovascular events (hx), age, and weight

(wt).

The estimated coefficients of the model and their confidence intervals for the proportional

hazards model are presented in Fig 4A. The Lasso is fitted with λ = 0.0454, again following (5)

with l = 1/2 (For comparison purposes, the cross-validated λmin for this example is 0.0193 and

the λ1se is 0.0647). The only interactions that remain in the model after applying the Lasso are

the ones of treatment with age and bone metastasis, a similar finding as in [6]. Fig 4B shows

the PITE for each of the first 10 individuals in the dataset. In this case, the confidence intervals

when using the selective inference framework have a width comparable to those of the full

model. Again, the reduced model gives the narrower intervals, but these do not have the

desired coverage, as we show in the simulations section.

We restrict the analysis to the variables selected by the Lasso, age and bone metastasis. Fig

5A shows the PITE and confidence intervals when using the Lasso for the combinations of lev-

els of these covariates and Fig 5B illustrates the regions of the covariate space for each identi-

fied subgroup. For a patient that already had bone metastasis, the treatment would provide a

reduction in the hazard with a 95% confidence when they are younger than 70 years old. How-

ever, when they did not have bone metastasis, the treatment has a benefit only for patients

younger than 61 years old.

4.2 Simulation study

We carry out a simulation study to evaluate whether the methods deliver reliable results

regarding the selection of variables in the PITE, the coverage of confidence intervals and the

performance of subgroup identification. We consider a trial with a parallel group design, sur-

vival endpoint and 6 covariates of interest (x1 binary and the rest normally distributed with

zero mean and unit variance). The data is simulated to have a similar set up as in the prostate

cancer data. We assume a proportional hazards following the true model

liðtÞ ¼ l0ðtÞ expf0:17x1i þ 0:18x2i þ 0:11x3i þ 0:14x4i þ 0:21x5i � 0:12x6i þ

bzi þ zid1x1i þ zid2x2ig

:

The survival time depended on the administered treatment via β, δ1 and δ2. A non-informa-

tive administrative censoring is introduced by simulating a uniform study time accrual for

each patient. We show results for a predictive case (scenario in which β = −0.10, δ1 = −0.08

and δ2 = 0.18); and for a null case in which there is an overall treatment effect, but no predic-

tive biomarkers (β = −0.10, δ1 = δ2 = 0). We simulate sample sizes n = 100, 400, 700 and 1000,

with equal allocation ratio to treatment and control. The number of simulations per scenario

is 1000 and we take again Δ = 0 to define the subgroups (7).

Subgroup identification in clinical trials via the predicted individual treatment effect

PLOS ONE | https://doi.org/10.1371/journal.pone.0205971 October 18, 2018 15 / 22

https://doi.org/10.1371/journal.pone.0205971


In general, the same trends as in the normal outcome case can be observed when looking at

coverage, sensitivity and specificity. The confidence intervals derived with the selective infer-

ence framework attain the desired coverage for the PITE, while we show that using the Wald

confidence intervals under the reduced model fail to do so (Fig 6). Sensitivity and specificity

for the full model and Lasso are comparable (Fig 7), although sensitivity is lower when consid-

ering the subgroup defined by the upper bound of the confidence interval.

5 Discussion

An essential part of drug development is to provide information on potential treatment effect

heterogeneity in a broad patient population to identify subgroups of patients that benefit the

Fig 4. Estimates and confidence intervals for A. the coefficients in the score, and B. the first 10 subjects in the dataset. The ‘full’ legend corresponds to

the full model without model selection, the ‘Lasso’ model implements model selection through shrinkage and Selective Inference to derive the confidence

intervals, while the ‘reduced’ corresponds to the usual cox model using only the predictors that are selected by the Lasso, but without conditioning on the

selection.

https://doi.org/10.1371/journal.pone.0205971.g004
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most. The current study investigates the use of the predicted individual treatment effect

(PITE) to assess treatment heterogeneity, allowing for subgroups that are defined by multiple

biomarkers. To ease interpretation of results and to increase prediction precision, reduction

of the number of candidate biomarkers may be needed. This variable selection in the model

Fig 5. (A) PITE and confidence intervals for combination of levels of variables selected by the Lasso. (B) Identified subgroups by regions of the covariate space.

https://doi.org/10.1371/journal.pone.0205971.g005

Fig 6. Average coverage of the confidence intervals for the PITE in (A) the null case and (B) the predictive case. The solid line at 95% indicates the target coverage

and the bands (dotted lines below and above) indicate ±1.96 standard error for the simulations.

https://doi.org/10.1371/journal.pone.0205971.g006
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fitting process requires special methods to obtain confidence intervals of parameters with the

desired coverage. Selective inference [23] provides tools to achieve this objective. In this paper,

we have investigated some of the finite sample properties of these methods for normally dis-

tributed data and time to event data. We also showed graphical representations that can help

to understand the effect of the investigated drug across the levels of the covariates.

The examples considered in this paper contained a small to a moderate number of bio-

markers. Even in this case, the use of model selection greatly improves the interpretation of

the identified subgroups as they depend on only a few covariates. However, we have also seen

that accounting for selection (uncertainties) in post-selection inference may increase the width

Fig 7. Sensitivity and specificity for (A) the null case and (B) the predictive case when using a survival outcome.

https://doi.org/10.1371/journal.pone.0205971.g007
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of the confidence intervals as compared to the full model in case of moderate numbers of bio-

markers which turns into the opposite when the number of markers gets large. In this situa-

tion, the tools implemented in this study become relevant as they increase the prediction

accuracy and the sensibility and specificity of the identified subgroups.

The methods can also be extended to other model formulations. For example, one may con-

sider a proportional interactions model [40], which assumes that the interaction terms are pro-

portional to their respective main effects. After obtaining the parameter estimates, the PITE

can be obtained using the resulting linear model. Confidence intervals could be obtained by

extending the parametric bootstrap approach in [40]. However, the authors cautioned against

covariate screening since it affects inference on the interaction terms under this model. Valid

confidence intervals could be derived based on the conditional distribution of the estimators

given a specific model is selected (similar to the approach by [23, 25, 27]). Alternatively, one

could account for all possible models as in the Scheffé bounds discussed in Section 2.2.4 ([24]).

Another extensions are models containing higher order interactions or functionals of the

baseline covariates may also be considered. In these cases, a small number of biomarkers may

turn into a large number of predictors in the model, leading again to the cases where model

selection is advantageous.

The proposed intervals are confidence intervals for the expected individual treatment

effects, rather than prediction intervals for the subject-level difference in the potential out-

comes under treatment and control, and this has implications in their interpretation in terms

of the estimand of interest. Developing such prediction intervals in this setting requires an

estimate of the subject-level correlation of prediction errors under both treatment and under

control conditions. As pointed out by one reviewer, since no study participants are observed

under both conditions in parallel study designs, we have no empirical information on this

dependence. When no variable selection is performed, one may be able to obtain prediction

intervals by assuming different degrees of correlation between the potential outcomes. A con-

servative approach would assume the situation of perfect correlation between the two potential

outcomes [41]. However, combining this with the Selective Inference framework is challenging

and a topic of future research.

Availability of the methods and extensions to Cox and logistic models have been discussed,

showing that the properties observed in the normal response case remain valid. Since distribu-

tional properties of partial maximum likelihood estimators from the Cox model are themselves

only asymptotically valid while those for the linear models are exact, larger sample sizes may

be needed. Additionally, it should be reminded that deleting relevant covariates from a Cox or

a logistic model can lead to biased estimates of the parameters staying in the model.

We have primarily investigated the Lasso and a variation (randomized Lasso), which pro-

vided the advantage that the subgroup-defining covariates need not be pre-specified, but only

a list of possible covariates is needed. Selective inference applies to some other variable selec-

tion methods as well, for example, to forward selection, elastic net, marginal screening, princi-

pal components analysis, etc. The message is that no matter which selection technique was

used to select biomarkers, the selection stage should be taken into account to provide valid sta-

tistical inference.

Finally, as the methods we propose in this study help to identify subgroups of treatment

responders in an exploratory manner, it is important to mention that these subgroups should

later be confirmed implementing so-called enrichment trials (see [42, 43] for reviews on these

methods). Trial designs that incorporate subgroup identification and confirmation together in

a comprehensive framework is a topic for future research. Nevertheless, when the subgroups

arose from methods that control for overoptimistic results, such as those we used in this paper,

they should have a higher chance to be confirmed in later studies.
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