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SUBGROUPS OF BIANCHI GROUPS
AND ARITHMETIC QUOTIENTS OF HYPERBOLIC 3-SPACE

FRITZ GRUNEWALD AND JOACHIM SCHWERMER

Abstract. Let & be the ring of integers in an imaginary quadratic number-
field. The group PSL2(^) acts discontinuously on hyperbolic 3-space H . If
T < PSL2(^) is a torsionfree subgroup of finite index then the manifold T\H
can be compactified to a manifold Mr so that the inclusion T\H < Mr is a
homotopy equivalence. A/p is a compact with boundary. The boundary being
a union of finitely many 2-tori. This paper contains a computer-aided study of
subgroups of low index in PSL2(<^) for various ¿? . The explicit description
of these subgroups leads to a study of the homeomorphism types of the Mr-.

0. Introduction

The study of the group PSL2(C) consisting of all fractional linear transfor-
mations of the projective plane of points at infinity, with complex coefficients,
was one of the major topics of mathematics in the 19th century and played an
important role in the development of hyperbolic geometry. Already Poincaré
[30] observed that PSL2(C) can be identified with the group of orientation pre-
serving isometries of 3-dimensional hyperbolic space H. As in the study of
the hyperbolic plane, the importance of finding discrete groups of hyperbolic
isometries of H was emphasized. Starting with an example by Picard [29]
and pursued by Bianchi [2, 3] one particularly interesting class of discrete sub-
groups of PSL2(C) was considered. It is constructed in the following arithmetic
way: Denote by @d the ring of integers of an imaginary quadratic number field
k — Q(y/d) with del,, d < 0 and squarefree. Then cf¿ gives rise to a discrete
group T¿ := PSL2(¿f¿) < PSL2(C), consisting of fractional linear transforma-
tions with coefficients in cfd. Each (torsion-free) subgroup T of finite index
in T¿ operates properly discontinuously (and freely) on H and a fundamen-
tal domain for this T-action on hyperbolic 3-space is noncompact but of finite
volume. As early as 1892 Bianchi [2, 3] exhibited fundamental domains for
some small values of d. This was pursued by Swan [40] who extracted group
theoretical presentations for T¿ with d < 41 .

From various reasons this class of arithmetically defined discrete groups of
hyperbolic motions has gained new vivid interest in recent years. First of all,
in topology this construction provides us by considering torsion-free subgroups
with a bunch of noncompact hyperbolic 3-manifolds which often seem to have
special beauty and which deserve further study because of the role they play in
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3-manifold theory (cf. [41, 42]). Secondly, there is a lot of arithmetic interest in
it, which is mainly motivated by the theory of automorphic forms with respect
to such groups and its relations with questions in number theory as special
values of L-functions or the conjectured correspondence with certain classes of
elliptic curves. We refer the interested reader to [8, 13, 14, 17, 18]. Beside that
the Bianchi groups Td are also of interest in their own group theoretical right.

This paper is devoted to a computer aided analysis of subgroups of small
index in Td, in particular, we will deal as examples with subgroups of small
index in Td for ¿ = -1,-2,-3,-5,-6,-7,-11,-19. There is a fruit-
ful interaction between geometric-topological, group theoretical and arithmetic
questions and methods. Our results in here are far from being complete, but
because of the lack of any general theory one may think of this as an attempt
to describe and to understand certain phenomena which occur in this study.

Using the group-theoretical algorithms described in §1, together with a lot
of help from M. F. Newman at the Australian National University (Canberra)
and from J. Neubiiser at the RWTH Aachen we were able to accumulate the
following tables. First of all, the paper contains complete lists of representatives
for the finitely many rrf-conjugacy classes of subgroups T in Td ,

(1) of index < 12 (resp.   = 12) for d = -1  (resp. for d - -2) whose
commutator factor group Tab is torsion-free.

(2) of index 12 for d = -3 ,
(3) (i) of index 3 resp. 6 for d = —1,

(ii) of index 12 for d = -1 whose commutator factor-group Tab is
torsion-free.

Each representative is given in form of a presentation which is chosen as simple
as possible. Some additional information is provided in each case:

d = -1 : The corresponding hyperbolic 3-manifolds F\H are described if
T is torsion-free.

d = -2 : Here our information is not complete: The eleven T_2-conjugacy
classes fall together to (at most) 6 PSL2(C)-conjugacy classes. At least one of
them is represented by a group with torsion, for two of them the associated
arithmetic quotients could be determined. In two of the remaining cases we
have found a set of unipotent generators which suggests that these are groups
corresponding to a link complement in a 3-sphere (cf. §5 for more details).

d = -3 : Exactly 2 of the 7 classes in this case are represented by torsion-free
groups, which are not PSL2(C)-conjugate. The corresponding 3-manifolds are
determined. For all classes Yab is computed.

d = -1 : There are three T_7-conjugacy classes of subgroups of index 3, each
represented by a group with torsion. There are 25 (resp. 27) r_7-conjugacy
classes of subgroups of index 6 (resp. index 12 with Tab torsion-free). In
some cases where Y is torsion-free we are able to identify the corresponding 3-
manifold, in some others we only can say that there is a set of unipotent elements
generating the group. Therefore, in particular for (3)(ii) our information is not
yet complete (cf. §2). In all cases Tab is computed.

In each case considered we give in a separate list the numbers of T^-conjugacy
classes of subgroups of a fixed index < 12 in Td together with some addi-
tional information on normalizers. There also exist tables for subgroups in
r_n , T_5, r_6, T_i5 , T_i9 which we did not include in this paper (cf. §7).
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Starting with the examples (cf. [27, 37]) of link complements S3 - L of
arithmetic type (i.e. which are homeomorphic to T\H for some T < Td) this
search was begun to provide some experimental material and insight in dealing
with the subsequent natural question if for each d subgroups of PSL2(¿f¿) can
yield hyperbolic structures on link complements or not. (This explains also the
restriction lTab torsion-free' in (1) and (3)(ii).) As an answer completing pre-
vious work we show in §3 that this definitively (resp. possibly) happens only in
the finitely many cases ¿ = -1,-2,-3,-7,-11 (resp. -5, -6, -15, -19,
-23, -31, -39, -47, -71). The methods used are arithmetical ones.

However, beside the complete classification the experimental material de-
scribed in here provides some hyperbolic 3-manifolds of special beauty. In
addition, it is also of arithmetic interest (cf. §3, §8) and might also be helpful in
analyzing Bianchi groups from the group theoretical point of view. This aspect
is mainly dealt with in § 1 where we describe the methods by which the tables
above were obtained, lay the basis for their interpretation and prove certain
group theoretical results which are special to the lattice of subgroups of finite
index in Bianchi groups.

Notation. (1) Sometimes we denote the cyclic group Z/mZ, m e N, by Z/m .
(2) For a group G, Gab denotes the abelianization of G, i.e., the quotient

of G by its commutator subgroup.
(3) If U is a subgroup of a group G we write N = N(U, G) for the index

of the normalizer of U in G.

1. Subgroups of finite index in Bianchi groups,
generalities and computer-computations

1.1. As in the introduction let k = <Q(y/d), with d eZ, d < 0 and square-
free, be an imaginary number field. Denote by tfd the ring of integers in k .
As Z-module cfd has a basis of the form

f y/d,      d = 2,3 mod 4,
(1) cfd = Z®Zoj    where co = \       ,d

V -^ ,    d = \ mod 4.

The Bianchi group Td defined by

(2) r„ := PSL2(^) = SL2(c?d)/(±E)

is a discrete subgroup of PSL2(C) viewed as the group of orientation preserving
isometries of the 3-dimensional hyperbolic space H. Hence Td acts properly
discontinuously on H. Fundamental domains for this action were analyzed by
L. Bianchi [2, 3] for small values of d. This was pursued by Swan [40] and
others [14, 33]. From the existence of nice fundamental domains we get the
following

1.2. Theorem. The Bianchi group Td is a finitely presented group.

In fact Lemma 4.12 of [40] shows that it is in principle possible to find a finite
presentation for Td. The following argument also shows that Td is finitely
presented. For any prime ideal p of cfd with 2, 3 \ p the full congruence
group

T:= {g £Fd\g= 1 modp}
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50 FRITZ GRUNEWALD AND JOACHIM SCHWERMER

is torsion-free and of finite index in Td . The space T\H is homotopy equiva-
lent to a compact manifold with boundary [38]. Hence the fundamental group
nx(T\H) is finitely presented. But T is under the monodromy map isomorphic
to nx(T\H). Now Td is finitely presented because it has a subgroup of finite
index which has this property. In fact for many small \d\ presentations of Td
have been computed, see [40, 11, 14]. Some of them are exhibited in later
chapters of this paper.

As we are interested in the subgroups of finite index in Td the following
assertion is of importance.

1.3. Lemma. Let G be a finitely generated group and n a given natural number.
Then there exist only finitely many subgroups of index n.

There are only finitely many homomorphisms of G to the symmetric group
Sn , since such a map is determined by its value on the generators of G. Let U
be a subgroup of index n . The action of G on G/U defines a map G —» Sn
with transitive image. This operation defines a bijection between the set of
subgroups of index n and the set of homomorphisms of G to S„ with transitive
image.

Starting with a finitely presented group G it is clearly possible to list all
homomorphisms of G to S„ with transitive image. The stabilizer of 1 in G
of such an action of G on {1, ... , n) is of index n in G. It is clear how to
compute a list of coset representatives of the stabilizer of 1. To do this effectively
for our groups an implementation at Canberra of a low index subgroup program
designed by Lepique and Cannon was used. For a good description of these
programs see the article [28] of J. Neubüser and the references therein. This
computation was done on a UNIVAC 1980.

Starting from a list of subgroups of index n in G the Reidemeister-Schreier
algorithm computes presentations for them. This algorithm is described in [20].
We have used the computer program by G. Havas and modified by Richardson
[22]. The computation was done on a DEC KA 10.

Even if the index is small the presentations given by the Reidemeister-Schreier
algorithm have many generators and relations. The complexity of the presenta-
tions can be reduced by Tietze transformation programs [22]. We have used a
program designed by G. Havas.

The same low index subgroup and Reidemeister-Schreier programs were used
for the computations done at the Lehrstuhl D für Mathematik (J. Neubüser) at
the RWTH Aachen.

Given a finite presentation of a group G it is in principle possible by Gauss-
elimination to compute the structure of the commutator factor-group Gab.
There are effective methods to do this [21]. At Canberra a computer program
derived by G. Havas and S. Sterling to compute these data for our programs
has been used.

In the tables at the end of this paper we have listed certain subgroups of low
indices in Td. We give a set of generators and relations for each subgroup.
The letters A, B,C, E refer to certain generators of Td described in §§4—
6. Most of the interest lies in the torsion-free subgroups of Td. We also
have looked for groups with torsion-free commutator factor-group, motivated
by results explained in §3. The following lemma gives some restriction on the
index of such subgroups.
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1.4. Lemma. Let H < G be a subgroup of finite index in a given group G.
(1) If H is torsion-free then fg\[G : H] where [G : H] is the index of H in

G and fo the lowest common multiple of the orders of finite subgroups of G.
(2) If the commutator factor-group Hab of H is torsion-free and if there is

an element of order m in Gab then m\[G:H].

ad(\): Let T < G be a finite subgroup. Since H is torsion-free T acts
freely on G/H. Hence the order of T divides [G : H].

ad(2) : Let t: Gab -> Hab be the transfer homomorphism (cf. [23]), and let
i : Hab -* Gab be the homomorphism induced by inclusion. We have

i ° t(g) = g[G '■H]

for any g e Gab . If g has finite order it is in the kernel of t and then of iot.
So the order of g divides [G : H].

To apply our lemma we have to know the finite subgroups of Td .
1.5. The only finite subgroups which occur in SL2(C) are the binary poly-

hedral groups (cf. e.g. [42, §4.4]). Let x be an element of SL2(c?d) < SL2(C)
of finite order m. Then x has eigenvalues p and ~p, where p is a primi-
tive mth root of unity. Since p + p is an element of c?d n R = Z we must
have w=l,2,3,4,6. Thus the only finite subgroups of SL2(cf) which can
occur are cyclic of the above orders, the quaternion group, binary tetrahedral
group and binary octahedral group. Therefore the possible finite subgroups in
Td = SL2(cfd)/(±E) are the cyclic groups of order two and three, the Klein
four group D2 = Z/2 x Z/2, the symmetric group S¿ and the alternating group
A4.

There is a method actually to decide which finite subgroups occur in a fixed
Bianchi group Td . And one can give a formula for the number of conjugacy
classes of each finite subgroup type in Td, which is stated in terms of class
numbers of extensions of <Q(\/d) [24]. But for our purposes we only need the
following

1.6. Lemma (cf. [37]). (1) T_[ contains all possible types of finite subgroups;
/r_, = 12,

(2) T_2 contains Z/2, Z/3,D2,AA, but no S3;   fr_2 = l2,
(3) T_3 contains Z/2, Z/3, A4,S3, but no D2: /r_, = 12,
(4) r_7 contains Z/2, Z/3, S3, but no A4 and D2 ;   fr_, - 6,
(5) T_n contains Z/2, Z/3, A4, but no S3 and D2;   fr_u = 12.

The number of conjugacy classes of finite subgroups of Td is finite. It is in
fact possible to compute a set of representatives for the T^-conjugacy classes
of finite subgroups. For small \d\ this has been done for example in [11].

1.7. Taking a presentation of Td and our systems of generators for the
subgroups T in our tables various further informations can be obtained. Using
a Todd-Coxeter algorithm (cf. [7]) we can obtain the permutation representation
of Td on Td/T .

Using the lists of conjugacy classes of finite subgroups in Td , it is then, for
example, possible to decide whether the T in question is torsion-free. This was
done as exhibited in the tables.

1.8. Sometimes it is clear from the presentations given in the tables for two
subgroups Ti, T2 of Td that these belong to distinct Td-conjugacy classes but
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are isomorphic as groups. In this situation Mostow's rigidity theorem [27, 31]
shows that Ti and T2 are Iso(//)-conjugate. Here lso(H) is the group of
isometries of hyperbolic space H. It contains PSL2(C) as a subgroup of index
2.

2. An example: The Bianchi group T_7

2.1. The group T_7 = PSL2(ff_7) is generated by the matrices

-(J!). -{¡-¿). c=(ir).
where a> = (1 4- \/-7)/2. A presentation of T_7 is given by the following
relations

(1) B2=\,
(2) (AB)' = 1 ,
(3) ACA~XC~X = 1,
(4) (BAC~XBC)2 = 1,

and one computes Pè7 = Z©Z/2 . The integral homology of T_7 is determined
in [37].

2.2. Since S3 is a subgroup of T_7 (cf. 1.4, 1.6) the index of a torsion-free
subgroup T of T_7 is divisible by 6. However, there are exactly three conjugacy
classes of subgroups of index 3 in T_7. A presentation for a representative of
each class is contained in Table 1.

Table 2 contains a complete set of representatives of the T_7-conjugacy
classes of index 6 in T_7. There are exactly 25 different T_7-conjugacy classes.

(1) The group T_7(6, 1) is torsion-free, and we have T_7(6, \)ab = Z3.
The 3-manifold T_7(6, l)\H is homeomorphic to the complement in S3 of
the link L given in Figure (la). In [41, 6.38] it is shown that the group T
generated by the elements C, BCB, A~XBCBA is of index 6 in T_7 and that
T\H is homeomorphic to S3 - L. Indeed, in T_7 we have

A2 = CBC~XBC-XA-XBC-XBA
and hence we have T = T_7(6, 1).

One easily checks that the groups T_7(6, /), ¿=1,2,3,4, are isomorphic
and therefore by 1.8 conjugate under lso(H), so they provide homeomorphic
3-manifolds.

(2) The group T_7(6, 5) is torsion-free, and we have T_7(6, 5)ab = Z2.
The 3-manifold T_7(6, 5)\H is homeomorphic to the complement in S3 of
the link L' shown as Figure 1(b). It was already observed in [41], resp. [19,
§3, Example 2] that the link complement S3 - L' has a hyperbolic structure as
T\H where T is a subgroup of index 6 in T_7. An inspection of the list of
conjugacy classes of subgroups of index 6 in T_7 shows then that T is conjugate
T_7(6,5) or T_7(6,6).

(3) For the nineteen other classes we observe, that T-t(6, j)ab, ; =
7, ... , 25 , has torsion, where the torsion coefficients are 2 and 3 except in the
case T_7(6, 21) where also 22 occurs. It follows that there are (up to conju-
gacy) no other subgroups T of index 6 in T_7 besides T_7(6, i), i — 1, ... , 6,
such that T\H is homeomorphic to a link complement in S3. Moreover, the
groups T_7(6, h), h = 11, ... , 25, are not torsion-free. In each case a torsion
element is easily extracted from the data given in Table 2.
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(4) In the remaining four cases we have T_7(6, m)ab = Z2 x Z/3 for m — 1
and 10 resp. = Z2 x (Z/3)2 for m = 8, 9. We have to leave open the question
if these groups are torsion-free and if these groups are generated by unipotent
elements.

2.3. Table 3 contains a complete list of representatives of the T_7-conjugacy
classes of subgroups T of index 12 in T_7 with torsion-free factor commutator
group Tab . There are (up to conjugacy) 27 subgroups of this type. We see that
T_7(12, k), k = 25, ... ,27 are not torsion-free.

(1) For the groups r_7(12, i), i = 1, ... , 6, we have T_7(12, i)ab S< Z4
and all groups are generated by unipotent elements.

The group T_7(12, 4) is of index 2 in T_7(6, 1) and isomorphic to the
fundamental group of the complement of the 4-component link shown in Figure
1(c). This can be seen in the following way: Consider the complement of the
3-component link shown in Figure 1(d). Cut the complement along the disk D
spanned into the component labelled 1, turn the disk around by 360° degrees
and glue back again. The resulting link is the link L given in Figure 1(a). The
link in 1 (c) covers the link in 1 (d) by a cyclic cover of degree 2 which is induced
by a 180°-rotation around the axis labelled 1 in Figure 1(c). It is clear from
our tables that there is a unique Iso(//)-conjugacy class of subgroups of index
12 in T_7 which has a representative which is of index 2 in T_7(6, 1) and has
Z4 as factor commutator group. The technique to consider homeomorphisms
between link complements which are not induced by homeomorphisms of S3
was initiated by Thurston in [41, Chapter 6.7].

(2) For the groups T_7(12, i), i = 7, ... , 19, we have T_7(12, i)ab Si
Z3. The groups T_7(12, fc), k = 7, ... , 10, can be generated by unipotent
elements.

Figure 1(a) Figure 1(b)

Figure 1(c) Figure 1(d)
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Figure 1(e) Figure 1(f)

Figure 1(g)

The group T_7(12, 12) is isomorphic to the fundamental group of the com-
plement in S3 of the 3-component link M shown in Figure 1(e). This can
be seen as follows. First of all rearrange the link L (cf. Figure 1(a)) so that it
looks like as in Figure 1(f). The link shown in Figure 1(g) covers the link in
1 (f) by a cyclic covering induced by a rotation around the component labelled
1 by 360/k degrees. The special case k = 2 is shown in Figure 1(e). On the
other hand we see from our tables that T_7 contains a unique Iso(//)-conjugacy
class of subgroups of index 12 which has a representative which is of index 2
in T_7(6, 1) and has Z3 as factor commutator group.

(3) For the groups T_7(12, /), i = 20, ... ,24, we have T_7(12, if SZ2.
Here we do not know if the group can be generated by unipotent elements. The
manifolds corresponding to these groups have been studied in [1].

(4) We remark that we also have for the not torsion-free groups T_7(12, k),
k = 25, ... , 27, that T_7(12, k)ab s Z2.

However, we conjecture that some more groups corresponding to link com-
plements are hidden in this list. If the subgroup in question is torsion-free
and generated by unipotent elements then Remark 3.2 makes this conjecture
plausible. '

1 Note added in proof. Many of the open questions in this section have been solved in the recent
paper of Fritz Grunewald and Ulrich Hirsch: Link complements arising from arithmetic group
actions.
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We thank U. Hirsch for his help in working out the examples described in
(l)and(2).

2.4. To give an idea how rich the subgroup structure of T_7 is we summarize
the numbers of T_7-conjugacy classes of subgroups of index < 12 in T_7
together with some additional information in the following list; we recall that
for a given subgroup U of a group G we write N = N(U, G) for the index
of the normalizer of U in G.

Self
Index      Normal      normalizing      # = 2      # = 3      N = 4 N ■■ N = 6      Total

2

3

4

5

6

7

8

9

10

11

12

2

2

1

6

5

7

24

16

26

95

2 12

14

5 36 5 51

3

3

5

2

25

6

24

33

26

27

197

Numbers of T_7-conjugacy classes of subgroups
of index < 12 in T_7

3. Link complements and arithmetic quotients T\H

3.1. In the example given in §2 we have seen that there are subgroups Y <Y-7
of finite index such that the associated arithmetic quotient T\H is homeomor-
phic to the complement of a link in the 3-sphere. One may ask the natural
question for which d examples of this type (i.e. link complements in S3 or,
more general, in a homology 3-sphere) arise as manifolds T\H, where T is
a subgroup of finite index in Td. A partial answer is given by the following
theorem. However, observe that in most cases such an example provides an
infinite string of examples by going over to appropriate branched coverings of
the link complement started with (cf. [17]).

Theorem. Let Td = PSL2(<fd), d eZ, d < 0, d squarefree, a Bianchi group.
If d is unequal to the numbers contained in the set

B:={-l,-2,-3,-5,-6,-7,-ll,
- 15, -19, -23, -31, -39, -47, -71}

then for each torsion-free subgroup T of finite index of Td the associated hyper-
bolic 3-manifold Y\H is not homeomorphic to a link complement in a homology
3-sphere.
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Let T be a subgroup of Yd of finite index; we denote the image of the coho-
mology with compact supports H*(Y\H;C) in H*(Y\H;C) under the natural
map H*(Y\H; C) -♦ H*(Y\H; C) by H,*(Y\H; C). This cohomology space
also has an interpretation as an analytically motivated object in the arithmetic
theory of Bianchi groups. More precisely, H*(Y\H;C) can be identified with
the space H*USV(Y\H; C) of harmonic cuspidal differential forms on the sym-
metric space H which are invariant under the natural action by T. For this
we refer to [17, A4]. This space is also called the cusp cohomology of Y and is
closely related to the theory of automorphic forms with respect to Y.

If we now assume that Y\H is homeomorphic to a link complement in a
homology 3-sphere we have H*(Y\H; C) = {0} as pointed out in [38]. (Note
that the argument given there for S3 - L generalizes word by word to the
case considered here.) As explained in [16, §1] this means from the group
theoretical point of view that Yab is generated by unipotent elements. In turn,
the existence of cusp cohomology for the full Bianchi group Yd implies that also
Ht*(Y\H; C) Í {0} for any subgroup Y of Yd (cf. Proof of 1.4. in [16]) and so
the quotient Y\H is not homeomorphic to a link complement in a homology
3-sphere.

Now, there are several results pertaining to the existence of cusp cohomol-
ogy with respect to Yd. Starting with Theorem 2.2 in [16] one knows that
H*(Yd\H) t¿ {0} for d large enough, more precise, \d\ > 5.105 (cf. also
[17]). In a completely different approach Rohlfs [34] has studied the invo-
lution on Yd induced by complex conjugation. This gives rise to an involu-
tion x\ on H}(Yd\H;C) resp. t' on /f''(rrf\/7; C) as well. The total Lef-
schetz number L(i,Yd) = 2,(_1),trT' is related via the fixpoint formula
L(x, Yd) = x((Yd\H)r) to the Euler characteristic of the fixpoint set (Yd\H)r
of t acting on Yd\H. Up to finitely many singular points which arise by torsion
elements in Yd the set (Yd\H)x is completely determined in [34] by arithmetic
methods. By using the isomorphism H,x(Yd\H; C) = H?(Yd\H; C) and an
estimate of the contribution to the total Lefschetz number L(t , Yd) by the co-
homology 'at infinity' one gets out of this a lower estimate for tr t,1 and so for
dim H,x (Yd\H ; C). One gets by this and the results of §3 in [ 16] that Hx (Yd\H)
is nontrivial for d i BU{-14,-87,-111,-119,-159} (cf. 4.4 in [34]). By
determining also the singular points alluded to above this approach was com-
pleted by Krämer [24], and the numbers -14, -87, -111, -119, -159 can be
erased from the previous list. In summarized form we have that H* (Y\H, <C)
is nontrivial if d is not contained in one of the following sets

S = {-1, -2, -3, -5,-6, -7, -11,-15, -19},
F = {-23,-31, -39, -47, -71}.

By the results of Swan [40] one definitely has that
H?(Td\H;C) = {Q}   fordeS.

The cases Yd with d e V were subsequently studied by K. Vogtmann in
[43]. Exhibiting an explicit fundamental domain for the action of Yd on a
2-dimensional T^-invariant deformation retract Yd of H (whose construction
was given by Mendoza [26], cf. also [37, §3] she showed that also in these cases
one has a vanishing result for Hxusp(Yd\H; C). This result was independently
obtained by Krämer [24]. This proves our assertion.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



BIANCHI GROUPS AND ARITHMETIC QUOTIENTS 57

Remark. Subgroups Y of Bianchi groups give rise to noncompact arithmetic
quotients Y\H, and nonvanishing results for the cusp cohomology of Y\H
obtained out of the theory of automorphic forms have topological implications.
For a similar reasoning in the case of a compact arithmetic quotient of H (i.e.
the arithmetic group in question is associated to a quaternion algebra) we refer
to a recent result of L. Clozel [6].

3.2. In our tables we often see subgroups Y of finite index in a group Yd
having the following properties:

(1) T is torsion-free,
(2) T is generated by unipotent elements.

The manifold Y\H may as mentioned before be compactified to Y\H by
adding a finite number of tori. The inclusion Y\H —► Y\H is a homotopy equiv-
alence [38]. Taking a base point in Y\H we get an isomorphism Y -> nx (Y\H).
Filling solid open tori into the boundary we obtain a closed compact manifold
Mr. From our assumption it is clear that nx (Y\H)ab is generated by the image
of nx(d(Y\H)). Then it follows that nx(Mr)ab = 1. Thus Y\H is homeomor-
phic to the complement of a link in the homology 3-sphere M\-.

4. The Bianchi group T_i

4.1. The group T_i = PSL2(¿f_i) is generated by the matrices

-(¿1).     *-(?   o')"     C=G0-     £=("o'")-
where i = •/ -1 • A presentation of T_ i is given by the following relations.

(1) B2 = \,
(2) (AB)3 = 1,
(3) ACA~XC~X = 1,
(4) E2 = 1,
(5) (AE)2 = 1 ,
(6) (CE)2 = 1,
(7) (BE)2 = 1,
(8) (CBE)3 = 1 ,

and we have P^ = (Z/2)2 . For the homology of Y-X with integral coefficients
we refer to [37, Theorem 5.5].

4.2. Since A4 is a subgroup of Y-X the index of a torsion-free subgroup
T of T_i is divisible by 12 (cf. 1.4, 1.6). Table 4 contains a complete set
of representatives for the T_i-conjugacy classes of subgroups of index < 12
in T_i whose commutator factor group Yab is torsion-free. We observe that
there are 6 T.pconjugacy classes, each having a torsion-free representative and
that they all have precisely index 12. There are subgroups of index < 12 with
torsion in Yab.

For the group T_i(12, 1) we have that the hyperbolic 3-manifold
r_i(12, l)\H is homeomorphic to the complement S3 - W of the Whitehead
link W in S3 (cf. Figure 2a). In fact, the generators given for r_ 1 ( 12, 1) in
Table 4 are the ones used in Example 1 in [44], where this homeomorphism is
shown (cf. also [41, 7.17]). The groups r_ 1 ( 12, j), j = 2, 3, 4, are Iso(H)-
conjugate to T_ 1 ( 12, 1 ), so they provide manifolds homeomorphic to S3 - W.

The commutator factor group of T_i(12, 5)   is isomorphic   to  Z2  and
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Figure 2(a) Figure 2(b)

T_i(12, 5)\H is homeomorphic to the complement S3-V, where V is the link
shown in Figure 2(b). This was discovered in [4] where one finds a classification
of torsion-free subgroups of index 12 and 24 in T_i. The group T_i(12, 6)
is Iso(//)-conjugate to F_i(12, 5). Therefore, there are exactly two lso(H)-
conjugacy classes of subgroups of index 12 in T_i with Yab torsion-free. By
[4] these two classes coincide with the PSL2(C)-conjugacy classes of torsion-free
subgroups of index 12 in T_i.

In the following list we summarize the numbers of T_i-conjugacy classes of
subgroups of index < 12 in T_i . There is a complete classification of the
normal subgroups for indices less than 60 recently given in [10].

Numbers of T_i-conjugacy classes of subgroups
of index < 12 in T_ i .

5. The Bianchi group T_2

5.1. The group T_2 = PSL2(^_2) is generated by the matrices

1    1
0    1 B 0 -1

1 0 c = 1     CO
0    1
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Figure 3(a) Figure 3(b)

where eu = y -2. A presentation of T_2 is given by the following relations
(1) B2=\,
(2) (AB)3 = 1,
(3) ACA~XC~X = 1,
(4) (BC~XBC)2 = 1.

As before, we compute Ya}2 = Z x Z/6, and the integral homology of T_2 is
determined in [37, Theorem 5.3].

5.2. Since A4 is a subgroup of T_2 the index of a torsion-free subgroup of
T_2 is divisible by 12. Out of the subgroups Y of index 12 Table 5 contains a
complete list of representatives for the T_2-conjugacy classes whose commuta-
tor factor group Yab is torsion-free. There are (up to T_2-conjugacy) 11 groups
T_2(12, i), i = I, ... , 11, of this type. We remark that there are no subgroups
T of index 6 in T_2 with Yab torsion-free.

The group T_2(12, 1) is torsion-free, and we have T_2(12, \)ab s Z2 . The
arithmetic quotient T_2(12, \)\H is homeomorphic to the complement in S3
of the link 9|0 (labelled as in [35] and shown in Figure 3(a)). This can be
seen in the following way: One knows (cf. [19]) that there are two link comple-
ments in S3 where the link has two components and which arise as Y\H with
T < T_2 of index 12. Because of the number of components only the groups
T_2(12, i), i = l, ... , 4, can provide these manifolds since for these we have
T_2(12, i)ab = Z2, f=l.4. However, T_2(12,2) (resp. T_2(12,4)) is
conjugate under lso(H) to T_2(12, 1) (resp. to T_2(12,3)). Using the algo-
rithm in [12] it is possible to compute the Alexander polynomial of T_2(12, 1).
This distinguishes the two Iso(//)-conjugacy classes and we get our first claim
resp. that the arithmetic quotient T_2(12, 3)\H is homeomorphic to the com-
plement in S3 of the link 9\A shown in Figure 3(b).

For the group T_2(12, 11) we have T_2(12, ll)a* = Z4, and we defi-
nitely know that the group contains torsion elements. In the remaining cases
T_2(12, j), j = 5, ... , 10, the question of being torsion-free or not is not de-
cided. However, using 1.8 one can check that T_2(12, i) and T_2(12, i+ 1),
i = 5, 7, 9, are conjugate under lso(H). So, there are left three interesting
objects. We observe that the groups T_2(12, 5) and T_2(12, 9) are generated
by unipotent elements in T_2. Do these groups correspond to link comple-
ments in S3 ? For the group T_2(12, 7) we do not know if there exists a set
of unipotent generators.

5.3. In the following list we summarize the number of T_2-conjugacy classes
of subgroups of order < 12 in T_2 :
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6. The Bianchi group T_3

6.1. The group T_3 = PSL2(¿f_3) is generated by the matrices

where co = -\ + y/ -3/2.  A presentation of T_3 is given by the following
relations

(1) B2 = \,
(2) (AB)3 = 1 ,
(3) ACA-XC~X = 1,
(4) (ACBC~2B)2 = 1 ,
(5) (ACBC-XB)3 = 1,
(6) A-2C-XBCBC-XBC~XBCB = 1 .

One finds PL*3 = Z/3, and the total integral homology of T_3 is determined
in [37, Theorem 5.7].

6.2. Since A4 is a subgroup of T_3 the index of a torsion-free subgroup of
T_3 is divisible by 12. Now, Table 6 contains a complete list of representatives
for the T_3-conjugacy classes of subgroups Y of index 12 in T_3. There are
(up to conjugacy) 7 groups of this type. We remark that there are no subgroups
T of index 3 or 6 in T_3 with Yab torsion-free.

The groups r_3(12, i), i= 1, 2, are torsion-free and we have T_3(12, \)ab
= Z resp. T_3(12, 2)ab = Z x Z/5. The remaining five groups have torsion
elements. Therefore, there are exactly two Iso(/ir)-conjugacy classes of torsion-
free subgroups of index 12 in T_3. The associated arithmetic quotients can be
described as follows: T_3(12, l)\H is homeomorphic to the complement of the
figure-eight knot in S3.2 This example is worked out in [32]. As also observed

2 It has recently been proved that the figure-eight knot complement is the only knot comple-
ment occurring as a T\H for an arithmetic group T < PSL2(C), (A. Reid, Arithmeticity of knot
complements).
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by Brunner et al. [5, §5, p. 300] or resp. [45] the group T_3(12, 2) provides
as Y-i(\2/2)\H the manifold obtained by 5-surgery on one component of the
Whitehead link in S3 (cf. §4).

6.3. In the following list we summarize the numbers of T_3-conjugacy classes
of subgroups of index < 12 in T_3 :

7. The Bianchi group T_5, T_6, Y-XX, r_]5, T. 19

7.1. In the case of the group T_n we have also determined a complete list
of representatives for the r_n-conjugacy classes of subgroups of index < 12
in r_n whose commutator factor group is torsion-free. There are exactly 55
groups (up to conjugacy) and all are of index 12. Within this list we found, of
course, the three known torsion-free subgroups Y in T_ 11 of index 12 whose
associated arithmetic quotient Y\H is homeomorphic to a link complement in
S3. These are described in Example 3.2 [19], resp. [41]. However, we do not
dare to include this huge table into this paper.

7.2. In each of the cases Yd , ^ = -5,-6,-15,-19, the number of con-
jugacy classes of subgroups of index < 12 in Yd is very large. Indeed, for
T_5 (resp. r_i5) approximately 35000 (resp. approximately 25000) different
groups were found. As a remarkable fact in our computations we observed that
no group T could be found whose commutator factor group Yab is torsion-free.
Is this (together with 3.1) a hint that examples of groups Y such that Y\H is
homeomorphic to a link complement do not occur in these cases? However,
having no hope to get the computation completed the programme was stopped.
On the contrary, we have found some subgroups in Ys with Yab torsion-free,
and having checked ca. 6000 subgroups in T_i9 of index < 12 there is a large
number of groups with this property.

8. A concluding remark on torsion elements

As we have seen in 1.5 Yd has only elements of finite order 2, 3 and 4. On the
other hand, there are torsion-free subgroups of very small index such that the
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abelianized group Yab has a torsion coefficient q which is different from 2, 3 or
4, i.e., there are torsion elements in the integral homology (or cohomology) of
T which are not detected by the lattice of finite subgroups in Y. For example,
in Table 6 we have the group T_3(12, 2) of index 12 in T_3 for which one
has
(i) r_3(i2,2)aft = zez/5z.
Moreover, we observe in our tables that for a given group Y in there the base
elements p¡(Y) of the torsion coefficients occurring in

Tab = (z)rank ^ ^1/Pi(Y)v'Z
i

satisfy the relation

(2) Pl(Y)<\[Yd:Y].
It seems to us that this rather strong condition holds in general for a subgroup
T of finite index in Yd and each base element p¡(Y) of a torsion coefficient
which does not already occur as p¡(Yd) in Yadb. This guess is supported by
the same observation in dealing with subgroups of the following type: given an
ideal a ^ 0 of cfd we define

r¿(a)0:=JK    A eYd\cez\ ,

and this is obviously a subgroup of finite index in Yd . If a is a prime ideal
p the index [Yd : Yd(p)p] is given by N(p) + 1 where N(p) denotes the norm
of p. Note that N(p) = A^q) implies that Yd(p)p is isomorphic to r¿(q)0.
Out of a given presentation for Yd one can find one for Yd(p)0. This was
used to compute Yd(p)0lb for d = — 1, — 2, — 3 and p a prime ideal of degree
one and N(j>) < 400. For example, checking the table given in §4 of [9] for
d = -1 one observes again that (2) is valid. The same holds in the other
examples considered (cf. [13]). Some of the torsion elements are related to the
arithmetic of algebraic extensions of Q(y/d) (cf. [9, §5]), but in general there
is no arithmetic interpretation for them up to now.
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Table 1
All subgroups of index 3 in T_7, up to T_7-conjugacy

r_7(3, i)

Generators

gi=C
g2 = A

g3 = BCB

Relations

(i) gig2grlg2l = i

(2)(g,^2"1^3~1)2 = 1

(3) glgflg2-ig3g2g3grlg3g2gi1g21gli = 1

T_7(3, l)a* = Z2 x Z/2Z, not torsion-free, N = 1

r_7(3,2) ft=C
g2 = A

gl = BAC~lB

(1) g\g2gX  Xg2 ' = 1

(2)(^,ft)2 = l

(3) ii^'ftftft^-1^-1^^-1^-1^"1^"1^^ = 1

r_7(3,2)' ab , not torsion-free, N = 1

r_7(3,3) ft =5
S2 = /l

¿T3 = C3
g4 = C~lBC

g5 = CBC-1

Wg2g3g21g3l = \

(2) g2 = S42 = g¡ = 1

(3)(ft^)3 = (^2^4)3 = (ft^5)3

(4) (flftft)2 = 1

(5) (ft,?, ft)2 =1

(6) (ftftftftft7')2 = 1
r_7(3, 3)ab S Z x Z/2Z, not torsion-free, N = 3
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Table 2
All subgroups of index 6 in T_7, up to T_7 conjugacy

Generators Relations

r_7(6,l) ft=C

ft = ¿2

ft = BCB

(1) ftftft lg2 '

(2) g\g2 "ft 'ftftft 'ftftft 'ftft 'ft 'ftft ' =

T_7(6, 1) = Z3 , torsion-free, link complement group (2.2), N = 3

r_7(6,2) ft = BCA-2B

ft = BC2B

g3 = A

(1) ftftft 'ft '
(2) ft ft 'ft 'ftftft  'ftftft   'ftft   'ft 'ft ft ' = 1

Iso(//)-conjugate to T_7(6, 1), N = 3

r_7(6,3) ft = c-'
ft = A

ft = ß/iCß

(l)ftftft-'ft ' = 1

(2) ftft 'ft 'ftftft 'ftftft 'ftft 'ft 'ftft ' = 1

Iso(//)-conjugate to T_7(6, 1), N = 3

r_7(6,4) (-ift = CA-

ft = A'1
gi = BCA~lB

(1) ftftft 'ft ' = '
(2) ft ft"'ft"'ft ftft"'ftftft"'ftft"'ftf'ft ft"' = 1

Iso(//)-conjugate to T_7(6, I), N = 6

r_7(6,5) ft=C

ft = BAB

(1) ftft '#1   '#2 'ftft^l   '#2 'ftftftft Xg\   Xg2gV
g2gx~lg^1 g\g2gX~l g2lg¡~1 g2 = 1

r_7(6, 5)"* = 1? , torsion-free, link complement group (2.2), N = 6

T_7(6,6) g\=AC
ft = 5^5

(1) ftft  '«i   '#2 '^1^2ft   'ft 'ftftftft '#1   '^2ftft-

ft"'ft"'ftftft"'ft"'ft"'ft = 1
Iso(//)-conjugate to r_7(6, 5), N = 3

r_7(6,7) gi=AC-'

ft = C2

ft = CBC~lB

(1) ftftft. 'ft ' = !

(2) ft2ftft7' ft ft" ' g\ ftft-2ft ft ft"

T_7(6, 7)"* = Z2 x Z/3Z, N = 3

r_7(6,8) ft = ^cs
ft = /ï2

ft = ABC

(1) ftft 'ftft '#3 '#1  '#2 ' = 1

(2) ft ft ft"'ft ft"'ft"'ft ft"' = 1

r_7(6, 8)"* = TV = 2

r_7(6.9) ft=5C-'

ft = ^"'C3

g3 = ,4504-'

(1) ft2ftftft2ft"'ft = 1

(2) ft2ftft"'ftftft"'ft"2ft7'ft~'ft_1ftft = I

(3) ft2ftft"2ft2ftft"2ftftftft = 1
r--,(6,9)ab = z , N = 2
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Table 2 (continued)

65

r_7(6, io) ft = C

ft = BC2B

gy = BACBA~[

(1) ftft 'ftftft 'ftftft 'ft, 'ftft 'ft ' = 1
(2) ft2 ft" ' ft ft" ' ft ft2 ft" ' ftft ft" ' ft ft" ' ft ft2 ft" ' ft -

ft   ft
(3) g\g2 'ftftft 'ftftft 'ft 'ftft 2ft 'ftft 'ftft

ft"'ftft"'ft = 1
r_7(6, io)a* = z2 x ,N=3

r_7(6, ii) ft =A

g2 = CBC-{B
g} = BA~lC2B

(l)(ftft"')2=l

(2) ftftftft"'ft"'ft2ft"'g3"'ftft"2 = 1

(3) ftftftft"'ft"'ftft"'ftft"1ft~'ftft"'ftftft"'ft"' = 1
T_7(6, 1 l)ab £ Z2 x Z/2Z , not torsion-free, N = 1

r_7(6,12) ft =B
g2 = c2

ft = CBAC2BC~l

g4 = CBA2BC~i

g5 = A

(1) ft2 = 1

(2)ftftft"'ft-' = l
(3) (ftft)2 = 1

(4) ftftft 'ft ' 1

(5) (ftft)3 = 1

(6) (ftftft)3 = 1

(7) ftft ftft"'ftft"'ft"'ft"'ftft"' = 1
T_7(6, 12)a* s Z2 x Z/2 x Z/3Z, not torsion-free, N = 1

T_7(6, 13) gX=A

g2 = B

ft = C3
g4 = C-lBACBC

(1) ft2 = 1

(2) ft ft ft"'ft"' = 1
(3) (ftft)3 = 1

(4) ft ftft ft ft" ' ft" ' ft" ' ft" ' ft" ' ft = 1
(5) (ft2ft"'ftftft"1ft"'ft~'^2ftft)2 = 1

T_7(6, 13)a*S¥Z2 x not torsion-free, N = 1

r_7(6,14) (1) ft2 = 1

(2) ft ft ft"1 ft"' = 1

(3) ft2ft~'ft"'ft"'ftftft"'ftftftftft"'ft"'ftft"'-
ft"'gr'ftftftft"'ftft"'ftftftft"'ft"'ft"'ft-
ft"'ft"'ft"'ftftftft"'ftftft"'ft"'ft"'ft"' = i

r_7(6, 14)a* ̂  Z2 x Z/2Z,  not torsion-free, N = 1

T_7(6, 15) ft=C

ft = S

ft = A~2BA2

g4 = A*

(1) ft2 = 1

(2) ft2 = 1

(3) ft ftft"'ft"' = 1

(4) ft ftft"'ft"'ft ft"'ft"'ft"'ft ftft"'ft = 1
(5) ftftft"'ftftftg3"'ft"'ft"'gift"'ft_'ft"'ft = 1

T_7(6, 15)a* ̂  Z2 x Z/2Z, not torsion-free, N = 3
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Table 2 (continued)

r_7(6,i6) g\=A
g2 = CBC~lB

ft = BC2B

(l)(ftft"')2=l

(2) ftftftft"'ft"'ft2ft"'ft7'ftft72 = i
(3) ft ft ft ft ft" ' ft" ' ft" ' ftft ft"2ft ftftft" ' ft" ' ftT

ft"'ftftft ft"'ft"'ft"'ft2 ft"'ft"' = 1
T_7(6, 16)a*^Z2 , not torsion-free, N = 3

r_7(6,17) ft=C

ft = ^2

ft = ABC~lB

ft = BC2B

(1) ftftft 'ft ' = l
(2)(ftft"'ft)2=l

(3) (ftftft"')2 =1

(4)(ftft-'ft-')2=l

(5) ftftft"'g3ftft"1ft"'ftft"'ft"'ft"1 = 1

(6) ftft"'ft"'ftftftft"'ft"'g2ft"'ft"'ft = 1
T_7(6, 17)a*SZ2x not torsion-free, N = 3

r_7(6,18) ft =A

ft = BC2B

g3 = BCBC~1B

[1) ft2 = 1

(2) ftftft" ftftft" ftft" ft" ftft" ft" ftft"   = 1
(3) ftft-'ft"'ftft"'ftftgr'ftftft"'ft"'ftftft"'-

ft"'ft"'ft = 1
T_7(6, 18)afc^Z2 , not torsionfree, TV = 3

r_7(6,19) ft =BAC~lB
g2 = BC2BA~l

ft = ABC2B

g4 = A2

(1) (ft2ft)2 = 1

(2) ft ftftft"'ft"'ft"' = 1
(3) (ftft2ft)2 = 1

(4) ftftftftftftft"'ft7'ftft"'ft"1ft~'ft"'ft"' = 1
(5) ftft ftftft ftft"'ft"'ft"'ft"'ft"'ft"'ft"'ft ft = 1

r_7(6, 19)a* ̂  Z2 x Z/2Z, not torsion-free, N = 3

r_7(6,20) gi=AC-'

ft = C2

g3 = BACB
g4 = BAC~lBC-[

(1) ftftft"'ft~' = 1
(2) (ftft)2 = 1

(3) (ft ftftft)2 = 1

(4) ft2ft"'ft"'ft"'ft"'ft"'ftft"2ftftftft = 1

(5) ftftftftft"'ftftft"1ft"'ft"'g1"'ft"1ftft"1ft"'ft = 1
T_7(6, 20)"* S Z2 x Z/2Z x Z/2Z, not torsion-free, N = 3

r_7(6,21) ft =B
g2 = A~lC2

ft = a2c2

g4 = ABAC

(1) ft2 = 1

(2) ftftft"'ftr' = 1
(3) (ft ft ft ftft"')2 = 1

(4) (ftft"'ftft"'ft)2 = 1

(5) ft ftft-'ft-'ft-'ftft"'ft"'ftft ftft"' = 1
(6) ft ftft"'ft"'ftft"'ftft"'ftft ftft"' = 1

r_7(6,21)a*SZx , not torsion-free, N = 3
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Table 2 (continued)

67

r_7(6,22) gl=BA-l

g2 = CBA~iC-1
g3 = C~lBA-lC

ft = C3

(l)f? = l

(2) ft3 = 1

(3) ft3 = 1

(4) ftftft-'ftft-'ft-'ftft"' = 1
(5) ftftft"'ftftft"'ft"'ftft"'ft"' = 1
(6) ftft"'ft"'g2ftftft"'ft"'ftftft"'ft"' = 1

r_7(6,22)a*^Zx not torsion-free, N = 3

r_7(6,23) gx=BA~l

g2 = CBA~iC~1

g3 = CiA~i

g4 = AC~[BC

(l)ft3=l

(2) ft3 = 1

(3) ft3 = 1

(4) ft ft ft- ' #4~ ' gr ' ft ft ft" ' = i

(5) ft ftft" ' ft"1 ft ftft"' ft- 'ft- 'ft = 1
(6) ft ftft"'ftft"'ft"'ft"'ftftft"' = 1

T_7(6, 23)"*^ not torsion-free, N = 3

r_7(6,24) ft =A

ft = C2

g3 = B
g4 = C~lBC2BC

(l)ft2=l

(2) (ftft)3 = 1

(3) ft ftft"'ft"' = 1
(4) (ftft"'ftft"'ftft"'ft"'ftft)2 = 1
(5) ft"1ftft"'ftft,~'ft"'ftft"'ftftftft"1ftftftft = 1

r_7(6, 24)a*s; not torsionfree, N = 1

r_7(6,25) ft =A

ft = C6

ft = S

g4 = CBC~i
g5 = C-lBC

ft = C2BC-2

gl = C~2BC2

ft = C3BC-1

(Dft2 = ft2 = ft2 = ft2 = ft2 = ft2 = l
(2) (ftft)3 = (ftft)3 = (ftft)3 = (ftft)3

= (ftft)3 = (ftft)3 = 1

(3) (ftftft)2 = (ftftft)2 = (ftftft)2 = (ftftft)2

= (ft ft ftftft"')2 = (ftftft)2 = 1

(4) ft ft ft"'ft"' = 1

r_7(6,25)a*s , not torsion-free, N = 6
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Table 3
All subgroups of index 12 in T_7 with torsion-free commutator

factorgroup, up to T_7 conjugacy

Generators Relations

r_7(12,l) ft=C

ft = A
ft = BC2B

ft = BCAiB

(l)ftftft-'ft"' = l

(2) ftftft"'ft"' = 1
(3) ftft-'ft-'ftft-'ft"'ft,"'ft_-'ftft,-'ft-'ftftftft7

ftftftftft = 1

r_7(12, l)a* = Z4 , generated by unipotent elements, N = 12

(12,2) ft = C

ft =A
ft = ßC3fi

g4 = BCA2B

(l)ftftft"'ft"' = l

(2) ftftft"'ft"' = 1
(3) ft ft-1 ftft- ' ftftft ft2 ft" ' ftftft ft" ' ftft" ' ft"

ft   ft   ftft   ftft    —
r_7(12, 2)a* = Z4 , generated by unipotent elements, N = 12

r_7(12,3) ft=C

ft = A

ft = 5C4ß
g4 = BCBC-lBC~

(l)ftftft"'ft"' = l

(2) ft ft"' ftftft" 'ft-' ftft-1 ft-1 ftft" 'ft = 1

(3) ftft-2ft-'ftft-'ftftft-'ft-'ftftft-'ft"'ftft"'-
ft2ft"'ft,-'ftft,-'ftftft-'ftftft-'ftftft"'ft = 1

r_7(12, 3)"* = Z4, contained in T_7(6, 2), Iso(//)-conjugate to T_7(12, 4),

r_7(12,4) ft=C

ft = BC2B

g-i = BCA2B

g4 = ABC2BA~i

(1) ft ft"'ft"'ft"'
(2) ft ft"1 ftftft"' ftft ft" 'ft" Wf' ftft-' ft"' = 1
(3) ftft^ftft-'ft-'ftftft-'ft-'ftft-'ftft-'ft-'ft-

ft-'ft"'ftft ft"'ft = 1
T_7(12, 4)a* s Z4 , link complement group (2.3), contained in r_7(6, 1) and

r_7(6,2)

(12,5) gl=AC~i

ft = C2

gy = BACB
g4 = A~lBACBA

(i)ftft^r'ftl = l
(2) ftft"'ft"'ftftft"'ftftft"'g3"' = 1

(3) ft2ftft~1ft_'ft-Ift,"'ft-1ft7'ft_1ftftftft = 1

r_7(12, 5)aiïZ4,

r_7(6,4)

Iso(//)-conjugate to r_7(12, 4), contained in T_7(6, 3) and

r_7(i2,6) ft = C

ft = A

g3 = BC2A2B

g4 = BCBCB

(Dftftft-'ftT^i
(2) ftft"'ft"lftftftgr'ftft""'ft"' = •

(3) ft ft- ' ft" ' ftftftft" ' ft" ' ft" ' ftftft" ' ftft" ' ft" ' ■
ftftft-1 = i

r_7(12,6) ah Iso(//)-conjugate to T_7(12, 4), contained in T_7(6, 3)
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r_7(i2,7) ft

ft

ft

ft

= c
= A*

= BCB
= A~lBA3BA

(1) ftftft"'ft"' = 1

(2) ft ft" ' ft" ' ft ft" ' ft- ' ft ft" ' ft" ' ft ft" ' ft" ' ft" ' ft" ' -
ft ft"'ft-'ftft"'ftft ft"' = 1

(3) ftft-'ft-'ftft-'ft-'ft-'ftft-'ftft-'ft-'ft-'ft-
ft 'ft ' = 1

r_7(12, 7)a'' = Z3 , generated by unipotent elements, N = 6

r_7(12,8) = C

= BAC~2B

= BACB

(1) ftftft ftft ft"2ft-'ft-'ft2 ft-'ft-'ft-'ft"'ft-'ft2-
ftft72ft = i

(2) ft ft ft ft ft- ' ft" ' ft" ' ft" ' ft2 ft" ' ft" ' ft" ' ft" ' ft" ' -
ft-'ft ftft ftft ft~2ft = 1

r_7(12, 8)a* ̂  Z3, generated by unipotent elements, N = 12

r_7(12,9) = C
= BACB

= ABC* AB

(1) ftftftgfftftft 'ft 'ftft 'ft 'ft 2ft 'ft ' = !
(2) ft ft ft" ' ft ft ft2 ft ft" ' ft" ' ftftft2 ft ftft" ' ft" ' -

ft   ft   ft   ft   ftft    — 1
r_7(12, 9)a* = Z3 , generated by unipotent elements, N = 6

r_7(12, 10)
= 5^C-'S

= BC2BC2

(1) ft2ftft 'ftftft 'ft 'ft 'ft 2ft 'ftft 'ft 'ftftft = '
(2) ft ftftft ft" ' ft" ' ft ft ft" ' ft ft ft" ' ft" ' ft" ' ft" ' ft -

ftTV = »
r_7(12, 10)"* SZ!, Iso(/7)-conjugatetor_7(12, 12), contained in r_7(6,4)

r_7(12,ll) = c
= BC2A-lB

= BCBA~2B

(1) ftft 'ftft 'ftftft 'ft 'ftft 'ft 'ftft 'ft = !
(2) ft ft- ' ft ft ft" 3 ft ft" ' ft ft ft" ' ft ft" ' ft2 ft" ' ft -

ft-V = i
r_7(12, 11)"* ^Z3, N = 12

r_7(i2,12) = C

= BCB
= A~,BCBA~l

(1) ftftft 'ftft 'ft 'ftft 'ft 'ftft 'ftftft ' = !
(2) ft ft ft" ' ft ft" ' ft" ' ft ft ft" ' ft ft ft" ' ft ft" ' ft" ' ft -

ft 'ft 'ftft ' 1

.7(12, \l)at"*l? ,

= 3
link complement group (2.3), contained in T_7(6, 1),

r_7(i2,13) = A

= BC2B

= CBCA2B

(1) ftftft 'ftft 'ftft 'ft 'ftft 'ft 'ftftft 'ftft ' = !
(2) ftftftft-'ft-'ftft"'ft2ft"'ftft"'ft"'ftft~2-

ftft 'ftftft 'ft 'ftft '
r_7(12, 13)'"''SZ3, contained in I"_7(6,2) and T_7(6, 5)

T_7(12, 14) = A

= C2

= CBCBC2B

= BACB

(1) ftftft 'ft ' = '
(2) ftft 'ftftft 'ft 'ftft 'ft 'ft 'ftft = 1
(3) ftftftftft"'ftftft"2ft"'ft"'ftft"2ft"1ft"' = 1

r_7(12, 14)afc SZJ, N= 12
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Table 3 (continued)

r_7(i2, 15) ft

ft

ft

ft

= A

= C2

= BC~lA2B

= CBC2B

(l)ftftft"'ft"' = l
(2) ft ftftft ft ftft ft"' = 1

(3) ftftftft"'ftftftftft"'ft"'ft"'ftftft = 1

7(12, 15)aAs:

= 6
1, Iso(//)-conjugate to T_7(12, 12), contained in T_7(6, 2)

r_7(12, 16) = A

= CBACB

= BACBC~{

(1) ftftftft"'ft"'ft"'ft"'ft"'ft"'ft"'ftftftft = 1
(2) ftftftft~'ft"'ft"'ftftftftftftft"'ft"'ft"'ft-

ftft-'ft-'ft-'ft-'ft-'ft-'ft = 1
r_7(12, 16)a* a Z3, Iso(//)-conjugate to r_7(12, 12), contained in r_7(6, 3)

r_7(12, 17) = A

=CBACB

= BA~{C2B

(1) ft ftft ft 'ft 'ftft 'ftft 'ft 'ftft 'ftftft '-

ft~ = 1

(2) ftftft 'ftft 'ftftft 'ftft 'ftft 'ft 'ftft '■

ft"' = 1
r_7(12, \l)ab^l?, N = (>

r_7(i2,18) = ̂ c->
= CBC~lB

= BA3B

(1) ft ftftft"'ft"'ftft"'ft"'ft ft"' = 1
(2) ft ft2 ft ft ft" ' ftft ftftftft" ' ft" ' ft" ' ft" 'ft-1-

ft-'ft = 1
r_7(i2, i8)a* N = 12

r_7(i2, i9) = AC~l

= A*

= BAC~XB

= BA}B

(1)

(2)

(3)

ft ft ft" 'ft-
ft ft ft" 'ft-
ft2 ft" 'ft-' g
ft ft"'ft ft"

= 1

ft 'ftftft 'ftft 'ft 'ftft 2ft"
ft-'ft ft"'ftft ft-' = 1

r_7(12, 19)a* = Z3, N = 6

F_7(12, 20) = C

= A*B

= A2BA2

(1)

(2)

ft ft ft"'ft-
ft2 ft ft-'ft-

ft ft-'ft ft"

ftftft-'ft-'ftftft-'ft-' = 1
ft ft" ' ft" ' ft ft ft" ' ft" ' ft ft- ' ft" ' ft -
ft ft ft"'ft"' = 1

r_7(12,20) ab ~ 7V = 3

r_7(i2,2i) = A

= BA2C~2B
= BC-lBC~l

(1)

(2)

ftftft ft
ft ft ft"'ft-
ft = 1

ftft 'ft  'ftftft 'ftftft  'ft ' = '
ftft" ' ft ft" ' ft" ' ft" ' ftft ft" ' ftftT ' -

r_7(12, 21)aASZ2, TV = 3

r_7(12, 22) ft

ft

ft = BA'XCBC

(1) ftftftft"'ft"'ftftft"'ftft"'ft"' = 1
(2) ft ftft ftft- ' ft"" ' ftft ft" ' ft" ' ft" ' ftft ft" ' g\ ' '

ft" "ftftft"'ft"' = ■
T_7(12, 22)a*^Z2, /V = 6
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r_7(12, 23) ft =A

ft = BC2B
g3 = BACBC~l

(1) ftftftftftft"'ftftft-'ft-'ft-'ft-'ft-'ft-' = 1
(2) ft ftft ft" ' ft ft" ' ft" ' ft ft"' ft" ' ftft ft" ' ft ft" ' -

ft"'ftft = 1
r_7(12, 23)a*^Z2, N = 3

r_7(12,24) gi=AC~i
ft = 5C4

ft = A&B

(1) ftftftft 'ftftft 'ft 'ft 'ftft 'ft ' = 1
(2) g2g3 ft ftft ft" ' ft" ' ftft" ' ft" ' ft ftft" ' ft" ' ft" ' -

ft 'ft 'ftft 'ft 'ftftft ' = '
r_7(12, 24)a*=* Z2, N = 3

r_7(12,25) gx=BA~l

ft = C2

gi = ACBC2BC~]

g4 = CBC2BC~]A-

(1) ft3 = 1

(2) ftft-'ftftftft-'ft-'ftft-'ft-'ft-'ftft-'ft = 1
(3) (ftft-'g3ftft-'ftftft-'ft-'ft)3 = 1

(4) ft ftft- ' ft" ' ft ft" ' ft"2ft ft" ' ft"2ftft- ' ft" ' ft ft" ' -
ftft ft"'ft2 ft ft"'ft = 1

(5) ft ft" ' ftft ft" ' ftft ft" ' g]g\ ft"2ftft" ' ft" ' ftft" ' -
ftft" ' ftft ft" ' ftft" ' ft ft" ' ft = 1

f_7(12, 25)a* S Z3 , not torsion-free

r_7(12, 26) ft = BA-i

ft = AC2

g3 = A2

ft = CBAC2BC
ft = C~lBC2BC-1

(1) ft3 = 1

(2)ftftft"'ft"' = 1
(3) (ftft)3 = 1

(4) ft ftftft"' ftftft ft" 'ft" 'ft" 'ft" 'ft"' = 1
(5) ft ftftft"'ftft"'ft ftftft"'ft"'ft"'ft"' = 1
(6) ftftft-'ftft-'ft7'ft-1ftg2ft7'ftftft-'ft."'ft-

ftftft"'ftftft"' = 1
r_7(12, 26)a* ^ Z3, not torsion-free

T_7(12, 27) ft =BA~l

ft = CBC
gy= ACBC~l

ft = ^"'C6

(l)ft3=l

(2) ftg2g4"

ft2ftft
(3) ftftft"

glg2g4"

(4) glg2g4"

ft3 ft ft-

ft 2gX   Xg4g\gjg4g2 'ft   'g2g4 'g3 2g4"

g3g4g2"'glg2g4-'g3-2gr'g2glg32g4g2"'-

ft-2ft~' ft" 'ftftft"' = 1
g3"2gl" ' g2g32g4g2" ' ft g2g4" ' g3"2gi" ' ft" ' "

ftg2g4"'g3"2gr'g3g4g2"' = 1

r_7(12, 27)a* a Z3 , not torsion-free
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Table 4
All subgroups of index < 12 in T_i with torsion-free commutator

factor-group, up to T_i conjugacy

Generators Relations

r_i(12, 1) ft = C
g2 = BCA~lB

(1) glg2g, 'g2ftg2 'ftftft 'ft 'ftft 'ft 'ftft
■lft 1

r_i(12, 1) = Z2 , torsion-free, link complement group (4.2)

r_i(i2,2) ft=C

g2 = BCAB

(1) ftg2g,   'g2glg2 'ftg2g!  'g2 'ftg2 'ft  'ftft   '-

ft = 1

Iso(//)-conjugate to r_[(12, 1)

r_,(12,3) ft =A

g2=BCA~'iB

(1) glg2g!  'g2ftg2 'ftg2g,  'g2 'ftg2 'gl  'ftft   ''

ft 1

Iso(//)-conjugate to r_i(12, 1)

r_,(12,4) ft -A

g2 = BCAB

(1) glg2glg2 lgX  'g2glg2ft  'g2 'ft  'g2ftg2 'g)  '■

ft 1

Iso(//)-conjugate to r_!(12, 1)

r_,(12,5) ft -A

ft = C

g3 = BAC2B

(i)ftg2gr'g2"-'= 1
(2) ftg2 'g3g2 'ftg3g2 'g3glg3g2 "g3 = 1

(3) glg3gr'g3"'g2g3"'gr'g3"'glg3g2~'g3 = i

r_!(12, 5)ai ^ Z2, link complement group (4.2)

r_,(12,6) g\=A
ft = C"'

g3 = BAC~2B

(1) ftg2g,"'g2"' = 1

(2) glg2"1g3g2"1glg3g2"1g3glg3g2"1g3 = 1

(3) ftg3gr'g3-'g2g3-'gr'ftg3g2-'g3 = 1

Iso(//)-conjugate to T_i(12, 5)
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Table 5
All subgroups of index < 12 in Y-2 with torsionfree commutator

factor group, up to Y-2 conjugacy

Generators Relations

r_2(i2, i) ft=BC-'
ft = A2C

gy = A~{BCBC

(1) g2g2g3g2-'g3-1ftg2g3g2"'gr'g3"'g2"'gr'ft = 1

(2) ft g2gf ' g2g3"'g2 ' g,"' g3g2g3"' ft" 'g2g3" ' g2" ' gi-

gS g2"'g3"'gl g2g3g2"' ft g3g2"'g3"' glg2g3g2"' = 1

r_7(12, l)a* = Z2 , torsion-free, link complement group (5.2)

r_2(12,2) ft=5C-'
g2 = A2C~l

gy = ABCBC

(1) gi2g2g3g2-'g3"'ftg2g3g2"'gr'ft"-'ft"-'ft~'ft = 1

(2) gl g2g," ' g2g3" ' g2Xgx  ' g3g2g3" ' g," ' g2g3" ' g2 'ft"' ~

g3g2-'g3-'ftg2g3g2"'ftg3g2"'g3"'ftg2g3g2"' = 1

Iso(//)-conjugate to r_2(12, 1)

r_2(12,3) ft = A

g2 = BAC~iB

gy = BC3BC

(l)ftg22g3glg3 'g2g3g2 = 1

(2) ftg2gig2"'gr'g2gig2gr'g2"'gr'g3"'g2"3gi
l„-3„-l.

1

g2 'glg2ftg2 'g,  'g2glg2g3ftg2glg2 'ft  'g2 '"

gl g2 gX  ' g2 ' gX   ' g2 gl g2 g3 = 1

r_2(12, 3)ab = Z2 , torsion-free, link complement group (5.2)

r_2(12,4) ft =A

g2 = BACB

g^BC-^BC-1

W g\g2g3glgy~lg2g3g2 = 1

(2) ft g2gl g2" ' gx  ' g2gl g2gf ' g2" ' ft" ' ft" ' ft_3ft_ ' ft" ' "

ftg2ftg2-'gr'g2glg23g3ftg2glg2-'gr'g2"'ft-

g2 gX  ' g2" ' g," ' g2 gl g2 g3 = 1

Iso(//)-conjugate to r_2(12, 3)

r_2(i2,5) gx =A~XBA~XBA

ft = C2A~X

ft = CA2

(1) ftftg2"'g3"' = 1

(2) ft g3" ' gl gy' ' g2 gl g3" ' gl g3 g," ' g^ ' g3 gx~ ' g3 g," ' -

g3" ' gl g3" ' g2 gl g3" ' ft g2 gl g3" ' gl g3" ' g2 gl g3" ' gx  ' -

g3 ft" ' ft" ' ft ft" 'ftft."' ft- ' ft ft- ' ft ft ft- 'ftft-
ft" ' g2" Xg3gx-^g3gxX g2 ' gx  ' g3 gf ' ft" ' ft ft" ' ft =

r_2(12, 5)aÄ = Z3 , generated by unipotent elements

r_2(12,6) gx = ABABA~X

ft = C2^l

ft = CA-2

(1) g2g3g2 'g3 ' = 1
-1„-1

(2) gl g3" ' gl g3" ' g2ft g3" ' gl g3gX   ' g2" ' g3g]" ' g3gi" ' g3

ftg3-'g2glg3-'ftg2ftg3"'ftg3"'g2ftg3"'gr'g3gr'-

g2 ' g3gf ' g3g,- 'gy 'gl g3"'g2ft g3"' gl g3g," ' g2" ' g3-

gx  'g3gf 'g2 'gf 'g3gf ' g2~'g3gf 'ft = 1
Iso(//)-conjugate to r_2(12, 5)
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Table 5 (continued)

g. = 5C-"
g2 = A~lC2

g3 = A~2BAC

( 1 ) gi2g2g2g2gf ' gy ' g2gy2gXXg2 ' ft^ftT ' ft2 ft" ' ft

(2) g2g2gl £3 ft" ' g3gf ' g2Xgx2gy ' g2g3"2g2g3- ' g2" ' -

ft = l

r_2(12,7)a!

ft=5C-'

ft = ^C2

g3 = ^25^-'C

(1) g2g2g2g2g,"'g3"'g2g3""  gf'g2"  gf  g2"  g2-'g3g2"'g3 = 1

(2) g2g2gl g^ftT ' g3g," ' g2" ' gr2g3"' g2g3"2g2g3" ' g2" ' -

ft=l

Iso(//)-conjugate to T_2(12, 7)

ft =AC~X

ft = C3

ft = BAC~lB

g4 = ^-|ß^-1Cfi/l

(l)g.ftg,"'g2"' = l

(2) glg2ftg4"'g3"'g4"'g3g4g,"'g2"'gr'g3"1glg4g,"'-

g3= 1

(3) gig2gig4"'gi-'g3ftg4gr'g2-'gr'g3-'g4-'g3-'-

g4g3 = 1

r_(12, 9)a* S Z4 , generated by unipotent elements

ft=^lC

ft = c-3

gy = BACB
g4 = A-xBA-lC~lBA

(i) gig2gr'g2"' = i
(2) gig2gig4-'g3"'g4"'g3g4gr'g2-'gr'g3"'gig4gr'-

ft = i

(3) gi g2gi g4"'g,"' g3ftg4gx ' g2"' g,"'g3-' g4"'g3"' -

g4g3 = 1

Iso(//)-conjugate to T_2(12, 9)

g\= A
ft =BC~lBC~l
gy = C~xBC-lB

g4 = BC~2A2B

(l)(ftftg,-'g2"')2=l

(2)(g,ftgr'g3-')2 = i
(3) glg2gr'g2"'g3g4"'g2glg2"'g4g3"' = 1

(4) gl g2 ' g4g3" ' gl g3gi" ' g4" ' g2g3" ' g\~ ' g3 = 1

(5) ftg2"'g4g3-'ftg3g4g3"'g2gr'g2"'g3g4"'gi

g4"'g2 = 1

r_2(12,  11\ab not torsion-free
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Table 6
All subgroups of index 12 in T_3, up to T_3 conjugacy
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Generators Relations

r_3(i2, i) gl = A

ft = BCB

(1) ftg2gi  'g2glg2 'ft  'ftft  'ft ' = !

r_3(12, \)ab S Z, torsion-free, link complement group (6.2), TV = 6
'_3(12,2)    g, =^12

g2 = BCABAC~xBC-{B
(1) g|g2glg2glg22ftg2 'ftgf = 1

r_3(12,2)aiS¥Zx torsion-free, N = 6

r_3(12,3) g, =BABCBA~l

g2 = BAC2BA~l

■i\3.(1) (gfg;
(2)(g13g2:'ftftftg2"')3 = l

(3) gfgj" ' gl g2gl g2" 'gl g2g,-3g2g,- ' g2" ' gl g2" ' ft g2" ' g," ' '

g2gr1g2_1ft~1ftftrIftftft_1 = '
r_3(i2,3)a*^ , not torsion-free, TV = 4

r_3(i2,4) g, =ABAC~lB

g2 = BABCB

ft = C\4-'

(•)g3glg3~'g2g3g2g2"' = 1

(2) g3ftg3"'g22gr'g3"'g2 = 1

(3) g3gi2g2"2g3ftg2"' = 1

(4) g3glg3gr'g2"'g3gr3g3"'g2g3g2"2 = 1

(5) g3ftg3"'g2"'gr2g3"'g2-'gr2g3-'g2g3-'g2"2 = 1

(6)(ftg2g3g2"')3=l

(?) g3g12g3g2g3gr2g3"'g2g3gr2g3"'g22 = 1

r_3(12,4)a*^ not torsion-free, N = 4

r_3(i2,5) ft = BA*B

g2 = CA-[
gy = BCA~lB

g4 = ABCA-lBA~l

(1) gigx~]g3"'g~l = 1

(2) g2g3"'gr'g2g]"'g3"'g2gr'g3"' = !

(3) g2g3"'gr'g2g4"'g2"'g4"'g2"'g3gig3"'gr' = i

(4)(ftftgr'g3-')3 = i

(5) g2g3glg4gr'g3"'g2g4g3g2g4gr'g3"' = 1

(6) g2g4g3g4-'g2"1g4gr'g3"'g4g3g4gr'g3"'  =  •

(7) g2g4g32gig4-'g2-'g4gr'g3"'g42gr'g3"' = i

(8) g22g4g2"'glg3g4gr'g3"'g2g3g2g4gr'g3"' = 1

(9) g2g3ftg4"'g2g3ftg4"'g2g4g,"'g3"'g4gr'g3"' =

r_3(i2,5)a6s not torsion-free, yV = 12
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Table 6 (continued)

r_3(i2,6) gi=A4

g2 = B

gy = A~2BA2

ft = CA'1

(1) g22 = 1

(2) g2 = 1

(3)g4glg4"'gi"' = 1

(4) g2g4"2g3g4g2"'g4"2g3"'g4 = 1

(5) g2g4glg3g,"'g4-'g2"'g4g2"'g4"'g3g4 = 1

(6) g2g4glg3-'g4g2g4"'g3"'g4g3"'gr'g4-' = '

(7) g2g4glg2g4"'g3"'g4g3"'gr'g2"'g4"'g3g4 = 1

(8)(g2g42ftg3gr'g4-')2 = l

(9)(ftg42gig3-'gr'g4-')2 = i

(10) g2g4ftg3g2"'g4glg3"'gr'g4"'g2-'g3-'gr'ög4-' =

(ii)(ftg4gig3gr'g4"2)2 = i

(12)g2g42glg2g4"'g2g4!glg2g4"'g3"'gr'g2"'g4g2"'g3"'-

ft-'ft"' = 1
r_3(12, 6)a* S Z, not torsion-free, N = 6

r_3(i2,7) ft=^l

ft = BA^B
gy = BCBA-lC~lB

(1) g32 = 1

(2)ftg2)3=l

(3) (ftft)3 = 1

(4)(ftg3"')3=l

(5) gig3ftg3"'gr'g3g,"'g3"' = i

(6) (g2ft)3 = 1
(7)(g2g3"')3 = l

(8) glg2glg3"'glg2g3gr'g3g2glg3"' = 1

(9) ftg2"' ftg3"' ftg2"' gyg{-1 gyg2l ftg3"' = 1

(10) g\g2gxl g3gxX g2g\gyX g\g2l gxl g3gxX g2~l g\-

ft = 1

r_3(12, 7)afc ̂  Z/3Z x Z/3Z x Z/3Z,  not torsion-free, N = 4
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