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1. Introduction

In 1961 Graham Higman [1] proved that a finitely generated group is a

subgroup of a finitely presented group if, and only if, it is recursively presented.

Therefore a finitely generated metabelian group can be embedded in a finitely

presented group.

The object of this paper is to prove the following:

THEOREM. A finitely generated metabelian group can be embedded in a

finitely presented metabelian group.

This theorem may be viewed as an analogue of Higman's theorem for the

variety of all metabelian groups. It suggests that the theory of finitely presented

solvable groups may be far richer than one might have thought. It also seems

likely that there are other varietal analogues of Higman's theorem.

There is another facet of this theorem that is worth commenting on. For some

time now the complexity of the abelian normal subgroup structure of finitely

presented groups has been up in the air. Indeed a finitely presented group with a

free abelian normal subgroup of infinite rank has only very recently been

constructed (Baumslag [3]). The existence of such complex finitely presented

groups is reinforced by our theorem. For it follows from it that the abelian normal

subgroup structure of finitely presented metabelian groups is, in a sense, as

complicated as the abelian normal subgroup structure of finitely generated

metabelian groups.

2. Sketch of the proof of the theorem

Let G be a finitely generated metabelian group. Our objective is to embed G

in a finitely presented metabelian group.
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[2] Finitely presented metabelian groups 99

The first step in the proof is to embed G in a factor group W/N of the wreath
product W of two finitely generated abelian groups. This embedding can be
accomplished in many ways. Here we shall use a theorem of Magnus [4] which
makes it easy to arrange that N be contained in the base group of W, a crucial
factor in the proof.

The second step is to provide a procedure for embedding Win a finitely
presented metabelian group W*. This procedure, which is the main part of the
proof, has a certain degree of flexibility which we exploit in the last part of the
proof.

The third and final step in the proof is to show that WjN (and hence G) can
be embedded in a suitable quotient group E of W*. Now finitely generated
metabelian groups satisfy the maximal condition for normal subgroups (Hall
[2]). It follows that every factor group of a finitely presented metabelian group is
finitely presented, and so in particular E is finitely presented, as desired.

3. Preliminaries

In this section we record some of the notation and notions we shall need in
the sequel.

As usual if x, y are elements of a group G and M is a subgroup of G then we
define

xy = y~1xy, [_x,y~] = x~1y~1xy and Mx = x"'Mx.

We denote the integral group ring of the group G by 1G and write n in place
of n • 1, where 1 is the unit element of G, for each integer n. If a e G a n d / s n ^
+ ••• + nkgk is a specific expression for an element in the group ring 1G then we
dfidefine

a1 =

(where here nu---,nk are integers and gi,---,gkeG). If M is an abelian normal
subgroup of G and T is some other subgroup of G, then M becomes a ZT-module
by defining

af= af(aeM,feZT).

We recall that a group W is the (standard) wreath product of its subgroups
A and T if

(i) W=gp(A,T)

(ii) B = gpw(A), the normal closure of A in W, is the direct sum of its
subgroups A\t e T).

Notice that (ii) implies that B C\T = 1. B is called the base group of W, which is
usually denoted by A i T.

The proof of the following lemma is straightforward and is therefore omitted.
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LEMMA. 1. Let w, x, y be elements of a group.

(i)

(ii) J/[x,w] = [x,y] = 1, then [wx,j/] = [w,j>] = [w,xy].

A finite subset {*!,•••,<„} of non-identity elements of a finitely generated
abelian group T is termed a basis of T if T is the direct sum of its subgroups

4. Some simple notions from commutative ring theory

We record here some simple constructive techniques which will play an
important role in the proof of our theorem (see e.g. Atiyah and Macdonald [5],
Chapter. 3). To this end, let R be a commutative ring with 1 and let S be a mul-
tiplicatively closed subset of R (containing 1). Let ~ be the equivalence relation
in R x S defined as follows:

(r, s) ~ (rV) if there exists t e S such that (rs'-sr')t = 0.

We denote the set of equivalence classes in R x S by RS'1 and the
equivalence class containing (r,s) by rs"1. RS'1 is turned into a ring by defining
addition and multiplication in the usual way:

rs'1 • r^'1 = rr^ss^'1, rs'1 + r ^ " 1 = (rs! + srt) (ss^'1.

Suppose that there are no zero divisors (of R) in S; i.e., suppose

(1) ab = 0 implies a = 0 whenever aeR, beS.

Then the mapping
r f-» r 1 - i

is an injection (i.e. a monomorphism) of R into the ring RS 1. Abusing the

notation we have just introduced we denote r I " 1 by r and 1 s"1 b y s " 1 .

There is a similar construction for modules. In order to explain, let M be an

.R-module. We define an equivalence relation ~ on M x S as follows:

(m,s) ~ (m',s') only if there exists teS such that (ms' — m's)t = 0.

We denote the equivalence class of (m,s) by ms"1 and the set of such equivalence

classes by MS'1. MS'1 may be turned into an RS~ ^module by first defining

ms'1 + wiiSi"1 = (ms! + m1s)(5s1)~1

and then defining the action of KS"1 on MS'1 by

(ms"1)^-1) = mr{si)-1{meM, reR, s, teS).

If the condition (1) together with the following condition
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(2) ms = 0 implies m = 0 (meM, seS)

are both satisfied, then the mapping

m f-> m I " 1

is a monomorphism of the i?-module M into the i?-module MS'1 (where MS'1

is an R-module in the obvious way). Finally we remark that, when convenient,

we denote m l " 1 simply by m.

5. The first step in the proof of the theorem

We shall need the following theorem of Magnus [4], which we record

here as Lemma 2.

LEMMA 2. Let F be a free group, freely generated by a set X = {xt | i e I},

and let R be a normal subgroup of F. Let the mapping xtR (-»• tt (iel) define an

isomorphism from F /R to a group T = gp(tt\ iel). Furthermore, let A be a free

abelian group, freely generated by the elements at(iel). Then the mapping

Xi\R, i?] t-> aji (i e /)

defines an isomorphism of F /[/?, .R] into W = AIT (where [R,R] is the derived

group of R).

We use Lemma 2 to prove

LEMMA 3. Let G be a finitely generated metabelian group. Then there

exists a free abelian group A of finite rank and a finitely generated abelian

group T such that G is isomorphic to a subgroup of W/N, where W = AIT

and N is a normal subgroup of W contained in the base group.

PROOF. Let {gug2, •••>gn} be a finite set of generators of G, let F be the free

group, freely generated by xt,x2, ••• xn and let $ be the epimorphism from F to G

defined by
4>: Xf t+ gt (i = 1,2,---.n).

Let K be the kernel of <£ and let R be the inverse image of [G, G] under <j>. Then

R/K £ [G,G] and hence is abelian. Therefore [#, # ] ^ K, which means that

(3) [R,R] <: K ^ R.

Now let A be a free abelian group on a1,a2,--,an and let W = AI T, where

T = F JR. Let \j> be the homomorphism of F into W defined by

x$ = attt ((( = xtR, i = 1, •••,«).

By Lemma 2 the kernel of ij/ is [K,R]. Hence i// induces an isomorphism i/^, say,

of Fj[R,R] into W.
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Let us now put JV = (X/[K,K]W«, (see (3)). Now JV ^

Therefore JV is normalised by the elements afc, i = 1,2, •••, n. But it follows from

the definition of if/* that JV is contained in the base group B of W. Since B is abelian

JV is normalised (indeed centralised) by B and hence by the elements th and

therefore by all of W. In other words JV is normal in W. Therefore G has been

embedded in W/N—it is isomorphic to (F I[R, i?])^* /JV. This completes the proof

of Lemma 3 and with it the first step in the proof of the theorem.

6. Embedding wreath products in finitely presented groups

This section prepares the way for embedding certain quotient groups of

wreath products in finitely presented metabelian groups. This embedding procedure

will be completed in the next section.

Let A be a free abelian group of finite rank freely generated by the elements

(4) aua2,--,ar.

Furthermore let T be a finitely generated abelian group with basis

( 5 ) t1, t2, •••, tk, •••,tl,

where tut2,---,tk are of infinite order and tk+1, ••-,?, are respectively of finite

order ek+u • •-,<?(. Finally let

(6) F = {fuf2,-Jk}

be a set of element/; of the group ring TT of T, where each/j is of the form

(7) / ; = 1 + cultt + ciatt
2+ - + ciAi_1t?>-i+ tt"' (dt ^ 1) ( c u e Z)

We embed W = A i T in a finitely presented metabelian group WF, which,

as the notation suggests, depends not only on W but also on F.

We shall present WF on the generators

(8) X = {aua2,---,ar,tl,t2,---,tl,uuu2, •••,uk),

where the integers r, k and 1 are the integers occurring in (4) and (5).

The defining relations of WF are of four kinds. First we have the power

relations

(9) < J ' = 1 (i = Jk + l , . . . , / ) .

Next we have the commutativity relations

l a t , a j ] = 1 ( 1 ^ i , ; g r ) .
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Thirdly we have the commutativity relations for the conjugates of the generator at:

( [al a71 = 1 where 1 ^ i, j g r and

(11) J v,we{t«%™-t^\0t2x(i)Sdi (l- = i,2,...,fc),

I O^cc(0 < e, (i = k + 1, •••,/)}

Notice that the positive integer df occurring in (11) is simply the "degree" of the

"polynomial" / , (cf (7)).

Finally we have the defining relations giving the action of the elements Uj on

the elements at:

(12) aV = a{> ( U . ^ r . l g ; ^ k),

where the f} are again the elements comprising F (see (6), (7)).

We emphasise that WF is the group generated by the set X given by (8)

subject to the defining relations (9), (10), (11), and (12). WF is patently finitely

presented. We shall prove that WF is also metabelian and in the next section, that

W is embedded in WF. The main difficulty is the proof that WF is metabelian. The

crucial step in this proof is contained in the following lemma, where we shall

repeatedly make use of Lemma 1.

LEMMA 4. Let a, b, t, u be elements of a group G and let d be a positive

integer. Suppose that

[a\ bw] = 1 whenever v,we {('| i = 0,1, •••, d}

and that

[*,«] = 1.
In addition suppose that

a" = af, bu = bf

where

f= 1 + cit + ••• + ci.yf-1 + td

is a specific expression for an element in the group ring ZG. Then

[av,&w] = 1 whenever v,wegp(t).

PROOF. It follows easily from Lemma 1 that it suffices to prove that

[a",6w] = 1 whenever v,we{t*\i ^ 0}.

Suppose then that

(13) [a',fcw] = 1 whenever v,we {t'\ i = 0,1, •••,m + d}.

We proceed by induction on m. When m = 0 the relations (13) are part of the
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hypothesis. Let n be a positive integer and assume that (13) holds whenever

m < n. Then

1 = [a,b'~\ = [a,b'"Y = [a", ft"1"] = [a", ft1""]

since \t, u] = 1. But

a" = af and bu = bf.

It follows that

la', */<"] = 1.

Observe that af is a product of powers of elements of the form a'\i = 0,1, •••, d)

while b''" is itself a product of powers of elements of the form b' (i = n, n + 1,

•••,n + rf). Indeed on noting that

/ = l + c1f+--- + c<J_1('
(-1 + f<i

we find, on repeated application of Lemma 1 and the inductive assumption, that

(14) l = la',b"~] = la,ir+'l.

If we consider now the commutator [a'", b~] then it follows in precisely the same

way that

(15) {atn+\ 6] = 1.

Putting the inductive hypothesis together with (14) and (15) yields

This completes the inductive step and with it the proof of the lemma.

We make use now of Lemma 4 to prove

LEMMA 5. The finitely presented group WF is metabelian.

PROOF. Let M be the normal closure of aua2,---,ar in WF, i.e. the least

normal subgroup of WF containing alt a2,--- ar. Now it follows from the definition

(8) of X and the defining relation (10) that WF/M is abelian. So it suffices to prove

that M is abelian.

It follows from (10) that M is generated by the elements

So we have to prove that the elements in (16) commute. The elements tt commute

with the elements Uj (by (10)) and

aV = a{',
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where /,- is a polynomial in tj (by (12)). It follows from these remarks and (i) of

Lemma 1 that in order to prove that the elements in (16) commute it is enough

to prove that the elements

commute. Finally we observe that in order to prove that the elements in (17)

commute, we need only prove, making use of the commutativity of the elements

h> h> "•>'/ and 0) of Lemma 1, that the elements

fflj(l ^i^r, ve{t{w- ff(I)|«(l),a(2), -,a(fc) non-negative integers

commute. In fact (18) follows easily by a repeated application of Lemma 4.

Indeed, in view of the defining relations (10) and (11) of WF, Lemma 4 can be first

applied to show the elements

fl?(l ̂  i ^ r, ve{tlw-t?k)\<x(\) any integer, 0 ^ a(i) g d,

(i = 2,-,fc) 0 < a(i) < e, (i = k + l , - , 0 »

commute. We emphasise that here the first exponent <x(l) is allowed to range over

all the integers, but that the other exponents are still restricted. However on

applying Lemma 4 k — 1 more times it follows that all of the elements in (18)

commute, as required. This completes the proof of Lemma 5.

7. Embedding wreath products in finitely presented groups

Let W = Aj T and WF be the groups defined in the preceding section.

Furthermore let B be the base group of W and let iVbea normal subgroup of W

contained in B. B IN is an abelian normal subgroup of W/N and as such may be

viewed as an R( = ZT)-module. It is therefore convenient to put M = B/N and

to think of M as an additive abelian group. Notice that W/N is a split extension

of M by (a group isomorphic to) T:

(19) WjN = M- T, TnM = 1.

Assume now that for each ft e F

(20) mfi = 0 only if m = 0 (meM).

We shall construct a group E containing W/N by using the ideas introduced in

§6. In particular this will enable us to prove that W is embedded in WF. To this

end let S be the multiplicatively closed set generated by F U {1}. Now S contains
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no zero divisors of R. So R is embedded in RS'1 and the elements / i , / 2 , ••-,/*

are invertible in RS'l (see §4). It follows from (20) that if m e M and seS, then

ms = 0 only if m = 0.

So if we think of the RS'1 module MS'1 simply as an K-module, the ^-module

M is embedded in MS"1.

Let us now put

V = gP{TJ,,-,!,)

and form the split extension E of MS'1 by V. E then consists of the pairs (v, m)

(veV, m E M S " 1 ) with multiplication defined by

(v,m) (v',m') = (vv',mv' + m') (v,v'eV, m,m'eM).

It follows from the fact that WIN is a split extension of M by T (see (19)) and the

fact that M, qua .R-module, is embedded in MS'1 qua R-module, that WjN is

embedded in E.

Let us now put

a', = (l,a^), *,'=(*„<>), «,'=(/„<>)

(where we have used 0 in place of the zero element N of M(!)). It follows from

the very definition of E that the defining relations for W* = WF, viz. (9), (10),

(11), (12), hold also when at, tt, ut are replaced by a[, t\, and «,' respectively. There-

fore the mapping of X (see (8)) into E defined by

a,¥+a'b U^tl,

determines a homomorphism, say \ji, of W* onto E. We are now in a position to

prove

LEMMA 6. W is embedded in WF.

PROOF. Suppose that N = 1. Then the condition (20) is certainly satisfied

because M is a free jR-module in this case. Therefore the subgroup of WF generated

by au a2, •••,ar, tu t2, •••> t, is mapped by i/' onto an isomorphic copy of W (because

W is embedded in £). On the other hand, there is a homomorphism tj/' of W onto

the above subgroup of WF, since by Lemma 6, the elements given in (17) commute,

ensuring that the relations satisfied by a\,---,a'r, t[,•••,(,' are correspondingly

satisfied by alt •••, ar, tu»-, tt (thought of as elements of WF). But it follows readily

that il/'i// is the identity on W. Therefore i]/' induces an injection of Winto WF, as

desired.

This completes the second part of the proof. We shall return to the group E

and the normal subgroup JV of W in § 9 when the proof of the theorem itself is

completed.
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8. An explicit embedding of a free metabelian group in a finitely presented

metablian group

It is perhaps worth extracting an explicit embedding of the wreath product

of two free abelian groups in a finitely presented metabelian group in order to

obtain an explicit embedding of a free metabelian group in a finitely presented

metabelian group. To this end let T be a free abelian group of rank r on tu t2, •••, tr

(i.e., here k = r) and let

F = {A = 1 + tuf2 = 1 + h,-Jr = 1 + *,}.

Then WF is a 3r-generator group on ay,---,ar, tu---,tr, uu---,ur subject to the

defining relations

r K uj] = \tb tj] = [*,, Uj] = K «7] = i

(21) ^

L
and

(22) a j ' =

By Magnus' theorem (Lemma 1) it follows that gp{a1t1, a2t2,--- ,artr) is a free

metabelian group of rank r. So we have the following corollary of Lemma 6 viz.

COROLLARY 1. The finitely presented metabelian group with generators

au---,ar, tu---,tr, uu---,ur subject to the finitely many defining relation (21)

and (22) contains a free metabelian group of rank r.

In particular if r = 2 we obtain the

COROLLARY 2. The free metabelian group of rank two can be embedded in

a 6-generator lA-relator metabelian group H. The generators of H may be

chosen to be

uuu2,tut2,aua2,

while the 74 defining relations in terms of these generators may be chosen as

[«1»«2] = [<1,'2] = [*I,«l] = [<1>«2] = I>2.«J = [*2.«2] = 1»

K , flj] = 1 (1 £ i, Jik2,v,y*e {ttXn)\ «(1), «(2) e {0,1}})
and

a
l ~

 a
l > "1 — "1 >

 a
2 ~

 a
2 J

 a
2 —

 fl
2

Actually Corollary 2 can be improved considerably by proceeding in an

analogous but more conservative manner. We record the outcome of the procedure,

omitting the details
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COROLLARY 2'. The free metabelian group of rank two can be embedded

in a 5-generator metabelian group H which can be defined by 12 defining

relations. The generators of H may be chosen to be

uu u2, fj, t7, a

while the 12 defining relations in terms of these generators may be taken to be

l_U1,U2] = [«!,<!] = [«2,f2] = [«i,f2] = E"2>'l] = 0l>'2]

= [a,a"l = la,a'^ = 1

[a, a"'2] = ia'\a^-] = 1

aUi = a1+n, aU2 = a 1 + ' 2 .

9. The third step in the proof

The construction of § 7 makes it easy to complete the proof of the main result

of this paper. In order to do so we need to invoke the following

LEMMA 7. Let M be a finitely generated ZT-module. If t is an element of

infinite order in T then there exists an

f = 1 + ctt H h c^if'1 + t*(s ^ 1) in ZT such that

mf = 0 only if m = 0 (meM) .

PROOF. We term a monic polynomial in t of degree at least 1 with constant

term 1 special. Let

Mx = {meM\mh = 0 for some special polynomial h}.

Now ZT is a commutative ring and the product of special polynomials is special.

It follows readily from these remarks that Mx is a submodule of M. Since T is a

finitely generated abelian group, ZT is a Noetherian ring. So M t is a finitely

generated module because M is (see e.g. Atiyah and Macdonald [5], Chapter 7).

Suppose Mx is generated by

z1,z2,--,zq (q < oo).

Since zieMl there is a special polynomial, say pt, such that Zjp, = 0. Put

P = PlP2"-Pq-

Remembering again that ZT is commutative it follows that

z,p = 0 (i = 1,2, -,q).

The polynomial p is special, since it is a product of special polynomials. It follows

immediately that
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f=l+pt
is also special.

Suppose now that meM and mf = 0. Then, by the very definition of M, ,

So mp = 0. Thus

0 = mf = m(l + pt) = m + mpt = m.

This completes the proof of Lemma 7.

We proceed now to the third step in the proof of the main theorem. Thus

suppose G is a finitely generated metabelian group. By Lemma 3 there exists a free

abelian group A of finite rank and a finitely generated abelian group T such that

G is isomorphic to a subgroup of W/N, where W = AiT and TV is a normal

subgroup of W contained in the base group B of W. As in §8 we put M = B jN, and

view it as an R( = ZT)-module. We now choose, by Lemma 7, a special polyno-

mial fi in f(0" = 1,2,—,k) such that

(23) mfi = 0 only if m = 0 (meM).

We then put

(24) F = {fuf2,- • , /*}.

This means that F satisfies the condition (20) in §7. Therefore we may proceed,

as in §7, to the construction of the group denoted E and the homomorphism \j/

(see §7). Now this homomorphism ^ maps WF = W* onto E. Hence £ is a

quotient of a finitely presented metabelian group and so is also finitely presented,

as we remarked already in §2. Since G is embedded in W/N and WIN is itself

embedded in E, G is embedded in the finitely presented metabelian group E. This

completes the proof of the theorem.

10. Some concluding remarks

Just how close is the connection between a finitely generated metabelian group

and the finitely presented metabelian groups that contain it, remains unclear.

However the methods of this paper seem likely to provide us with a great deal

more information about the complexity of finitely presented solvable groups.

In fact it follows that there exist finitely presented solvable groups which are not

residually finite. This answers a question that has apparently been open for some

time. The details will appear elsewhere.
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