Subgroups of p^{5}-bounded groups

Fred Richman
Florida Atlantic University
Boca Raton, FL 33431

Elbert A. Walker
New Mexico State University
Las Cruces, NM 88003

28 June 1998

Abstract

Each v-module B with $B(5)=0$ is a direct sum of simply presented vmodules and copies of two v-modules which come from (finite) hung trees. There are infinite-rank indecomposable v-modules B with $B(6)=0$.

1 Valuated modules

By a module we will mean a module over a fixed discrete valuation domain with prime p. The reader is assumed to be familiar with the notion of a valuated module, or v-module, which is a module B together with a filtration $B=B(0) \supset B(1) \supset$ $B(2) \supset \cdots$ such that $p B(n) \subset B(n+1)$. We need not consider arbitrary ordinal values of n because we are interested in the case $B(5)=0$. If $x \in B(n)$ and $x \notin B(n+1)$ we write $v x=n$ and say the value of x is n.

If B is a subgroup of a p^{5}-bounded group G, then B is naturally a module over the ring of integers localized at p, and the module B is filtered by setting $B(n)=B \cap p^{n} G$. Classifying such subgroups, up to isomorphism of G, is equivalent to classifying the associated v-modules, because bounded modules (with the filtration $B(n)=p^{n} B$) are injective in the category of v-modules [5, Theorem 9].

We classify v-modules by writing them as direct sums. These direct sums must respect values, that is, they must respect the filtration: $(A \oplus B)(n)=A(n) \oplus B(n)$. The following lemma aids in verifying that a sum respects values.

Lemma 1 (respect value) If A and H are submodules of a torsion v-module, and $A \cap H=0$, then $A \oplus H$ respects values provided

$$
(A \oplus H)(n+1)=A(n+1) \oplus H(n+1)
$$

whenever n is an Ulm invariant of A.

Proof. Contrapositively, we will show that if the equation fails for some n, then it fails for some n that is an Ulm invariant of A. Suppose

$$
v(a+h)>v a=n .
$$

By induction on the order of $a+h$, we may assume that $v(p a+p h) \leq v p a$. So $v p a>n+1$, whence n is an Ulm invariant of A.

Note that this lemma and its proof are valid for n any ordinal. We will also be worried about respecting the height filtration. The next lemma is a modification of [3, Theorem 1.3].

Lemma 2 (respect height) Let A be a reduced torsion submodule of a module B, and K a submodule of B. If $^{h t_{B}}(a+k) \leq \mathrm{ht}_{A}$ a whenever $a \in A[p]$ and $k \in K$, then

$$
(A \oplus K) \cap p^{n} B=p^{n} A \oplus\left(K \cap p^{n} B\right)
$$

If, in addition, A is bounded, then $B=A \oplus H$ for some $H \supset K$.
Proof. Clearly the hypothesis implies that $A \cap K=0$. Suppose $a+k \in(A \oplus$ $K) \cap p^{n} B$. We want to show that $a \in p^{n} A$. By induction on the order of a, we have $p a \in p^{n+1} A$. Let $p a=p^{n+1} a^{\prime}$, so $a-p^{n} a^{\prime} \in A[p]$. Then

$$
a-p^{n} a^{\prime}+k \in(A[p] \oplus K) \cap p^{n} B
$$

so $a-p^{n} a^{\prime} \in p^{n} A$, by hypothesis. Thus $a \in p^{n} A$.
If A is bounded, then we can extend K to a complementary summand H of A because algebraically compact modules, such as A, are injective in the category of v-modules [5, Theorem 9].

We combine these two lemmas in one, which will be used frequently.
Lemma 3 Let A be a bounded submodule of a v-module B, and K a submodule of B. Suppose

- $B(m+1)=A(m+1) \oplus K(m+1)$ whenever m is an Ulm invariant of the v-module A, and
- if $a \in A[p]$ and $k \in K$, then $\operatorname{ht}_{B}(a+k) \leq \operatorname{ht}_{A} a$.

Then $B=A \oplus H$ for some $H \supset K$.
Proof. Lemma 2 says that we can find $H \supset K$ such that $A \cap H=0$ and $A+H=B$. Lemma 1 says that $A \oplus H$ respects values.

2 Finite valuated trees

By a tree we will mean a valuated tree with values in ω. To fix notation and terminology, consider the tree

We denote this tree by $65(3(10)(2))(40)$. It is obtained by adjoining a node of value 6 as parent of the root of the tree $5(3(10)(2))(40)$. This tree, in turn is obtained by adjoining a node of value 5 as the parent of the roots of the trees $3(10)(2)$ and 40. And so on. A forest is a family of trees. A pole is a tree with no branching.

If x is a node in a tree, then $p x$ denotes the parent of x, if any. If $p^{n} x$ is the root of the tree, then we say that the level of x is n, and write $\ell(x)=n$. A map of trees is a function f such that

- $f(p x)=p f(x)$ whenever $\ell(x)>0$,
- $v f(x) \geq v x$.

A map f of trees is order preserving if $\ell(f(x))=\ell(x)$ for all x. The set of trees is pre-ordered by setting $T_{1} \leq T_{2}$ if there is a map (which we can take to be order preserving) from T_{1} to T_{2}. A tree is irretractible if the only idempotent map to itself is the identity. The irretractible trees form a partially ordered subset of the trees. The tree 0 is the smallest tree under this partial ordering.

Each tree T gives rise to a simply presented v-module $\langle T\rangle$.
Let F be a forest. The forest F^{*} is defined to be the set of trees that cannot be mapped into (any tree of) F. The set F^{*} is an up-set in the set of all trees which is generated by a finite number of minimal elements.

We can compute F^{*} inductively. If F is empty, then F^{*} is all trees-the up-set generated by the tree 0 . If

$$
T=n F
$$

is a tree, then T^{*} is the up-set generated by the tree $n+1$ together with all trees of the form $k T^{\prime}$ where $T^{\prime} \in F^{*}$ and $k-1$ is the value of the root of T^{\prime}. If

$$
F=\left(T_{1}\right)\left(T_{2}\right) \cdots\left(T_{k}\right)
$$

then the minimal elements of F^{*} are the minimal elements of the finite set

$$
\left\{t_{1} \vee t_{2} \vee \cdots \vee t_{k}: t_{i} \text { is a minimal element of } T_{i}^{*}\right\} .
$$

Note that the minimal elements of T^{*} cannot branch at the root.
If T is the pole $n_{1} n_{2} \cdots n_{k}$, then the minimal elements of T^{*} are the poles

$$
n_{j}+j, n_{j}+j-1, \ldots, n_{j}+2, n_{j}+1
$$

if $j=1$ or $n_{j-1}>n_{j}+1$, and

$$
k, k-1, \ldots, 1,0
$$

if $n_{k}>0$. These are gapless poles. There is one for each Ulm invariant of the pole T, and one more if there is no node of value 0 (does this imply an Ulm invariant at $-1 ?)$.

Some examples:

- If $T=(20,9,8,7,4,1,0)$, then T^{*} is generated by the poles $(21),(11,10)$, $(9,8,7,6,5)$, and (7, $6,5,4,3,2)$.
- If $T=3(2)(01)$, then T^{*} is generated by 4 and 320 .
- If $T=4(310)(32)$, then T^{*} is generated by 5 and $\left.43(10)(2)\right\}$.
- If $T=6(430)(521)$, then T^{*} is generated by $\{7,54(21)(3), 653,43210\}$.

A v-module B with $\bigcap B(n)=0$ is an honorary tree. The root of B is 0 , has value ∞, and is its own parent. Technically, it's not a tree, but it's clear what a tree-map $T \rightarrow B$ is. If T is a tree, then $B(T)$ is defined to be the set of images of the root of T under tree-maps $T \rightarrow B$. If T is the gapless pole $(\alpha+n, \ldots, \alpha)$, then $B(T)=p^{n}(B(\alpha))$. If F is a forest, then $B(F)$ is the submodule of B generated by $\{B(T): T \in F\}$.

The \mathbf{v}-height of an element x of finite value in a v-module B is given by the equivalence class of the branch $\left\{b \in B: p^{n} b=x\right.$ for some $\left.n\right\}$ above x. There is a unique irretractible tree in this equivalence class, the smallest T such that $x \in B(T)$.

Call an irretractible tree hangable if it has distinct nodes t_{0} and t_{1} such that $v t_{0}=v t_{1}$ and either $p t_{0}=p t_{1}$ or $\min \left(v p t_{0}, v p t_{1}\right)>v t_{0}+1$. Poles are not hangable, nor is any tree in which distinct nodes have distinct values. The tree $4(310)(32)$ is the only hangable tree with all values less than 5 .

Theorem 4 Let B be a reduced v-module and T an irretractible subtree of B, with exactly two leaves, that is the v-height of its root. Then

1. T is a p-basis for the (unvaluated) submodule A that it generates.
2. If T is unhangable, then T is a p-basis for the v-module A.

Proof. For 1, suppose contrapositively, that $\sum_{i} u_{i} t_{i}=0$ where the u_{i} are units and the t_{i} are distinct nodes of T. We will construct a retraction of T. Consider the nodes t_{i} of minimum value. There must be at least two of them, lest the sum have value different from ∞, and, because T has only two leaves, there must be exactly two of them, t_{0} and t_{1}. Clearly every other node that appears in the sum is a multiple of either $p t_{0}$ or $p t_{1}$. So we can write $t_{0}=u t_{1}$ for some unit u. Therefore t_{0} and t_{1} have the same v-height, and $v p^{i} t_{0}=v p^{i} t_{1}$ for each i. So there is a retraction of T that takes t_{1} to t_{0}.

For 2 , suppose contrapositively that $v\left(u_{0} t_{0}+u_{1} t_{1}\right)>v t_{0}=v t_{1}$. We may assume that this is the maximum value of $v t_{0}=v t_{1}$ where this occurs. Either $p t_{0}=p t_{1}$ or

$$
v t_{0}+1<v\left(u_{0} p t_{0}+u_{1} p t_{1}\right) \leq \min \left(v p t_{0}, v p t_{1}\right)
$$

In either case, T is hangable.

3 Szele trees

For C a cyclic valuated p-group, the functor F_{C} was defined in [3, page 23] as

$$
F_{C}(B)=\sum_{p^{n}(C(\alpha))=0} p^{n}(B(\alpha))
$$

If C comes from the pole T, then $p^{n}(C(\alpha))=0$ if and only if the gapless pole $(\alpha+n, \ldots, \alpha)$ is in T^{*}, so $F_{C}(B)=B\left(T^{*}\right)$. The following is a paraphrase of [3, Theorem 2.5].

Theorem 5 Let B be a v-module, T a pole, and A a submodule of B which is a direct sum of copies of $\langle T\rangle$. Then

1. A is a summand of B if and only if $A \cap B\left(T^{*}\right)=0$.
2. If $A+K=B$ and $A \cap K=0$ and $K \supset B\left(T^{*}\right)$, then $B=A \oplus K$.

For T the gapless pole $n \cdots 10$, and B an unvaluated module, Part 1 is the theorem of Szele [1, Prop. 27.1] stating that if A is a direct sum of cyclic groups of order p^{n}, and $A \cap p^{n} B=0$, then A is a summand of B. Much of our work here consists of extending Part 1 to other trees.

A tree T that satisfies Part 1 of Theorem 5 will be called a Szele tree. So poles are Szele trees. The tree $3(10)(2)$ was shown to be a Szele tree in [3, Lemma 4.1]. Note that if A is a summand of B, then $A \cap B\left(T^{*}\right)=0$ because $B\left(T^{*}\right)$ is an additive functor in B.

Part 2 of Theorem 5 does not carry over to Szele trees. Let $T=3(10)(2)$ and $B=\langle T\rangle \oplus\langle 32\rangle$. Then $B\left(T^{*}\right)=0$. Let x be the node of T of value 1 , and y the node of 32 of value 2 . The submodule K generated by $x-y$ satisfies the hypothesis but not the conclusion of Part 2.

We can rephrase, and slightly strengthen, Theorem 5.
Corollary 6 Let B be a v-module, T a pole, and A a submodule of B which is a direct sum of copies of $\langle T\rangle$. If K^{\prime} is a submodule of B such that $K^{\prime} \cap A=0$ and $B\left(T^{*}\right) \subset K^{\prime}$, then $B=A \oplus K$ for some $K \supset K^{\prime}$.

Proof. We want a submodule K containing K^{\prime} such that $A+K=B$ and $A \cap K=0$. Then Theorem 5 Part 2 finishes the job. As A is bounded, it suffices to show that ht ${ }_{B}(a+k) \leq \mathrm{ht}_{A} a$ for each $a \in A[p]$ and $k \in K^{\prime}$ (see [3, Theorem 1.3]). But if $\mathrm{ht}_{B}(b)>\mathrm{ht}_{A} a$ for $a \in A[p]$, then $b \in B\left(T^{*}\right) \subset K^{\prime}$.

If T is a tree, then the T-th valuated Ulm invariant of a valuated module G is defined in [4] to be

$$
U_{T} G=\frac{G(T)[p]}{G\left(T^{*}\right)[p] \cap G(T)[p]}
$$

Theorem 7 Let B be a v-module and T an unhangable Szele tree. Then $B=A \oplus K$ where A is a direct sum of copies of $\langle T\rangle$, and $U_{T} K=0$.

Proof. Consider families of submodules S_{i} of B with the properties that S_{i} is isomorphic to $\langle T\rangle$ for each i, the sum $\sum S_{i}$ is direct, and $B\left(T^{*}\right) \cap \sum S_{i}=0$. Zorn's lemma applies, so there is a maximal such family S_{i}. Let $A=\sum S_{i}$. As T is a Szele tree,, we can write $B=A \oplus K$. It remains to show that $U_{T} K=0$.

Suppose $U_{T} K \neq 0$. Let c be an element of $K(T)[p]$ that is not in $K\left(T^{*}\right)=$ $B\left(T^{*}\right)$. As T is unhangable, Theorem 4 says that c is contained in a submodule of K isomorphic to $\langle T\rangle$. As T is a Szele tree, this submodule is a summand of K, contradicting the maximality of the family S_{i}.

No doubt any Szele tree is unhangable, but we don't need that.
For the purpose of showing that T is a Szele tree, we may assume that $B(n+1)=0$, where n is the value of the root of T. Indeed, $B=A \oplus K$ follows easily from

$$
\frac{B}{B(n+1)}=A \oplus \frac{K}{B(n+1)}
$$

The smallest tree, $3(10)(2)$, has two Ulm invariants, 1 and 3 . The next theorem is effectively a generalization of [3, Lemma 4.1] from the smallest tree to any tree with two Ulm invariants.

Theorem 8 If T is an irretractible tree with exactly two Ulm invariants, then T is a Szele tree.

Proof. Let B be a v-module and A a submodule which is a direct sum of copies of $\langle T\rangle$. Suppose $A \cap B\left(T^{*}\right)=0$. We must show that A is a summand of B.

Let the Ulm invariants of T be $k<n$, so

$$
T=n \ldots m(m-1 \ldots i)(k \ldots j)
$$

where $k<m-1$ and $k-j>m-1-i$, the dots indicate no gaps. Note that T^{*} consists of the poles $n+1$ and $k+n-m+2 \ldots k+1, m-1-i \ldots 0$, and, if $j>0$, the pole $n-m+k-j+2 \ldots 0$.

Let $T_{0}=T(k+1)$. Then T_{0} is the gapless pole $n \ldots s$ where $s=\max (k+1, i)$, so T_{0}^{*} consists of the poles $n+1$ and $n-s+1 \ldots 0$. For any v-module K,

$$
K\left(T_{0}^{*}\right)=K(n+1)+p^{n-s+1} K
$$

Thus

$$
B(k+1)\left(T_{0}^{*}\right)=B(n+1)+p^{n-s+1} B(k+1) \subset B\left(T^{*}\right),
$$

because $p^{n-s+1} B(k+1) \subset B(n-s+k+2) \subset B(n-m+k+2)$, so

$$
B(k+1)\left(T_{0}^{*}\right) \subset B\left(T^{*}\right)(k+1)
$$

As $A \cap B\left(T^{*}\right)=0$, we can write

$$
B(k+1)=A(k+1) \oplus H_{k+1}
$$

where $H_{k+1} \supset B\left(T^{*}\right)(k+1)$, by Corollary 6 .
To write $B=A \oplus H$ with $H \supset H_{k+1}$, it suffices, by Lemma 3, to show that if a in $A[p]$ and $h_{k+1} \in H_{k+1}$, then $\operatorname{ht}_{B}\left(a+h_{k+1}\right) \leq \mathrm{ht}_{A} a$. Suppose $a+h_{k+1} \in p^{t} B$. If $v a=n$ and $t>\operatorname{ht}_{B} a$, then $t>\operatorname{ht}_{A} a$ so $p^{t} B \subset B\left(T^{*}\right)$. Thus $a+h_{k+1} \in p^{t} B \cap B(k+1) \subset H_{k+1}$, and $a \in H_{k+1}$, a contradiction.

So suppose $v a=k$ and $a+h_{k+1} \in p^{m-i} B$. Then $a=a_{m-1}-a_{k}$ where $v a_{m-1}=m-1$ and $a_{k} \in p^{m-i} A$ has value k. Note that $\operatorname{ht}_{A} a \geq m-i-1$. Then $a_{m-1}+h_{k+1} \in$ $p^{m-i} B \cap B(k+1)$ so

$$
p^{n-m+1}\left(a_{m-1}+h_{k+1}\right) \in B\left(T^{*}\right)(k+1) \subset H_{k+1},
$$

whence $p^{n-m+1} a_{m-1} \in H_{k+1}$, a contradiction.

4 Unhangable trees in \mathcal{T}_{4} are Szele trees

Let \mathcal{T}_{4} denote the set of trees with values less than 5 The only hangable tree in \mathcal{T}_{4} is $4(32)(310)$. It is not a Szele tree, as we shall see (5.3 Example). In this section we will prove that the other trees in \mathcal{T}_{4} are Szele trees. Before starting, we note that the restriction to \mathcal{T}_{4} is essential. Consider the tree $T=5(41)(32)$. Let $A=\langle T\rangle$ and let
x and y be the leaves of T. Adjoin z to A with $p z=x-y$ to get B. Then A is not pure in B, but $B\left(T^{*}\right)=0$.

Aside from the poles, which we know are Szele trees, the eleven unhangable trees in \mathcal{T}_{4} are

$$
\begin{array}{lllll}
43(2)(10) & 4(210)(32) & 4(210)(31) & 4(210)(30) & 4(210)(3) \\
4(30)(21) & 4(21)(3) & 4(20)(3) & 4(10)(3) & 4(10)(2)
\end{array}
$$

and $3(10)(2)$. A computer count of \mathcal{T}_{4} came up with 43 trees [2]. There are $2^{5}-1$ poles in \mathcal{T}_{4}, so it looks like we've listed all the rest here.

Theorem 8 takes care of all but these five

$$
\begin{array}{lll}
4(210)(31) & 4(210)(30) & 4(30)(21) \\
4(20)(3) & 4(10)(2) &
\end{array}
$$

4.0.1 The tree $4(30)(21)$

The star is generated by 5,431 and 3210 . We may assume $B(5)=0$, so $B\left(T^{*}\right) \subset$ $\left(p^{2} B\right)(3)$. Note that $A(31)=A(4)$ is a direct sum of copies of $\langle 4\rangle$, and (4)* is generated by (5) and (10). So $B(31)\left((4)^{*}\right) \subset B\left(T^{*}\right) \subset B(31)$, whence Corollary 6 says that we can write

$$
B(31)=A(31) \oplus H_{31}
$$

with $H_{31} \supset B\left(T^{*}\right)$.
As $A(3)$ is a direct sum of copies of $\langle 43\rangle$, and $p^{2}(B(3))=0$, and $A(3) \cap H_{31}=0$, Corollary 6 says that we can write

$$
B(3)=A(3) \oplus H_{3}
$$

with $H_{3} \supset H_{31}$.
We want to write

$$
B(1)=A(1) \oplus H_{1}
$$

with $H_{1} \supset H_{3}$. It suffices, by Lemma 3, to show that if $a \in A(1)[p]$, and $h_{3} \in H_{3}$, then $\mathrm{ht}_{B(1)}\left(a+h_{3}\right) \leq \mathrm{ht}_{A(1)} a$. Write $a=a_{30}+a_{21}$ where $a_{30} \in A(30)$ and $a_{21} \in A(21)$. If $a_{30}+a_{21}+h_{3} \in p(B(1))$, then $a_{30}+h_{3} \in p(B(1))$, so

$$
a_{30}+h_{3} \in B(31)=A(31) \oplus H_{31} \subset A(31) \oplus H_{3} .
$$

Therefore $a_{30} \in A(31)$, so $a \in A(4) \subset p^{2}(A(1))$.

4.0.2 The tree $4(210)(31)$

The star is generated by 5,432 , and 4310 , so $B\left(T^{*}\right) \subset B(4)$. First write

$$
\left(p^{2} B\right)(4)=A(4) \oplus K_{4}
$$

where $K_{4} \supset B\left(T^{*}\right)$. This is just a vector space argument. Note that

$$
\left(p^{2} B\right)(3)(10)=\left(p^{2} B\right)(43)=B(4310) \subset B\left(T^{*}\right)
$$

As $A(4)$ is a direct sum of copies of $\langle 4\rangle$, and $A(4) \cap K_{4}=0$, Corollary 6 says that we can write

$$
\left(p^{2} B\right)(3)=A(4) \oplus K_{3}
$$

where $K_{3} \supset K_{4}$. As $A(3)$ is a direct sum of copies of $\langle 43\rangle$, and $B(3)(210)=B(543) \subset$ $B\left(T^{*}\right) \subset K_{3}$, Corollary 6 says that we can write

$$
B(3)=A(3) \oplus H_{3}
$$

with $H_{3} \supset K_{3}$.
Now we want to show that if $a \in A(2)[p]$, and $h_{3} \in H_{3}$, then $\operatorname{ht}_{B(2)}\left(a+h_{3}\right) \leq$ $\mathrm{ht}_{A(2)} a$. In particular, $A(2) \cap H_{3}=0$. Every element of $A(2)[p]$ can be written as $a_{3}+a_{2}$ with $a_{3} \in A(3)$ and $a_{2} \in p^{2} A$. Suppose

$$
a_{3}+a_{2}+h_{3} \in p(B(2))
$$

Then $a_{2} \in B(3)$, so $a_{2} \in\left(p^{2} B\right)(3)=A(4) \oplus K_{3}$, so $a_{2} \in A(4)$ because $K_{3} \cap A=0$. So $a_{3}+a_{2} \in A(4) \subset p(A(2))$. If

$$
a_{3}+a_{2}+h_{3} \in p^{2}(B(2)) \subset B\left(T^{*}\right) \subset H_{3}
$$

then, as before, $a_{3}+a_{2} \in A(4)$. But $a_{3}+a_{2} \in H_{3}$, so $a_{3}+a_{2}=0$.
So Lemma 3 says that we can write

$$
B(2)=A(2) \oplus H_{2}
$$

where $H_{2} \supset H_{3}$. We want to show that this respects heights in B. If $a_{3}+a_{2} \in p^{2} B$, then $a_{3} \in p^{2} B$, so $a_{3} \in A(4)$, so $a_{3}+a_{2} \in A(4) \subset p^{2} A$.

So Lemma 3 says that we can write

$$
B=A \oplus H
$$

with $H \supset H_{2}$.

4.0.3 The tree $4(210)(30)$

The star is generated by 5 and 431 , so $B\left(T^{*}\right) \subset B(4)$. As $B(31)(40)=B(431) \subset$ $B\left(T^{*}\right)$, and $A(4)$ is a direct sum of copies of $\langle 4\rangle$, Corollary 6 says that we can write

$$
B(31)=A(4) \oplus K_{3}
$$

with $K_{3} \supset B(431)$.

We want to write

$$
B(3)=A(3) \oplus H_{3}
$$

with $H_{3} \supset K_{3}$. It suffices, by Lemma 3, to show that if $a \in A(3)[p]$, and $k_{3} \in K_{3}$, then $\operatorname{ht}_{B(3)}\left(a+k_{3}\right) \leq \operatorname{ht}_{A(3)} a$. But if $a \neq 0$, then $\mathrm{ht}_{A(3)} a=1$, while $p^{2}(B(3)) \subset K_{3}$, so ht ${ }_{B(3)}\left(a+k_{3}\right) \leq 1$.

Now we want to write

$$
B(21)=A(21) \oplus H_{21}
$$

where $H_{21} \supset H_{3}(31)$. We can do this as before because each nonzero element of $A(21)[p]$ has height 1 in $A(21)$, and $p^{2}(B(21)) \subset B(431) \subset H_{3}(31)$.

Now we want to write

$$
B(1)=A(1) \oplus H_{1}
$$

with $H_{1} \supset H_{3}+H_{21}$. We can do this, by Lemma 3, if we can show that, for $a \in A(1)[p]$ and $h_{3} \in H_{3}$ and $h_{21} \in H_{21}$, that ht ${ }_{B(1)}\left(a+h_{3}+h_{21}\right) \leq \operatorname{ht}_{A(1)} a$.

We can write $a=a_{3}-a_{2}$ where $a_{3} \in A(3)$ and $a_{2} \in p^{2} A$. Suppose $a_{3}-a_{2}+$ $h_{3}+h_{21} \in p(B(1))$, as otherwise we're done. Then $a_{3}+h_{3} \in p(B(1))$, so $a_{3}+h_{3} \in$ $B(31)=A(4) \oplus K_{3}$, which says that $a_{3} \in A(4)+H_{3}$, hence $a_{3} \in A(4)$ and so $a \in A(4)$. Then ht $A_{A(1)} a \geq 2$ while $p^{3}(B(1)) \subset B(431) \subset H_{3}$, so if ht ${ }_{B(1)}\left(a+h_{3}+h_{21}\right)>2$, then $a \in H_{3}+H_{21}$, so $a \in H_{3}$, so $a=0$.

Finally, to apply Lemma 3 one more time, we want to show that, for $a \in A[p]$ and $h_{1} \in H_{1}$, that $\operatorname{ht}_{B}\left(a+h_{1}\right) \leq \mathrm{ht}_{A} a$. Suppose, in the notation of the preceding paragraph, that $a_{3}-a_{2}+h_{1} \in p^{2} B$, so $a_{3}+h_{1} \in p^{2} B \subset B(21)=A(21) \oplus H_{21}$. So $a_{3}+h_{1}+h_{21} \in A(21)$. But that implies $h_{1}+h_{21} \in A$, hence $h_{1}+h_{21}=0$, so $a_{3} \in A(21)$, so $a \in A(4)$. Thus $\operatorname{ht}_{A} a \geq 3$ while $p^{4} B \subset B(5) \subset H_{1}$, so if $\operatorname{ht}_{B}\left(a+h_{1}\right)>3$, then $a \in H_{1}$, so $a=0$.

4.0.4 The trees $4(20)(3)$ and $4(10)(2)$

We can handle all the four-element trees at once.
Theorem 9 The tree $T=n(m j)(i)$ with $j<m<i<n$ is a Szele tree.
Proof. Suppose $A \cap B\left(T^{*}\right)=0$. We may assume $B(n+1)=0$. Note that T^{*} is generated by

$$
(n+1),(i+2, i+1),(m+2, m+1,0),(j+3, j+2, j+1), 3210
$$

where some of these poles may be redundant. Also, $(n i)^{*}$ is generated by

$$
(n+1),(i+2, i+1), 210
$$

so

$$
B\left(T^{*}\right)(m+1) \supset B(m+1)\left((n i)^{*}\right) .
$$

First we want to write

$$
B(m+1)=A(m+1) \oplus H_{m+1}
$$

where $H_{m+1} \supset B\left(T^{*}\right)(m+1)$. As $A(m+1)$ is a direct sum of copies of $\langle n i\rangle$, Corollary 6 says that we can do that.

Next we want to write

$$
p B=p A \oplus K
$$

with $K \supset\left(H_{m+1}+B\left(T^{*}\right)\right) \cap p B=\left(H_{m+1} \cap p B\right)+B\left(T^{*}\right)$. Now $p A$ is a direct sum of copies of $\langle n m\rangle$, and $(n m)^{*}$ is generated by $(n+1)$ and $(m+2, m+1)$ and (210). So $(p B)\left((n m)^{*}\right) \subset B\left(T^{*}\right)$. Moreover $p A \cap\left(H_{m+1}+B\left(T^{*}\right)\right)=0$ because if $a=h_{m+1}+b^{*} \in(p A)[p]$, then $b^{*} \in B\left(T^{*}\right)(m+1) \subset H_{m+1}$, so $a \in H_{m+1}$ whence $a=0$. So Corollary 6 says that we can write $p B=p A \oplus K$.

Next we want to write

$$
B(j+1)=A(j+1) \oplus H_{j+1}
$$

with $H_{j+1} \supset H_{m+1}+K(j+1)+B\left(T^{*}\right)(j+1)$. The Ulm invariants of $A(j+1)$ are all at least m so, by Lemma 1 it suffices that $H_{j+1} \cap A(j+1)=0$ and $H_{j+1}+A(j+1)=$ $B(j+1)$. By Lemma 2 we can do this if,

$$
\operatorname{ht}_{B(j+1)}\left(a+h_{m+1}+k_{j+1}+b^{*}\right) \leq \operatorname{ht}_{A(j+1)} a
$$

for each $a \in A(j+1)[p]$. We can write $a=a_{i}-a_{m}$ where $a_{i} \in A(i)$ and $a_{m} \in p(A(j))$. Suppose

$$
a_{i}-a_{m}+h_{m+1}+k_{j+1}+b^{*} \in p(B(j+1))
$$

then

$$
a_{i}+h_{m+1} \in p B
$$

so

$$
p a_{i}+p h_{m+1} \in B((m+2, m+1,0)
$$

so $p a_{i} \in H_{m+1}$, whence $p a_{i}=0$, so $a \in A(n) \subset p(A(j+1))$. Suppose, in addition, that

$$
a+h_{m+1}+k_{j+1}+b^{*} \in p^{2}(B(j+1)) \subset B\left(T^{*}\right) \subset K .
$$

Then $a+h_{m+1} \in K(m+1)$. As $K \subset p B$, we have $h_{m+1} \in H_{m+1} \cap p B \subset K$, so $a \in K$, whence $a=0$.

Finally, $p^{t} B=p^{t} A \oplus p^{t-1} K$ for $t>0$. We will show that

$$
\left(A \oplus H_{j+1}\right) \cap p^{t} B \subset p^{t} A \oplus H_{j+1}
$$

If $a+h_{j+1}=p^{t} a^{\prime}+k$, then $p a+p h_{j+1}=p^{t+1} a^{\prime}+p k$, so $p k \in K(j+1) \subset H_{j+1}$ whence $p a=p^{t+1} a^{\prime}$. This can only happen if $a \in A(j+1)$. Therefore $k \in K(j+1)$, so $a=p^{t} a^{\prime}$.

5 The structure of B when $B(5)=0$

Suppose B is a v-module with $B(5)=0$. The plan is to remove summands that are direct sums of copies of $\langle T\rangle$, for various trees T, until $B(T)=0$ for all trees T, hence $B=0$.

By Theorem 7 we may assume that $U_{T} B=0$ for any unhangable Szele tree T. So, for such a tree, if $B\left(T^{*}\right)=0$, then $B(T)=0$. Thus $B(T)=0$ for $T=43210$, so $p^{4} B=0$. Similarly $B(T)=0$ for T successively equal to 4321,4320 , and $43(2)(10)=$ T_{0}. Note that T_{0}^{*} is generated by 5 and 4320.

The next tree in line, $4(310)(32)$, comes in two forms: one, T_{1}, with a hang of 4 across the 3 's, and the other, T_{2}, plain. Note that T_{2}^{*} is generated by 5 and 43(2)(10).

Case 1

Case 2

It's clear what we mean by $B\left(T_{1}\right)$, and $\left\langle T_{1}\right\rangle$, even though T_{1} has a hang. We will treat Case 1 first, and in Case 2 we will be able to assume that $B\left(T_{1}\right)=0$.

Suppose $B(5)=p^{4} B=B\left(T_{0}\right)=0$. Let A be a direct sum of copies of $\langle T\rangle$, with $T=T_{1}$ or $T=T_{2}$.

5.1 Case 1, the tree T_{1}

As $p^{2} A$ is pure in $p^{2} B$ (because $p^{4} B=0$), we can write

$$
p^{2} B=p^{2} A+H^{\prime \prime} \text { with } p^{2} A \cap H^{\prime \prime}=0
$$

Then

$$
A \cap H^{\prime \prime} \subset A \cap p^{2} B=p^{2} A
$$

so $A \cap H^{\prime \prime}=0$.
We want to write

$$
B(2)=A(2) \oplus H^{\prime}
$$

where $H^{\prime} \supset H^{\prime \prime}$. Note that 4 is the only Ulm invariant of $A(2)$ (because of the hang), and $B(5)=0$. So, by Lemma 3, it suffices to show that if $a_{2} \in A(2)[p]=A[p]$, and $h^{\prime \prime} \in H^{\prime \prime}$, then $\mathrm{ht}_{B(2)}\left(a_{2}+h^{\prime \prime}\right) \leq \mathrm{ht}_{A(2)} a_{2}$.

There is $a_{3} \in p^{2} A$ such that $a_{3} \in a_{2}+p(A(2))$, so if $a_{2}+h^{\prime \prime} \in p(B(2))$, then $a_{3}+h^{\prime \prime} \in p(B(2))$. But

$$
p\left(p(B(2)) \cap p^{2} B\right)=B\left(T_{0}\right)=0
$$

so $p a_{3}=0$. Therefore $a_{3} \in A(4310)=p^{2}(A(2))$, whence $a_{2} \in p(A(2))$, so $a_{2} \in$ $A(4310)=p^{2}(A(2))$.

The only Ulm invariants of A are 1 and 4 . To finish the proof, it suffices, by Lemma 3, to show that if $z \in A[p]$, and $h^{\prime} \in H^{\prime}$, then $\operatorname{ht}_{B}\left(z+h^{\prime}\right) \leq \mathrm{ht}_{A} z$. If $z+h^{\prime} \in p^{2} B$, then $z+h^{\prime}=p^{2} a+h^{\prime \prime}$ so $z=p^{2} a$.

5.2 Case 2, the tree T_{2}

We may assume that $B\left(T_{1}\right)=0$ because $B\left(T_{0}\right)=0$, so if $B\left(T_{1}\right) \neq 0$, then B contains a copy of $\left\langle T_{1}\right\rangle$. It follows that

$$
\begin{equation*}
(p(B(2))+B(4)) \cap\left(p^{2} B+B(4)\right) \subset B[p] \tag{*}
\end{equation*}
$$

because the intersection is contained in $B(3)$, and if $x=p b_{2}+b_{4}=p^{2} b+b_{4}^{\prime}$ is in it, then $p x=p^{2} b_{2}=p^{3} b$, and $p b_{2}-p^{2} b \in B(4)$, so $p x \in B\left(T_{1}\right)=0$.

As $p^{2} A$ is an absolute summand of $p^{2} B$, we can write

$$
p^{2} B=p^{2} A+H^{\prime \prime \prime} \text { with } p^{2} A \cap H^{\prime \prime \prime}=0
$$

and

$$
\left(p^{2} B\right)(4)=A(4) \oplus H^{\prime \prime \prime}(4)
$$

Because $B(5)=0$, we can write

$$
B(4)=A(4) \oplus K_{4}
$$

with $K_{4} \supset H^{\prime \prime \prime}(4)$. Let $H^{\prime \prime}=H^{\prime \prime \prime}+K_{4}$. Note that $H^{\prime \prime}(4)=K_{4}$. Then

$$
A \cap H^{\prime \prime \prime} \subset A \cap p^{2} B=p^{2} A
$$

so $A \cap H^{\prime \prime \prime}=0$. We will show that $A \cap H^{\prime \prime}=0$.
If $a=h^{\prime \prime \prime}+k_{4}$, then $p a \in A \cap H^{\prime \prime \prime}=0$. So we can find $a_{1} \in p(A(2))$ and $a_{2} \in p^{2} A$ such that $a=a_{1}-a_{2}$. So

$$
a_{1}-k_{4}=a_{2}+h^{\prime \prime \prime} \in p^{2} B
$$

$>$ From $(*)$ it follows that $p\left(a_{1}-k_{4}\right)=0$, so $p a_{1}=0$, whence $a \in A(4)$. Thus $a=0$ because $A(4) \cap H^{\prime \prime}=A(4) \cap K_{4}=0$. We have shown that $A(2) \cap H^{\prime \prime}=0$.

We want to write

$$
B(2)=A(2) \oplus H^{\prime}
$$

with $H^{\prime} \supset H^{\prime \prime}=H^{\prime \prime \prime}+K_{4}$. The Ulm invariants of $A(2)$ are 3 and 4 , so by Lemma 3 it suffices to show that if $a \in A[p]$, then $\mathrm{ht}_{B(2)}\left(a+h^{\prime \prime \prime}+k_{4}\right) \leq \mathrm{ht}_{A(2)} a$. Suppose $a+h^{\prime \prime \prime}+k_{4} \in p(B(2))$. By adding an element in $p(A(2))$ to a, we can get an element a_{3} in $\left(p^{2} A\right)(3)$ such that $a_{3}+h^{\prime \prime \prime}+k_{4} \in p(B(2))$. From $(*)$ it follows that $p\left(a_{3}+h^{\prime \prime \prime}\right)=0$, so $p a_{3}=0$. This means $a_{3} \in A(4)$, so $a \in A(4) \subset p^{2}(A(2))$.

We want to write

$$
B=A \oplus H
$$

with $H \supset H^{\prime}$. By Lemma 3 it suffices to show that if $a \in A[p]$, then $\operatorname{ht}_{B}\left(a+h^{\prime}\right) \leq$ ht $_{A} a$. If $a+h^{\prime} \in p^{2} B=p^{2} A \oplus H^{\prime \prime \prime}$, then $a+h^{\prime}=p^{2} a^{\prime}+h^{\prime \prime \prime}$ so $a=p^{2} a^{\prime}$. That completes the proof of case 2 .

5.3 Example

Here is an example showing that the hung tree T_{1} must be eliminated before eliminating the unhung tree T_{2}. Alternatively, that T_{2} is not a Szele tree unless T_{1} is included in its star. Consider $B=(32) \oplus T_{1}$.

If x generates (32), and y and z are the generators of 4310 and 432 respectively of T_{1}, set $A=\langle z-x, y\rangle$. Then $B\left(T_{2}^{*}\right)=0$, and $A=S\left(T_{2}\right)$ with the v-height of 4 equal to T_{2}, but A is not a summand.

5.4 The schedule for removal

Here are the trees, in order of removal, together with the relevant generators of their stars. After step T, we have $B(T)=0$. Why? For unhangable trees we know that $B(T)[p] \subset B\left(T^{*}\right)[p]$. If there's at most one pole left in $B\left(T^{*}\right)$, it will be easy to see that $B(T) \cap B\left(T^{*}\right)=0$. The hangable tree gets a separate treatment.

43210		pole
4321	43210	pole
4320	4321	pole
$43(2)(10)$	4320	two Ulm invariants
$4(310)(32)$		the hangable tree: first hung, then unhung
4310	432	pole
$4(210)(32)$	4310	two Ulm invariants
432	3210	pole
$4(210)(31)$	4324310	
431	4323210	pole
$4(210)(30)$	431	
$4(30)(21)$	4313210	
430	321	pole

$4(210)(3)$	430	two Ulm invariants
4210	43	pole
3210	4	pole. At this point $p^{3} B=0$.
$4(21)(3)$	430	four nodes (and two Ulm invariants)
421	43	pole
321	4	pole
$4(20)(3)$	430321	four nodes
420	43321	pole
320	3214	pole
$4(10)(3)$	320	four nodes (and two Ulm invariants)
43	210	pole
$4(10)(2)$	32043	four nodes
410	32	pole
42	43210	pole
$3(10)(2)$	3204	four nodes (and two Ulm invariants)

At this point all elements of order p^{3} have type 310 . Elements of type 210 miss $B(3)$, so they split out.

5.4.1 The hung forest (32)(310)

We may now assume that $B(T)=0$ unless T is a pole, that $\left(p^{2} B\right)[p]=B(310)$, and that $B(42)=B(410)=0$. Write

$$
B(4)=(B(4) \cap(B(310)+B(32))) \oplus K_{4}
$$

Let X be a direct sum of copies of $\langle 310\rangle$ such that $X[p]=B(310)$. Let Y be a direct sum of copies of $\langle 32\rangle$ such that $Y[p]=B(32)$. Then $X+Y$ is an absolute direct summand of the unvaluated module B, so we can write

$$
B=X+Y+Z
$$

an unvaluated direct sum, where $K_{4} \subset Z$. Then

$$
B=(X+Y) \oplus Z
$$

because $X+Y$ has Ulm invariants only at 1,3 and 4 . So we need only check the filtration at 2 and 4. For 2, note that $B(2)=(X+Z)(2)+Y$, and if $x+z \in B(2)$, then $p x+p z \in B(32)=Y[p]$, so $p x=p z=0$, so $x \in B(3)$. For 4 we have arranged that $B(4)=(X+Y)(4) \oplus K_{4}$.

Let $T=32$. As $Y[p]=B(T)$, and $U_{T} B=0$, it follows that $Y[p] \subset B\left(T^{*}\right)=$ $X[p]+B(4)$. Similarly $X[p] \subset Y[p]+B(4)$. Because $B(4) \cap X=B(4) \cap Y=0$, there is a natural isomorphism $f: X[p] \rightarrow Y[p]$ such that $x-f(x) \in B(4)$ for all $x \in X[p]$. Let E be a basis for $X[p]$. Then E and $f(E)$ support bases for X and Y, showing that $X+Y$ is a direct sum of copies of $\langle F\rangle$, where F is the hung forest

The complementary summand Z is a p^{2}-bounded v-module with finitely many values, hence a direct sum of cyclics [3, Theorem 3.2]. Alternatively, we can easily show that Z is a direct sum of cyclics by continuing the process of eliminating poles.

6 Uniqueness

So each v-module B with $B(5)=0$ is the direct sum of a simply presented v-module with a direct sum of copies of $\left\langle T_{1}\right\rangle$, and a direct sum of copies of $\langle F\rangle$, where T_{1} is the hung tree $4(32)(310)$, and F is the hung forest $(32)(310)$ (so $\left.T_{1}=4 F\right)$. If we extend our notion of Ulm invariant slightly, to cover T_{1} and F, then the number of copies of each indecomosable $\langle T\rangle$ is equal to the dimension of $U_{T} B$, the T-th Ulm invariant, hence is an invariant of B.

We have already used the submodule $B\left(T_{1}\right)$, which has the obvious meaning. For T_{2}, the unhung tree $4(32)(310)$, we must extend T_{2}^{*} to include T_{1}, while T_{1}^{*} is simply the old T_{2}^{*}. Then the definitions of $U_{T_{1}}$ and $U_{T_{2}}$ are formally the same as for any other Ulm invariant. Finally, we define

$$
B(F)=B(4) \cap(B(32)+B(310))
$$

and let F^{*} be generated by 5,42 , and $3(10)(2)$. These definitions are all natural-they could be formulated in a general context of certain kinds of hung forests - and do the trick.

7 Indecomposable pairs bounded by p^{6}

We present a simplification of the categorical equivalence of [3, Cor. 5.3]. Let k be a field, and \mathcal{C}_{1} the category of modules over $k[X]$ (not a discrete valuation domain). The category \mathcal{C}_{2} consists of vector spaces V over k, together with a (labeled) family of four distinguished subspaces V_{1}, V_{2}, V_{3} and V_{4} such that

$$
V=V_{1} \oplus V_{2}=V_{2} \oplus V_{3}=V_{1} \oplus V_{3}=V_{4} \oplus V_{2} .
$$

This implies that $V_{1} \cong V_{2} \cong V_{3} \cong V_{4}$. Given the object ($V, V_{1}, V_{2}, V_{3}, V_{4}$) in \mathcal{C}_{2}, we get a linear transformation $f: V_{1} \rightarrow V_{1}$ by setting $f x=\pi_{2} \pi_{4} x$, where π_{4} is the projection
on V_{4} that kills V_{2}, and π_{2} is the projection on V_{2} that kills V_{1}. Conversely, given $f: V_{1} \rightarrow V_{1}$, define

$$
\begin{aligned}
V_{2} & =V_{1} \\
V & =V_{1} \oplus V_{2} \\
V_{3} & =\left\{(x, x): x \in V_{1}\right\} \\
V_{4} & =\left\{(x, f x): x \in V_{1}\right\}
\end{aligned}
$$

But $f: V_{1} \rightarrow V_{1}$ is simply a $k[X]$-module on V_{1}, where f gives the action of X.
There are indecomposable modules in \mathcal{C}_{1} of every finite dimension over k, and we know that there are a ton of infinite-dimensional ones. Let k be the residue class field of our discrete valuation domain. For each indecomposable object ($V, V_{1}, V_{2}, V_{3}, V_{4}$) in \mathcal{C}_{2}, we will construct an indecomposable v-group B, with $B(6)=0$, such that if $C=B / B(5)$, then $\left(V, V_{1}, V_{2}, V_{3}, V_{4}\right)$ is isomorphic to

$$
C[p], C(32), C(310), B[p] / B(5), B(4) / B(5)
$$

The dimension of V is $2 m$, where m could be infinite. Let B be the direct sum of m copies of $\langle 5(32)(310)\rangle$, and $C=B / B(5)$. In $C[p]$, let

$$
\begin{aligned}
W_{1} & =C(32)=p(C(2)) \\
W_{2} & =C(310)=p^{2} C \\
W_{3} & =B[p] / B(5)
\end{aligned}
$$

Choose the subspace W_{4} of $C[p]=C(3)$ that makes $\left(V, V_{1}, V_{2}, V_{3}, V_{4}\right)$ isomorphic to $\left(C[p], W_{1}, W_{2}, W_{3}, W_{4}\right)$, and redefine $B(4)$ to be the preimage if W_{4}. This doesn't affect W_{1}, W_{2} or W_{3}. Then C is an indecomposable v-module. If $B=B^{\prime} \oplus B^{\prime \prime}$, then either B^{\prime} or $B^{\prime \prime}$ is contained in $B(5)$ because C is indecomposable. But $B(5) \subset p B$, so such a summand must be zero.

References

[1] Fuchs, Laszlo, Infinite abelian groups, Academic Press 1970.
[2] Beers, Donna, Roger Hunter, Fred Richman and Elbert A. Walker, Computing valuated trees, Abelian group theory (Oberwolfach 1986), 65-88, Gordon and Breach.
[3] Hunter, Roger, Fred Richman and Elbert A. Walker, Subgroups of bounded abelian groups, Abelian groups and modules (Udine 1984), 17-35, CISM Courses and Lectures 287, Springer-Verlag.
[4] , Ulm's theorem for simply presented valuated p groups, Abelian group theory (Oberwolfach 1986), 33-64, Gordon and Breach.
[5] Richman, Fred, and Elbert A. Walker, Valuated groups, J. Algebra, 56(1979), 145-167.

Trends in Mathematics, pp. 55-73, 1999
Birkhauser Verlag
Basel/Switzerland

