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Summary. The increasing awareness of treatment effect heterogeneity has motivated flexible
designs of confirmatory clinical trials that prospectively allow investigators to test for treatment
efficacy for a subpopulation of patients in addition to the entire population. If a target subpop-
ulation is not well characterized in the design stage, it can be developed at the end of a broad
eligibility trial under an adaptive signature design.The paper proposes new procedures for sub-
group selection and treatment effect estimation (for the selected subgroup) under an adaptive
signature design.We first provide a simple and general characterization of the optimal subgroup
that maximizes the power for demonstrating treatment efficacy or the expected gain based on
a specified utility function. This characterization motivates a procedure for subgroup selection
that involves prediction modelling, augmented inverse probability weighting and low dimensional
maximization. A cross-validation procedure can be used to remove or reduce any resubstitu-
tion bias that may result from subgroup selection, and a bootstrap procedure can be used to
make inference about the treatment effect in the subgroup selected. The approach proposed is
evaluated in simulation studies and illustrated with real examples.

Keywords: Cross-validation; Personalized medicine; Predictive biomarker; Subgroup
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1. Introduction

It is well recognized that treatment effects can be heterogeneous, i.e. the same treatment can have
different effects on different patients. The increasing awareness of treatment effect heterogeneity
has motivated the development of biomarkers that help to identify a target population that
is particularly sensitive to a new treatment (Simon, 2008, 2010). There are different ways to
incorporate such considerations in a confirmatory clinical trial that is designed to demonstrate
the efficacy of a new treatment in some population of patients. If a promising subpopulation
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is available in the design stage, this knowledge can be used to plan a subgroup analysis in
a traditional broad eligibility trial (Gail and Simon, 1985; Russek-Cohen and Simon, 1997),
or to restrict enrolment in a targeted trial (Simon and Maitournam, 2004; Maitournam and
Simon, 2005), depending on how confident the investigator is about the subpopulation. Such a
predefined subpopulation is often unavailable in the design stage; instead, the investigator may
have only a vague idea that a collection of baseline covariates (e.g. biomarkers, demographics
or clinical measurements) could be useful in identifying a sensitive subpopulation. In that case,
a target subpopulation can be developed at the end of a broad eligibility trial under an adaptive
signature design (ASD) (Freidlin and Simon, 2005; Jiang et al., 2007; Freidlin et al., 2010),
or at an interim analysis (with the possibility of restricting subsequent enrolment) under an
adaptive enrichment design (e.g. Follmann (1997), Liu et al. (2010), Rosenblum and van der
Laan (2011), Simon and Simon (2013) and Wang and Hung (2013)). The various approaches
have been discussed and compared by Wang et al. (2007), US Food and Drug Administration
(2012) and Chen et al. (2014), among others.

This paper is concerned with subgroup selection and related estimation and testing prob-
lems in ASDs. Freidlin and Simon (2005) described a subgroup selection procedure for genomic
biomarkers, and Freidlin et al. (2010) considered optimizing the cut point for a single continuous
biomarker. Here we consider the problem of finding or approximating the optimal subgroup
on the basis of an arbitrary set of baseline covariates. Our objective is to maximize the power
for detecting a positive treatment effect on the selected subgroup or, more generally, the ex-
pected utility based on a specified utility function (of marker values). The latter formulation
allows investigators to take into account the size of the subgroup selected as well as the clin-
ical value (based on prognosis and available treatment options) of demonstrating treatment
efficacy for the selected subgroup. Our objective here is notably different from finding an op-
timal treatment regime that maximizes the expected outcome for the entire population (e.g.
Qian and Murphy (2011), Zhao et al. (2012) and Zhang et al. (2012)). Recognizing the im-
portance of the latter objective, we believe that successful demonstration of treatment efficacy
for a clinically important subpopulation is also an important objective, especially in regulatory
settings.

Our approach to this problem is based on a simple and general characterization of the op-
timal subgroup. For a binary outcome, this characterization takes the form of a half-space in
terms of covariate-specific response rates (in both treatment groups) and utility (if specified).
Motivated by this characterization, we propose a procedure which consists of the following
three steps.

Step 1: estimate the covariate-specific response rate in each treatment group.
Step 2: estimate the expected gain for each candidate half-space defined by a vector of coef-
ficients and the estimates from step 1.
Step 3: choose the half-space with the largest estimate of the expected gain.

Step 1 is a standard prediction problem. Step 2 can be cast as a missing data problem, for which
we adopt an augmented inverse probability weighting approach. Step 3 is a low dimensional
optimization problem which can be solved by using standard techniques. In estimating the
treatment effect for the chosen subgroup, a cross-validation approach can be used to remove or
reduce any resubstitution bias that may have resulted from the subgroup selection process. A
bootstrap procedure can be used to make inference about the treatment effect on the subgroup
chosen.

The rest of the paper is organized as follows. In the next section, we formulate the problem and
describe the proposed methodology in detail. Section 3 presents simulation results and Section
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4 gives illustrative examples. The paper ends with a discussion in Section 5. Additional details
are given in Web appendices.

The programs that were used to analyse the data can be obtained from

http://wileyonlinelibrary.com/journal/rss-datasets

2. Methodology

2.1. Formulation
An ASD is just an all-comer study with a prospective plan for testing treatment efficacy for a
data-driven subgroup of patients. Unlike other adaptive designs, an ASD does not (necessarily)
involve an interim analysis; it is adaptive in the selection of patients for a possible subgroup
analysis. Usually, the analysis of an ASD begins with a test of overall treatment efficacy on the
entire study cohort (at level α1, say). If the overall test result is significant, then the treatment
is considered efficacious for the entire study population. If the test result is non-significant, a
subgroup is then selected by using a prespecified procedure, and another test of treatment efficacy
is performed on the subgroup selected (at levelα2, say). If the second test result is significant, then
the treatment is considered efficacious for the subpopulation selected. The significance levels α1
and α2 should be chosen prospectively in a manner that controls the familywise error rate.

In this paper, we restrict attention to ASDs without a test of overall treatment efficacy (the
rationale for removing the overall test is given later in remark 1). Thus, our analysis plan differs
from that outlined in the previous paragraph in that we perform only one test of treatment
efficacy (for a selected subpopulation, which could be the entire study population). Consider a
randomized clinical trial with broad entry criteria, where each subject is assigned a treatment
T (1, experimental; 0, control) and has an outcome Y . Let X denote a vector of baseline co-
variates (e.g. biomarkers, demographics and clinical measurements) that may be used to define
a subgroup for demonstrating treatment efficacy. The question is how to choose such a sub-
group and to test the associated hypothesis on the basis of {.Xi, Ti, Yi/ : i=1, : : : , n}, which we
conceptualize as independent copies of .X, T , Y/.

Let X denote the support of X, and let pow.A/ denote the power of a given test of treatment
efficacy based on a subgroup defined by A ⊂ X . (We do not consider measurability issues in
this paper). If the investigator is concerned about power only, then an optimal choice of A is a
maximizer of pow.A/ over A⊂X . There may, however, be additional considerations concerning
the size and content of A. It is obviously more desirable to demonstrate treatment efficacy for the
entire population than for a small portion (say 10%) of the population. Moreover, successful
demonstration of treatment efficacy is more important for a subgroup of patients with no
alternative treatments than for a subgroup with many treatment options. A utility function
u :X → [0, ∞/ can be used to incorporate such considerations in the optimization. With a slight
abuse of notation, we write u.A/=∫

A u.x/dF.x/, where F is the distribution of X, for the realized
gain when a subset A tests significantly. If u.x/≡ 1, then u.A/=F.A/ is just the proportion of
patients belonging to A. In general, u.A/ is the product of F.A/ with the F -average of u.x/ over
x∈A. For a specified utility function, an optimal choice of A may be defined as a maximizer of
the expected gain

γ.A/=u.A/ pow.A/:

Remark 1. As mentioned earlier, ASDs usually involve two separate tests: a test for the entire
population followed by a test for a selected subpopulation (if the first test is non-significant).
The main motivation for this strategy appears to be the greater gain in establishing treatment
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efficacy for the entire population than for a strict subpopulation. Under our approach, which
explicitly takes u.A/ into account, there is no need for a separate test for the entire population.
This allows us to focus on one test for a selected subpopulation, which could be the entire
population.

To fix ideas, we now consider a binary outcome with Y =1 being the desired result, and we de-
fine pt.x/=P.Y =1|T = t, X=x/ and pt.A/=P.Y =1|T = t, X∈A/ for t =0, 1, x∈X and A⊂X .
Because T is randomized and therefore independent of X, we have pt.A/=∫

A pt.x/dF.x/=F.A/

if F.A/> 0. For a given subset A, pt.A/ can be estimated by the sample proportion

p̂
emp
t .A/=

n∑
i=1

I.Xi ∈A, Ti = t, Yi =1/

n∑
i=1

I.Xi ∈A, Ti = t/

,

where I.·/ is the indicator function. A Wald test of H0 : δp.A/ � δ0 against H1 : δp.A/ > δ0,
where δp.A/ = p1.A/ − p0.A/ and δ0 is a prespecified constant, can be constructed by using
the difference p̂

emp
1 .A/− p̂

emp
0 .A/, which in large samples is approximately normally distributed

with mean p1.A/−p0.A/ and variance

var{p̂
emp
1 .A/− p̂

emp
0 .A/}= p1.A/{1−p1.A/}

n1.A/
+ p0.A/{1−p0.A/}

n0.A/

≈ p1.A/{1−p1.A/}
�1F.A/n

+ p0.A/{1−p0.A/}
�0 F.A/n

,

where nt.A/=Σn
i=1I.Xi ∈A, Ti = t/ and �t =P.T = t/, t =0, 1. The power of a level α Wald test

can be approximated by

p̃ow.A/=Φ
(

{p1.A/−p0.A/− δ0}
[

p1.A/{1−p1.A/}
�1F.A/n

+ p0.A/{1−p0.A/}
�0 F.A/n

]−1=2

− zα

)
,

where Φ is the standard normal distribution function and zα is the upper α-quantile of the
standard normal distribution. This allows us to approximate γ.A/ by

g.A/=u.A/ p̃ow.A/,

which may be easier to maximize because an analytical expression is available.

Remark 2. Before attempting to maximize g.A/, it may be helpful to consider the following
subgroups:

X+ ={x ∈X : p1.x/>p0.x/},

X− ={x ∈X : p1.x/<p0.x/}:

If a treatment decision (between 1 and 0) must be made on the basis of X alone, then patients
in X+ and X− should receive treatment 1 and 0 respectively. For any A⊂X , we can define the
conditional probabilities

ψ+.A/=P.X ∈A|X ∈X+/,

ψ−.A/=P.X �∈A|X ∈X−/,

assuming that the conditioning events have positive probabilities. It may be tempting to call
these conditional probabilities sensitivity and specificity, but these terms can be misleading for
two reasons. First, our objective is not to estimate X+ but rather to find a promising subgroup
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and to demonstrate treatment efficacy for the selected subgroup. Second, X+ is not the ‘positive
treatment effect’ subgroup (i.e. the subgroup of patients who will benefit from treatment 1 versus
treatment 0). The positive treatment effect subgroup can be defined precisely by comparing
the potential outcomes for the two treatments (e.g. Zhang et al. (2013)). Typically, the two
potential outcomes cannot both be observed, which makes it impossible to determine, without
strong assumptions, whether a given patient belongs to the positive treatment effect subgroup.
For each x ∈ X+, patients with X = x fare better on average under treatment 1 than under
treatment 0. Within the stratum X=x, there may be patients who individually fare better under
treatment 0 than under treatment 1. In general, when a new treatment is found efficacious for
a (sub)population of patients, it is quite possible that some patients in that (sub)population do
not benefit from the new treatment.

2.2. Subgroup selection
If X is discrete, then the subsets of X can be enumerated, at least in principle. We assume that
X has at least one continuous component, and that the functions .u, p0, p1/ are continuous in
the continuous components of X. Under appropriate conditions, we show in the Web appendix
A that a subset Aopt that maximizes g.A/ consists of x ∈X such that

.1, u.x/, p0.x/, p1.x//c.Aopt/�0, .1/

where c.Aopt/ is a 4-vector that depends on Aopt but not on x. If the utility function is constant
or if there is no utility function (so the objective function is simply p̃ow.A/), the same charac-
terization of Aopt applies after removing u.x/ from expression (1) and changing the definition
of c.Aopt/ in an obvious way. An analogous result for a continuous outcome is given in the Web
appendix B.

Although expression (1) does not describe Aopt in an explicit form (because c.Aopt/ depends
on Aopt), it does suggest a practical approach for estimating or approximating Aopt. First, obtain
an estimate p̂t.x/ of pt.x/ based on a model for P.Y =1|X, T/. Next, consider the class of subsets
A={A.c/ :‖c‖=1}, where

A.c/={x ∈X : .1, u.x/, p̂0.x/, p̂1.x//c �0} .2/

and the unit norm constraint on c is for uniqueness. If u.x/ is constant or unspecified, it will
be removed from expression (2). Our proposal is to estimate Aopt by Âopt =A.ĉopt/, where ĉopt
maximizes an estimate of g{A.c/} over the unit sphere. If p̂t.x/ estimates pt.x/ consistently,
then we can expect ĉopt and Âopt to approach c.Aopt/ and Aopt respectively in large samples.
If p̂t.x/ is inconsistent for pt.x/ (e.g. because of model misspecification), then Âopt estimates a
local optimum (within the class A).

Remark 3. This approach allows there to be collinearity in X, because the sole purpose of
regressing Y on .X, T/ is to obtain p̂t.x/.

Remark 4. It is possible to detect a severe departure of Âopt from the global optimum Aopt.
If Âopt approaches Aopt, the associated ĉopt should be close to c.Aopt/ ≈ c.Âopt/, with c.·/
defined in the Web appendix A and normalized for comparability with ĉopt. A large difference
between ĉopt and c.Âopt/ would then suggest that the class A does not contain Aopt. We could
even perform a formal test based on a specified norm for ĉopt − c.Âopt/ by using the following
parametric bootstrap procedure: fix {.Xi, Ti/ : i= 1, : : : , n}, generate {Yi : i= 1, : : : , n} from the
estimated model p̂t.x/, compute Db =‖ĉ.b/

opt − c.Â
.b/
opt/‖ for each bootstrap sample and take as

the p-value the proportion of the Dbs exceeding the observed value Dobs =‖ĉopt − c.Âopt/‖.
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For a given c, an estimate of g{A.c/} can be obtained by substituting estimates of .F.A/, u.A/,
p0.A/, p1.A//, where A = A.c/ is considered fixed in this paragraph. It is natural to estimate
.F.A/, u.A// by

F̂ .A/= 1
n

n∑
i=1

I.Xi ∈A/,

û.A/= 1
n

n∑
i=1

I.Xi ∈A/u.Xi/:

Estimation of pt.A/ (t =0, 1) can be cast as a missing data problem by considering the subjects
in A with T �= t as having missing data on Y (Rubin, 1974). This perspective allows us to draw on
existing techniques and insights in the missing data literature. It is straightforward to estimate
pt.A/ with the sample proportion p̂

emp
t .A/ that was defined in Section 2.1; however, this esti-

mator does not incorporate the available covariate information and therefore may be inefficient.
Alternatively, we could use the following regression estimator:

p̂
reg
t .A/=

n∑
i=1

I.Xi ∈A/p̂t.Xi/

n∑
i=1

I.Xi ∈A/

,

where p̂t.x/ is a generic estimate of pt.x/ that was mentioned earlier. This regression estima-
tor does incorporate covariate information, but its consistency depends on the consistency of
p̂t.x/. To improve the efficiency of p̂

emp
t .A/ without compromising its consistency, we propose

to estimate pt.A/ with the following augmented estimator:

p̂
aug
t .A/= p̂

emp
t .A/−

n∑
i=1

I.Xi ∈A/{I.Ti = t/− �̂t.A/} p̂t.Xi/

n∑
i=1

I.Xi ∈A, Ti = t/

,

where �̂t.A/ = nt.A/={n0.A/ + n1.A/} is the proportion of subjects in A that receive treat-
ment t. To the extent that p̂

emp
t .A/ can be considered an inverse probability weighting estima-

tor, p̂
aug
t .A/ is the corresponding augmented inverse probability weighting estimator (Robins

et al., 1994). Because of randomization, p̂
aug
t .A/ is guaranteed to be consistent for pt.A/,

and it attains the semiparametric information bound if pt.x/ is consistent for pt.x/ (Tsiatis,
2006).

Once an estimate of g{A.c/}, say ĝ{A.c/}, is available for every c, standard optimization
techniques can be used to maximize ĝ{A.c/} over c or a suitable transformation of c.
For example, it may be advantageous to fix one component of c at 1 (and to remove
the unit norm constraint) if a genetic algorithm is used (Zhang et al., 2012). If u.x/ is
constant or unspecified, c is three dimensional with 2 degrees of freedom, so it is possible to
perform a grid search for .η ∈ [−π=2,π=2], θ∈ [0, 2π// under the following representation of
c = .c1, c2, c3/:

c1 = cos.η/ cos.θ/,

c2 = cos.η/ sin.θ/,

c3 = sin.η/:
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2.3. Treatment effect estimation
Once a subgroup Âopt has been chosen, the next question is how to estimate the associated
treatment difference p1.Âopt/−p0.Âopt/. For a fixed A, estimators of pt.A/ have been described
in Section 2.2. In the Web appendix C, we give conditions under which an estimator p̂t.Âopt/

of pt.Âopt/ is consistent and asymptotically normal. Under such conditions, valid asymptotic
inference on pt.Âopt/ can be made despite the fact that Âopt and p̂t.·/ are obtained from the
same set of data.

In finite samples, however, a resubstitution bias can arise when the same sample is used to
develop Âopt and to estimate the treatment effect in this subgroup. In general, the maximum of
an estimated objective function is an overestimator of the true objective function evaluated at
the maximizer (Dawid, 1994; Senn, 2008; Simon, 2008). In the present setting, Âopt is developed
for the objective function g.A/, which is different from but closely related to the treatment
difference p1.A/−p0.A/. Because a large treatment difference tends to increase the power and
hence g.A/, some resubstitution bias is likely to exist in the present setting. If this is a serious
problem, a cross-validation approach can be used to remove or reduce the resubstitution bias.
Specifically, we propose to partition the study cohort randomly into a specified number, say K,
of subsamples that are roughly equal in size. For each k ∈{1, : : : , K}, we use the kth subsample
as the validation sample and combine the other subsamples into a training sample. From the
training sample we obtain Â

.−k/
opt = arg maxA∈A.−k/ ĝ.−k/.A/ by using the exact same method

for obtaining Âopt. The superscript .−k/ in A.−k/ and ĝ.−k/ emphasizes that both objects are
based on the training sample alone. Next, we apply Â

.−k/
opt to the validation sample and obtain

p̂
.k/
t .Â

.−k/
opt /, where p̂

.k/
t .·/ is based on the validation sample alone. Depending on the size of

the kth subsample, p̂
.k/
t .·/ could be the empirical estimator (i.e. the sample proportion) or the

augmented estimator; in the latter case, the required estimate of pt.x/ must also be based on
the kth subsample. Because Â

.−k/
opt and p̂

.k/
t .·/ are based on independent data, p̂

.k/
t .Â

.−k/
opt / is free

of resubstitution bias. The final cross-validated estimator of pt.Âopt/ is given by

p̂cv
t .Âopt/= 1

K

K∑
k=1

p̂
.k/
t .Â

.−k/
opt /:

The choice of K represents a trade-off between computational demand and potential bias
because each training sample is smaller than the whole sample by a factor of 1=K—a larger
K decreases that bias at the expense of more computation. Once K has been chosen, the size
of a subsample is determined as roughly n=K. If this number is sufficiently large for reliable
estimation of pt.x/, the augmented inverse probability weighting method can be applied to
each validation sample to estimate pt.Â

.−k/
opt /; otherwise we can use the empirical estimator.

Remark 5. If an empirical estimator is used to estimate pt.Â
.−k/
opt / for each k, the definition

of p̂cv
t .Âopt/ can be refined as

n∑
i=1

Scv
i I.Ti = t/Yi

n∑
i=1

Scv
i I.Ti = t/

,

where Scv
i is the indicator for Xi ∈ Â

.−k/
opt if the ith subject belongs to the kth subsample. This

refined definition may be preferable as it accounts for possible differences between subsamples
in the number of subjects receiving treatment t. Furthermore, the indicator Scv

i can be used to
define
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F̂
cv

.Âopt/= 1
n

n∑
i=1

Scv
i ,

ûcv.Âopt/= 1
n

n∑
i=1

Scv
i u.Xi/:

Together with p̂cv
t .Âopt/ (t = 0, 1), these estimators can be used to obtain cross-validated esti-

mators of p̃ow.Âopt/ and g.Âopt/, which can be helpful in assessing the resubstitution bias and
the effect of cross-validation (see Section 3).

Because the terms p̂
.k/
t .Â

.−k/
opt / (t = 0, 1; k = 1, : : : , K) are not independent of each other, it is

not straightforward to derive the variance of the cross-validated treatment difference estimator,
p̂cv

1 .Âopt/ − p̂cv
0 .Âopt/. Nonetheless, inference on p1.Âopt/ − p0.Âopt/ can be based on non-

parametric bootstrap standard errors and confidence intervals. A non-parametric bootstrap
sample is created by sampling n subjects with replacement from {.Xi, Ti, Yi/ : i = 1, : : : , n}. A
cross-validated estimate of p1.Âopt/ − p0.Âopt/ can be obtained from each bootstrap sample,
repeating all steps in subgroup selection and cross-validation. This procedure can be repeated
many times to produce a collection of bootstrap estimates, from which a bootstrap standard
error BSE can be obtained as a sample standard deviation. A level α confidence interval can
then be obtained as p̂cv

1 .Âopt/− p̂cv
0 .Âopt/± zα=2 BSE, and a level α test of H0 against H1 has

p-value 1−Φ[{p̂cv
1 .Âopt/− p̂cv

0 .Âopt/− δ0}=BSE].

Remark 6. Hypothesis testing in ASDs is sometimes conducted by using a permutation test
based on permutations of the treatment labels (Jiang et al., 2007; Freidlin et al., 2010). For
the permutation distribution to be a valid null distribution, T must be independent of .X, Y/

under the null hypothesis. This independence implies that p0.x/=p1.x/ for all x, which further
implies that p0.A/=p1.A/ for all A⊂X . Thus, the permutation test is really a test of the sharp
null hypothesis of no treatment effect in any subpopulation. A significant result from the per-
mutation test indicates that a treatment effect exists in some subpopulation, without specifying
which subpopulation it is. It is arguably more desirable to test the specific null hypothesis of no
treatment effect in the selected subpopulation. The bootstrap procedure that was described in
the preceding paragraph provides a specific test as well as a confidence interval for the treatment
effect in the subpopulation selected.

3. Simulation

Simulation experiments are performed to evaluate the proposed methodology for subgroup
selection and treatment effect estimation. Each experiment is based on 1000 simulated trials,
each of which consists of 1000 subjects. In the first two experiments, X is a 20-vector whose
elements are independently distributed as standard normal, and T is a Bernoulli variable with
P.T =1/=0:5, independently of X. Given .X, T/, a binary outcome Y is generated from a logistic
regression model:

P.Y =1|X =x, T = t/= expit{.1, x′/βt}, .3/

where expit.z/={1+ exp.−z/}−1 and the true value of .β0, β1/ varies across experiments. The
analytic objective is to use the trial data to select a promising subpopulation (in terms of X)
and to demonstrate a beneficial treatment effect (with δ0 =0) on the selected subpopulation at
level α= 0:025 (one sided). Throughout the simulation study, we work with a constant utility
function, u.x/≡1, so that u.A/=F.A/ for all A⊂X . This implies that u.x/ should be removed
from expressions (1) and (2).
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Each simulated data set is analysed by using a working model, which may be model (3)
or a misspecified model (to be described later), to obtain p̂t.x/, which defines the working
class A through equation (2). For each A ∈ A, the objective function g.A/ is estimated by
substituting the estimates F̂ .A/ and p̂

aug
t .A/ (which are defined in Section 2.2) into the definition

of g.A/. The resulting estimate ĝ.A/ is then maximized by using the grid search method (with
104 grid points) described at the end of Section 2.2. This procedure produces a subset Âopt
together with the naive (i.e. without cross-validation) estimates F̂ .Âopt/, ̂̃pow.Âopt/, ĝ.Âopt/ and
p̂t.Âopt/ (t = 0, 1). Next, we perform a tenfold cross-validation as indicated in Section 2.3 and
follow remark 5 to obtain the cross-validated estimates F̂

cv
.Âopt/, ̂̃powcv.Âopt/, ĝcv.Âopt/ and

p̂cv
t .Âopt/ (t =0, 1). The two sets of estimates are compared with each other and also with a third

set of estimates, which we call the reference estimates. The reference estimates are obtained from
an external validation sample, which is an external sample of size 105 from the same distribution,
on which the same calculations for the naive estimates are repeated, treating Âopt as a predefined
subset. The reference estimates, which are denoted by F̂

ref
.Âopt/, ̂̃powref .Âopt/, ĝref .Âopt/ and

p̂ref
t .Âopt/ (t =0, 1), are not exactly true values; however, they are unbiased (exactly for F.Âopt/

and pt.Âopt/, and approximately for the other quantities) and much less variable than the other
two sets of estimates.

In the first experiment, we set β0 =β1 =β, which implies the sharp null hypothesis that no
treatment effect exists in any subpopulation that is defined by X. We consider two scenarios:

(a) β=0;
(b) β= .0, 0:5, 0:5, : : : , 0:5/′.

In both scenarios, the optimal subset is easily seen to be Aopt =X = R20, whose attributes are
shown in Table 1 under ‘true values’. The optimal subset is estimated by using working models
that take the form of equation (3) but possibly exclude some elements of X. Specifically, we
compare models based on the first 1, 2, 3, 5, 10 and 20 elements of X. All these working models
are correct in scenario (a) because of zero coefficients. In scenario (b), the working models
based on a strict subvector of X are misspecified. Table 1 summarizes the simulation results
in terms of the empirical means and standard deviations of the reference, naive and cross-
validated estimates of F.A/, p̃ow.A/, g.A/, p0.A/, p1.A/ and δp.A/=p1.A/−p0.A/, where A

is Âopt based on a specified number of covariates. In Table 1, the reference estimates confirm the
sharp null hypothesis, the naive estimates demonstrate the resubstitution bias (for all quantities
except F.A/) and the cross-validated estimates show that most of the resubstitution bias can be
removed through cross-validation. In the case of δp.A/, the cross-validated estimates are slightly
biased in the negative direction, suggesting that cross-validation could result in overcorrection.
Nonetheless, the results in Table 1 indicate that the procedure proposed will be valid (though a
little conservative) in terms of type I error control as long as the bootstrap standard error works
well. The bootstrap standard error is too time consuming to include in this simulation study,
but it has been shown to work well in many situations with n�1000.

In the second experiment, we simulate data under the alternative hypothesis with

β0 = .0, 0:5, 0:5, 0:5, 0, 1, 0:5, 0:5, 0:5, 0:5, 0:5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0/′,
β1 = .0, −0:5, −0:5, −0:5, 1, 0, 0:5, 0:5, 0:5, 0:5, 0:5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0/′:

These values indicate that the first three elements of X are effect modifiers, the next two are
both prognostic and effect modifying, the next five are prognostic only and the last 10 are not
related to the outcome in any way. Since both β0 and β1 have 0 as the first element, we have
P.Y = 1|T = t/ = 0:5 (t = 0, 1), so the overall treatment difference is 0. However, a substantial
treatment difference may exist in a subpopulation because of effect modifiers. In this experiment,
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Table 1. Results of the first simulation experiment (under the sharp null hypothesis): empirical means and
standard deviations of reference, naive and cross-validated estimates of F.A/, ˜pow.A/, g.A/, p0.A/, p1.A/ and
δp.A/Dp1.A/�p0.A/, where A is Âopt (based on a specified number of covariates), as well as the true values
of these quantities for ADAopt†

Subset A Empirical means Empirical standard deviations
(number of
covariates) F(A) p̃ow(A) g(A) p0(A) p1(A) δp(A) F(A) p̃ow(A) g(A) p0(A) p1(A) δp(A)

Scenario (a): β0 =β1 =0
True values

Aopt 1.00 0.025 0.025 0.50 0.50 0.000
Reference estimates

Âopt(1) 0.59 0.026 0.015 0.50 0.50 0.000 0.28 0.01 0.01 0.00 0.00 0.01
Âopt(2) 0.57 0.026 0.015 0.50 0.50 0.000 0.25 0.01 0.01 0.00 0.00 0.01
Âopt(3) 0.56 0.026 0.014 0.50 0.50 0.000 0.23 0.01 0.01 0.00 0.00 0.00
Âopt(5) 0.58 0.026 0.015 0.50 0.50 0.000 0.21 0.01 0.01 0.00 0.00 0.00
Âopt(10) 0.58 0.026 0.015 0.50 0.50 0.000 0.19 0.01 0.01 0.00 0.00 0.00
Âopt(20) 0.63 0.026 0.016 0.50 0.50 0.000 0.15 0.01 0.01 0.00 0.00 0.00

Naive estimates
Âopt(1) 0.59 0.264 0.155 0.47 0.53 0.057 0.28 0.20 0.15 0.03 0.03 0.04
Âopt(2) 0.57 0.348 0.198 0.46 0.54 0.071 0.25 0.20 0.16 0.04 0.03 0.04
Âopt(3) 0.56 0.402 0.227 0.46 0.54 0.077 0.23 0.21 0.17 0.03 0.03 0.04
Âopt(5) 0.58 0.481 0.282 0.46 0.54 0.084 0.21 0.21 0.18 0.03 0.03 0.03
Âopt(10) 0.58 0.614 0.363 0.45 0.55 0.099 0.19 0.19 0.18 0.03 0.03 0.03
Âopt(20) 0.63 0.752 0.477 0.45 0.56 0.110 0.15 0.15 0.16 0.03 0.03 0.02

Cross-validated estimates
Âopt(1) 0.58 0.096 0.065 0.50 0.49 −0.011 0.23 0.15 0.12 0.04 0.04 0.06
Âopt(2) 0.56 0.086 0.060 0.51 0.49 −0.011 0.21 0.14 0.11 0.04 0.04 0.06
Âopt(3) 0.56 0.085 0.061 0.51 0.49 −0.011 0.19 0.14 0.12 0.03 0.03 0.05
Âopt(5) 0.57 0.089 0.065 0.51 0.50 −0.009 0.18 0.15 0.12 0.03 0.03 0.05
Âopt(10) 0.59 0.088 0.066 0.50 0.50 −0.008 0.15 0.14 0.12 0.03 0.03 0.05
Âopt(20) 0.63 0.090 0.069 0.50 0.50 −0.005 0.13 0.14 0.12 0.03 0.03 0.05

Scenario (b): β0 =β1 =(0,0.5,0.5, . . . ,0.5)′
True values

Aopt 1.00 0.025 0.025 0.50 0.50 0.000
Reference estimates

Âopt(1) 0.57 0.026 0.015 0.50 0.50 0.000 0.27 0.01 0.01 0.06 0.06 0.00
Âopt(2) 0.55 0.026 0.014 0.50 0.50 0.000 0.24 0.01 0.01 0.08 0.08 0.00
Âopt(3) 0.55 0.026 0.014 0.50 0.50 0.000 0.24 0.01 0.01 0.09 0.09 0.00
Âopt(5) 0.55 0.026 0.014 0.50 0.50 0.000 0.22 0.01 0.01 0.10 0.10 0.00
Âopt(10) 0.55 0.026 0.014 0.50 0.50 0.000 0.19 0.01 0.01 0.13 0.13 0.00
Âopt(20) 0.53 0.026 0.014 0.50 0.50 0.000 0.16 0.01 0.01 0.21 0.21 0.00

Naive estimates
Âopt(1) 0.57 0.276 0.161 0.47 0.53 0.059 0.27 0.20 0.16 0.07 0.07 0.04
Âopt(2) 0.55 0.344 0.193 0.47 0.53 0.068 0.24 0.21 0.16 0.08 0.09 0.04
Âopt(3) 0.55 0.387 0.213 0.46 0.54 0.075 0.24 0.21 0.17 0.10 0.10 0.04
Âopt(5) 0.55 0.446 0.246 0.46 0.54 0.082 0.22 0.21 0.17 0.11 0.11 0.04
Âopt(10) 0.55 0.535 0.294 0.45 0.54 0.088 0.19 0.19 0.16 0.14 0.14 0.03
Âopt(20) 0.53 0.645 0.341 0.45 0.55 0.092 0.16 0.16 0.13 0.23 0.23 0.02

Cross-validated estimates
Âopt(1) 0.57 0.100 0.068 0.50 0.49 −0:010 0.23 0.16 0.13 0.06 0.06 0.07
Âopt(2) 0.56 0.097 0.066 0.50 0.49 −0:010 0.21 0.15 0.12 0.07 0.07 0.06
Âopt(3) 0.55 0.088 0.061 0.51 0.49 −0:013 0.20 0.15 0.12 0.07 0.07 0.06
Âopt(5) 0.55 0.090 0.062 0.50 0.49 −0:009 0.18 0.15 0.11 0.08 0.08 0.05
Âopt(10) 0.55 0.083 0.056 0.51 0.50 −0:010 0.15 0.14 0.11 0.09 0.09 0.05
Âopt(20) 0.55 0.081 0.053 0.51 0.50 −0:006 0.13 0.14 0.10 0.15 0.15 0.04

†The models and the estimates are defined in Section 3.
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the true optimum Aopt is not available in closed form even though the true distribution of
.X, T , Y/ is known. To approximate Aopt and its relevant attributes (i.e. F , p̃ow, g and pt),
we generate another external sample of size 105, which we call the external training sample.
The same procedure for obtaining Âopt, with p̂t.x/ replaced by the true values, is applied to
the external training sample to obtain Ãopt. Obviously, Ãopt is a random subset due to the
randomness in the external training sample, which is manifested in the grid search algorithm.
To assess the randomness in Ãopt, we use the methods that were described earlier to obtain naive
estimates (based on the external training sample) and reference estimates (based on the external
validation sample) of F.Ãopt/, p̃ow.Ãopt/, g.Ãopt/ and pt.Ãopt/ (t = 0, 1). This procedure is
repeated 100 times for 100 independent instances of Ãopt. If Ãopt stays close to Aopt with little
variability, then the naive and reference estimates should be close to each other and both sets
of estimates should have small variability.

Table 2 shows the empirical means and standard deviations of the reference, naive and cross-
validated estimates of F.A/, p̃ow.A/, g.A/, p0.A/, p1.A/ and δp.A/, where A is either Ãopt or
Âopt (based on some working model). The working model for Âopt takes the form of equation
(3) but possibly excludes some elements of X. Specifically, we consider working models based
on X[1:20] = X, X[1:10] (the first 10 elements of X), X[1:5], X[1:3], X[1:2], X[1], X[4:20], X[6:20] and
X[11:20]. The first two models are correct, and the rest are incorrect. In what follows, we interpret
the results in Table 2 in a stepwise manner.

First, we note that the reference and naive estimates for Ãopt are quite close to each other
on average, and that both sets of estimates have very small standard deviations in comparison
with the corresponding estimates for Âopt (with any working model). As indicated earlier, these
observations support the use of Ãopt as an approximation to Aopt and as a gold standard in
Table 2.

Second, we compare the reference estimates in Table 2 to assess the performance of the
subgroup selection procedure proposed and the effect of covariate omission. Among the various
versions of Âopt in Table 2, the first three have the highest mean values of ĝref .Âopt/. These
mean values (0.69–0.71) are, of course, lower than the corresponding value (0.78) for Ãopt;
however, the difference is not unacceptably large considering that Ãopt is based on the true
value of pt.x/ and an external training sample that is 100 times as large as the sample from
which Âopt is obtained. The first two models (based on X and X[1:10]) are correctly specified,
with the second being more parsimonious. The third model (based on X[1:5]) is technically
incorrect but includes all effect modifiers. For these three models, the mean reference estimates
of F.Âopt/, p0.Âopt/, p1.Âopt/ and δp.Âopt/ are quite similar to the corresponding values for
Ãopt, indicating that the procedure performs reasonably well provided that all effect modifiers
are included. The performance of the procedure deteriorates when effect modifiers are excluded
from the working model, and appears insensitive to inclusion or exclusion of other variables.
The last two models (based on X[6:20] and X[11:20]) contain no effect modifiers and prove useless
for subgroup selection.

Next, we compare the naive estimates with the reference estimates for the various versions
of Âopt to gauge the resubstitution bias in a sample of size 1000. The differences (in mean)
between the two groups of estimates are relatively large for p̃ow, g and δp, indicating that the
naive estimates tend to be overly optimistic with respect to the power, the expected gain and the
treatment effect size for the subgroup selected.

Finally, we compare the cross-validated estimates with the reference estimates for the various
versions of Âopt to assess the effectiveness of the cross-validation procedure for reducing the
resubstitution bias. This comparison is focused on p̃ow, g and δp, which are the quantities that
are most susceptible to a resubstitution bias. For all three quantities, Table 2 shows clearly that,
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Table 2. Results of the second simulation experiment (under the alternative hypothesis): empirical means
and standard deviations of reference, naive and cross-validated estimates of F.A/, ˜pow.A/, g.A/, p0.A/, p1.A/
and δp.A/ D p1.A/ � p0.A/, where A is either QAopt or Âopt (based on a specified collection of covariates; for
example, 1:10 refers to the first 10 elements of X)†

Subset A Empirical means Empirical standard deviations
(covariates)

F(A) p̃ow(A) g(A) p0(A) p1(A) δp(A) F(A) p̃ow(A) g(A) p0(A) p1(A) δp(A)

Reference estimates
Ãopt 0.81 0.96 0.78 0.43 0.56 0.130 0.01 0.01 0.01 0.00 0.00 0.01
Âopt(1:20) 0.82 0.85 0.69 0.44 0.56 0.113 0.05 0.15 0.10 0.02 0.02 0.03
Âopt(1:10) 0.82 0.87 0.71 0.44 0.56 0.118 0.05 0.14 0.09 0.02 0.02 0.03
Âopt(1:5) 0.81 0.87 0.69 0.44 0.56 0.120 0.06 0.15 0.10 0.02 0.02 0.03
Âopt(1:3) 0.76 0.81 0.61 0.44 0.56 0.114 0.08 0.18 0.10 0.02 0.02 0.04
Âopt(1:2) 0.72 0.76 0.53 0.45 0.55 0.108 0.10 0.20 0.10 0.02 0.02 0.04
Âopt(1) 0.64 0.63 0.38 0.45 0.55 0.097 0.14 0.21 0.08 0.02 0.02 0.04
Âopt(4:20) 0.74 0.67 0.48 0.45 0.55 0.091 0.08 0.18 0.10 0.03 0.03 0.03
Âopt(6:20) 0.57 0.03 0.01 0.50 0.50 0.000 0.17 0.01 0.01 0.07 0.07 0.00
Âopt(11:20) 0.58 0.03 0.01 0.50 0.50 0.000 0.18 0.01 0.01 0.00 0.00 0.00

Naive estimates
Ãopt 0.81 0.96 0.78 0.43 0.57 0.131 0.01 0.00 0.01 0.00 0.00 0.00
Âopt(1:20) 0.82 0.97 0.80 0.44 0.57 0.133 0.05 0.01 0.05 0.02 0.02 0.01
Âopt(1:10) 0.82 0.97 0.79 0.43 0.57 0.132 0.05 0.02 0.06 0.02 0.02 0.01
Âopt(1:5) 0.81 0.97 0.78 0.43 0.57 0.133 0.06 0.02 0.06 0.02 0.02 0.01
Âopt(1:3) 0.76 0.94 0.72 0.44 0.56 0.129 0.09 0.04 0.09 0.02 0.02 0.01
Âopt(1:2) 0.72 0.91 0.65 0.44 0.56 0.125 0.10 0.06 0.11 0.02 0.02 0.01
Âopt(1) 0.64 0.79 0.51 0.44 0.56 0.115 0.14 0.14 0.16 0.02 0.02 0.02
Âopt(4:20) 0.74 0.91 0.68 0.44 0.56 0.124 0.08 0.05 0.10 0.04 0.03 0.01
Âopt(6:20) 0.58 0.64 0.37 0.46 0.56 0.100 0.17 0.17 0.16 0.09 0.09 0.03
Âopt(11:20) 0.58 0.61 0.36 0.45 0.55 0.098 0.18 0.19 0.17 0.03 0.03 0.03

Cross-validated estimates
Âopt(1:20) 0.82 0.86 0.71 0.45 0.56 0.111 0.05 0.13 0.12 0.02 0.02 0.02
Âopt(1:10) 0.82 0.89 0.73 0.44 0.56 0.116 0.05 0.11 0.11 0.02 0.02 0.02
Âopt(1:5) 0.81 0.91 0.74 0.44 0.56 0.118 0.06 0.07 0.09 0.02 0.02 0.01
Âopt(1:3) 0.76 0.84 0.65 0.45 0.56 0.110 0.08 0.11 0.13 0.02 0.02 0.01
Âopt(1:2) 0.72 0.77 0.57 0.45 0.55 0.104 0.10 0.15 0.15 0.02 0.02 0.02
Âopt(1) 0.64 0.61 0.41 0.45 0.54 0.090 0.13 0.23 0.20 0.02 0.02 0.03
Âopt(4:20) 0.74 0.63 0.48 0.46 0.54 0.085 0.08 0.23 0.19 0.03 0.03 0.02
Âopt(6:20) 0.59 0.09 0.06 0.51 0.50 −0:007 0.14 0.14 0.11 0.06 0.06 0.05
Âopt(11:20) 0.59 0.08 0.06 0.51 0.50 −0:009 0.15 0.14 0.11 0.03 0.03 0.05

†The models and the estimates are defined in Section 3.

compared with the naive estimates, the cross-validated estimates are generally closer (in mean)
to the reference estimates. Although the cross-validated estimates may be slightly biased in some
cases, they are usually less biased than the naive estimates.

The Web appendix D presents the results of a third simulation experiment, which indicate
that mild misspecification of the working model for pt.x/ has minimal effect on subgroup
selection. For the second and third simulation experiments, the Web appendix D also provides
information on ψ+.A/ and ψ−.A/ (which were defined in remark 2) with A= Ãopt or Âopt, and
the results suggest that Ãopt (or a ‘good’ Âopt) usually comprises nearly all patients in X+ as
well as a fair proportion of patients in X−. As noted in remark 2, a new treatment that benefits
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a (sub)population of patients as a whole does not necessarily benefit every individual patient in
that (sub)population. That caveat should be kept in mind when interpreting a significant test
result from the approach proposed (or any other approach) establishing treatment efficacy for
a (sub)population of patients.

In summary, the simulation results show that the proposed procedure for subgroup selection
is effective and fairly robust, although its performance can be adversely affected by the omission
of important effect modifiers and by severe misspecification of the working model for pt.x/. The
simulation results also demonstrate that estimation of p̃ow, g and δp for the subgroup selected
is susceptible to a possibly substantial resubstitution bias, which can be reduced by using the
cross-validation procedure proposed. In all cases that were considered, it takes less than 1 min
to analyse a sample (with cross-validation but without bootstrapping) on an ordinary laptop
computer.

4. Examples

4.1. The ‘Magnesium in coronaries’ study
As an illustrative example, consider the ‘Magnesium in coronaries’ (MAGIC) study, which was a
randomized double-blind clinical trial that was designed to investigate, in high-risk patients with
ST -elevation myocardial infarction, the effect of supplemental administration of intravenous
magnesium on short-term mortality (MAGIC Trial Investigators, 2002). The MAGIC study
enrolled 6213 patients with acute ST -elevation myocardial infarction at 278 sites in 14 countries
and randomized them in a 1:1 ratio to receive a 2-g intravenous bolus of magnesium sulphate
administered over 15 min, followed by a 17-g infusion of magnesium sulphate over 24 h, or
matching placebo. Patients in both groups also received standard care. The randomization was
stratified by patient eligibility for reperfusion therapy. Specifically, stratum 1 included patients
who were at least 65 years old and eligible for reperfusion therapy, and stratum 2 included
patients of any age who were not eligible for reperfusion therapy. The primary end point of
the MAGIC study was all-cause mortality within 30 days of randomization. Vital status at 30
days was ascertained from direct patient contact, their medical record or a death certificate. The
observed mortality rate was 15.3% in the magnesium group and 15.2% in the placebo group,
with an odds ratio of 1.0 (95% confidence interval, 0.9–1.2). No benefit or harm from magnesium
was observed in eight prespecified and 15 exploratory subgroup analyses. An empirical Bayes
analysis of the MAGIC study data also failed to find a subgroup with a significant treatment
effect (Shen et al., 2015).

In our retrospective analysis, the baseline covariate vector X consists of stratum (as defined
above), age, gender, systolic blood pressure, heart rate, a simple risk index (Morrow et al.,
2001), a modified thrombolysis in myocardial infarction score, history of hypertension, diabetes,
myocardial infarction, congestive heart failure, coronary artery bypass grafting or percutaneous
transluminal coronary angioplasty, stroke, clinical evidence of pulmonary congestion, infarct
location and time from myocardial infarction symptom onset to start of bolus injection. Three
subjects with missing covariate data are excluded from our analysis. To comply with the notation
in Section 2, we work with 30-day survival as the outcome of interest (so Y = 1 if a patient is
alive at 30 days). We estimate pt.x/ under the logistic regression model (3) and estimate pt.A/

with the augmented estimator p̂
aug
t .A/. Our analysis is based on superiority hypotheses (with

δ0 = 0), one-sided α= 0:025, and a constant utility function, and involves grid search and 20-
fold cross-validation (as in remark 5). As indicated in remark 4, a severe departure of Âopt from
Aopt could be detected by comparing ĉopt with c.Âopt/. The Euclidean distance between the
two vectors is 0.047 in this example, with a non-parametric bootstrap standard error of 0.104
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Table 3. Analysis of the MAGIC study data: naive and cross-validated
estimates of F.Âopt/, ˜pow.Âopt/, g.Âopt/, p0.Âopt/, p1.Âopt/ and
δp.Âopt/ D p1.Âopt/ � p0.Âopt/, together with bootstrap standard errors
based on 1000 bootstrap samples†

Quantity of interest Point estimate (%) Standard error (%)

Naive Cross-validated Naive Cross-validated

F.Âopt/ 63.1 63.8 13.8 12.1
˜pow.Âopt/ 73.8 0.7 12.2 23.2
g.Âopt/ 46.5 0.5 14.9 20.1
p0.Âopt/ 86.7 87.5 1.9 1.6
p1.Âopt/ 89.4 86.9 1.8 1.3
δp.Âopt/ 2.7 −0:5 0.6 0.9

†See Section 4.1 for details.

(based on 1000 bootstrap samples). The parametric bootstrap test that was described in remark
4 yields a p-value of 0.87 (based on 1000 bootstrap samples), which does not indicate a severe
departure of Âopt from Aopt due to model misspecification.

Table 3 presents the naive and cross-validated estimates of F.Âopt/, p̃ow.Âopt/, g.Âopt/,
p0.Âopt/, p1.Âopt/ and δp.Âopt/=p1.Âopt/−p0.Âopt/, together with boostrap standard errors
based on 1000 bootstrap samples. The naive estimates in Table 3 are generally more optimistic
than the corresponding cross-validated estimates, which are consistent with the simulation re-
sults in Section 3. The naive estimate of the treatment difference (magnesium−placebo) in the
selected subpopulation is 2.7%, which is significantly greater than 0 (p < 0:0001). On cross-
validation, the treatment difference estimate decreases to −0:5%, which is not significantly
greater than 0 (p=0:71). Thus, our analysis of the MAGIC trial data is consistent with previ-
ous analyses in that no significant treatment benefit is found in any subgroup.

4.2. The haemodialysis study
Our second example is the haemodialysis study, which was a randomized multicentre clinical
trial to evaluate the effects of the dose of dialysis and the level of flux of the dialyser membrane
on mortality and morbidity among patients undergoing maintenance haemodialysis (Eknoyan
et al., 2002). The haemodialysis study enrolled 1846 patients undergoing thrice-weekly dialysis
at 15 clinical centres (associated with 72 dialysis units) and randomized them to a standard or
high dose of dialysis (1:1) and to a low flux or high flux dialyser (1:1) under a 2 × 2 factorial
design. The standard and high doses of dialysis were defined by target values of 1.05 and 1.45
respectively for the equilibrated Kt/V. The flux of a dialyser was considered low if the mean
beta2-microglobulin clearance was less than 10 ml min−1, and as high if the ultrafiltration
coefficient was more than 14 ml h−1 mm Hg−1 and the mean beta2-microglobulin clearance
was more than 20 ml min−1. The primary end point of the haemodialysis study was the time to
death from any cause, which was not significantly influenced by the dose or flux assignment: the
hazard ratio for high versus standard dose was estimated to be 0.96 (95% confidence interval,
0.84–1.10; p=0:53), and the hazard ratio for high versus low flux was estimated to be 0.92 (95%
confidence interval 0.81–1.05; p=0:23). However, possible interactions were identified between
dose and sex (unadjusted p = 0:01) and between flux and prior years of dialysis (3.7 years or
less versus more than 3.7 years; unadjusted p = 0:005). The corresponding subgroup analyses
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suggested that women might benefit from a high dose of dialysis and that patients with a longer
history of dialysis might benefit from high flux. Although definitive answers to these questions
would require preplanned analyses, we present a retrospective analysis here mainly to illustrate
the methodology proposed.

In this illustration, the treatment of interest is the level of flux (1, high; 0, low), and the baseline
covariate vector X consists of the seven covariates prespecified for subgroup analyses and also
included in the primary (Cox regression) analysis: sex (1, male; 2, female), duration (prior years
of dialysis), race (1, black; 0, non-black), diabetic status (1, yes; 0, no), age (1, greater than 58
years; 0, 58 years or less), albumin (1, 3.6 mg dL−1 or more; 0 less than 3.6 mg dL−1) and
comorbidity (1, high; 0, low). We work with survival status (1, alive; 0, dead) at 3 years post
randomization as the outcome variable, and we restrict attention to the 1414 subjects who were
randomized at least 3 years before the administrative end of the study. These 1414 subjects have
complete covariate, treatment and outcome data. A logistic regression model of the form (3) is
used to estimate pt.x/, separately for each t ∈{0, 1}. Our analysis of this example is similar to
the previous analysis except for the use of one-sided α=0:05 and tenfold cross-validation. The
selected subset is given by

Âopt ={x ∈X : .1, p̂0.x/, p̂1.x//ĉopt �0},

where ĉopt ≈ .0:20, 0:49, −0:85/′ and p̂t.x/= expit{.1, x′/β̂t} with

β̂0 ≈ .1:41, 0:00, −0:06, 0:31, −0:14, −0:96, 0:65, −0:78/′,
β̂1 ≈ .0:66, 0:28, 0:00, 0:57, −0:22, −1:03, 0:56, −0:53/′:

The Euclidean distance between ĉopt and c.Âopt/, which is approximately .0:01, 0:69, −0:72/′, is
0.30, with a non-parametric bootstrap standard error of 0.31 (based on 1000 bootstrap samples).
The parametric bootstrap test that was described in remark 4 yields a p-value of 0.24 (based on
1000 bootstrap samples), which does not indicate a severe departure of Âopt from Aopt due to
model misspecification.

Table 4 presents the naive and cross-validated estimates of F.Âopt/, p̃ow.Âopt/, g.Âopt/,
p0.Âopt/, p1.Âopt/ and δp.Âopt/, together with boostrap standard errors based on 1000 boot-
strap samples. The naive estimate of the treatment difference in the selected subpopulation is

Table 4. Analysis of the haemodialysis study data: naive and cross-
validated estimates of F.Âopt/, ˜pow.Âopt/, g.Âopt/, p0.Âopt/, p1.Âopt/
and δp.Âopt/ D p1.Âopt/ � p0.Âopt/, together with bootstrap standard
errors based on 1000 bootstrap samples†

Quantity of interest Point estimate (%) Standard error (%)

Naive Cross-validated Naive Cross-validated

F.Âopt/ 76.2 79.8 12.5 10.3
˜pow.Âopt/ 63.9 33.7 9.6 21.9
g.Âopt/ 48.7 26.9 13.6 21.1
p0.Âopt/ 65.9 65.8 3.5 2.6
p1.Âopt/ 71.6 69.2 3.4 2.4
δp.Âopt/ 5.6 3.4 1.2 2.0

†See Section 4.2 for details.
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5.6%, which is significantly greater than 0 (p<0:0001). On cross-validation, the treatment differ-
ence estimate decreases to 3.4% and the associated standard error increases, but the difference is
still significantly greater than 0 (p=0:044). Thus, if this analysis had been planned prospectively,
it would have successfully demonstrated the benefit of high flux for the selected subpopulation.

5. Discussion

When designing a confirmatory clinical trial, investigators who are interested in planning a
subgroup analysis prospectively often do not have enough information to define the subgroup a
priori. Adaptive signature designs offer much flexibility in that regard by allowing investigators to
use the trial data to select a subgroup and to test for treatment efficacy for the selected subgroup
at the end of a broad eligibility trial. In this paper, we have provided a simple characterization
of the optimal subgroup, which maximizes the power for demonstrating treatment efficacy or
the expected gain based on a specified utility function. We have also proposed a three-step
procedure for estimating or approximating the optimal subgroup, as well as a cross-validation
procedure for estimating the treatment effect on the subgroup selected. Simulation results show
that the subgroup selection procedure proposed is effective and fairly robust against model
misspecification, and that the cross-validation procedure proposed reduces the resubstitution
bias effectively. Unlike the traditional approach to adaptive signature designs, which involves
two separate tests, the approach allows us to focus on one test for a selected subpopulation,
which could be the entire population (see remark 1). Other advantages of the approach include its
insensitivity to any collinearity in X (see remark 3) and the use of augmented inverse probability
weighting to incorporate covariate information and to improve precision.

Our simulation studies and examples do not involve variable selection or model selection.
In practice, some applications may require the use of a variable selection procedure to choose
between a large number of candidate covariates (i.e. gene expression data). A model selection
procedure may also be required if the model for pt.x/ cannot be fully specified in the design
stage. Our proposed approach can incorporate variable and model selection procedures as long
as they are fully specified in the analysis plan. In such cases, it is important to include the variable
or model selection in the cross-validation and bootstrap procedures.
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