Subgroups of p^5 -bounded groups

Fred Richman Florida Atlantic University Boca Raton, FL 33431 Elbert A. Walker New Mexico State University Las Cruces, NM 88003

28 June 1998

Abstract

Each v-module B with B(5) = 0 is a direct sum of simply presented v-modules and copies of two v-modules which come from (finite) hung trees. There are infinite-rank indecomposable v-modules B with B(6) = 0.

1 Valuated modules

By a **module** we will mean a module over a fixed discrete valuation domain with prime p. The reader is assumed to be familiar with the notion of a **valuated module**, or **v-module**, which is a module B together with a filtration $B = B(0) \supset B(1) \supset B(2) \supset \cdots$ such that $pB(n) \subset B(n+1)$. We need not consider arbitrary ordinal values of n because we are interested in the case B(5) = 0. If $x \in B(n)$ and $x \notin B(n+1)$ we write vx = n and say the **value** of x is n.

If B is a subgroup of a p^5 -bounded group G, then B is naturally a module over the ring of integers localized at p, and the module B is filtered by setting $B(n) = B \cap p^n G$. Classifying such subgroups, up to isomorphism of G, is equivalent to classifying the associated v-modules, because bounded modules (with the filtration $B(n) = p^n B$) are injective in the category of v-modules [5, Theorem 9].

We classify v-modules by writing them as direct sums. These direct sums must **respect values**, that is, they must respect the filtration: $(A \oplus B)(n) = A(n) \oplus B(n)$. The following lemma aids in verifying that a sum respects values.

Lemma 1 (respect value) If A and H are submodules of a torsion v-module, and $A \cap H = 0$, then $A \oplus H$ respects values provided

$$(A \oplus H)(n+1) = A(n+1) \oplus H(n+1)$$

whenever n is an Ulm invariant of A.

Proof. Contrapositively, we will show that if the equation fails for some n, then it fails for some n that is an Ulm invariant of A. Suppose

$$v(a+h) > va = n.$$

By induction on the order of a + h, we may assume that $v(pa + ph) \leq vpa$. So vpa > n + 1, whence n is an Ulm invariant of A.

Note that this lemma and its proof are valid for n any ordinal. We will also be worried about respecting the height filtration. The next lemma is a modification of [3, Theorem 1.3].

Lemma 2 (respect height) Let A be a reduced torsion submodule of a module B, and K a submodule of B. If $ht_B(a + k) \leq ht_A a$ whenever $a \in A[p]$ and $k \in K$, then

 $(A \oplus K) \cap p^n B = p^n A \oplus (K \cap p^n B).$

If, in addition, A is bounded, then $B = A \oplus H$ for some $H \supset K$.

Proof. Clearly the hypothesis implies that $A \cap K = 0$. Suppose $a + k \in (A \oplus K) \cap p^n B$. We want to show that $a \in p^n A$. By induction on the order of a, we have $pa \in p^{n+1}A$. Let $pa = p^{n+1}a'$, so $a - p^n a' \in A[p]$. Then

$$a - p^n a' + k \in (A[p] \oplus K) \cap p^n B$$

so $a - p^n a' \in p^n A$, by hypothesis. Thus $a \in p^n A$.

If A is bounded, then we can extend K to a complementary summand H of A because algebraically compact modules, such as A, are injective in the category of v-modules [5, Theorem 9]. \blacksquare

We combine these two lemmas in one, which will be used frequently.

Lemma 3 Let A be a bounded submodule of a v-module B, and K a submodule of B. Suppose

- $B(m + 1) = A(m + 1) \oplus K(m + 1)$ whenever m is an Ulm invariant of the v-module A, and
- if $a \in A[p]$ and $k \in K$, then $ht_B(a+k) \le ht_A a$.

Then $B = A \oplus H$ for some $H \supset K$.

Proof. Lemma 2 says that we can find $H \supset K$ such that $A \cap H = 0$ and A + H = B. Lemma 1 says that $A \oplus H$ respects values.

2 Finite valuated trees

By a **tree** we will mean a valuated tree with values in ω . To fix notation and terminology, consider the tree

We denote this tree by 65(3(10)(2))(40). It is obtained by adjoining a node of value 6 as parent of the root of the tree 5(3(10)(2))(40). This tree, in turn is obtained by adjoining a node of value 5 as the parent of the roots of the trees 3(10)(2) and 40. And so on. A **forest** is a family of trees. A **pole** is a tree with no branching.

If x is a node in a tree, then px denotes the parent of x, if any. If $p^n x$ is the root of the tree, then we say that the **level** of x is n, and write $\ell(x) = n$. A **map** of trees is a function f such that

• f(px) = pf(x) whenever $\ell(x) > 0$,

•
$$vf(x) \ge vx$$
.

A map f of trees is **order preserving** if $\ell(f(x)) = \ell(x)$ for all x. The set of trees is pre-ordered by setting $T_1 \leq T_2$ if there is a map (which we can take to be order preserving) from T_1 to T_2 . A tree is **irretractible** if the only idempotent map to itself is the identity. The irretractible trees form a partially ordered subset of the trees. The tree 0 is the smallest tree under this partial ordering.

Each tree T gives rise to a simply presented v-module $\langle T \rangle$.

Let F be a forest. The forest F^* is defined to be the set of trees that cannot be mapped into (any tree of) F. The set F^* is an up-set in the set of all trees which is generated by a finite number of minimal elements.

We can compute F^* inductively. If F is empty, then F^* is all trees—the up-set generated by the tree 0. If

$$T = nF$$

is a tree, then T^* is the up-set generated by the tree n + 1 together with all trees of the form kT' where $T' \in F^*$ and k - 1 is the value of the root of T'. If

$$F = (T_1)(T_2)\cdots(T_k)$$

then the minimal elements of F^* are the minimal elements of the finite set

 $\{t_1 \lor t_2 \lor \cdots \lor t_k : t_i \text{ is a minimal element of } T_i^*\}.$

Note that the minimal elements of T^* cannot branch at the root.

If T is the pole $n_1 n_2 \cdots n_k$, then the minimal elements of T^* are the poles

$$n_j + j, n_j + j - 1, \dots, n_j + 2, n_j + 1$$

if j = 1 or $n_{j-1} > n_j + 1$, and

$$k, k - 1, \ldots, 1, 0$$

if $n_k > 0$. These are gapless poles. There is one for each Ulm invariant of the pole T, and one more if there is no node of value 0 (does this imply an Ulm invariant at -1?).

Some examples:

- If T = (20, 9, 8, 7, 4, 1, 0), then T^* is generated by the poles (21), (11, 10), (9, 8, 7, 6, 5), and (7, 6, 5, 4, 3, 2).
- If T = 3(2)(01), then T^* is generated by 4 and 320.
- If T = 4(310)(32), then T^* is generated by 5 and 43(10)(2).
- If T = 6(430)(521), then T^* is generated by $\{7, 54(21)(3), 653, 43210\}$.

A v-module B with $\bigcap B(n) = 0$ is an honorary tree. The root of B is 0, has value ∞ , and is its own parent. Technically, it's not a tree, but it's clear what a tree-map $T \to B$ is. If T is a tree, then B(T) is defined to be the set of images of the root of T under tree-maps $T \to B$. If T is the gapless pole $(\alpha + n, \ldots, \alpha)$, then $B(T) = p^n(B(\alpha))$. If F is a forest, then B(F) is the submodule of B generated by $\{B(T): T \in F\}.$

The **v-height** of an element x of finite value in a v-module B is given by the equivalence class of the branch $\{b \in B : p^n b = x \text{ for some } n\}$ above x. There is a unique irretractible tree in this equivalence class, the smallest T such that $x \in B(T)$.

Call an irretractible tree **hangable** if it has distinct nodes t_0 and t_1 such that $vt_0 = vt_1$ and either $pt_0 = pt_1$ or $\min(vpt_0, vpt_1) > vt_0 + 1$. Poles are not hangable, nor is any tree in which distinct nodes have distinct values. The tree 4(310)(32) is the only hangable tree with all values less than 5.

Theorem 4 Let B be a reduced v-module and T an irretractible subtree of B, with exactly two leaves, that is the v-height of its root. Then

1. T is a p-basis for the (unvaluated) submodule A that it generates.

2. If T is unhangable, then T is a p-basis for the v-module A.

Proof. For 1, suppose contrapositively, that $\sum_i u_i t_i = 0$ where the u_i are units and the t_i are distinct nodes of T. We will construct a retraction of T. Consider the nodes t_i of minimum value. There must be at least two of them, lest the sum have value different from ∞ , and, because T has only two leaves, there must be exactly two of them, t_0 and t_1 . Clearly every other node that appears in the sum is a multiple of either pt_0 or pt_1 . So we can write $t_0 = ut_1$ for some unit u. Therefore t_0 and t_1 have the same v-height, and $vp^it_0 = vp^it_1$ for each i. So there is a retraction of Tthat takes t_1 to t_0 .

For 2, suppose contrapositively that $v(u_0t_0 + u_1t_1) > vt_0 = vt_1$. We may assume that this is the maximum value of $vt_0 = vt_1$ where this occurs. Either $pt_0 = pt_1$ or

$$vt_0 + 1 < v(u_0pt_0 + u_1pt_1) \le \min(vpt_0, vpt_1).$$

In either case, T is hangable.

3 Szele trees

For C a cyclic valuated p-group, the functor F_C was defined in [3, page 23] as

$$F_C(B) = \sum_{p^n(C(\alpha))=0} p^n(B(\alpha))$$

If C comes from the pole T, then $p^n(C(\alpha)) = 0$ if and only if the gapless pole $(\alpha + n, \ldots, \alpha)$ is in T^* , so $F_C(B) = B(T^*)$. The following is a paraphrase of [3, Theorem 2.5].

Theorem 5 Let B be a v-module, T a pole, and A a submodule of B which is a direct sum of copies of $\langle T \rangle$. Then

- 1. A is a summand of B if and only if $A \cap B(T^*) = 0$.
- 2. If A + K = B and $A \cap K = 0$ and $K \supset B(T^*)$, then $B = A \oplus K$.

For T the gapless pole $n \cdots 10$, and B an unvaluated module, Part 1 is the theorem of Szele [1, Prop. 27.1] stating that if A is a direct sum of cyclic groups of order p^n , and $A \cap p^n B = 0$, then A is a summand of B. Much of our work here consists of extending Part 1 to other trees.

A tree T that satisfies Part 1 of Theorem 5 will be called a **Szele tree**. So poles are Szele trees. The tree 3(10)(2) was shown to be a Szele tree in [3, Lemma 4.1]. Note that if A is a summand of B, then $A \cap B(T^*) = 0$ because $B(T^*)$ is an additive functor in B. Part 2 of Theorem 5 does not carry over to Szele trees. Let T = 3(10)(2) and $B = \langle T \rangle \oplus \langle 32 \rangle$. Then $B(T^*) = 0$. Let x be the node of T of value 1, and y the node of 32 of value 2. The submodule K generated by x - y satisfies the hypothesis but not the conclusion of Part 2.

We can rephrase, and slightly strengthen, Theorem 5.

Corollary 6 Let B be a v-module, T a pole, and A a submodule of B which is a direct sum of copies of $\langle T \rangle$. If K' is a submodule of B such that $K' \cap A = 0$ and $B(T^*) \subset K'$, then $B = A \oplus K$ for some $K \supset K'$.

Proof. We want a submodule K containing K' such that A + K = B and $A \cap K = 0$. Then Theorem 5 Part 2 finishes the job. As A is bounded, it suffices to show that $\operatorname{ht}_B(a+k) \leq \operatorname{ht}_A a$ for each $a \in A[p]$ and $k \in K'$ (see [3, Theorem 1.3]). But if $\operatorname{ht}_B(b) > \operatorname{ht}_A a$ for $a \in A[p]$, then $b \in B(T^*) \subset K'$.

If T is a tree, then the T-th valuated Ulm invariant of a valuated module G is defined in [4] to be G(T)

$$U_T G = \frac{G(T)[p]}{G(T^*)[p] \cap G(T)[p]}$$

Theorem 7 Let B be a v-module and T an unhangable Szele tree. Then $B = A \oplus K$ where A is a direct sum of copies of $\langle T \rangle$, and $U_T K = 0$.

Proof. Consider families of submodules S_i of B with the properties that S_i is isomorphic to $\langle T \rangle$ for each i, the sum $\sum S_i$ is direct, and $B(T^*) \cap \sum S_i = 0$. Zorn's lemma applies, so there is a maximal such family S_i . Let $A = \sum S_i$. As T is a Szele tree, we can write $B = A \oplus K$. It remains to show that $U_T K = 0$.

Suppose $U_T K \neq 0$. Let c be an element of K(T)[p] that is not in $K(T^*) = B(T^*)$. As T is unhangable, Theorem 4 says that c is contained in a submodule of K isomorphic to $\langle T \rangle$. As T is a Szele tree, this submodule is a summand of K, contradicting the maximality of the family S_i .

No doubt any Szele tree is unhangable, but we don't need that.

For the purpose of showing that T is a Szele tree, we may assume that B(n+1) = 0, where n is the value of the root of T. Indeed, $B = A \oplus K$ follows easily from

$$\frac{B}{B(n+1)} = A \oplus \frac{K}{B(n+1)}.$$

The smallest tree, 3(10)(2), has two Ulm invariants, 1 and 3. The next theorem is effectively a generalization of [3, Lemma 4.1] from the smallest tree to any tree with two Ulm invariants.

Theorem 8 If T is an irretractible tree with exactly two Ulm invariants, then T is a Szele tree.

Proof. Let *B* be a v-module and *A* a submodule which is a direct sum of copies of $\langle T \rangle$. Suppose $A \cap B(T^*) = 0$. We must show that *A* is a summand of *B*.

Let the Ulm invariants of T be k < n, so

$$T = n \dots m(m-1 \dots i)(k \dots j)$$

where k < m-1 and k-j > m-1-i, the dots indicate no gaps. Note that T^* consists of the poles n+1 and k+n-m+2...k+1, m-1-i...0, and, if j > 0, the pole n-m+k-j+2...0.

Let $T_0 = T(k+1)$. Then T_0 is the gapless pole $n \dots s$ where $s = \max(k+1, i)$, so T_0^* consists of the poles n+1 and $n-s+1\dots 0$. For any v-module K,

$$K(T_0^*) = K(n+1) + p^{n-s+1}K$$

Thus

$$B(k+1)(T_0^*) = B(n+1) + p^{n-s+1}B(k+1) \subset B(T^*),$$

because $p^{n-s+1}B(k+1) \subset B(n-s+k+2) \subset B(n-m+k+2)$, so

$$B(k+1)(T_0^*) \subset B(T^*)(k+1).$$

As $A \cap B(T^*) = 0$, we can write

$$B(k+1) = A(k+1) \oplus H_{k+1}$$

where $H_{k+1} \supset B(T^*)(k+1)$, by Corollary 6.

To write $B = A \oplus H$ with $H \supset H_{k+1}$, it suffices, by Lemma 3, to show that if a in A[p] and $h_{k+1} \in H_{k+1}$, then $ht_B(a+h_{k+1}) \leq ht_A a$. Suppose $a+h_{k+1} \in p^t B$. If va = n and $t > ht_B a$, then $t > ht_A a$ so $p^t B \subset B(T^*)$. Thus $a+h_{k+1} \in p^t B \cap B(k+1) \subset H_{k+1}$, and $a \in H_{k+1}$, a contradiction.

So suppose va = k and $a+h_{k+1} \in p^{m-i}B$. Then $a = a_{m-1}-a_k$ where $va_{m-1} = m-1$ and $a_k \in p^{m-i}A$ has value k. Note that $ht_A a \ge m-i-1$. Then $a_{m-1}+h_{k+1} \in p^{m-i}B \cap B(k+1)$ so

$$p^{n-m+1}(a_{m-1}+h_{k+1}) \in B(T^*)(k+1) \subset H_{k+1},$$

whence $p^{n-m+1}a_{m-1} \in H_{k+1}$, a contradiction.

4 Unhangable trees in \mathcal{T}_4 are Szele trees

Let \mathcal{T}_4 denote the set of trees with values less than 5 The only hangable tree in \mathcal{T}_4 is 4(32)(310). It is not a Szele tree, as we shall see (5.3 Example). In this section we will prove that the other trees in \mathcal{T}_4 are Szele trees. Before starting, we note that the restriction to \mathcal{T}_4 is essential. Consider the tree T = 5(41)(32). Let $A = \langle T \rangle$ and let

x and y be the leaves of T. Adjoin z to A with pz = x - y to get B. Then A is not pure in B, but $B(T^*) = 0$.

Aside from the poles, which we know are Szele trees, the eleven unhangable trees in \mathcal{T}_4 are

and 3(10)(2). A computer count of \mathcal{T}_4 came up with 43 trees [2]. There are $2^5 - 1$ poles in \mathcal{T}_4 , so it looks like we've listed all the rest here.

Theorem 8 takes care of all but these five

$$\begin{array}{rrrr} 4(210)(31) & 4(210)(30) & 4(30)(21) \\ 4(20)(3) & 4(10)(2) \end{array}$$

4.0.1 The tree 4(30)(21)

The star is generated by 5, 431 and 3210. We may assume B(5) = 0, so $B(T^*) \subset (p^2B)(3)$. Note that A(31) = A(4) is a direct sum of copies of $\langle 4 \rangle$, and $(4)^*$ is generated by (5) and (10). So $B(31)((4)^*) \subset B(T^*) \subset B(31)$, whence Corollary 6 says that we can write

$$B(31) = A(31) \oplus H_{31}$$

with $H_{31} \supset B(T^*)$.

As A(3) is a direct sum of copies of $\langle 43 \rangle$, and $p^2(B(3)) = 0$, and $A(3) \cap H_{31} = 0$, Corollary 6 says that we can write

$$B(3) = A(3) \oplus H_3$$

with $H_3 \supset H_{31}$.

We want to write

$$B(1) = A(1) \oplus H_1$$

with $H_1 \supset H_3$. It suffices, by Lemma 3, to show that if $a \in A(1)[p]$, and $h_3 \in H_3$, then $ht_{B(1)}(a+h_3) \leq ht_{A(1)} a$. Write $a = a_{30} + a_{21}$ where $a_{30} \in A(30)$ and $a_{21} \in A(21)$. If $a_{30} + a_{21} + h_3 \in p(B(1))$, then $a_{30} + h_3 \in p(B(1))$, so

$$a_{30} + h_3 \in B(31) = A(31) \oplus H_{31} \subset A(31) \oplus H_3.$$

Therefore $a_{30} \in A(31)$, so $a \in A(4) \subset p^2(A(1))$.

4.0.2 The tree 4(210)(31)

The star is generated by 5, 432, and 4310, so $B(T^*) \subset B(4)$. First write

$$(p^2B)(4) = A(4) \oplus K_4$$

where $K_4 \supset B(T^*)$. This is just a vector space argument. Note that

$$(p^2B)(3)(10) = (p^2B)(43) = B(4310) \subset B(T^*).$$

As A(4) is a direct sum of copies of $\langle 4 \rangle$, and $A(4) \cap K_4 = 0$, Corollary 6 says that we can write

$$(p^2B)(3) = A(4) \oplus K_3$$

where $K_3 \supset K_4$. As A(3) is a direct sum of copies of $\langle 43 \rangle$, and $B(3)(210) = B(543) \subset B(T^*) \subset K_3$, Corollary 6 says that we can write

$$B(3) = A(3) \oplus H_3$$

with $H_3 \supset K_3$.

Now we want to show that if $a \in A(2)[p]$, and $h_3 \in H_3$, then $ht_{B(2)}(a + h_3) \leq ht_{A(2)}a$. In particular, $A(2) \cap H_3 = 0$. Every element of A(2)[p] can be written as $a_3 + a_2$ with $a_3 \in A(3)$ and $a_2 \in p^2 A$. Suppose

$$a_3 + a_2 + h_3 \in p(B(2)).$$

Then $a_2 \in B(3)$, so $a_2 \in (p^2B)(3) = A(4) \oplus K_3$, so $a_2 \in A(4)$ because $K_3 \cap A = 0$. So $a_3 + a_2 \in A(4) \subset p(A(2))$. If

$$a_3 + a_2 + h_3 \in p^2(B(2)) \subset B(T^*) \subset H_3$$

then, as before, $a_3 + a_2 \in A(4)$. But $a_3 + a_2 \in H_3$, so $a_3 + a_2 = 0$.

So Lemma 3 says that we can write

$$B(2) = A(2) \oplus H_2$$

where $H_2 \supset H_3$. We want to show that this respects heights in B. If $a_3 + a_2 \in p^2 B$, then $a_3 \in p^2 B$, so $a_3 \in A(4)$, so $a_3 + a_2 \in A(4) \subset p^2 A$.

So Lemma 3 says that we can write

$$B = A \oplus H$$

with $H \supset H_2$.

4.0.3 The tree 4(210)(30)

The star is generated by 5 and 431, so $B(T^*) \subset B(4)$. As $B(31)(40) = B(431) \subset B(T^*)$, and A(4) is a direct sum of copies of $\langle 4 \rangle$, Corollary 6 says that we can write

$$B(31) = A(4) \oplus K_3$$

with $K_3 \supset B(431)$.

We want to write

$$B(3) = A(3) \oplus H_3$$

with $H_3 \supset K_3$. It suffices, by Lemma 3, to show that if $a \in A(3)[p]$, and $k_3 \in K_3$, then $\operatorname{ht}_{B(3)}(a+k_3) \leq \operatorname{ht}_{A(3)} a$. But if $a \neq 0$, then $\operatorname{ht}_{A(3)} a = 1$, while $p^2(B(3)) \subset K_3$, so $\operatorname{ht}_{B(3)}(a+k_3) \leq 1$.

Now we want to write

$$B(21) = A(21) \oplus H_{21}$$

where $H_{21} \supset H_3(31)$. We can do this as before because each nonzero element of A(21)[p] has height 1 in A(21), and $p^2(B(21)) \subset B(431) \subset H_3(31)$.

Now we want to write

$$B(1) = A(1) \oplus H_1$$

with $H_1 \supset H_3 + H_{21}$. We can do this, by Lemma 3, if we can show that, for $a \in A(1)[p]$ and $h_3 \in H_3$ and $h_{21} \in H_{21}$, that $\operatorname{ht}_{B(1)}(a + h_3 + h_{21}) \leq \operatorname{ht}_{A(1)} a$.

We can write $a = a_3 - a_2$ where $a_3 \in A(3)$ and $a_2 \in p^2 A$. Suppose $a_3 - a_2 + h_3 + h_{21} \in p(B(1))$, as otherwise we're done. Then $a_3 + h_3 \in p(B(1))$, so $a_3 + h_3 \in B(31) = A(4) \oplus K_3$, which says that $a_3 \in A(4) + H_3$, hence $a_3 \in A(4)$ and so $a \in A(4)$. Then $h_{A(1)} a \ge 2$ while $p^3(B(1)) \subset B(431) \subset H_3$, so if $h_{B(1)}(a + h_3 + h_{21}) > 2$, then $a \in H_3 + H_{21}$, so $a \in H_3$, so a = 0.

Finally, to apply Lemma 3 one more time, we want to show that, for $a \in A[p]$ and $h_1 \in H_1$, that $ht_B(a + h_1) \leq ht_A a$. Suppose, in the notation of the preceding paragraph, that $a_3 - a_2 + h_1 \in p^2 B$, so $a_3 + h_1 \in p^2 B \subset B(21) = A(21) \oplus H_{21}$. So $a_3 + h_1 + h_{21} \in A(21)$. But that implies $h_1 + h_{21} \in A$, hence $h_1 + h_{21} = 0$, so $a_3 \in A(21)$, so $a \in A(4)$. Thus $ht_A a \geq 3$ while $p^4 B \subset B(5) \subset H_1$, so if $ht_B(a + h_1) > 3$, then $a \in H_1$, so a = 0.

4.0.4 The trees 4(20)(3) and 4(10)(2)

We can handle all the four-element trees at once.

Theorem 9 The tree T = n(mj)(i) with j < m < i < n is a Szele tree.

Proof. Suppose $A \cap B(T^*) = 0$. We may assume B(n+1) = 0. Note that T^* is generated by

$$(n+1), (i+2, i+1), (m+2, m+1, 0), (j+3, j+2, j+1), 3210$$

where some of these poles may be redundant. Also, $(ni)^*$ is generated by

$$(n+1), (i+2, i+1), 210$$

 \mathbf{SO}

$$B(T^*)(m+1) \supset B(m+1)((ni)^*).$$

First we want to write

$$B(m+1) = A(m+1) \oplus H_{m+1}$$

where $H_{m+1} \supset B(T^*)(m+1)$. As A(m+1) is a direct sum of copies of $\langle ni \rangle$, Corollary 6 says that we can do that.

Next we want to write

$$pB = pA \oplus K$$

with $K \supset (H_{m+1} + B(T^*)) \cap pB = (H_{m+1} \cap pB) + B(T^*)$. Now pA is a direct sum of copies of $\langle nm \rangle$, and $(nm)^*$ is generated by (n+1) and (m+2, m+1) and (210). So $(pB)((nm)^*) \subset B(T^*)$. Moreover $pA \cap (H_{m+1} + B(T^*)) = 0$ because if $a = h_{m+1} + b^* \in (pA)[p]$, then $b^* \in B(T^*)(m+1) \subset H_{m+1}$, so $a \in H_{m+1}$ whence a = 0. So Corollary 6 says that we can write $pB = pA \oplus K$.

Next we want to write

$$B(j+1) = A(j+1) \oplus H_{j+1}$$

with $H_{j+1} \supset H_{m+1} + K(j+1) + B(T^*)(j+1)$. The Ulm invariants of A(j+1) are all at least m so, by Lemma 1 it suffices that $H_{j+1} \cap A(j+1) = 0$ and $H_{j+1} + A(j+1) = B(j+1)$. By Lemma 2 we can do this if,

$$ht_{B(j+1)}(a + h_{m+1} + k_{j+1} + b^*) \le ht_{A(j+1)}a$$

for each $a \in A(j+1)[p]$. We can write $a = a_i - a_m$ where $a_i \in A(i)$ and $a_m \in p(A(j))$. Suppose

$$a_i - a_m + h_{m+1} + k_{j+1} + b^* \in p(B(j+1))$$

then

$$a_i + h_{m+1} \in pB$$

 \mathbf{SO}

$$pa_i + ph_{m+1} \in B((m+2, m+1, 0)),$$

so $pa_i \in H_{m+1}$, whence $pa_i = 0$, so $a \in A(n) \subset p(A(j+1))$. Suppose, in addition, that

$$a + h_{m+1} + k_{j+1} + b^* \in p^2(B(j+1)) \subset B(T^*) \subset K$$

Then $a + h_{m+1} \in K(m+1)$. As $K \subset pB$, we have $h_{m+1} \in H_{m+1} \cap pB \subset K$, so $a \in K$, whence a = 0.

Finally, $p^t B = p^t A \oplus p^{t-1} K$ for t > 0. We will show that

$$(A \oplus H_{j+1}) \cap p^t B \subset p^t A \oplus H_{j+1}.$$

If $a + h_{j+1} = p^t a' + k$, then $pa + ph_{j+1} = p^{t+1}a' + pk$, so $pk \in K(j+1) \subset H_{j+1}$ whence $pa = p^{t+1}a'$. This can only happen if $a \in A(j+1)$. Therefore $k \in K(j+1)$, so $a = p^t a'$.

5 The structure of B when B(5) = 0

Suppose B is a v-module with B(5) = 0. The plan is to remove summands that are direct sums of copies of $\langle T \rangle$, for various trees T, until B(T) = 0 for all trees T, hence B = 0.

By Theorem 7 we may assume that $U_T B = 0$ for any unhangable Szele tree T. So, for such a tree, if $B(T^*) = 0$, then B(T) = 0. Thus B(T) = 0 for T = 43210, so $p^4 B = 0$. Similarly B(T) = 0 for T successively equal to 4321, 4320, and 43(2)(10) = T_0 . Note that T_0^* is generated by 5 and 4320.

The next tree in line, 4(310)(32), comes in two forms: one, T_1 , with a hang of 4 across the 3's, and the other, T_2 , plain. Note that T_2^* is generated by 5 and 43(2)(10).

It's clear what we mean by $B(T_1)$, and $\langle T_1 \rangle$, even though T_1 has a hang. We will treat Case 1 first, and in Case 2 we will be able to assume that $B(T_1) = 0$.

Suppose $B(5) = p^4 B = B(T_0) = 0$. Let A be a direct sum of copies of $\langle T \rangle$, with $T = T_1$ or $T = T_2$.

5.1 Case 1, the tree T_1

As $p^2 A$ is pure in $p^2 B$ (because $p^4 B = 0$), we can write

$$p^2B = p^2A + H''$$
 with $p^2A \cap H'' = 0$

Then

$$A \cap H'' \subset A \cap p^2 B = p^2 A$$

so $A \cap H'' = 0$.

We want to write

$$B(2) = A(2) \oplus H'$$

where $H' \supset H''$. Note that 4 is the only Ulm invariant of A(2) (because of the hang), and B(5) = 0. So, by Lemma 3, it suffices to show that if $a_2 \in A(2)[p] = A[p]$, and $h'' \in H''$, then $\operatorname{ht}_{B(2)}(a_2 + h'') \leq \operatorname{ht}_{A(2)} a_2$.

There is $a_3 \in p^2 A$ such that $a_3 \in a_2 + p(A(2))$, so if $a_2 + h'' \in p(B(2))$, then $a_3 + h'' \in p(B(2))$. But

$$p(p(B(2)) \cap p^2 B) = B(T_0) = 0$$

so $pa_3 = 0$. Therefore $a_3 \in A(4310) = p^2(A(2))$, whence $a_2 \in p(A(2))$, so $a_2 \in A(4310) = p^2(A(2))$.

The only Ulm invariants of A are 1 and 4. To finish the proof, it suffices, by Lemma 3, to show that if $z \in A[p]$, and $h' \in H'$, then $ht_B(z + h') \leq ht_A z$. If $z + h' \in p^2 B$, then $z + h' = p^2 a + h''$ so $z = p^2 a$.

5.2 Case 2, the tree T_2

We may assume that $B(T_1) = 0$ because $B(T_0) = 0$, so if $B(T_1) \neq 0$, then B contains a copy of $\langle T_1 \rangle$. It follows that

$$(p(B(2)) + B(4)) \cap (p^2 B + B(4)) \subset B[p]$$
(*)

because the intersection is contained in B(3), and if $x = pb_2 + b_4 = p^2b + b'_4$ is in it, then $px = p^2b_2 = p^3b$, and $pb_2 - p^2b \in B(4)$, so $px \in B(T_1) = 0$.

As $p^2 A$ is an absolute summand of $p^2 B$, we can write

$$p^2B = p^2A + H'''$$
 with $p^2A \cap H''' = 0$

and

$$(p^2B)(4) = A(4) \oplus H'''(4).$$

Because B(5) = 0, we can write

$$B(4) = A(4) \oplus K_4$$

with $K_4 \supset H'''(4)$. Let $H'' = H''' + K_4$. Note that $H''(4) = K_4$. Then

$$A \cap H''' \subset A \cap p^2 B = p^2 A$$

so $A \cap H'' = 0$. We will show that $A \cap H'' = 0$.

If $a = h''' + k_4$, then $pa \in A \cap H''' = 0$. So we can find $a_1 \in p(A(2))$ and $a_2 \in p^2 A$ such that $a = a_1 - a_2$. So

$$a_1 - k_4 = a_2 + h''' \in p^2 B$$

>From (*) it follows that $p(a_1 - k_4) = 0$, so $pa_1 = 0$, whence $a \in A(4)$. Thus a = 0 because $A(4) \cap H'' = A(4) \cap K_4 = 0$. We have shown that $A(2) \cap H'' = 0$.

We want to write

$$B(2) = A(2) \oplus H'$$

with $H' \supset H'' = H''' + K_4$. The Ulm invariants of A(2) are 3 and 4, so by Lemma 3 it suffices to show that if $a \in A[p]$, then $\operatorname{ht}_{B(2)}(a + h''' + k_4) \leq \operatorname{ht}_{A(2)} a$. Suppose $a+h'''+k_4 \in p(B(2))$. By adding an element in p(A(2)) to a, we can get an element a_3 in $(p^2A)(3)$ such that $a_3 + h''' + k_4 \in p(B(2))$. From (*) it follows that $p(a_3 + h''') = 0$, so $pa_3 = 0$. This means $a_3 \in A(4)$, so $a \in A(4) \subset p^2(A(2))$.

We want to write

$$B = A \oplus H$$

with $H \supset H'$. By Lemma 3 it suffices to show that if $a \in A[p]$, then $ht_B(a + h') \leq ht_A a$. If $a + h' \in p^2 B = p^2 A \oplus H'''$, then $a + h' = p^2 a' + h'''$ so $a = p^2 a'$. That completes the proof of case 2.

5.3 Example

Here is an example showing that the hung tree T_1 must be eliminated before eliminating the unhung tree T_2 . Alternatively, that T_2 is not a Szele tree unless T_1 is included in its star. Consider $B = (32) \oplus T_1$.

If x generates (32), and y and z are the generators of 4310 and 432 respectively of T_1 , set $A = \langle z - x, y \rangle$. Then $B(T_2^*) = 0$, and $A = S(T_2)$ with the v-height of 4 equal to T_2 , but A is not a summand.

5.4 The schedule for removal

Here are the trees, in order of removal, together with the relevant generators of their stars. After step T, we have B(T) = 0. Why? For unhangable trees we know that $B(T)[p] \subset B(T^*)[p]$. If there's at most one pole left in $B(T^*)$, it will be easy to see that $B(T) \cap B(T^*) = 0$. The hangable tree gets a separate treatment.

43210		pole
4321	43210	pole
4320	4321	pole
43(2)(10)	4320	two Ulm invariants
4(310)(32)		the hangable tree: first hung, then unhung
4310	432	pole
4(210)(32)	4310	two Ulm invariants
432	3210	pole
4(210)(31)	$432 \ 4310$	
431	$432 \ 3210$	pole
4(210)(30)	431	
4(30)(21)	$431 \ 3210$	
430	321	pole

430	two Ulm invariants
43	pole
4	pole. At this point $p^3B = 0$.
430	four nodes (and two Ulm invariants)
43	pole
4	pole
$430 \ 321$	four nodes
43 321	pole
321 4	pole
320	four nodes (and two Ulm invariants)
210	pole
$320 \ 43$	four nodes
32	pole
$43 \ 210$	pole
$320 \ 4$	four nodes (and two Ulm invariants)
	$\begin{array}{c} 430\\ 43\\ 4\\ 430\\ 43\\ 4\\ 430\\ 321\\ 43\\ 321\\ 321\\ 4\\ 320\\ 210\\ 320\\ 43\\ 32\\ 43\\ 210\\ 320\\ 4\end{array}$

At this point all elements of order p^3 have type 310. Elements of type 210 miss B(3), so they split out.

5.4.1 The hung forest (32)(310)

We may now assume that B(T) = 0 unless T is a pole, that $(p^2B)[p] = B(310)$, and that B(42) = B(410) = 0. Write

$$B(4) = (B(4) \cap (B(310) + B(32))) \oplus K_4$$

Let X be a direct sum of copies of $\langle 310 \rangle$ such that X[p] = B(310). Let Y be a direct sum of copies of $\langle 32 \rangle$ such that Y[p] = B(32). Then X + Y is an absolute direct summand of the unvaluated module B, so we can write

$$B = X + Y + Z$$

an unvaluated direct sum, where $K_4 \subset Z$. Then

$$B = (X + Y) \oplus Z$$

because X + Y has Ulm invariants only at 1, 3 and 4. So we need only check the filtration at 2 and 4. For 2, note that B(2) = (X + Z)(2) + Y, and if $x + z \in B(2)$, then $px + pz \in B(32) = Y[p]$, so px = pz = 0, so $x \in B(3)$. For 4 we have arranged that $B(4) = (X + Y)(4) \oplus K_4$.

Let T = 32. As Y[p] = B(T), and $U_T B = 0$, it follows that $Y[p] \subset B(T^*) = X[p] + B(4)$. Similarly $X[p] \subset Y[p] + B(4)$. Because $B(4) \cap X = B(4) \cap Y = 0$, there is a natural isomorphism $f : X[p] \to Y[p]$ such that $x - f(x) \in B(4)$ for all $x \in X[p]$. Let E be a basis for X[p]. Then E and f(E) support bases for X and Y, showing that X + Y is a direct sum of copies of $\langle F \rangle$, where F is the hung forest

The complementary summand Z is a p^2 -bounded v-module with finitely many values, hence a direct sum of cyclics [3, Theorem 3.2]. Alternatively, we can easily show that Z is a direct sum of cyclics by continuing the process of eliminating poles.

6 Uniqueness

So each v-module B with B(5) = 0 is the direct sum of a simply presented v-module with a direct sum of copies of $\langle T_1 \rangle$, and a direct sum of copies of $\langle F \rangle$, where T_1 is the hung tree 4(32)(310), and F is the hung forest (32)(310) (so $T_1 = 4F$). If we extend our notion of Ulm invariant slightly, to cover T_1 and F, then the number of copies of each indecomosable $\langle T \rangle$ is equal to the dimension of $U_T B$, the T-th Ulm invariant, hence is an invariant of B.

We have already used the submodule $B(T_1)$, which has the obvious meaning. For T_2 , the unhung tree 4(32)(310), we must extend T_2^* to include T_1 , while T_1^* is simply the old T_2^* . Then the definitions of U_{T_1} and U_{T_2} are formally the same as for any other Ulm invariant. Finally, we define

$$B(F) = B(4) \cap (B(32) + B(310))$$

and let F^*be generated by 5, 42, and 3(10)(2). These definitions are all natural—they could be formulated in a general context of certain kinds of hung forests—and do the trick.

7 Indecomposable pairs bounded by p^6

We present a simplification of the categorical equivalence of [3, Cor. 5.3]. Let k be a field, and C_1 the category of modules over k[X] (not a discrete valuation domain). The category C_2 consists of vector spaces V over k, together with a (labeled) family of four distinguished subspaces V_1 , V_2 , V_3 and V_4 such that

$$V = V_1 \oplus V_2 = V_2 \oplus V_3 = V_1 \oplus V_3 = V_4 \oplus V_2.$$

This implies that $V_1 \cong V_2 \cong V_3 \cong V_4$. Given the object (V, V_1, V_2, V_3, V_4) in \mathcal{C}_2 , we get a linear transformation $f: V_1 \to V_1$ by setting $f_x = \pi_2 \pi_4 x$, where π_4 is the projection on V_4 that kills V_2 , and π_2 is the projection on V_2 that kills V_1 . Conversely, given $f: V_1 \to V_1$, define

$$V_{2} = V_{1}$$

$$V = V_{1} \oplus V_{2}$$

$$V_{3} = \{(x, x) : x \in V_{1}\}$$

$$V_{4} = \{(x, fx) : x \in V_{1}\}$$

But $f: V_1 \to V_1$ is simply a k[X]-module on V_1 , where f gives the action of X.

There are indecomposable modules in C_1 of every finite dimension over k, and we know that there are a ton of infinite-dimensional ones. Let k be the residue class field of our discrete valuation domain. For each indecomposable object (V, V_1, V_2, V_3, V_4) in C_2 , we will construct an indecomposable v-group B, with B(6) = 0, such that if C = B/B(5), then (V, V_1, V_2, V_3, V_4) is isomorphic to

$$C[p], C(32), C(310), B[p]/B(5), B(4)/B(5).$$

The dimension of V is 2m, where m could be infinite. Let B be the direct sum of m copies of (5(32)(310)), and C = B/B(5). In C[p], let

$$W_1 = C(32) = p(C(2))$$

 $W_2 = C(310) = p^2 C$
 $W_3 = B[p]/B(5).$

Choose the subspace W_4 of C[p] = C(3) that makes (V, V_1, V_2, V_3, V_4) isomorphic to $(C[p], W_1, W_2, W_3, W_4)$, and redefine B(4) to be the preimage if W_4 . This doesn't affect W_1, W_2 or W_3 . Then C is an indecomposable v-module. If $B = B' \oplus B''$, then either B' or B'' is contained in B(5) because C is indecomposable. But $B(5) \subset pB$, so such a summand must be zero.

References

- [1] FUCHS, LASZLO, Infinite abelian groups, Academic Press 1970.
- [2] BEERS, DONNA, ROGER HUNTER, FRED RICHMAN AND ELBERT A. WALKER, Computing valuated trees, *Abelian group theory* (Oberwolfach 1986), 65–88, Gordon and Breach.
- [3] HUNTER, ROGER, FRED RICHMAN AND ELBERT A. WALKER, Subgroups of bounded abelian groups, *Abelian groups and modules* (Udine 1984), 17–35, *CISM Courses and Lectures* 287, Springer-Verlag.
- [4] _____, Ulm's theorem for simply presented valuated *p*-groups, *Abelian group theory* (Oberwolfach 1986), 33–64, Gordon and Breach.

[5] RICHMAN, FRED, AND ELBERT A. WALKER, Valuated groups, J. Algebra, 56(1979), 145–167.

Trends in Mathematics, pp. 55-73, 1999 Birkhauser Verlag Basel/Switzerland