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Abstract

Each v-module B with B(5) = 0 is a direct sum of simply presented v-
modules and copies of two v-modules which come from (�nite) hung trees.
There are in�nite-rank indecomposable v-modules B with B(6) = 0.

1 Valuated modules

By a module we will mean a module over a �xed discrete valuation domain with
prime p. The reader is assumed to be familiar with the notion of a valuated module,
or v-module, which is a module B together with a �ltration B = B(0) � B(1) �
B(2) � � � � such that pB(n) � B(n+1). We need not consider arbitrary ordinal values
of n because we are interested in the case B(5) = 0. If x 2 B(n) and x =2 B(n + 1)
we write vx = n and say the value of x is n.
If B is a subgroup of a p5-bounded group G, then B is naturally a module over the

ring of integers localized at p, and the module B is �ltered by setting B(n) = B\pnG.
Classifying such subgroups, up to isomorphism of G, is equivalent to classifying the
associated v-modules, because bounded modules (with the �ltration B(n) = pnB)
are injective in the category of v-modules [5, Theorem 9].
We classify v-modules by writing them as direct sums. These direct sums must

respect values, that is, they must respect the �ltration: (A�B)(n) = A(n)�B(n).
The following lemma aids in verifying that a sum respects values.

Lemma 1 (respect value) If A and H are submodules of a torsion v-module, and
A \H = 0, then A�H respects values provided

(A�H)(n+ 1) = A(n+ 1)�H(n+ 1)

whenever n is an Ulm invariant of A.
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Proof. Contrapositively, we will show that if the equation fails for some n, then
it fails for some n that is an Ulm invariant of A. Suppose

v(a+ h) > va = n:

By induction on the order of a + h, we may assume that v(pa + ph) � vpa. So
vpa > n+ 1, whence n is an Ulm invariant of A.

Note that this lemma and its proof are valid for n any ordinal. We will also be
worried about respecting the height �ltration. The next lemma is a modi�cation of
[3, Theorem 1.3].

Lemma 2 (respect height) Let A be a reduced torsion submodule of a module B,
and K a submodule of B. If htB(a+ k) � htA a whenever a 2 A[p] and k 2 K, then

(A�K) \ pnB = pnA� (K \ pnB).

If, in addition, A is bounded, then B = A�H for some H � K.

Proof. Clearly the hypothesis implies that A \ K = 0. Suppose a + k 2 (A �
K) \ pnB. We want to show that a 2 pnA. By induction on the order of a, we have
pa 2 pn+1A. Let pa = pn+1a0, so a� pna0 2 A[p]. Then

a� pna0 + k 2 (A[p]�K) \ pnB

so a� pna0 2 pnA, by hypothesis. Thus a 2 pnA.
If A is bounded, then we can extend K to a complementary summand H of A

because algebraically compact modules, such as A, are injective in the category of
v-modules [5, Theorem 9].

We combine these two lemmas in one, which will be used frequently.

Lemma 3 Let A be a bounded submodule of a v-module B, and K a submodule of
B. Suppose

� B(m + 1) = A(m + 1) � K(m + 1) whenever m is an Ulm invariant of the
v-module A, and

� if a 2 A[p] and k 2 K, then htB(a+ k) � htA a.

Then B = A�H for some H � K.

Proof. Lemma 2 says that we can �nd H � K such that A \ H = 0 and
A+H = B. Lemma 1 says that A�H respects values.
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2 Finite valuated trees

By a tree we will mean a valuated tree with values in !. To �x notation and
terminology, consider the tree
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We denote this tree by 65(3(10)(2))(40). It is obtained by adjoining a node of value
6 as parent of the root of the tree 5(3(10)(2))(40). This tree, in turn is obtained by
adjoining a node of value 5 as the parent of the roots of the trees 3(10)(2) and 40.
And so on. A forest is a family of trees. A pole is a tree with no branching.
If x is a node in a tree, then px denotes the parent of x, if any. If pnx is the root

of the tree, then we say that the level of x is n, and write `(x) = n. A map of trees
is a function f such that

� f(px) = pf(x) whenever `(x) > 0,

� vf(x) � vx.

A map f of trees is order preserving if `(f(x)) = `(x) for all x. The set of trees
is pre-ordered by setting T1 � T2 if there is a map (which we can take to be order
preserving) from T1 to T2. A tree is irretractible if the only idempotent map to
itself is the identity. The irretractible trees form a partially ordered subset of the
trees. The tree 0 is the smallest tree under this partial ordering.
Each tree T gives rise to a simply presented v-module hT i.
Let F be a forest. The forest F � is de�ned to be the set of trees that cannot be

mapped into (any tree of) F . The set F � is an up-set in the set of all trees which is
generated by a �nite number of minimal elements.
We can compute F � inductively. If F is empty, then F � is all trees� the up-set

generated by the tree 0. If
T = nF

is a tree, then T � is the up-set generated by the tree n+ 1 together with all trees of
the form kT 0 where T 0 2 F � and k � 1 is the value of the root of T 0. If

F = (T1)(T2) � � � (Tk)
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then the minimal elements of F � are the minimal elements of the �nite set

ft1 _ t2 _ � � � _ tk : ti is a minimal element of T �i g:

Note that the minimal elements of T � cannot branch at the root.
If T is the pole n1n2 � � �nk, then the minimal elements of T � are the poles

nj + j; nj + j � 1; : : : ; nj + 2; nj + 1

if j = 1 or nj�1 > nj + 1, and

k; k � 1; : : : ; 1; 0

if nk > 0. These are gapless poles. There is one for each Ulm invariant of the pole
T , and one more if there is no node of value 0 (does this imply an Ulm invariant at
�1?).
Some examples:

� If T = (20; 9; 8; 7; 4; 1; 0), then T � is generated by the poles (21), (11; 10),
(9; 8; 7; 6; 5), and (7; 6; 5; 4; 3; 2).

� If T = 3(2)(01), then T � is generated by 4 and 320.

� If T = 4(310)(32), then T � is generated by 5 and 43(10)(2)g.

� If T = 6(430)(521), then T � is generated by f7; 54(21)(3); 653; 43210g.

A v-module B with
T
B(n) = 0 is an honorary tree. The root of B is 0, has

value 1, and is its own parent. Technically, it�s not a tree, but it�s clear what a
tree-map T ! B is. If T is a tree, then B(T ) is de�ned to be the set of images of
the root of T under tree-maps T ! B. If T is the gapless pole (� + n; : : : ; �), then
B(T ) = pn(B(�)). If F is a forest, then B(F ) is the submodule of B generated by
fB(T ) : T 2 Fg.
The v-height of an element x of �nite value in a v-module B is given by the

equivalence class of the branch fb 2 B : pnb = x for some ng above x. There is a
unique irretractible tree in this equivalence class, the smallest T such that x 2 B(T ).
Call an irretractible tree hangable if it has distinct nodes t0 and t1 such that

vt0 = vt1 and either pt0 = pt1 or min(vpt0; vpt1) > vt0 + 1. Poles are not hangable,
nor is any tree in which distinct nodes have distinct values. The tree 4(310)(32) is
the only hangable tree with all values less than 5.

Theorem 4 Let B be a reduced v-module and T an irretractible subtree of B, with
exactly two leaves, that is the v-height of its root. Then

1. T is a p-basis for the (unvaluated) submodule A that it generates.
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2. If T is unhangable, then T is a p-basis for the v-module A.

Proof. For 1, suppose contrapositively, that
P

i uiti = 0 where the ui are units
and the ti are distinct nodes of T . We will construct a retraction of T . Consider the
nodes ti of minimum value. There must be at least two of them, lest the sum have
value di¤erent from 1, and, because T has only two leaves, there must be exactly
two of them, t0 and t1. Clearly every other node that appears in the sum is a multiple
of either pt0 or pt1. So we can write t0 = ut1 for some unit u. Therefore t0 and t1
have the same v-height, and vpit0 = vpit1 for each i. So there is a retraction of T
that takes t1 to t0.
For 2, suppose contrapositively that v(u0t0 + u1t1) > vt0 = vt1. We may assume

that this is the maximum value of vt0 = vt1 where this occurs. Either pt0 = pt1 or

vt0 + 1 < v(u0pt0 + u1pt1) � min(vpt0; vpt1):

In either case, T is hangable.

3 Szele trees

For C a cyclic valuated p-group, the functor FC was de�ned in [3, page 23] as

FC(B) =
X

pn(C(�))=0

pn(B(�))

If C comes from the pole T , then pn(C(�)) = 0 if and only if the gapless pole
(� + n; : : : ; �) is in T �, so FC(B) = B(T �). The following is a paraphrase of [3,
Theorem 2.5].

Theorem 5 Let B be a v-module, T a pole, and A a submodule of B which is a direct
sum of copies of hT i. Then

1. A is a summand of B if and only if A \B(T �) = 0.

2. If A+K = B and A \K = 0 and K � B(T �), then B = A�K.

For T the gapless pole n � � � 10, and B an unvaluated module, Part 1 is the theorem
of Szele [1, Prop. 27.1] stating that if A is a direct sum of cyclic groups of order pn,
and A \ pnB = 0, then A is a summand of B. Much of our work here consists of
extending Part 1 to other trees.
A tree T that satis�es Part 1 of Theorem 5 will be called a Szele tree. So poles

are Szele trees. The tree 3(10)(2) was shown to be a Szele tree in [3, Lemma 4.1].
Note that if A is a summand of B, then A\B(T �) = 0 because B(T �) is an additive
functor in B.
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Part 2 of Theorem 5 does not carry over to Szele trees. Let T = 3(10)(2) and
B = hT i � h32i. Then B(T �) = 0. Let x be the node of T of value 1, and y the node
of 32 of value 2. The submodule K generated by x � y satis�es the hypothesis but
not the conclusion of Part 2.
We can rephrase, and slightly strengthen, Theorem 5.

Corollary 6 Let B be a v-module, T a pole, and A a submodule of B which is a
direct sum of copies of hT i. If K 0 is a submodule of B such that K 0 \ A = 0 and
B(T �) � K 0, then B = A�K for some K � K 0.

Proof. We want a submodule K containing K 0 such that A + K = B and
A \K = 0. Then Theorem 5 Part 2 �nishes the job. As A is bounded, it su¢ ces to
show that htB(a + k) � htA a for each a 2 A[p] and k 2 K 0 (see [3, Theorem 1.3]).
But if htB(b) > htA a for a 2 A[p], then b 2 B(T �) � K 0.

If T is a tree, then the T -th valuated Ulm invariant of a valuated module G is
de�ned in [4] to be

UTG =
G(T )[p]

G(T �)[p] \G(T )[p]

Theorem 7 Let B be a v-module and T an unhangable Szele tree. Then B = A�K
where A is a direct sum of copies of hT i, and UTK = 0.

Proof. Consider families of submodules Si of B with the properties that Si is
isomorphic to hT i for each i, the sum

P
Si is direct, and B(T �) \

P
Si = 0. Zorn�s

lemma applies, so there is a maximal such family Si. Let A =
P
Si. As T is a Szele

tree�we can write B = A�K. It remains to show that UTK = 0.
Suppose UTK 6= 0. Let c be an element of K(T )[p] that is not in K(T �) =

B(T �). As T is unhangable, Theorem 4 says that c is contained in a submodule
of K isomorphic to hT i. As T is a Szele tree, this submodule is a summand of K,
contradicting the maximality of the family Si.

No doubt any Szele tree is unhangable, but we don�t need that.
For the purpose of showing that T is a Szele tree, we may assume thatB(n+1) = 0,

where n is the value of the root of T . Indeed, B = A�K follows easily from

B

B(n+ 1)
= A� K

B(n+ 1)
:

The smallest tree, 3(10)(2), has two Ulm invariants, 1 and 3. The next theorem is
e¤ectively a generalization of [3, Lemma 4.1] from the smallest tree to any tree with
two Ulm invariants.

Theorem 8 If T is an irretractible tree with exactly two Ulm invariants, then T is
a Szele tree.

6



Proof. Let B be a v-module and A a submodule which is a direct sum of copies
of hT i. Suppose A \B(T �) = 0. We must show that A is a summand of B.
Let the Ulm invariants of T be k < n, so

T = n : : :m(m� 1 : : : i)(k : : : j)

where k < m � 1 and k � j > m � 1 � i, the dots indicate no gaps. Note that T �
consists of the poles n+ 1 and k + n�m+ 2 : : : k + 1;m� 1� i : : : 0, and, if j > 0,
the pole n�m+ k � j + 2 : : : 0.
Let T0 = T (k+1). Then T0 is the gapless pole n : : : s where s = max(k+1; i), so

T �0 consists of the poles n+ 1 and n� s+ 1 : : : 0. For any v-module K,

K(T �0 ) = K(n+ 1) + p
n�s+1K:

Thus
B(k + 1)(T �0 ) = B(n+ 1) + p

n�s+1B(k + 1) � B(T �);
because pn�s+1B(k + 1) � B(n� s+ k + 2) � B(n�m+ k + 2), so

B(k + 1)(T �0 ) � B(T �)(k + 1):

As A \B(T �) = 0, we can write

B(k + 1) = A(k + 1)�Hk+1

where Hk+1 � B(T �)(k + 1), by Corollary 6.
To write B = A�H with H � Hk+1, it su¢ ces, by Lemma 3, to show that if a in

A[p] and hk+1 2 Hk+1, then htB(a+hk+1) � htA a. Suppose a+hk+1 2 ptB. If va = n
and t > htB a, then t > htA a so ptB � B(T �). Thus a+hk+1 2 ptB\B(k+1) � Hk+1,
and a 2 Hk+1, a contradiction.
So suppose va = k and a+hk+1 2 pm�iB. Then a = am�1�ak where vam�1 = m�1

and ak 2 pm�iA has value k. Note that htA a � m � i � 1. Then am�1 + hk+1 2
pm�iB \B(k + 1) so

pn�m+1(am�1 + hk+1) 2 B(T �)(k + 1) � Hk+1;

whence pn�m+1am�1 2 Hk+1, a contradiction.

4 Unhangable trees in T4 are Szele trees
Let T4 denote the set of trees with values less than 5 The only hangable tree in T4 is
4(32)(310). It is not a Szele tree, as we shall see (5.3 Example). In this section we
will prove that the other trees in T4 are Szele trees. Before starting, we note that the
restriction to T4 is essential. Consider the tree T = 5(41)(32). Let A = hT i and let
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x and y be the leaves of T . Adjoin z to A with pz = x� y to get B. Then A is not
pure in B, but B(T �) = 0.
Aside from the poles, which we know are Szele trees, the eleven unhangable trees

in T4 are

43(2)(10) 4(210)(32) 4(210)(31) 4(210)(30) 4(210)(3)
4(30)(21) 4(21)(3) 4(20)(3) 4(10)(3) 4(10)(2)

and 3(10)(2). A computer count of T4 came up with 43 trees [2]. There are 25 � 1
poles in T4, so it looks like we�ve listed all the rest here.
Theorem 8 takes care of all but these �ve

4(210)(31) 4(210)(30) 4(30)(21)
4(20)(3) 4(10)(2)

4.0.1 The tree 4(30)(21)

The star is generated by 5, 431 and 3210. We may assume B(5) = 0, so B(T �) �
(p2B)(3). Note that A(31) = A(4) is a direct sum of copies of h4i, and (4)� is
generated by (5) and (10). So B(31)((4)�) � B(T �) � B(31), whence Corollary 6
says that we can write

B(31) = A(31)�H31
with H31 � B(T �).
As A(3) is a direct sum of copies of h43i, and p2(B(3)) = 0, and A(3) \H31 = 0,

Corollary 6 says that we can write

B(3) = A(3)�H3

with H3 � H31.
We want to write

B(1) = A(1)�H1
with H1 � H3. It su¢ ces, by Lemma 3, to show that if a 2 A(1)[p], and h3 2 H3,
then htB(1)(a+h3) � htA(1) a. Write a = a30+a21 where a30 2 A(30) and a21 2 A(21).
If a30 + a21 + h3 2 p(B(1)), then a30 + h3 2 p(B(1)), so

a30 + h3 2 B(31) = A(31)�H31 � A(31)�H3:

Therefore a30 2 A(31), so a 2 A(4) � p2(A(1)).

4.0.2 The tree 4(210)(31)

The star is generated by 5, 432, and 4310, so B(T �) � B(4). First write

(p2B)(4) = A(4)�K4
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where K4 � B(T �). This is just a vector space argument. Note that

(p2B)(3)(10) = (p2B)(43) = B(4310) � B(T �):

As A(4) is a direct sum of copies of h4i, and A(4)\K4 = 0, Corollary 6 says that we
can write

(p2B)(3) = A(4)�K3

where K3 � K4. As A(3) is a direct sum of copies of h43i, and B(3)(210) = B(543) �
B(T �) � K3, Corollary 6 says that we can write

B(3) = A(3)�H3

with H3 � K3.
Now we want to show that if a 2 A(2)[p], and h3 2 H3, then htB(2)(a + h3) �

htA(2) a. In particular, A(2) \ H3 = 0. Every element of A(2)[p] can be written as
a3 + a2 with a3 2 A(3) and a2 2 p2A. Suppose

a3 + a2 + h3 2 p(B(2)):

Then a2 2 B(3), so a2 2 (p2B)(3) = A(4) �K3, so a2 2 A(4) because K3 \ A = 0.
So a3 + a2 2 A(4) � p(A(2)). If

a3 + a2 + h3 2 p2(B(2)) � B(T �) � H3

then, as before, a3 + a2 2 A(4). But a3 + a2 2 H3, so a3 + a2 = 0.
So Lemma 3 says that we can write

B(2) = A(2)�H2

where H2 � H3. We want to show that this respects heights in B. If a3 + a2 2 p2B,
then a3 2 p2B, so a3 2 A(4), so a3 + a2 2 A(4) � p2A.
So Lemma 3 says that we can write

B = A�H

with H � H2.

4.0.3 The tree 4(210)(30)

The star is generated by 5 and 431, so B(T �) � B(4). As B(31)(40) = B(431) �
B(T �), and A(4) is a direct sum of copies of h4i, Corollary 6 says that we can write

B(31) = A(4)�K3

with K3 � B(431).
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We want to write
B(3) = A(3)�H3

with H3 � K3. It su¢ ces, by Lemma 3, to show that if a 2 A(3)[p], and k3 2 K3,
then htB(3)(a + k3) � htA(3) a. But if a 6= 0, then htA(3) a = 1, while p2(B(3)) � K3,
so htB(3)(a+ k3) � 1.
Now we want to write

B(21) = A(21)�H21
where H21 � H3(31). We can do this as before because each nonzero element of
A(21)[p] has height 1 in A(21), and p2(B(21)) � B(431) � H3(31).
Now we want to write

B(1) = A(1)�H1
withH1 � H3+H21. We can do this, by Lemma 3, if we can show that, for a 2 A(1)[p]
and h3 2 H3 and h21 2 H21, that htB(1)(a+ h3 + h21) � htA(1) a.
We can write a = a3 � a2 where a3 2 A(3) and a2 2 p2A. Suppose a3 � a2 +

h3 + h21 2 p(B(1)), as otherwise we�re done. Then a3 + h3 2 p(B(1)), so a3 + h3 2
B(31) = A(4)�K3, which says that a3 2 A(4)+H3, hence a3 2 A(4) and so a 2 A(4).
Then htA(1) a � 2 while p3(B(1)) � B(431) � H3, so if htB(1)(a+ h3 + h21) > 2, then
a 2 H3 +H21, so a 2 H3, so a = 0.
Finally, to apply Lemma 3 one more time, we want to show that, for a 2 A[p]

and h1 2 H1, that htB(a + h1) � htA a. Suppose, in the notation of the preceding
paragraph, that a3 � a2 + h1 2 p2B, so a3 + h1 2 p2B � B(21) = A(21) � H21. So
a3+h1+h21 2 A(21). But that implies h1+h21 2 A, hence h1+h21 = 0, so a3 2 A(21),
so a 2 A(4). Thus htA a � 3 while p4B � B(5) � H1, so if htB(a + h1) > 3, then
a 2 H1, so a = 0.

4.0.4 The trees 4(20)(3) and 4(10)(2)

We can handle all the four-element trees at once.

Theorem 9 The tree T = n(mj)(i) with j < m < i < n is a Szele tree.

Proof. Suppose A \ B(T �) = 0. We may assume B(n+ 1) = 0. Note that T � is
generated by

(n+ 1); (i+ 2; i+ 1); (m+ 2;m+ 1; 0); (j + 3; j + 2; j + 1); 3210

where some of these poles may be redundant. Also, (ni)� is generated by

(n+ 1); (i+ 2; i+ 1); 210

so
B(T �)(m+ 1) � B(m+ 1)((ni)�):
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First we want to write

B(m+ 1) = A(m+ 1)�Hm+1

where Hm+1 � B(T �)(m+1). As A(m+1) is a direct sum of copies of hnii, Corollary
6 says that we can do that.
Next we want to write

pB = pA�K
with K � (Hm+1 + B(T

�)) \ pB = (Hm+1 \ pB) + B(T �). Now pA is a direct
sum of copies of hnmi, and (nm)� is generated by (n + 1) and (m + 2;m + 1) and
(210). So (pB)((nm)�) � B(T �). Moreover pA \ (Hm+1 + B(T �)) = 0 because if
a = hm+1 + b

� 2 (pA)[p], then b� 2 B(T �)(m + 1) � Hm+1, so a 2 Hm+1 whence
a = 0. So Corollary 6 says that we can write pB = pA�K.
Next we want to write

B(j + 1) = A(j + 1)�Hj+1

with Hj+1 � Hm+1+K(j+1)+B(T �)(j+1). The Ulm invariants of A(j+1) are all
at least m so, by Lemma 1 it su¢ ces that Hj+1\A(j+1) = 0 and Hj+1+A(j+1) =
B(j + 1). By Lemma 2 we can do this if,

htB(j+1)(a+ hm+1 + kj+1 + b
�) � htA(j+1) a

for each a 2 A(j+1)[p]. We can write a = ai�am where ai 2 A(i) and am 2 p(A(j)).
Suppose

ai � am + hm+1 + kj+1 + b� 2 p(B(j + 1))
then

ai + hm+1 2 pB
so

pai + phm+1 2 B((m+ 2;m+ 1; 0);
so pai 2 Hm+1, whence pai = 0, so a 2 A(n) � p(A(j + 1)). Suppose, in addition,
that

a+ hm+1 + kj+1 + b
� 2 p2(B(j + 1)) � B(T �) � K:

Then a+hm+1 2 K(m+1). As K � pB, we have hm+1 2 Hm+1\pB � K, so a 2 K,
whence a = 0.
Finally, ptB = ptA� pt�1K for t > 0. We will show that

(A�Hj+1) \ ptB � ptA�Hj+1:

If a + hj+1 = pta0 + k, then pa + phj+1 = pt+1a0 + pk, so pk 2 K(j + 1) � Hj+1
whence pa = pt+1a0. This can only happen if a 2 A(j + 1). Therefore k 2 K(j + 1),
so a = pta0.
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5 The structure of B when B(5) = 0

Suppose B is a v-module with B(5) = 0. The plan is to remove summands that are
direct sums of copies of hT i, for various trees T , until B(T ) = 0 for all trees T , hence
B = 0.
By Theorem 7 we may assume that UTB = 0 for any unhangable Szele tree T .

So, for such a tree, if B(T �) = 0, then B(T ) = 0. Thus B(T ) = 0 for T = 43210, so
p4B = 0. Similarly B(T ) = 0 for T successively equal to 4321, 4320, and 43(2)(10) =
T0. Note that T �0 is generated by 5 and 4320.
The next tree in line, 4(310)(32), comes in two forms: one, T1, with a hang of 4

across the 3�s, and the other, T2, plain. Note that T �2 is generated by 5 and 43(2)(10).
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Case 2
It�s clear what we mean by B(T1), and hT1i, even though T1 has a hang. We will
treat Case 1 �rst, and in Case 2 we will be able to assume that B(T1) = 0.
Suppose B(5) = p4B = B(T0) = 0. Let A be a direct sum of copies of hT i, with

T = T1 or T = T2.

5.1 Case 1, the tree T1
As p2A is pure in p2B (because p4B = 0), we can write

p2B = p2A+H 00 with p2A \H 00 = 0:

Then
A \H 00 � A \ p2B = p2A

so A \H 00 = 0.
We want to write

B(2) = A(2)�H 0

where H 0 � H 00. Note that 4 is the only Ulm invariant of A(2) (because of the hang),
and B(5) = 0. So, by Lemma 3, it su¢ ces to show that if a2 2 A(2)[p] = A[p], and
h00 2 H 00, then htB(2)(a2 + h00) � htA(2) a2.
There is a3 2 p2A such that a3 2 a2 + p(A(2)), so if a2 + h00 2 p(B(2)), then

a3 + h
00 2 p(B(2)). But

p(p(B(2)) \ p2B) = B(T0) = 0;
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so pa3 = 0. Therefore a3 2 A(4310) = p2(A(2)), whence a2 2 p(A(2)), so a2 2
A(4310) = p2(A(2)).
The only Ulm invariants of A are 1 and 4. To �nish the proof, it su¢ ces, by

Lemma 3, to show that if z 2 A[p], and h0 2 H 0, then htB(z + h0) � htA z. If
z + h0 2 p2B, then z + h0 = p2a+ h00 so z = p2a.

5.2 Case 2, the tree T2
We may assume that B(T1) = 0 because B(T0) = 0, so if B(T1) 6= 0, then B contains
a copy of hT1i. It follows that

(p(B(2)) +B(4)) \ (p2B +B(4)) � B[p] (�)

because the intersection is contained in B(3), and if x = pb2 + b4 = p2b + b04 is in it,
then px = p2b2 = p3b, and pb2 � p2b 2 B(4), so px 2 B(T1) = 0.
As p2A is an absolute summand of p2B, we can write

p2B = p2A+H 000 with p2A \H 000 = 0

and
(p2B)(4) = A(4)�H 000(4):

Because B(5) = 0, we can write

B(4) = A(4)�K4

with K4 � H 000(4). Let H 00 = H 000 +K4. Note that H 00(4) = K4. Then

A \H 000 � A \ p2B = p2A

so A \H 000 = 0. We will show that A \H 00 = 0.
If a = h000+ k4, then pa 2 A\H 000 = 0. So we can �nd a1 2 p(A(2)) and a2 2 p2A

such that a = a1 � a2. So

a1 � k4 = a2 + h000 2 p2B:

>From (�) it follows that p(a1 � k4) = 0, so pa1 = 0, whence a 2 A(4). Thus a = 0
because A(4) \H 00 = A(4) \K4 = 0. We have shown that A(2) \H 00 = 0.
We want to write

B(2) = A(2)�H 0

with H 0 � H 00 = H 000 +K4. The Ulm invariants of A(2) are 3 and 4, so by Lemma
3 it su¢ ces to show that if a 2 A[p], then htB(2)(a + h000 + k4) � htA(2) a. Suppose
a+h000+k4 2 p(B(2)). By adding an element in p(A(2)) to a, we can get an element a3
in (p2A)(3) such that a3+h000+k4 2 p(B(2)). From (�) it follows that p(a3+h000) = 0,
so pa3 = 0. This means a3 2 A(4), so a 2 A(4) � p2(A(2)).
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We want to write
B = A�H

with H � H 0. By Lemma 3 it su¢ ces to show that if a 2 A[p], then htB(a + h0) �
htA a. If a + h0 2 p2B = p2A � H 000, then a + h0 = p2a0 + h000 so a = p2a0. That
completes the proof of case 2.

5.3 Example

Here is an example showing that the hung tree T1 must be eliminated before elim-
inating the unhung tree T2. Alternatively, that T2 is not a Szele tree unless T1 is
included in its star. Consider B = (32)� T1.

s3
s1
s0

s3
s2

s
4

4

s3
s2









J
J
JJ

If x generates (32), and y and z are the generators of 4310 and 432 respectively of
T1, set A = hz � x; yi. Then B(T �2 ) = 0, and A = S(T2) with the v-height of 4 equal
to T2, but A is not a summand.

5.4 The schedule for removal

Here are the trees, in order of removal, together with the relevant generators of their
stars. After step T , we have B(T ) = 0. Why? For unhangable trees we know that
B(T )[p] � B(T �)[p]. If there�s at most one pole left in B(T �), it will be easy to see
that B(T ) \B(T �) = 0. The hangable tree gets a separate treatment.
43210 pole
4321 43210 pole
4320 4321 pole
43(2)(10) 4320 two Ulm invariants
4(310)(32) the hangable tree: �rst hung, then unhung
4310 432 pole
4(210)(32) 4310 two Ulm invariants
432 3210 pole
4(210)(31) 432 4310
431 432 3210 pole
4(210)(30) 431
4(30)(21) 431 3210
430 321 pole
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4(210)(3) 430 two Ulm invariants
4210 43 pole
3210 4 pole. At this point p3B = 0.
4(21)(3) 430 four nodes (and two Ulm invariants)
421 43 pole
321 4 pole
4(20)(3) 430 321 four nodes
420 43 321 pole
320 321 4 pole
4(10)(3) 320 four nodes (and two Ulm invariants)
43 210 pole
4(10)(2) 320 43 four nodes
410 32 pole
42 43 210 pole
3(10)(2) 320 4 four nodes (and two Ulm invariants)
At this point all elements of order p3 have type 310. Elements of type 210 miss

B(3), so they split out.

5.4.1 The hung forest (32)(310)

We may now assume that B(T ) = 0 unless T is a pole, that (p2B)[p] = B(310), and
that B(42) = B(410) = 0. Write

B(4) = (B(4) \ (B(310) +B(32)))�K4

Let X be a direct sum of copies of h310i such that X[p] = B(310). Let Y be a direct
sum of copies of h32i such that Y [p] = B(32). Then X + Y is an absolute direct
summand of the unvaluated module B, so we can write

B = X + Y + Z

an unvaluated direct sum, where K4 � Z. Then

B = (X + Y )� Z

because X + Y has Ulm invariants only at 1, 3 and 4. So we need only check the
�ltration at 2 and 4. For 2, note that B(2) = (X + Z)(2) + Y , and if x + z 2 B(2),
then px + pz 2 B(32) = Y [p], so px = pz = 0, so x 2 B(3). For 4 we have arranged
that B(4) = (X + Y )(4)�K4.
Let T = 32. As Y [p] = B(T ), and UTB = 0, it follows that Y [p] � B(T �) =

X[p] +B(4). Similarly X[p] � Y [p] +B(4). Because B(4)\X = B(4)\Y = 0, there
is a natural isomorphism f : X[p]! Y [p] such that x� f(x) 2 B(4) for all x 2 X[p].
Let E be a basis for X[p]. Then E and f(E) support bases for X and Y , showing
that X + Y is a direct sum of copies of hF i, where F is the hung forest
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The complementary summand Z is a p2-bounded v-module with �nitely many values,
hence a direct sum of cyclics [3, Theorem 3.2]. Alternatively, we can easily show that
Z is a direct sum of cyclics by continuing the process of eliminating poles.

6 Uniqueness

So each v-module B with B(5) = 0 is the direct sum of a simply presented v-module
with a direct sum of copies of hT1i ; and a direct sum of copies of hF i ; where T1 is the
hung tree 4(32)(310), and F is the hung forest (32)(310) (so T1 = 4F ): If we extend
our notion of Ulm invariant slightly, to cover T1 and F; then the number of copies of
each indecomosable hT i is equal to the dimension of UTB; the T -th Ulm invariant,
hence is an invariant of B:
We have already used the submodule B(T1); which has the obvious meaning. For

T2; the unhung tree 4(32)(310), we must extend T �2 to include T1, while T
�
1 is simply

the old T �2 : Then the de�nitions of UT1 and UT2 are formally the same as for any other
Ulm invariant. Finally, we de�ne

B(F ) = B(4) \ (B(32) +B(310))

and let F �be generated by 5, 42, and 3(10)(2). These de�nitions are all natural� they
could be formulated in a general context of certain kinds of hung forests� and do the
trick.

7 Indecomposable pairs bounded by p6

We present a simpli�cation of the categorical equivalence of [3, Cor. 5.3]. Let k be
a �eld, and C1 the category of modules over k[X] (not a discrete valuation domain).
The category C2 consists of vector spaces V over k, together with a (labeled) family
of four distinguished subspaces V1, V2, V3 and V4 such that

V = V1 � V2 = V2 � V3 = V1 � V3 = V4 � V2.

This implies that V1 �= V2 �= V3 �= V4. Given the object (V; V1; V2; V3; V4) in C2, we get
a linear transformation f : V1 ! V1 by setting fx = �2�4x, where �4 is the projection
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on V4 that kills V2, and �2 is the projection on V2 that kills V1. Conversely, given
f : V1 ! V1, de�ne

V2 = V1

V = V1 � V2
V3 = f(x; x) : x 2 V1g
V4 = f(x; fx) : x 2 V1g:

But f : V1 ! V1 is simply a k[X]-module on V1, where f gives the action of X.
There are indecomposable modules in C1 of every �nite dimension over k, and we

know that there are a ton of in�nite-dimensional ones. Let k be the residue class �eld
of our discrete valuation domain. For each indecomposable object (V; V1; V2; V3; V4)
in C2, we will construct an indecomposable v-group B, with B(6) = 0, such that if
C = B=B(5), then (V; V1; V2; V3; V4) is isomorphic to

C[p], C(32), C(310), B[p]=B(5), B(4)=B(5):

The dimension of V is 2m, where m could be in�nite. Let B be the direct sum of
m copies of h5(32)(310)i, and C = B=B(5). In C[p], let

W1 = C(32) = p(C(2))

W2 = C(310) = p2C

W3 = B[p]=B(5):

Choose the subspace W4 of C[p] = C(3) that makes (V; V1; V2; V3; V4) isomorphic to
(C[p];W1;W2;W3;W4), and rede�ne B(4) to be the preimage if W4. This doesn�t
a¤ect W1, W2 or W3. Then C is an indecomposable v-module. If B = B0 �B00, then
either B0 or B00 is contained in B(5) because C is indecomposable. But B(5) � pB,
so such a summand must be zero.
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