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Abstract

Each v-module B with B(5) = 0 is a direct sum of simply presented v-
modules and copies of two v-modules which come from (finite) hung trees.
There are infinite-rank indecomposable v-modules B with B(6) = 0.

1 Valuated modules

By a module we will mean a module over a fixed discrete valuation domain with
prime p. The reader is assumed to be familiar with the notion of a valuated module,
or v-module, which is a module B together with a filtration B = B(0) D B(1) D
B(2) O --- such that pB(n) C B(n+1). We need not consider arbitrary ordinal values
of n because we are interested in the case B(5) = 0. If x € B(n) and = ¢ B(n+ 1)
we write vz = n and say the value of z is n.

If B is a subgroup of a p°>-bounded group G, then B is naturally a module over the
ring of integers localized at p, and the module B is filtered by setting B(n) = BNp"G.
Classifying such subgroups, up to isomorphism of G, is equivalent to classifying the
associated v-modules, because bounded modules (with the filtration B(n) = p"B)
are injective in the category of v-modules [5, Theorem 9].

We classify v-modules by writing them as direct sums. These direct sums must
respect values, that is, they must respect the filtration: (A® B)(n) = A(n)® B(n).
The following lemma aids in verifying that a sum respects values.

Lemma 1 (respect value) If A and H are submodules of a torsion v-module, and
ANH =0, then A® H respects values provided

(A H)(n+1)=An+1)® H(n+1)

whenever n is an Ulm invariant of A.



Proof. Contrapositively, we will show that if the equation fails for some n, then
it fails for some n that is an Ulm invariant of A. Suppose

v(a+h) > va =n.
By induction on the order of a + h, we may assume that v(pa + ph) < vpa. So

vpa > n + 1, whence n is an Ulm invariant of A. m

Note that this lemma and its proof are valid for n any ordinal. We will also be
worried about respecting the height filtration. The next lemma is a modification of
[3, Theorem 1.3].

Lemma 2 (respect height) Let A be a reduced torsion submodule of a module B,
and K a submodule of B. If htg(a + k) < hta a whenever a € Alp] and k € K, then

(A K)Np"B=p"A® (KNp"B).
If, in addition, A is bounded, then B = A& H for some H D K.

Proof. Clearly the hypothesis implies that AN K = 0. Suppose a + k € (A®
K)Np*B. We want to show that a € p"A. By induction on the order of a, we have
pa € p"T1A. Let pa = p"ttd/, so a — p"a’ € A[p]. Then

a—ptd +ke(Ap e K)np"B

so a — p"a’ € p"A, by hypothesis. Thus a € p™A.

If A is bounded, then we can extend K to a complementary summand H of A
because algebraically compact modules, such as A, are injective in the category of
v-modules [5, Theorem 9]. =

We combine these two lemmas in one, which will be used frequently.

Lemma 3 Let A be a bounded submodule of a v-module B, and K a submodule of
B. Suppose

e Blm+1) = Alm + 1) & K(m + 1) whenever m is an Ulm invariant of the
v-module A, and

e ifac Alp| and k € K, then htg(a+ k) < ht,a.
Then B= A& H for some H D K.

Proof. Lemma 2 says that we can find H D K such that AN H = 0 and
A+ H = B. Lemma 1 says that A & H respects values. m



2 Finite valuated trees

By a tree we will mean a valuated tree with values in w. To fix notation and
terminology, consider the tree

We denote this tree by 65(3(10)(2))(40). It is obtained by adjoining a node of value
6 as parent of the root of the tree 5(3(10)(2))(40). This tree, in turn is obtained by
adjoining a node of value 5 as the parent of the roots of the trees 3(10)(2) and 40.
And so on. A forest is a family of trees. A pole is a tree with no branching.

If x is a node in a tree, then px denotes the parent of z, if any. If p™x is the root
of the tree, then we say that the level of = is n, and write ¢(z) = n. A map of trees
is a function f such that

e f(px) = pf(x) whenever ¢(z) > 0,

e vf(x) > vx.

A map f of trees is order preserving if /(f(x)) = ¢(z) for all z. The set of trees
is pre-ordered by setting T} < Ty if there is a map (which we can take to be order
preserving) from 7; to T,. A tree is irretractible if the only idempotent map to
itself is the identity. The irretractible trees form a partially ordered subset of the
trees. The tree 0 is the smallest tree under this partial ordering.

Each tree T' gives rise to a simply presented v-module (T').

Let F' be a forest. The forest F™* is defined to be the set of trees that cannot be
mapped into (any tree of) F. The set F™* is an up-set in the set of all trees which is
generated by a finite number of minimal elements.

We can compute F™* inductively. If F' is empty, then F™* is all trees—the up-set
generated by the tree 0. If

T =nF

is a tree, then T™ is the up-set generated by the tree n + 1 together with all trees of
the form kT’ where T € F* and k — 1 is the value of the root of T". If

F=(T)(Ty) - (Th)



then the minimal elements of F™* are the minimal elements of the finite set
{ty Vta V-Vt : t; is a minimal element of T }.

Note that the minimal elements of T cannot branch at the root.
If T is the pole ninsy - - - ny, then the minimal elements of T™ are the poles

ni+jg,nj+7j—1,...,n;+2 n;+1
itj=1lorn;—y>n;+1, and
kk—1,...,1,0

if np > 0. These are gapless poles. There is one for each Ulm invariant of the pole
T, and one more if there is no node of value 0 (does this imply an Ulm invariant at
—17).

Some examples:

o If T = (20,9,8,7,4,1,0), then T™ is generated by the poles (21), (11,10),
(9,8,7,6,5), and (7,6,5,4,3,2).

o If T"=3(2)(01), then 7™ is generated by 4 and 320.
o If T'=4(310)(32), then T™ is generated by 5 and 43(10)(2)}.

o If 7= 6(430)(521), then T™ is generated by {7,54(21)(3),653,43210}.

A v-module B with (B(n) = 0 is an honorary tree. The root of B is 0, has
value oo, and is its own parent. Technically, it’s not a tree, but it’s clear what a
tree-map 7' — B is. If T is a tree, then B(T') is defined to be the set of images of
the root of T' under tree-maps T — B. If T' is the gapless pole (o« +n,...,«), then
B(T) = p"(B(«)). If F is a forest, then B(F) is the submodule of B generated by
{B(T):T € F}.

The v-height of an element x of finite value in a v-module B is given by the
equivalence class of the branch {b € B : p"b = x for some n} above x. There is a
unique irretractible tree in this equivalence class, the smallest 7" such that x € B(T).

Call an irretractible tree hangable if it has distinct nodes ¢y, and ¢; such that
vtg = vty and either pty = pt; or min(vpty, vpt;) > vtg + 1. Poles are not hangable,
nor is any tree in which distinct nodes have distinct values. The tree 4(310)(32) is
the only hangable tree with all values less than 5.

Theorem 4 Let B be a reduced v-module and T an irretractible subtree of B, with
exactly two leaves, that is the v-height of its root. Then

1. T is a p-basis for the (unvaluated) submodule A that it generates.
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2. If T is unhangable, then T is a p-basis for the v-module A.

Proof. For 1, suppose contrapositively, that . u;t; = 0 where the u; are units
and the ¢; are distinct nodes of 7. We will construct a retraction of 7". Consider the
nodes t; of minimum value. There must be at least two of them, lest the sum have
value different from oo, and, because T" has only two leaves, there must be exactly
two of them, ty and t;. Clearly every other node that appears in the sum is a multiple
of either pty or pt;. So we can write ty = ut; for some unit u. Therefore ¢y and t;
have the same v-height, and vp'ty = vp't; for each i. So there is a retraction of T
that takes t; to tg.

For 2, suppose contrapositively that v(ugty + uit;) > vty = vt;. We may assume
that this is the maximum value of vty = vt; where this occurs. Either pty = pt; or

vto + 1 < v(ugpty + uipty) < min(vpty, vpty).

In either case, T' is hangable. m

3 Szele trees

For C a cyclic valuated p-group, the functor Fi» was defined in [3, page 23] as

If C' comes from the pole T, then p"(C(«)) = 0 if and only if the gapless pole
(+mn,...,a) is in T*, so Fo(B) = B(T*). The following is a paraphrase of |3,
Theorem 2.5].

Theorem 5 Let B be a v-module, T' a pole, and A a submodule of B which is a direct
sum of copies of (T'). Then

1. A is a summand of B if and only if AN B(T*) = 0.
2. If A+ K=B and ANK =0 and K D B(T*), then B=A& K.

For T the gapless pole n---10, and B an unvaluated module, Part 1 is the theorem
of Szele [1, Prop. 27.1] stating that if A is a direct sum of cyclic groups of order p",
and AN p"B = 0, then A is a summand of B. Much of our work here consists of
extending Part 1 to other trees.

A tree T that satisfies Part 1 of Theorem 5 will be called a Szele tree. So poles
are Szele trees. The tree 3(10)(2) was shown to be a Szele tree in [3, Lemma 4.1].
Note that if A is a summand of B, then AN B(T™*) = 0 because B(T™) is an additive
functor in B.



Part 2 of Theorem 5 does not carry over to Szele trees. Let T = 3(10)(2) and
B = (T) & (32). Then B(T*) = 0. Let = be the node of T" of value 1, and y the node
of 32 of value 2. The submodule K generated by x — y satisfies the hypothesis but
not the conclusion of Part 2.

We can rephrase, and slightly strengthen, Theorem 5.

Corollary 6 Let B be a v-module, T a pole, and A a submodule of B which is a
direct sum of copies of (T'). If K' is a submodule of B such that K'N A = 0 and
B(T*) C K', then B=A® K for some K D K'.

Proof. We want a submodule K containing K’ such that A + K = B and
AN K =0. Then Theorem 5 Part 2 finishes the job. As A is bounded, it suffices to
show that htg(a + k) < htya for each a € Afp] and k € K’ (see [3, Theorem 1.3]).
But if htp(b) > ht4 a for a € Alp|, then b€ B(T*) C K'. =

If T is a tree, then the T-th valuated Ulm invariant of a valuated module G is
defined in [4] to be
G(T)[p]

U= @ n e

Theorem 7 Let B be a v-module and T an unhangable Szele tree. Then B = A® K
where A is a direct sum of copies of (T'), and Up K = 0.

Proof. Consider families of submodules S; of B with the properties that S; is
isomorphic to (T') for each i, the sum > S; is direct, and B(T*) N> S; = 0. Zorn’s
lemma applies, so there is a maximal such family S;. Let A =>_5;. As T is a Szele
tree,, we can write B = A ® K. It remains to show that UrK = 0.

Suppose UrK # 0. Let ¢ be an element of K(T)[p] that is not in K(T*) =
B(T*). As T is unhangable, Theorem 4 says that ¢ is contained in a submodule
of K isomorphic to (T"). As T is a Szele tree, this submodule is a summand of K,
contradicting the maximality of the family S;. m

No doubt any Szele tree is unhangable, but we don’t need that.
For the purpose of showing that 7" is a Szele tree, we may assume that B(n—+1) = 0,
where n is the value of the root of T'. Indeed, B = A @& K follows easily from

B K
=A% .
B(n+1) B(n+1)
The smallest tree, 3(10)(2), has two Ulm invariants, 1 and 3. The next theorem is
effectively a generalization of [3, Lemma 4.1] from the smallest tree to any tree with
two Ulm invariants.

Theorem 8 If T is an irretractible tree with exactly two Ulm invariants, then T is
a Szele tree.



Proof. Let B be a v-module and A a submodule which is a direct sum of copies
of (T'). Suppose AN B(T*) = 0. We must show that A is a summand of B.
Let the Ulm invariants of 7" be k& < n, so

T=n...mm-=1...9)(k...J)

where £k < m — 1 and kK —j > m — 1 — i, the dots indicate no gaps. Note that 7™
consists of the polesn+1and k+n—m+2...k+1,m—1—14...0, and, if j > 0,
the polen —m+k—j+2...0.

Let Ty = T'(k+1). Then Tj is the gapless pole n...s where s = max(k + 1,1), so
T consists of the poles n+1 and n — s+ 1...0. For any v-module K,

K(Tg)=K(n+1)+p" K.

Thus
B(k+1)(Ty) = B(n+1)+p"*"'B(k+1) C B(T"),

because p" ' B(k+1) C B(n—s+k+2) C B(n—m+k+2), so
B(k+1)(Ty) € B(T*)(k+1).

As AN B(T*) =0, we can write
B(k+1)=A(k+1)® His1

where Hy11 D B(T*)(k + 1), by Corollary 6.

To write B = A® H with H D Hj,1, it suffices, by Lemma 3, to show that if a in
Alp] and hyy1 € Hyyq, then htg(a+hyy1) < htaa. Suppose a+hyy1 € p'B. Ifva =n
and ¢t > htp a, thent > ht4 a sop'B C B(T*). Thus a+hy1 € p"BNB(k+1) C Hyyq,
and a € Hy, 1, a contradiction.

So suppose va = k and a+hj1 € p™ 'B. Then a = a,,_; —a; where va,,_, = m—1
and a, € p™ A has value k. Note that htya > m — i — 1. Then am_1 + hypy1 €
p" BN B(k+1) so

p”_m+1(am_1 + hk+1> € B(T*)(k‘ + 1) C Hk+17

whence p"~™"q,,_; € Hy,1, a contradiction. m

4 Unhangable trees in 7, are Szele trees

Let 7, denote the set of trees with values less than 5 The only hangable tree in 7} is
4(32)(310). It is not a Szele tree, as we shall see (5.3 Example). In this section we
will prove that the other trees in 7; are Szele trees. Before starting, we note that the
restriction to 7y is essential. Consider the tree T' = 5(41)(32). Let A = (T') and let
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x and y be the leaves of T'. Adjoin z to A with pz = x — y to get B. Then A is not
pure in B, but B(T*) = 0.

Aside from the poles, which we know are Szele trees, the eleven unhangable trees
in 74 are

43(2)(10) 4(210)(32) 4(210)(31) 4(210)(30) 4(210)
4(30)(21) 4(21)(3)  4(20)(3)  4(10)(3)  4(10)(

—~

(3)
2)
and 3(10)(2). A computer count of 7; came up with 43 trees [2]. There are 2° — 1

poles in 7y, so it looks like we’ve listed all the rest here.
Theorem 8 takes care of all but these five

4(210)(31) 4(210)(30) 4(30)(21)
4(20)(3)  4(10)(2)
4.0.1 The tree 4(30)(21)

The star is generated by 5, 431 and 3210. We may assume B(5) = 0, so B(T*) C
(p>B)(3). Note that A(31) = A(4) is a direct sum of copies of (4), and (4)* is
generated by (5) and (10). So B(31)((4)*) ¢ B(T*) C B(31), whence Corollary 6
says that we can write

B(31) = A(31) & Hy

with Hs; O B(T*).
As A(3) is a direct sum of copies of (43), and p*(B(3)) = 0, and A(3) N Hz = 0,
Corollary 6 says that we can write

B(3) = A(3) @ Hs

with H3 D H31.
We want to write
B(1) = A1) ¢ H,

with Hy D Hj. It suffices, by Lemma 3, to show that if a € A(1)[p], and hy € Hj,
then htp(1)(a+hs) < htaq)a. Write a = aso+ag where ago € A(30) and ay € A(21).
If aso + a921 + h3 € p(B(l)), then aso + h3 c p(B(l)), SO

aso + hs € B(31) = A(31) @ H3; C A(31) & Hs.
Therefore azy € A(31), so a € A(4) C p*(A(1)).
4.0.2 The tree 4(210)(31)
The star is generated by 5, 432, and 4310, so B(T™*) C B(4). First write
(r°B)(4) = A(4) & K4
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where K, D B(T™). This is just a vector space argument. Note that
(v”B)(3)(10) = (*B)(43) = B(4310) C B(T").

As A(4) is a direct sum of copies of (4), and A(4) N K4 = 0, Corollary 6 says that we
can write

(1*B)(3) = A(4) & K3

where K3 D K4. As A(3) is a direct sum of copies of (43), and B(3)(210) = B(543) C
B(T*) C K3, Corollary 6 says that we can write

B(3) = A(3) ® Hs

with H3 D Kj.

Now we want to show that if a € A(2)[p], and hg € Hs, then htpp(a + hs) <
hta2) a. In particular, A(2) N Hy = 0. Every element of A(2)[p| can be written as
as + ay with az € A(3) and ay € p>A. Suppose

as + as + hs € p(B(2)).

Then ay € B(3), so ay € (p?B)(3) = A(4) & K3, so ay € A(4) because K3 N A = 0.
So az +as € A(4) C p(A(2)). If

asz + as + hy € p*(B(2)) C B(T*) C H;

then, as before, ag + ay € A(4). But a3z + as € Hs, so az + as = 0.
So Lemma 3 says that we can write

B(2) = A(2) & Hy
where Hy D Hz. We want to show that this respects heights in B. If as + as € p*B,
then a3 € p?B, so az € A(4), so az + as € A(4) C p*A.
So Lemma 3 says that we can write
B=A®H
with H D H,.
4.0.3 The tree 4(210)(30)

The star is generated by 5 and 431, so B(T*) C B(4). As B(31)(40) = B(431) C
B(T*), and A(4) is a direct sum of copies of (4), Corollary 6 says that we can write

B(31) = A(4) & K,

with K3 D B(431).



We want to write
B(3) = A(3) ® H;

with Hsy D Kj. It suffices, by Lemma 3, to show that if a € A(3)[p], and k3 € K,
then htpe)(a + k3) < htag)a. But if a # 0, then hta3) a = 1, while p?(B(3)) C K,
so htp)(a+ ks) < 1.
Now we want to write
B(21) = A(21) & Hn
where Hy D H3(31). We can do this as before because each nonzero element of
A(21)[p] has height 1 in A(21), and p?(B(21)) C B(431) C Hs3(31).

Now we want to write
B(1) = A1) & H,
with Hy D H3z+ Hs;. We can do this, by Lemma 3, if we can show that, for a € A(1)[p]
and hs € Hy and hgy € Hay, that htpay(a + kg + ha1) < htyg) a.

We can write a = a3 — ay where a3 € A(3) and ay € p?A. Suppose az — ay +
hs + ho1 € p(B(1)), as otherwise we’re done. Then ag + hs € p(B(1)), so ag + hs €
B(31) = A(4)® K3, which says that a3 € A(4)+ Hs, hence a3 € A(4) and so a € A(4).
Then ht 41y @ > 2 while p*(B(1)) C B(431) C Hs, so if htga)(a + hs + he1) > 2, then
a € Hy+ Hy, 80 a € Hz, so a=0.

Finally, to apply Lemma 3 one more time, we want to show that, for a € A[p|
and h; € Hy, that htg(a + h1) < ht4a. Suppose, in the notation of the preceding
paragraph, that as — as + hy € p?B, so az + hy € p?B C B(21) = A(21) & Hs;. So
az+hi+ha € A(21). But that implies hy+ho; € A, hence hi+hg; = 0, s0 ag € A(21),
so a € A(4). Thus htya > 3 while p*B C B(5) C Hy, so if htg(a + hy) > 3, then
a € Hy,s0a=0.

4.0.4 The trees 4(20)(3) and 4(10)(2)
We can handle all the four-element trees at once.
Theorem 9 The tree T = n(mj)(i) with j < m < i < n is a Szele tree.

Proof. Suppose AN B(T*) = 0. We may assume B(n + 1) = 0. Note that 7™ is
generated by

(n+1), (i+2,i+1), (m+2,m+1,0), (j+3,j+2,j+1), 3210
where some of these poles may be redundant. Also, (ni)* is generated by
(n+1), (i+2,i+1), 210

B(T*)(m+1) D B(m+ 1)((ni)").
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First we want to write
Bm+1)=Am+1)® Hp

where H,,11 D B(T*)(m+1). As A(m+1) is a direct sum of copies of (ni), Corollary
6 says that we can do that.

Next we want to write
pB=pA® K

with K D (Hp41 + B(T*)) N pB = (Hpy1 N pB) + B(T*). Now pA is a direct
sum of copies of (nm), and (nm)* is generated by (n + 1) and (m + 2,m + 1) and
(210). So (pB)((nm)*) C B(T*). Moreover pA N (H,1 + B(T*)) = 0 because if
a = hpi1 + b° € (pA)[p], then b* € B(T*)(m + 1) C Hpy1, S0 a € H,,pp whence
a = 0. So Corollary 6 says that we can write pB = pA ® K.

Next we want to write

B(i+1)=A(+1)© Hn

with H; 1 D Hyp1 + K(j+1)+ B(T*)(j+1). The Ulm invariants of A(j+ 1) are all
at least m so, by Lemma 1 it suffices that H; 1 NA(j+1) =0and H;j ;1 +A(j+1) =
B(j +1). By Lemma 2 we can do this if,

htB(j+1)(a + N1 + ki + b*) < ht 4¢j41) @

for each a € A(j+1)[p]. We can write a = a; — a,,, where a; € A(i) and a,, € p(A(j)).
Suppose
a; = A + hpyr + kji + 0" € p(B(j + 1))
then
a; + hyy1 € pB
S0
pa; +phm+1 S B((m + 27m + 17 0)7

so pa; € H,,.1, whence pa; = 0, so a € A(n) C p(A(j + 1)). Suppose, in addition,
that
a+ hmer + kj + 0 € p2(B(j +1)) C B(T*) C K.
Then a+ hyy1 € K(m+1). As K C pB, we have hy,.1 € Hp, 1NpB C K,s0a € K,
whence a = 0.
Finally, p'B = p!A ® p' 'K for t > 0. We will show that

(A EB Hj+1) ﬂptB C ptA EB Hj+1.
If a+ hjp1 = pla’ + k, then pa + phj1 = p'ta’ + pk, so pk € K(j+ 1) C Hjy
whence pa = p'™'a’. This can only happen if a € A(j + 1). Therefore k € K(j + 1),

soa=7pd. m
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5 The structure of B when B(5) =0

Suppose B is a v-module with B(5) = 0. The plan is to remove summands that are
direct sums of copies of (T), for various trees T', until B(T") = 0 for all trees T', hence
B =0.

By Theorem 7 we may assume that UrB = 0 for any unhangable Szele tree T
So, for such a tree, if B(T*) = 0, then B(T") = 0. Thus B(T") = 0 for 7" = 43210, so
p*B = 0. Similarly B(T') = 0 for T successively equal to 4321, 4320, and 43(2)(10) =
Tp. Note that 77 is generated by 5 and 4320.

The next tree in line, 4(310)(32), comes in two forms: one, 77, with a hang of 4
across the 3’s, and the other, 75, plain. Note that 75 is generated by 5 and 43(2)(10).

0
1 2 1 2
3e_4 3 3 3
4 4
Case 1 Case 2

It’s clear what we mean by B(T3), and (77), even though 7} has a hang. We will
treat Case 1 first, and in Case 2 we will be able to assume that B(77) = 0.

Suppose B(5) = p*B = B(Tp) = 0. Let A be a direct sum of copies of (T'), with
T=TorT ="1T5.

5.1 Case 1, the tree T}
As p*A is pure in p?B (because p*B = 0), we can write
p’B = p*A+ H" with p?’An H" = 0.
Then
ANH' Cc Anp*B = p*A

so AN H" =0.
We want to write
B(2)=A(2) ¢ H'

where H' O H”. Note that 4 is the only Ulm invariant of A(2) (because of the hang),
and B(5) = 0. So, by Lemma 3, it suffices to show that if as € A(2)[p] = Alp|, and
h' e H”, then htB(g) (a2 + ]’L”) < htA(z) as.

There is az € p*A such that az € ay + p(A(2)), so if ay + A" € p(B(2)), then
as + h" € p(B(2)). But

p(p(B(2)) Np*B) = B(Tp) = 0,
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so paz = 0. Therefore a3 € A(4310) = p*(A(2)), whence ay € p(A(2)), so ay €
A(4310) = p?(A(2)).

The only Ulm invariants of A are 1 and 4. To finish the proof, it suffices, by
Lemma 3, to show that if = € Afp|, and ' € H’', then htg(z + h') < htaz. If
2+ h' € p?B, then z + h' = p*a + 1" so z = p?a.

5.2 Case 2, the tree 15

We may assume that B(77) = 0 because B(T,) = 0, so if B(T}) # 0, then B contains
a copy of (T7). It follows that

(p(B(2)) + B(4)) N (p"B + B(4)) C Blp] (%)

because the intersection is contained in B(3), and if z = pby + by = p?b + b), is in it
then pr = p?by = p3b, and pby — p?b € B(4), so pxr € B(T}) = 0.
As p?A is an absolute summand of p?B, we can write

p?B = p* A+ H"” with p?’ AN H" =0
and
(P’B)(4) = A(4) & H"(4).

Because B(5) = 0, we can write
B(4) = A(4) ® K4
with Ky O H"'(4). Let H" = H" + K,. Note that H"(4) = K,. Then
ANH" C ANp’B =p°A

so AN H" = 0. We will show that AN H" = 0.
If a = " + ky, then pa € AN H"” = 0. So we can find a; € p(A(2)) and ay € p*A
such that a = a; — ay. So

a; — kg = ay + = p2B

>From (%) it follows that p(a; — k4) = 0, so pa; = 0, whence a € A(4). Thus a = 0
because A(4) N H” = A(4) N K4 = 0. We have shown that A(2) N H"” = 0.
We want to write
B(2)=A(2) e H’

with H' D H" = H"” + K,. The Ulm invariants of A(2) are 3 and 4, so by Lemma
3 it suffices to show that if a € A[p], then htpp)(a + A" + ky) < hta) a. Suppose
a+h"+ky4 € p(B(2)). By adding an element in p(A(2)) to a, we can get an element a3
in (p?A)(3) such that a3+ 1"+ k4 € p(B(2)). From (x) it follows that p(az+h") = 0,
so paz = 0. This means a3z € A(4), so a € A(4) C p*(A(2)).
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We want to write
B=AoH

with H D H’. By Lemma 3 it suffices to show that if a € A[p], then htg(a + h') <
htya. If a + K € p’B = p?A® H", then a + I = p*d’ + h" so a = p?a’. That
completes the proof of case 2.

5.3 Example

Here is an example showing that the hung tree 77 must be eliminated before elim-
inating the unhung tree 7T;. Alternatively, that 75 is not a Szele tree unless T} is
included in its star. Consider B = (32) & T3.

0
1 9
2 3a_ 4 3

3

If = generates (32), and y and z are the generators of 4310 and 432 respectively of
Ty, set A= (z —z,y). Then B(T5) =0, and A = S(13) with the v-height of 4 equal
to 15, but A is not a summand.

5.4 The schedule for removal

Here are the trees, in order of removal, together with the relevant generators of their
stars. After step T', we have B(T) = 0. Why? For unhangable trees we know that
B(T)[p] € B(T*)[p|. If there’s at most one pole left in B(7™), it will be easy to see
that B(T) N B(T*) = 0. The hangable tree gets a separate treatment.

43210 pole

4321 43210 pole

4320 4321 pole

43(2)(10) 4320 two Ulm invariants

4(310)(32) the hangable tree: first hung, then unhung
4310 432 pole

4(210)(32) 4310 two Ulm invariants

432 3210 pole

4(210)(31) 432 4310

431 432 3210 pole

4(210)(30) 431
4(30)(21) 431 3210
430 321 pole
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4(210)(3) 430 two Ulm invariants

4210 43 pole

3210 4 pole. At this point p*B = 0.
4(21)(3) 430 four nodes (and two Ulm invariants)
421 43 pole

321 4 pole

4(20)(3) 430 321 four nodes

420 43 321 pole

320 3214 pole

4(10)(3) 320 four nodes (and two Ulm invariants)
43 210 pole

4(10)(2) 320 43 four nodes

410 32 pole

42 43 210 pole

3(10)(2) 320 4 four nodes (and two Ulm invariants)

At this point all elements of order p® have type 310. Elements of type 210 miss
B(3), so they split out.

5.4.1 The hung forest (32)(310)

We may now assume that B(T') = 0 unless T is a pole, that (p*>B)[p] = B(310), and
that B(42) = B(410) = 0. Write

B(4) = (B(4) N (B(310) + B(32))) & K4

Let X be a direct sum of copies of (310) such that X [p] = B(310). Let Y be a direct
sum of copies of (32) such that Y[p] = B(32). Then X + Y is an absolute direct
summand of the unvaluated module B, so we can write

B=X+Y+Z
an unvaluated direct sum, where Ky C Z. Then
B=(X+Y)aZ

because X + Y has Ulm invariants only at 1, 3 and 4. So we need only check the
filtration at 2 and 4. For 2, note that B(2) = (X + Z)(2) + Y, and if x + z € B(2),
then pz + pz € B(32) = Y|[p|, so px = pz =0, so € B(3). For 4 we have arranged
that B(4) = (X +Y)(4) & K.

Let T'= 32. As Y[p] = B(T'), and UrB = 0, it follows that Y[p] C B(T*) =
X[p]+ B(4). Similarly X|[p] C Y[p] + B(4). Because B(4)NX = B(4)NY = 0, there
is a natural isomorphism f : X [p] — Y[p| such that x — f(x) € B(4) for all x € X|[p].
Let E be a basis for X[p]. Then E and f(FE) support bases for X and Y, showing
that X + Y is a direct sum of copies of (F'), where F'is the hung forest
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The complementary summand Z is a p?-bounded v-module with finitely many values,
hence a direct sum of cyclics [3, Theorem 3.2]. Alternatively, we can easily show that
Z is a direct sum of cyclics by continuing the process of eliminating poles.

6 Uniqueness

So each v-module B with B(5) = 0 is the direct sum of a simply presented v-module
with a direct sum of copies of (T}) , and a direct sum of copies of (F") , where T} is the
hung tree 4(32)(310), and F' is the hung forest (32)(310) (so 7T} = 4F). If we extend
our notion of Ulm invariant slightly, to cover T7 and F), then the number of copies of
each indecomosable (T') is equal to the dimension of UrB, the T-th Ulm invariant,
hence is an invariant of B.

We have already used the submodule B(T}), which has the obvious meaning. For
T5, the unhung tree 4(32)(310), we must extend T3 to include 77, while 77 is simply
the old T%. Then the definitions of Up, and Uy, are formally the same as for any other
Ulm invariant. Finally, we define

B(F) = B(4) N (B(32) + B(310))

and let F*be generated by 5, 42, and 3(10)(2). These definitions are all natural—they
could be formulated in a general context of certain kinds of hung forests—and do the
trick.

7 Indecomposable pairs bounded by p6

We present a simplification of the categorical equivalence of [3, Cor. 5.3]. Let k be
a field, and C; the category of modules over k[X] (not a discrete valuation domain).
The category Cs consists of vector spaces V' over k, together with a (labeled) family
of four distinguished subspaces Vi, V5, V3 and Vj such that

V=Viel,=heV;=ViaV;=V,6V,.

This implies that V; = V5 = V3 2 V). Given the object (V, Vi, Vs, V3, Vy) in Co, we get
a linear transformation f : V; — V; by setting fx = momyx, where 74 is the projection
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on Vj that kills V5, and 79 is the projection on V5 that kills V;. Conversely, given
f: Vi — Vi, define

Vo = W1

Vo= Vioh

Vs = {(z,x): 2 €V}
Vi = {(z, fx): 2 €Vi}.

But f: V) — Vj is simply a k[X]-module on Vi, where f gives the action of X.

There are indecomposable modules in C; of every finite dimension over k, and we
know that there are a ton of infinite-dimensional ones. Let k be the residue class field
of our discrete valuation domain. For each indecomposable object (V, Vi, V3, V3, Vy)
in Cy, we will construct an indecomposable v-group B, with B(6) = 0, such that if
C = B/B(5), then (V, V1, V5, V3, V) is isomorphic to

Clpl, C(32), C(310), Blp]/B(5), B(4)/B(5).

The dimension of V' is 2m, where m could be infinite. Let B be the direct sum of
m copies of (5(32)(310)), and C'= B/B(5). In C[p], let

W = 0(32) = ( (2))
Wy, = C(310) =
W; = Blp]/B ()

Choose the subspace Wy of C[p] = C(3) that makes (V, V1, V3, V3, V}) isomorphic to
(Cp], W1, Wa, W3, Wy), and redefine B(4) to be the preimage if Wy. This doesn’t
affect Wy, Wy or W3. Then C is an indecomposable v-module. If B = B’ @ B”, then
either B’ or B” is contained in B(5) because C' is indecomposable. But B(5) C pB,
so such a summand must be zero.
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