SUBGROUPS OF $H N N$ GROUPS

Dedicated to the memory of Hanna Neumann

D. E. COHEN

(Received 14 June 1972)
Communicated by M. F. Newman

The purpose of this paper is to give a more precise form of Theorem 1 of [2], which gives a structure theorem for subgroups of $H N N$ groups; we prove the following.

Let H be a subgroup of the $H N N$ group $\left\langle A, x_{i} ; x_{i} U_{-i} x_{i}^{-1}=U_{i}\right\rangle$. Then H is an HNN group whose base is a tree product of groups $H \cap w A w^{-1}$ where w runs over a set of double coset representatives of (H, A); the amalgamated and associated subgroups are all of the form $H \cap v U_{i} v^{-1}$ for some v. We can be more precise about which subgroups occur and about the tree product. We will also obtain stronger forms of other results in [1] and [2].

The main technique is Serre's theory of groups acting on trees. This theory is an important new development in combinatorial group theory; in fact the theorem above follows immediately from Serre's work. As these results have not yet been published (they will appear as Springer Lecture Notes) the main results are stated in section 1 . The subgroup theorems are derived in section 2, and section 3 contains some results on finitely generated subgroups of $H N N$ groups and amalgamated free products.

1. Bass and Serre's theory

The usual meaning is given to the word 'graph', except that a graph may have several edges joining a pair of vertices and may have loops, i.e. edges whose vertices coincide. All graphs considered will be connected.

A graph of groups, (\mathscr{G}, Y) consists of:
(i) a graph Y,
(ii) for each vertex P and edge e of Y groups G_{P} and G_{e},
(iii) if P and Q are the vertices of the edge e, monomorphisms $G_{e} \rightarrow G_{P}$ and $G_{e} \rightarrow G_{Q}$ (if $P=Q$ we require two monomorphisms $G_{e} \rightarrow G_{P}$).

An isomorphism from the graph of groups (\mathscr{G}, Y) to the graph of groups (\mathscr{H}, X) consists of:
(i) an isomorphism from the graph Y to the graph X,
(ii) isomorphisms $G_{P} \rightarrow H_{P}$, and $G_{e} \rightarrow H_{e^{\prime}}$, where P is a vertex and e and edge of Y and P^{\prime} and e^{\prime} are their images in X; these isomorphisms must be such that

$$
G_{e} \rightarrow G_{P}
$$

if P is a vertex of e the diagram $\underset{H_{e^{\prime}} \rightarrow H_{p^{\prime}}}{\downarrow}$ commutes.
Let (\mathscr{G}, Y) be a graph of groups and T a maximal tree in Y. As we are only considering connected graphs, T contains all the vertices of Y. Let G_{T} be the tree product of the vertex groups G_{P} amalgamating for each edge e of T the two images of G_{e} in the corresponding vertex groups (for general information about tree products and $H N N$ groups see [1], [2]). Then G_{T} contains the groups G_{P} (up to isomorphism).

The fundamental group of (\mathscr{G}, Y) relative to T, written $\pi(\mathscr{G}, Y, T)$, is defined to be the $H N N$ group with base G_{T}, with free part having basis $\left\{t_{e}\right\}$ where e runs over the edges of Y not in T, and with the subgroups associated to t_{e} being the two images of G_{e}. Plainly if (\mathscr{G}, Y) is isomorphic to $\left(\mathscr{H}, Y^{\prime}\right)$ with T^{\prime} the tree in Y^{\prime} corresponding to T in Y, then $\pi(\mathscr{G}, Y, T)$ is isomorphic to $\pi\left(\mathscr{H}, Y^{\prime}, T^{\prime}\right)$. Also by replacing (\mathscr{G}, Y) by an isomorphic graph of groups over Y, we may assume that the groups G_{P} are subgroups of $\pi(\mathscr{G}, Y, T)$, that for e in T the maps $G_{e} \rightarrow G_{P}$ and $G_{e} \rightarrow G_{Q}$ are inclusions, while for e not in T one map $G_{e} \rightarrow G_{P}$ is an inclusion (the other map need not be an inclusion).

It can be shown that up to isomorphism $\pi(\mathscr{G}, Y, T)$ is independent of T. The proof is similar to the proof that the fundamental group of a graph Y may be obtained using any maximal tree. This latter is a special case of the general result, obtained by taking all the groups to be trivial.

Let a group G act on a graph X. We say G acts without inversions if (i) X has no loops
(ii) if the edge e has vertices P and Q and $g e=e$ then $g P=P$ and $g Q=Q$ (the alternative possibility $g P=Q$ and $g Q=P$ would be called an inversion).

Let G act without inversions on X. Let Y be the quotient graph, $p: X \rightarrow Y$ the projection and T a maximal tree in Y. It is not difficult to find a morphism of graphs $j: T \rightarrow Y$ such that $p j$ is the identity on T. If we have a tree $X_{1} \subseteq X$ containing one vertex from each G-orbit of vertices then $p: X_{1} \rightarrow Y$ is one-one and $p X_{1}$ will be a maximal tree of Y. We could then take $p X_{1}$ for T with j the inverse of p.

We shall define a graph of groups (\mathscr{G}, Y) which we refer to as associated to the action of G on X. This graph of groups will not be unique but is obviously unique up to isomorphism once T is chosen.

We begin by defining j on the edges of Y not in T (however the resulting map $j: Y \rightarrow X$ will not be a morphism of graphs). Let e be an edge of Y not in T with vertices P and Q. Take any edge \tilde{e} in X with vertices \widetilde{P} and \tilde{Q} such that $p \tilde{e}=e$,
$p \tilde{P}=P, p \tilde{Q}=Q$. As $p \widetilde{P}=p j P$ we can find $g \in G$ such that $g \widetilde{P}=j P$. Define $j e$ to be $g \tilde{e}$. Then $p j e=e$ and $j P$ is one vertex of $j e$. The other vertex will usually not be $j Q$.

For each vertex P and edge e of Y, let G_{P} be the stabiliser in G of the vertex $j P$ of X and G_{e} the stabiliser of the edge $j e$ of X. For e in T with vertices P and Q the maps $G_{e} \rightarrow G_{P}$ and $G_{e} \rightarrow G_{Q}$ are the inclusions. For e not in T with vertices P and Q such that $j P$ is a vertex of $j e$ the map $G_{e} \rightarrow G_{P}$ is the inclusion. Let \tilde{Q} be the other vertex of $j e$. Then we have $p \widetilde{Q}=p j Q$, so that there is an element g_{e} of G with $\tilde{Q}=g_{e}(j Q)$. Thus stab $j Q=g_{e}^{-1}(\operatorname{stab} \tilde{Q}) g_{e}$ and the map $G_{e} \rightarrow G_{Q}$ is the composite of the inclusion $G_{e} \rightarrow \operatorname{stab} \tilde{Q}$ and conjugation. We have now defined (\mathscr{G}, Y).

The group $\pi(\mathscr{G}, Y, T)$ is generated by the groups G_{P} and symbols t_{e} for each edge of Y not in T with relations $t_{e} H_{e} t_{e}{ }^{-1}=G_{e}$, where H_{e} is the image of G_{e} in G_{Q}. Hence we have a homomorphism $\pi(\mathscr{G}, Y, T) \rightarrow G$ mapping G_{P} by inclusion and sending t_{e} to g_{e}.

Theorem 1. (Serre [4]) The above homomorphism is an isomorphism if and only if X is a tree.

Theorem 2. (Serre [4]) Let (\mathscr{G}, Y) be a graph of groups with fundamental group π (relative to some tree T). Then there is a tree \tilde{Y} on which π acts without inversions such that the associated graph of groups is isomorphic to (\mathcal{G}, Y).

It is not difficult to see what \tilde{Y} must be. We may assume that each G_{P} is a subgroup of π, that the maps $G_{e} \rightarrow G_{P}$ and $G_{e} \rightarrow G_{Q}$ are inclusions for e in T, and that $G_{e} \rightarrow G_{P}$ is an inclusion for e not in T. Since there is a π-orbit of vertices above each vertex P of Y and one vertex in this orbit has stabiliser G_{P} we can take as the vertices of \tilde{Y} the cosets $g G_{P}$ of G_{P} in π, where P ranges over the vertices of Y (if $G_{P}=G_{Q}$ for $P \neq Q$ then $g G_{P}$ and $g G_{Q}$ are to be different vertices of \tilde{Y}). Similarly the edges of \tilde{Y} may be taken as the indexed cosets $g G_{e}$ where e ranges over all edges of Y. For e in T with vertices P and Q the vertices of $g G_{e}$ are $g G_{P}$ and $g G_{Q}$. For e not in T with vertices P and Q where $G_{e} \rightarrow G_{P}$ is inclusion the vertices of $g G_{e}$ are $g G_{P}$ and $g t_{e} G_{Q}$. It is straightforward to see that this definition of the vertices of an edge is unambiguous so that we have a (possibly not connected) graph \tilde{Y} on which π acts without inversions, the associated graph of groups being (\mathscr{G}, Y). The problems are to show that \widetilde{Y} is connected (which is not difficult) and then to show \tilde{Y} is a tree. The latter is a consequence of the normal form for tree products and $H N N$ groups.

2. Subgroup theorems

Let $G=A_{U}^{*} B$. Then G is the fundamental group of the graph of groups $A-\frac{}{U} B$. Hence G acts without inversion on a graph X whose vertices are the cosets $g A$ and $g B$ of A and B in G and whose edges are the cosets $g U$, where the
vertices of $g U$ are $g A$ and $g B$. It is easy to see directly that X is a tree; this also follows from the general theory. G acts transitively on the edges, while there are two transitivity classes of vertices.

Let H be a subgroup of G. We shall construct a set $\left\{D_{\alpha}\right\}$ of double coset representatives for (H, A) in G, a set $\left\{D_{\beta}\right\}$ of double coset representatives of (H, B) in G, and for every α a set $\left\{E_{u}\right\}$ of double coset representatives of $\left(D_{\alpha}^{-1} H D_{\alpha} \cap A, U\right)$ in A and for every β a set $\left\{E_{v}\right\}$ of double coset representatives of ($D_{\beta}^{-1} H D_{\beta} \cap B, U$) in B.

Given D_{α} the set $\left\{E_{u}\right\}$ must contain 1 but otherwise can be any set of double coset representatives of $\left(D_{\alpha}^{-1} H D_{\alpha} \cap A, U\right)$ in A. Similarly for $\left\{E_{v}\right\}$ given D_{β}. We define the representatives for the double cosets $H w A$ and $H w B$ by induction on the length of the double coset (i.e. the length of the shortest element in the coset). The only double cosets of length 0 are $H A$ and $H B$, for each of which we choose the representative 1. Let $H w A$ have length r and suppose representatives have been chosen for all double cosets of length less than r. We may assume w has length r, and can write $w=w^{\prime} b$ for some $b \in B$ and w^{\prime} of length $r-1$. Let D_{β} be the representative of $H w^{\prime} B=H w B$. We can find a unique element E_{v} of the set associated with D_{β} and an element $u \in U$ such that $w \in H D_{\beta} E_{v} u$. Then $H w A$ $=H D_{\beta} E_{v} A$ and we choose $D_{\beta} E_{v}$ as the representative of $H w A$. Similarly for (H, B) double cosets.

This collection of double coset representatives $\left\{D_{\alpha}\right\},\left\{D_{\beta}\right\}$ and the associated collections $\left\{E_{u}\right\},\left\{E_{v}\right\}$ will be called a semi-cress, since it is a weaker form of the cress defined in [1]. Note that the collection $\left\{D_{\beta} E_{v}\right\}$ over all β and associated v forms a set of double coset representatives of (H, U) in G.

The set X_{1} of all vertices $D_{\alpha} A, D_{\beta} B$ plainly contains one vertex from each H-orbit of vertices of X. Also X_{1} is connected (and hence is a tree as X is a tree) since by construction any vertex $D_{\alpha} A$ with $D_{\alpha} \neq 1$ is joined to some vertex $D_{\beta} B$ with D_{β} shorter than D_{α} by an edge $D_{\beta} E_{v} U$, whence inductively $D_{\alpha} A$ will be joined to A by a path in X_{1}.

The set of edges $D_{\beta} E_{v} U$ contains exactly one edge from each H-orbit of edges and $D_{\beta} E_{\nu} U$ has at least one vertex, namely $D_{\beta} B$, in X_{1}. Given D_{β} and a corresponding E_{v} there exists a unique D_{a}, corresponding E_{u} and element P in U such that $D_{\beta} E_{v} \in H D_{\alpha} E_{u} P$. Let $t_{\beta v}$ denote $D_{\beta} E_{v}\left(D_{\alpha} E_{u} P\right)^{-1} \in H$.

If $E_{v}=1$, by construction we have D_{α} and E_{u} with $D_{\beta}=D_{\alpha} E_{u}$ so $t_{\beta_{v}}=1$. Suppose $E_{v} \neq 1$ and $t_{\beta v}=1$ so $D_{\beta} E_{v}=D_{\alpha} E_{u} P$ and $D_{\beta} E_{v} \in D_{\alpha} A$. Since, by construction D_{β} ends in $A-U$ and D_{α} in $B-U$ (unless they equal 1) while $E_{v} \in B-U$, if we have $D_{\beta} E_{v} \in D_{\alpha} A$ we must have $D_{\beta} E_{v} \in D_{\alpha} U$. It is then clear from the construction that $D_{\alpha}=D_{\beta} E_{v}$ since $D_{\alpha} \in D_{\beta} B$. We will then have $t_{\beta v}=1$.

We now have the group H acting without inversions on the graph X, and have obtained a tree $X_{1} \subseteq X$ which contains exactly one vertex from each H-orbit and have also obtained a set of edges, one on each H-orbit and each with one vertex in X_{1}. We can now apply Theorem 1 to see that H is isomorphic to the fundamental
group of a graph of groups whose construction is easy. Since the H-stabiliser of a vertex $g A$ is $H \cap g A g^{-1}$ we can read off the following theorem, which is a slight generalisation of theorem 5 of [1] (since our coset system is more general than that in [1]).

Theorem 3. Let H be a subgroup of $A_{U}^{*} B$. Construct a semi-cress as above, and let $t_{\beta v}$ be the associated elements of H. Then H is generated by all $t_{\beta v}$ together with all the subgroups $H \cap D_{\alpha} A D_{\alpha}^{-1}$ and $H \cap D_{\beta} B D_{\beta}^{-1}$. Further, (1) those $t_{\beta v} \neq 1$ (which correspond to those β and associated v such that $D_{\beta} E_{v}$ is not a coset representative) form a basis of a free subgroup of H;
(2) the group K generated by all $H \cap D_{\alpha} A D_{\alpha}^{-1}$ and $H \cap D_{\beta} B D_{\beta}^{-1}$ is the tree product of these groups, two such groups being adjacent if $D_{\alpha}=D_{\beta}=1$ or if $D_{\alpha}=D_{\beta} b$ or $D_{\beta}=D_{\alpha} a$ for some $a \in A$ or $b \in B$: the subgroup amalgamated between two adjacent groups is $H \cap D U D^{-1}$ where D is the longer of D_{α} and D_{β}; (3) H isthe $H N N \operatorname{lroup}\left\langle K, t_{\beta v} ; t_{\beta v}\left(H \cap D_{\alpha} E_{u} U E_{u}^{-1} D_{\alpha}^{-1}\right) t_{\beta v}^{-1}=H \cap D_{\beta} E_{v} U E_{v}^{-1} D_{\beta}^{-1}\right\rangle$ where in this expression we take all $t_{\beta v} \neq 1$ and the corresponding D_{a}, E_{u}.

We now proceed to give a similar analysis for $H N N$ groups.
Let G be the $H N N$ group $\left\langle A, x_{i} ; x_{i} U_{-i} x_{i}^{-1}=U_{i}\right\rangle$. Then every element of G has a normal form $a_{1} x_{i_{1}}^{\varepsilon_{1}} \cdots a_{n} x_{i_{n}}^{\varepsilon_{n}} a_{n+1}$ where $\varepsilon_{r}= \pm 1, a_{r} \in A$ and if $i_{r-1}=i_{r}$ with $\varepsilon_{r-1}=-\varepsilon_{r}$ then $a_{r} \notin U_{\varepsilon_{r} i_{r}}$. This normal form is not unique; we can replace a_{1}, \cdots, a_{n+1} by b_{1}, \cdots, b_{n+1} where $b_{1}=a_{1} u_{1}, b_{2}=v_{1}^{-1} a_{2} u_{2}, \cdots$ where $u_{r} \in U_{\varepsilon_{r i r}}$ and $x_{i_{r}}^{\varepsilon} v_{r}=u_{r} x_{i_{r}}^{\varepsilon}$. In particular the integer n is uniquely determined and will be called the length of the element.
G is the fundamental group of a graph of groups with one vertex only and with one edge (which is a loop) for each i. Thus G acts without inversions on a graph X whose vertices are the cosets $g A$ and whose edges are the cosets $g U_{i}$. There is one transitivity class of vertices, for each i the edges $g U_{i}$ form a transitivity class, and $g U_{i}$ joins $g A$ and $g x_{i} A$. Using the normal form (or general theory) X is easily seen to be a tree. If we call the vertices $g A$ and $g x_{i} A$ of $g U_{i}$ the initial and final vertices respectively it is clear that the action of G sends the initial and final vertices of an edge to the initial and final vertices respectively of the image edge.

Let H be a subgroup of G. We shall construct a set $\left\{D_{\alpha}\right\}$ of double coset representatives of (H, A) in G and for every α and i sets $\left\{E_{i u}\right\}$ and $\left\{E_{l v}\right\}$ of double coset representatives of $\left(D_{\alpha}^{-1} H D_{\alpha} \cap A, U_{i}\right)$ and of ($\left.D_{\alpha}^{-1} H D_{\alpha} \cap A, U_{-i}\right)$ respectively in A. The systems $\left\{E_{i u}\right\}$ and $\left\{E_{i v}\right\}$ must each contain 1 but are otherwise arbitrary. We define the representative of the double coset $H w A$ by induction on the length of the double coset. The only double coset of length 0 is $H A$ for which we choose the representative 1 . Let $H w A$ have length r and suppose that representatives have been chosen for all double cosets of length less thait r. We may assume w has length r, and can assume $w=w^{\prime} x_{i}^{ \pm 1}$. Let D_{β} be the representative of $H w^{\prime} A$. If $w=w^{\prime} x$ take the unique element $E_{i u}$ associated with D_{β} and element $u \in U_{i}$ such
that $w^{\prime} \in H D_{\beta} E_{u} u$. Then $H w A=H w^{\prime} x_{i} A=H D_{\beta} E_{i u} u x_{i} A=H D_{\beta} E_{i u} x_{i} A$, since $u x_{i}=x_{i} v$ for some $v \in U_{-i}$; we take $D_{\beta} E_{u} x_{i}$ as the representative of $H w A_{i}$. If $w=w^{\prime} x_{i}^{-1}$, we similarly obtain a representative $D_{\beta} E_{v} x_{i}^{-1}$ for $H w A$.

The collection of double coset representatives $\left\{D_{\alpha}\right\}$ and the associated collections $\left\{E_{i u}\right\}$ and $\left\{E_{i v}\right\}$ will again be called a semi-cress. The collection $\left\{D_{x} E_{i u}\right\}$ over all α and all associated u forms a set of double coset representatives of $\left(H, U_{i}\right)$ in G.

The set X_{1} of all vertices $D_{x} A$ plainly contains one vertex from each H-orbit of vertices of X. Also X_{1} is connected since by construction any vertex $D_{\alpha} A$ with $D_{\alpha} \neq 1$ is joined to a vertex $D_{\beta} A$ with D_{β} shorter than D_{α} by an edge $D_{\beta} E_{i u} U_{i}$ or by an edge $D_{\beta} E_{i v} x_{i}^{-1} U$, whence inductively $D_{\alpha} A$ will be joined to A by a path in X_{1}.

The set of edges $D_{x} E_{u} U_{i}$ contains exactly one edge from each H-orbit of edges labelled i, and $D_{\alpha} E_{i u} U_{i}$ has its initial vertex $D_{\alpha} A$ in X_{1}. Given D_{α} and corresponding $E_{i u}$ there exists a unique D_{β}, corresponding $E_{i v}$ and element $P \in U_{-i}$ such that $D_{\alpha} E_{i u} x_{i} \in H D_{\beta} E_{i v} P$. Let $t_{\alpha i u}$ denote $D_{\alpha} E_{i u} x_{i}\left(D_{\beta} E_{i v} P\right)^{-1} \in H$.

If $t_{\text {aiu }}=1$, we get $D_{\alpha} E_{i u} x_{i} \in D_{\beta} A$. Suppose $D_{\alpha} E_{i u} x_{i} \in D_{\beta} A$. As D_{β} ends iT $x_{j}^{ \pm 1}$ while $D_{\alpha} E_{i u} x_{i}$ ends in x_{i} unless $E_{i u}=1$ and D_{α} ends in x_{i}^{-1} we see that $D_{\beta} \in D_{\alpha} E_{i u} x_{i} U_{-i}$ unless $E_{i u}=1$ and D_{α} ends in x_{i}^{-1}. From the construction it is now clear that $D_{\beta}=D_{\alpha} E_{i u} x_{i}$ so that $t_{\alpha i u}=1$. If $E_{i u}=1$ and D_{α} ends in x_{i}^{-1}, $D_{\alpha} E_{i u} x_{i} \in D_{\beta} A$ gives, from the construction, $D_{\alpha}=D_{\beta} E_{i v} x_{i}^{-1}$ and so $t_{\alpha i u}=1$.

We now have the group H acting without inversions on the graph X, and have obtained a tree $X_{1} \subseteq X$ which contains exactly one vertex from each H orbit and have also obtained a set of edges, one in each H-orbit and each with initial vertex in X_{1}. We can now apply theorem 1 to see that H is isomorphic to the fundamental group of a graph of groups whose construction is easy. Since the H-stabiliser of a vertex $g A$ is $H \cap g A g^{-1}$, we obtain the following theorem, which is a significant generalisation of theorem 1 of [2].

Theorem 4. Let H be a subgroup of $\left\langle A, x_{i} ; x_{i} U_{-i} x_{i}^{-1}=U_{i}\right\rangle$. Construct a semi-cress as above, and let $t_{\alpha i u}$ be the associated elements of H. Then H is generated by all $t_{\alpha i u}$ together with all the subgroups $H \cap D_{\alpha} A D_{\alpha}^{-1}$. Further (1) those $t_{\alpha i u} \neq 1$ (which correspond to those α and associated u such that $D_{\alpha} E_{i u} x_{i}$ is not a D_{β} and where $E_{i u}=1$ is omitted if D_{α} ends in x_{i}^{-1}) form a basis of a free subgroup of H;
(2) the group K generated by all $H \cap D_{\alpha} A D_{\alpha}^{-1}$ is the tree product of these groups, two such groups corresponding to D_{α} and D_{β}, with D_{β} shorter than D_{α}, being adjacent if $D_{\alpha}=D_{\beta} E_{i u} x_{i}$ or $D_{\alpha}=D_{\beta} E_{i v} x_{i}^{-1}$, the subgroup amalgamated between these two being $H \cap D_{\alpha} U_{-i} D_{\alpha}^{-1}$ or $H \cap D_{\alpha} U_{i} D_{\alpha}^{-1}$ respectively;
(3) H is the HNN group

$$
\left\langle K, t_{\alpha i u} ; t_{\alpha i u}\left(H \cap D_{\beta} E_{i v} U_{-i} E_{i v}^{-1} D_{\beta}^{-1}\right) t_{\alpha i u}^{-1}=H \cap D_{\alpha} E_{i u} U_{i} E_{i u}^{-1} D_{\alpha}^{-1}\right\rangle
$$

where in this expression we take all $t_{\alpha i u} \neq 1$ and the associated $D_{\beta}, E_{i v}$.

3. Finitely generated subgroups

Let $G=A_{U}^{*} B$ and let $A_{1} \subseteq A, B_{1} \subseteq B$ with $A_{1} \cap U=B_{1} \cap U=U_{1}$. Then $\left\langle A_{1}, B_{1}\right\rangle=A_{1}{ }^{*}{ }_{U_{1}} B_{1}$ and $\left\langle A_{1}, B_{1}\right\rangle \cap A=A_{1}$. It follows that if G and U are finitely generated so are A and B, by taking A_{1} to be generated by the elements of A occurring in normal forms of the finitely many generators of G and the generators of U, and similarly for B_{1} so that $G=\left\langle A_{1}, B_{1}\right\rangle$. Similar results hold for $H N N$ groups, either by direct use of the normal form or by embedding an $H N N$ group in an amalgamated free product.

Let X be a tree, O a vertex of X. Let e be an edge with vertices P and Q. Then exactly one of the paths from O to P and from O to Q will contain e. Orient e by defining P to be the final vertex if the path from O to P contains e. We call this orientation of X the orientation outwards from O. Plainly for $P \neq O$ there is exactly one edge whose final vertex is P; we will denote it by e_{P}. If X_{1} is a subtree of X containing O then $P \in X_{1}$ implies $e_{P} \in X_{1}$, since e_{P} must be in the path in X_{1} from O to P. Any path in X is of the form P_{0}, \cdots, P_{n} where for some r, $0 \leqq r \leqq n$, the edge joining P_{i-1} and P_{i} is oriented from P_{i} to P_{i-1} for $i \leqq r$ and from P_{i-1} to P_{i} for $i>r$. If P_{0}, \cdots, P_{n} is a path in a subtree X_{1} containing O with each edge directed from P_{i} to P_{i-1} and $P_{0} \in X_{1}$ then $P_{i} \in X_{1}$ for all i.

For the remainder of this section we let G be a group acting without inversions on a tree X. The symbols Y, T, p, j will have the same meaning as in section 1 . We will orient X outwards from a vertex O in $j T$.

An element $g \in G$ will be called negative for an edge e if e is oriented from P to Q but $g e$ oriented from $g Q$ to $g P$. A G-orbit of edges will be called reversing if for some (and then for every) edge e in the orbit $\exists g$ negative for e. (If G is a subgroup of $A_{U}^{*} B$ and X is the standard tree for $A_{U}^{*} B$ reversing orbits correspond to double-ended cosets $G w U$.)

Lemma 1. There are finitely many reversing orbits if and only if
(i) there are finitely many edges of Y not in T and
(ii) there are finitely many vertices P of $j T$ for which $\operatorname{stab} P \neq \operatorname{stab} e_{P}$.

Proof. In an orbit above an edge not in T there will be an edge e from P to Q with $P \in j T$ and $Q \notin j T$. There will be $g \in G$ with $g Q \in j T$ and then $g P \notin j T$. Then e is oriented from P to Q and $g e$ from $g Q$ to $g P$, so the orbit is reversing.

If P is a vertex of $j T$ with $\operatorname{stab} P \neq \operatorname{stab} e_{P}$, then plainly any element of stab P not in stab e_{P} is negative for e_{P}. Also for P, Q distinct vertices of $j T$, as all vertices of e_{P} and e_{Q} are in $j T$ and distinct vertices of $j T$ are in different G-orbits, we see that e_{P} and e_{Q} are in different G-orbits.

Hence (i) and (ii) hold if there are only finitely many reversing orbits.
Suppose (i) and (ii) hold. Let X_{1} be a finite subtree of $j T$ containing O, all
the vertices P of $j T$ with stab $P \neq \operatorname{stab} e_{P}$, and all vertices $j Q$ with Q a vertex of an edge of Y not in T. We show that any reversing orbit either lies above an edge of Y not in T or meets X_{1}.

Take a reversing orbit lying above an edge in T. Take an edge e in this orbit and in $j T$, and let g be negative for e. Let the path from e to $g e$ be P_{0}, \cdots, P_{n}.

Suppose first that every edge is oriented from P_{i-1} to P_{i}. As $P_{n}=g P_{0}$ we have $P_{n} \notin j T$. Take k with $P_{0}, \cdots, P_{k} \in j T$ but $P_{k+1} \notin j T$. If the edge $P_{k} P_{k+1}$ maps to an edge not in T then $P_{k} \in X_{1}$ by our choice of X_{1}. Our general remarks about orientation then show that $e=e_{P_{1}} \in X_{1}$. If the edge $P_{k} P_{k+1}$ maps to an edge in $T, \exists h \in G$ with $h\left(P_{k} P_{k+1}\right) \in j T$, and we must have $h P_{k}=P_{k}$ since $j T$ contains only one vertex in each orbit. If $h\left(P_{k} P_{k+1}\right)=e_{P_{k}}$ then $P_{k} \in X_{1}$ and as before $e \in X_{1}$. Otherwise the path joining e to hge will be $P_{0}, \cdots, P_{k}=h P_{k}, h P_{k+1}, \cdots, h P_{n}$ and $h g P_{0}=h P_{n}$. Induction on $n-k$ now gives the result.

Now suppose that for some r with $0<r \leqq n$ the edge joining P_{i-1} and P_{i} is oriented from P_{i} to P_{i-1} for $i \leqq r$ and from P_{i-1} to P_{i} for $i>r$. We cannot have $r=n$ as that would give $P_{n} \in j T$ although $P_{n}=g P_{0}$.

So we may take $r<n$. Since g is negative for e, we must have $g P_{0}=P_{n-1}$, $g P_{1}=P_{n}$. If $P_{0} \in X_{1}$ we have $e \in X_{1}$. If $P_{0} \notin X_{1}$ the edge from $P_{0}=g^{-1} P_{n-1}$ to $g^{-1} P_{n-2}$ must lie above an edge in T. As before $\exists h \in G$ such that h maps this edge to an edge in $j T$ and with $h P_{0}=P_{0}$. Let $P_{-1}=h g^{-1} P_{n-2}$. As $P_{0} \notin X_{1}$ we have $\operatorname{stab} P_{0}=\operatorname{stab} e_{P_{0}}$. Thus the edge joining P_{0} to P_{-1} is oriented from P_{0} to P_{-1} since $g^{-1} P_{n-2} \neq P_{1}=g^{-1} P_{n}$. Then we have a path $P_{-1}, P_{0}, \cdots, P_{n-1}$ with $P_{-1} \in j T$, the edge joining P_{0} and P_{-1} oriented from P_{0} to P_{-1} and with P_{n-1} $=g h^{-1} P_{0}$ and $P_{n-2}=g h^{-1} P_{-1}$. By induction on $n-r$ we may assume $P_{-1} \in X_{1}$ and can then deduce $P_{0} \in X_{1}$ and so $e \in X_{1}$, as required.

Lemma 2. Let G be finitely generated. Then G has finitely many reversing orbits. If, in addition, each edge has finitely generated stabiliser then each vertex has finitely generated stabiliser. Conversely, if G has finitely many reversing orbits and each vertex has finitely generated stabiliser then G is finitely generated.

Proof. G has the free group with basis $\left\{t_{e}, e\right.$ an edge of Y not in $\left.T\right\}$ as homomorphic image. Hence there are only finitely many edges not in T if G is finitely generated. The finitely many generators of G will involve the t_{e} and elements from the stabilisers of finitely many vertices P. Let X_{1} be a finite subtree of $j T$ containing O, these vertices, and $j Q$ for all vertices Q of an edge not in T. It follows that G, which is an $H N N$ group with free part $\left\langle t_{e}\right\rangle$ and base group the tree product over $j T$ of stab P is equal to its subgroup which has for base group the tree product over X_{1} only. This requires that the tree products over $j T$ and X_{1} are the same, and by induction over the distance of P from 0 we see that $\operatorname{stab} P=\operatorname{stab} e_{P}$ for $P \notin X_{1}$. The result now follows from Lemma 1.

If, in addition, every edge has finitely generated stabiliser, then, by induction on the number of edges not in T and the number of vertices in X_{1}, we see first that the tree product over X_{1} is finitely generated, and then that stab P is finitely generated for $P \in X_{1}$. Then stab P is finitely generated for $P \in j T$ (since stab P $=\operatorname{stab} e_{P}$ for $P \in j T, P \notin X_{1}$) and any vertex has stabiliser conjugate to stab P for some $P \in j T$.

By lemma 1 , if G has finitely many reversing orbits, the free part of G is finitely generated and the base group is the tree product over a finite subtree of $j T$ of the goups stab P. So G will be finitely generated if it has finitely many reversing orbits and each vertex has finitely generated stabiliser.

We say the group A has the finitely generated intersection property (f.g.i.p.) if the intersection of two finitely generated subgroups of A is finitely generated.

Theorem 5. The group $A^{*}{ }_{U} B$ has f.g.i.p. if A and B have f.g.i.p. and U is finite.

THEOREM 6. The HNN group $\left\langle A, t_{i} ; t_{i} V_{i} t_{i}^{-1}=U_{i}\right\rangle$ has f.g.i.p. if A has f.g.i.p. and each U_{i} is finite.

Theorem 5, which is proved in [1], and theorem 6, which improves on a theorem in [2], are special cases of the next theorem.

Theorem 7. Let G act without inversions on a tree X. If the stabiliser of each vertex has f.g.i.p. and the stabiliser of each edge is finite then G has f.g.i.p.

Proof. Let H and K be finitely generated subgroups of G. By Lemma 2, there are finitely many reversing H-orbits and finitely many reversing K-orbits, and for any vertex P both $H \cap$ stab P and $K \cap$ stab P are finitely generated. As stab P has f.g.i.p. it follows that $H \cap K \cap \operatorname{stab} P$ is finitely generated for any vertex P. Hence it is enough to prove that there are only finitely many reversing $(H \cap K)$-orbits. Since such an orbit is in the intersection of a reversing H-orbit and a reversing K-orbit we need only prove that the intersection of an H-orbit and a K-orbit contains finitely many ($H \cap K$)-orbits.

Let the stabiliser of the edge e be U. Then $g e \in H e \cap K e$ if and only if $g \in H U \cap K U$. As U is finite $H U \cap K U$ is the intersection of finitely many cosets of H and K, and so consists of finitely many double cosets $(H \cap K) w U$, so that $g e$ lies in the $(H \cap K)$-orbit of one of finitely many edges we.

The next lemma will enable us to prove some results on subnormal subgroups.
Lemma 3. Let G act without inversions on a tree X. Let e be an edge such that $\{g e ; g$ negative for $e\}$ is infinite. If $h \in G$ stabilises no vertex, then $\exists k \in G$ such that $\left\{g e ; g\right.$ negative for e and g a power of $\left.k^{-1} h k\right\}$ is infinite.

Proof. Let e be oriented from P_{0} to P_{1}. Suppose first that the path from e to he begins with P_{1}, P_{0}. Choose k so that $k e$ is oriented from $k P_{1}$ to $k P_{0}$ and
so that the paths from e to $k e$ and from he to $k e$ both end with $k P_{1}, k P_{0}$. This is possible since we need only choose k negative for e and such that $k e$ is not on the paths joining e and he to the origin O.

If the path from $k e$ to $h k e$ begins with $k P_{1}, k P_{0}$, then the path from he to $k e$ will be shorter than the path from he to $h k e$, and this has the same length as the path from e to $k e$. If the path from $k e$ to $h^{-1} k e$ begins with $k P_{1}, k P_{0}$, then the path from e to $k e$ will be shorter than the path from e to $h^{-1} k e$, and this has the same length as the path from he to $k e$. Hence (as $k e \neq h k e$, for h stabilises no vertex) either the path from ke to hke or the path from ke to $h^{-1} k e$ begins with $k P_{0}, k P_{1}$. Then either the path from e to $k^{-1} h k e$ or the path from e to $k^{-1} h^{-1} k e$ will begin with P_{0}, P_{1}.

It follows that (replacing h by $k^{-1} h k$ or by $k^{-1} h^{-1} k$ if necessary) we need only consider the case when the path from e to he begins with P_{0}, P_{1}.

Suppose this is so, and suppose that h is positive for e. Let the path from e to he be $P_{0}, P_{1}, \cdots, P_{m-1}=h P_{0}, P_{m}=h P_{1}$. We show inductively that, for any positive integer r, h^{r} is positive for e and that the path from e to $h^{r} e$ begins with P_{0}, P_{1}, and has $1+r(m-1)$ edges.

This is true for $r=1$. Suppose it is true for r, and let the path e to $h^{r} e$ be $P_{0}, P_{1}, \cdots, P_{r(m-1)}=h^{r} P_{0}, P_{1+r(m-1)}=h^{r} P_{1}$. Then the path from he to $h^{r+1} e$ is $h P_{0}, h P_{1}, \cdots, h P_{r(m-1)}, h P_{1+r(m-1)}$. Then the path from e to $h^{r+1} e$ will consist of the path from e to $h e$ (which ends with $h P_{0}, h P_{1}$) followed by the path from he to $h^{r+1} e$, as required.

The path from e to $h^{-r} e$ will be of length $1+r(m-1)$, being

$$
h^{-r} P_{1+r(m-1)}=P_{1}, h^{-r} P_{r(m-1)}=P_{0}, \cdots, h^{-r} P_{1}, h^{-r} P_{0}
$$

For large r this will be longer than the path from e to the origin, and so its last edge must be oriented from $h^{-r} P_{1}$ to $h^{-r} P_{0}$. Hence h^{-r} is negative for e if r is large, and the edges $h^{-r} e$ are distinct, being at different distances from e.

We are left with the case when h is negative for e, and the path from e to $h e$ begins with P_{0}, P_{1}. Let this path be $P_{0}, P_{1}, \cdots, P_{m-1}=h P_{1}, P_{m}=h P_{0}$. Then $\exists n, 1 \leqq n \leqq m$ with $h P_{i}=P_{m-i}$ for $i \leqq n$ but $h P_{n+1} \neq P_{m-n-1}$. We must have $n<m / 2$. For if $n \geqq m / 2$ we would have either $m=2 k, h P_{k}=P_{k}$ or $m=2 k+1$, $h P_{k}=P_{k+1}, h P_{k+1}=P_{k}$. The first is impossible as h stabilises no vertex, the second is impossible as G acts without inversions.

We show inductively that h^{r} is negative for e for any positive integer r and that the path from e to $h^{r} e$ has form $Q_{0}=P_{0}, Q_{1}=P_{1}, \cdots, Q_{n+1}=P_{n+1}, \cdots, Q_{s-1}$ $=h^{r} P_{1}, Q_{s}=h^{r} P_{0}$. This holds for $r=1$. Suppose it holds for some r. Then the path from he to $h^{r+1} e$ is $h Q_{0}=P_{m}, h Q_{1}=P_{m-1}, \cdots, h Q_{n}=P_{m-n}, h Q_{n+1}$ $\neq P_{m-n-1}, \cdots, h Q_{s-1}=h^{r+1} P_{1}, h Q_{s}=h^{r+1} P_{0}$. Hence the path from e to $h^{r+1} e$ will be $P_{0}, P_{1}, \cdots, P_{m-n}, h Q_{n+1}, h Q_{n+2}, \cdots, h^{r+1} P_{1}, h^{r+1} P_{0}$. As this path starts with P_{0}, P_{1}, all its edges are positively oriented, and in particular h^{r+1} is negative for e.

As $n<m / 2$, this completes the induction step. Also, as $n<m / 2$, the path from e to $h^{r+1} e$ is longer than the path from e to $h^{r} e$. Consequently the edges $h^{r} e$ are all distinct and h^{r} is negative for e for any positive integer r and the proof of the lemma is complete.

The next theorem generalises Theorem 10 of [1] and Theorem 9 of [2]. it can also be proved using the theory of ends (see [3]).

Theorem 8. Let G be either (i) $A^{*}{ }_{v} B$ or (ii) an $H N N$ group

$$
\left\langle A, x_{i} ; x_{i} V_{i} x_{i}^{-1}=U_{i}\right\rangle
$$

Let G_{r} be a subnormal subgroup of G such that in case (i) G_{r} is contained in no conjugate of A or B and in case (ii) G_{r} is contained in no conjugate of A. Let H be a finitely generated subgroup of G with $G_{r} \subseteq H$. Then in case (i) the double coset index of (H, U) in G is finite while in case (ii) the double coset index of $\left(H, U_{i}\right)$ in G is finite for each i.

Corollary 1. Let G be either $A_{U}^{*} B$ or the $H N N$ group $\left\langle A, x ; x V x^{-1}=U\right\rangle$, with U finite in either case. If the finitely generated subgroup H of G contains an infinite subnormal subgroup of G, then H has finite index in G.

Proofs. In either case let X be the tree constructed in section 2 . Orient X outwards from the vertex 1. A. In the first case we see that the edge $g U$ is oriented from $g A$ to $g B$ if the last syllable of g is in A, and is oriented from $g B$ to $g A$ if the last syllable of g is in B. In the second case we find that if $r>0$ the edge $x_{i}^{r} U_{i}$ is oriented from $x_{i}^{r} A$ to $x_{i}^{r+1} A$ while if $a \in A-V_{i}$ the edge $x_{i}^{r+1} a x_{i}^{-1} U_{i}$ which joins $x_{i}^{r+1} a x_{i}^{-1} A\left(\neq x_{i}^{r} A\right)$ to $x_{i}^{r+1} a x_{i}^{-1} x_{i} A=x_{i}^{r+1} A$ must be oriented from $x_{i}^{r+1} A$ to $x_{i}^{r+1} a x_{i}^{-1} A$ (since only one edge ends with $x_{i}^{r+1} A$). Similarly if $r>0$ the edge $x_{i}^{-r} U_{i}$ is oriented from $x_{i}^{-(r-1)} A$ to $x_{i}^{-r} A$ and if $a \in A-U_{i}$ the edge $x_{i}^{-r} a U_{i}\left(\neq x_{i}^{-r} U_{i}\right)$ which joins $x_{i}^{-r} a A=x_{i}^{-r} A$ to $x_{i}^{-r} a x_{i} A$ must be oriented from $x_{i}^{-r} A$ to $x_{i}^{-r} a x_{i} A$.

It follows that in case (i) we have $\{g e ; g$ negative for $e\}$ infinite for any edge e while in case (ii) we have $\{g e ; g$ negative for $e\}$ infinite for any edge e provided we do not have $e=g U_{i}$ where $U_{i}=A=V_{i}$.

Let $G_{r} \triangleleft G_{r-1} \triangleleft \cdots \triangleleft G_{0}=G$. As G_{r} is contained in no conjugate of A (or B) it contains an element h not in any conjugate of A (or B), and h stabilises no vertex of X.

Let e be an edge such that $\{g e ; g$ negative for $e\}$ is infinite. We show inductively that for $0 \leqq s \leqq r$ we have $\left\{g e ; g \in G_{s}\right.$ negative for $\left.e\right\}$ is infinite. This is true for $s=0$. Suppose it is true for some s. By Lemma $3 \exists k \in G_{s}$ such that $\{g e ; g$ negative for e, g a power of $\left.k^{-1} h k\right\}$ is infinite. Since $h \in G_{s+1} \triangleleft G_{s}$, we have $\left\{g e ; g \in G_{s+1}\right.$ negative for $\left.e\right\}$ is infinite.

In particular, the G_{r}-orbit of e will be reversing, and so the H-orbit of e will
be reversing. By Lemma $2, H$ has only finitely many reversing orbits since it is finitely generated.

Since the number of H-orbits containing an edge $g U_{1}$ fro some g (and fixed i) is the double coset index of $\left(H, U_{i}\right)$ in G, we have the result for those i such that we do not have $U_{i}=A=V_{i}$. (We also see that if there are infinitely many i for which we do not have $U_{i}=A=V_{i}$, then no such subgroup H can exist).

Plainly the result follows unless $U_{i}=A=V_{i}$ for all i. In this case $A \triangleleft G$ and G / A is free. Let $\alpha: G \rightarrow G / A$ be the natural homomorphism. Then the double coset index of (H, A) in G is the index $|\alpha G: \alpha H|$, and αH is a finitely generated subgroup of αG containing the non-trivial subnormal subgroup αG_{r}. If the free group αG has rank 1 then $|\alpha G: \alpha H|$ is obviously finite while if αG has rank greater than 1 it is a free product and the result follows as in the proof of the corollary (and is in fact well-known).

To prove the corollary (and the above statement) it is enough to show that if $G=A_{U}^{*} B$ any subnormal subgroup contained in a conjugate of A or B must be contained in a conjugate of U.

Let A_{1} be a subgroup of A. If $\exists g \in G$ with $g \notin A$ and $g^{-1} A_{1} g \leqq A$ it is easy to see A_{1} must be contained in a conjugate of U. Hence if A_{1} is contained in no conjugate of U its normaliser is contained in A, and we see, as required that A_{1} cannot be subnormal in G.

Added in proof
This also has been obtained by Karrass, Pietrowski and Solitar 'An improved subgroup theorem for HNN groups with some applications', Canadian Journal of Mathematics, 26 (1974), 214-224.

Added in proof

Serre informs me that he had obtained spacial cases of theorems 1 and the general forms being due to Bass. Accordingly, the results should be attributed to Bass and Serre rather than to Serre.

References

[1] A. Karrass and D. Solitar, 'The subgroups of a free product of two groups with an amalgamated subgroups', Trans. Amer. Math, Soc. 149 (1970), 227-255.
[2] A. Karrass and D. Soliar, 'Subgroups of $H N N$ groups and groups with one defining relations', Canadian J. Math. 23 (1971), 627-543.
[3] P. C. Oxley, Ends of groups and a related construction, (Ph. D. Thesis, Queen Mary College, 1972.)
[4] J. -P. Serre, Groupes discretes, (Springer Lecture Notes (to appear).)
Queen Mary College
University of London
Mile End Road
London EI, 4NS, England

