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Coated microbubbles, unlike tissue are able to scatter sound subharmonically. Therefore, the

subharmonic behavior of coated microbubbles can be used to enhance the contrast in ultrasound

contrast imaging. Theoretically, a threshold amplitude of the driving pressure can be calculated

above which subharmonic oscillations of microbubbles are initiated. Interestingly, earlier

experimental studies on coated microbubbles demonstrated that the threshold for these bubbles is

much lower than predicted by the traditional linear viscoelastic shell models. This paper presents an

experimental study on the subharmonic behavior of differently sized individual phospholipid coated

microbubbles. The radial subharmonic response of the microbubbles was recorded with the

Brandaris ultra high-speed camera as a function of both the amplitude and the frequency of the

driving pulse. Threshold pressures for subharmonic generation as low as 5 kPa were found near a

driving frequency equal to twice the resonance frequency of the bubble. An explanation for this low

threshold pressure is provided by the shell buckling model proposed by Marmottant et al. �J. Acoust.

Soc. Am. 118, 3499–3505 �2005��. It is shown that the change in the elasticity of the bubble shell

as a function of bubble radius as proposed in this model, enhances the subharmonic behavior of the

microbubbles. © 2010 Acoustical Society of America. �DOI: 10.1121/1.3493443�

PACS number�s�: 43.80.Qf, 43.80.Vj, 43.35.Ei, 43.35.Yb �CCC� Pages: 3239–3252

I. INTRODUCTION

Microbubbles scatter ultrasound effectively and non-

linearly, which makes them ideal contrast agents for medical

ultrasound imaging. The bubbles are coated with a protein,

lipid or polymer layer and they are filled with air or an inert

gas. Ultrasound contrast agents are clinically used on a daily

basis to visualize blood flow at the microvascular level to

image organ perfusion in e.g. the liver, kidney and the

myocardium.
1–4

Contrast enhancement can be expressed as

the ratio between the response of microbubbles in the blood

pool and that of the surrounding tissue, termed the contrast-

to-tissue ratio �CTR�, see e.g., Ref. 5. Improvement of the

CTR for current contrast imaging modalities such as power

modulation
6

and pulse inversion imaging
7

is accomplished

by exploiting the non-linear response of the microbubbles,

predominantly at the second harmonic frequency of the driv-

ing frequency.
8,9

The typical enhancement of the CTR in non-linear har-

monic imaging is 40 dB. For deep tissue imaging, however,

the contrast enhancement is limited by the non-linear propa-

gation of the ultrasound. Linear scattering of the second har-

monic component of the propagating wave, by tissue, inter-
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feres with the bubbles second harmonic response. On the

other hand, no subharmonic components of the driving fre-

quency are generated during propagation. For this reason the

subharmonic response of the bubbles at half the driving fre-

quency has received increased interest for ultrasound con-

trast imaging.
10

Moreover the subharmonic response is at-

tenuated less than both the fundamental and higher harmonic

bubble responses. Currently, the subharmonic response is

mostly used in high frequency imaging applications.
11,12

Subharmonic bubble responses were first described fol-

lowing experimental observations by Esche
13

already in

1952. Additional experimental work has been conducted to

investigate the nature of this non-linear behavior
14,15

fol-

lowed by several theoretical descriptions of subharmonic be-

havior of bubbles in a sound field.
16–20

Prosperetti
18

showed

through a weakly non-linear analysis of the Rayleigh-Plesset

equation
21–24

that the subharmonic behavior of bubbles can

only exist if the driving pressure amplitude exceeds a thresh-

old pressure. It was found that the threshold pressure for

subharmonic behavior is minimum when the bubble is driven

at twice its resonance frequency. It was also shown that the

threshold pressure increases with increased damping, which

is a result of reradiation, thermal losses and the liquid

viscosity.
16,18,25

The viscoelastic shell of ultrasound contrast agent mi-

crobubbles is known to increase the damping con-

siderably.
26–28

Therefore, it has always been speculated that

the threshold pressure to excite subharmonic behavior for

coated microbubbles should increase. Shankar et al.
29

stud-

ied the subharmonic behavior of coated bubbles following

the analysis of Prosperetti
18

and confirmed, by using a purely

linear viscoelastic shell model as by de Jong et al.,
26

Church,
30

or Hoff et al.,
31

that indeed the threshold for sub-

harmonic generation is increased as a result of the increased

damping. There exists, however, experimental evidence in

the literature showing that for both the albumin-coated con-

trast agents Optison
™

and Albunex
®

and the phospholipid-

coated contrast agent SonoVue
®

, the threshold pressure to

excite subharmonic behavior is lower than that of uncoated

bubbles.
8,10,29,32–35

Other work reports no significant change

in the threshold pressure, not for albumin-coated bubbles
36

nor for the phospholipid-coated Definity™ contrast agent

microbubbles.
37

Here, we show that a lower threshold for the initiation of

subharmonic behavior of phospholipid-coated microbubbles

can be explained with the model proposed by Marmottant et

al.
38

Similarly to Shankar et al.
29

we employ a weakly non-

linear analysis along the earlier work on free bubbles by

Prosperetti,
18

and instead of using a purely linear viscoelas-

tic model, we assume the shell elasticity of the phospholipid

shell to vary with the bubble radius R. It is shown that the

rapid change in the elasticity of the bubble shell as proposed

in the model of Marmottant et al., is responsible for the

enhancement of the non-linear subharmonic behavior of

phospholipid-coated ultrasound contrast agent microbubbles.

Furthermore we have used ultra high-speed imaging with the

Brandaris camera
39

to characterize the subharmonic behavior

of individual microbubbles from the experimental agent BR-

14, which contains microbubbles with a phospholipid shell

and a perfluorocarbon gas core �Bracco Research S.A.,

Geneva, Switzerland�. We have investigated the full subhar-

monic resonance and threshold behavior of individual coated

microbubbles for small acoustic pressures and driving pulse

frequencies near two times the resonance frequency of the

microbubbles.

Details of the model and the weakly non-linear analysis

are presented in Sec. II. The experimental setup is discussed

in Sec. III. In Sec. IV the experimental results are presented

and compared to the numerical simulations using the model

of Marmottant et al. Finally we end with a discussion in Sec.

V and our conclusions in Sec. VI.

II. THEORY

A. Analytical solution

A general description of the dynamics of phospholipid

coated microbubbles is given by Marmottant et al.,
38

��RR̈ +
3

2
Ṙ2� = �P0 +

2��R0�
R0

��R0

R
�3��1 −

3�Ṙ

c
� −

2��R�
R

− 4�
Ṙ

R
− 4�s

Ṙ

R2
− P0 − PA�t� . �1�

Here, the radius of the bubble is described by R�t� and its

velocity and acceleration are given by Ṙ and R̈, respectively.

The initial bubble radius is given by R0 and the ambient

pressure by P0. The liquid viscosity is �=10−3 Pa s, its den-

sity �=103 kg /m3 and the speed of sound in the liquid is

c=1500 m /s. The applied acoustic pressure pulse is de-

scribed by PA�t�. We approximate the microbubble oscilla-

tions as adiabatic.
28,38

Therefore we assume the polytropic

exponent � to be the ratio of the specific heats of the gas

inside the bubble. For the experimental agent BR-14 the gas

core consists of perfluorocarbon gas with

�=Cp /C
v
=1.07.

28,38
Thermal damping is accounted for by a

slight increase of the liquid viscosity �=2�10−3 Pa s.
40,41

The effect of the phospholipid coating is taken into ac-

count through a shell viscosity �s and an effective surface

tension which is assumed to depend on the concentration of

phospholipid molecules on the surface of the bubble. Conse-

quently, the surface tension depends on the radius of the

bubble ��R�. In earlier models
26,31

the effective surface ten-

sion was assumed to increase linearly with the bubble radius,

��R�=2��R /R0−1�, where � represents the shell elasticity.

Based on the static properties of phospholipid monolayers,

Marmottant et al.
38

introduced a relation for ��R� where also

the shell elasticity is varied with bubble radius ��R�.
To investigate the effect of ��R� on the subharmonic

response, Eq. �1� can be solved numerically for different

functions ��R�. However, to come to a more fundamental

understanding of the effect of ��R� on the subharmonic be-

havior of ultrasound contrast agents it is insightful to solve

Eq. �1� analytically. Hereto we perform a weakly non-linear

analysis of Eq. �1� where we follow the approach of

Prosperetti.
18,19,25,29

The principal steps of the weakly non-

linear analysis will be repeated here.
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As a most general approximation, we assume that, for

small oscillations around R0, ��R� can be described as a

second order Taylor expansion:

��R� = ��R0� + 2�eff� R

R0

− 1� +
1

2
�eff� R

R0

− 1�2

, �2�

where we have defined for any function ��R�,

�eff =
1

2
R0� ���R�

�R
�

R0

, �3�

�eff = R0
2� �2��R�

�R2 �
R0

. �4�

�eff and �eff are the effective shell elasticity and the deriva-

tive of the effective shell elasticity around the equilibrium

point R0. In the model of Marmottant et al. ��R� and ��R�
depend on the bubble radius R. The effective shell elasticity

�eff and �eff defined in Eqs. �3� and �4�, respectively, are

constants. The shell elasticity as determined by van der Meer

et al.
28

for BR-14 microbubbles was assumed to be indepen-

dent of the bubble radius R and is therefore equal to �eff.

We can show that the results of the weakly non-linear

analysis presented in the following are independent of the

choice of the initial surface tension ��R0�. To simplify the

calculations presented here we therefore assume ��R0� to be

zero. We insert Eq. �2� into Eq. �1� and assume the radius R

of the bubble is correctly described by

R = R0�1 + x� , �5�

where x is small. Following Prosperetti
18

we define a dimen-

sionless timescale, frequency and driving pressure ampli-

tude:

	 =�P0

�

t

R0

, 
 = R0�� �

P0

, � =
Pa

P0

, �6�

where � is the dimensional driving frequency and Pa is the

driving pressure amplitude. Because we assume the surface

tension at rest ��R0� to be zero, the corresponding pressure

inside the bubble is equal to P0.

Inserting all these relations into Eq. �1�, performing a

series expansion in x, and ignoring third and higher order

terms we obtain

d2x

d	2
+ 
0

2x = −
3

2
�dx

d	
�2

+ 1x2 − �x cos�
	� − 2b
dx

d	

+ � cos�
	� , �7�

where we have assumed the driving pressure to be described

by PA / P0=� cos�
	�. Eq. �7� is identical to Eq. �4� from

Prosperetti
18

except for the third order terms which we ne-

glect since we are only interested in the solution of this equa-

tion for 
	2
0, for which the second-order terms are

sufficient.
18

Furthermore we have defined


0
2 = 3� +

4�eff

P0R0

, �8�

b =
2�

R0
��P0

+
2�s

R0
2��P0

+
3�

2c
�P0

�
, �9�

1 =
9

2
��� + 1� −

�eff − 8�eff

P0R0

, �10�

where b describes the non-dimensional damping of the sys-

tem. Note that the resonance frequency in dimensional form

follows directly from Eq. �8� inserted into Eq. �6�. Around


	2
0 the solution of Eq. �7� reads

x =
�

��
2 − 
o
2�2 + 4b2
2

cos�
	 + �� + C cos�1

2

	 + �� ,

�11�

where � is the phase angle of the linear solution which sat-

isfies

tan � =
2b



2 − 
0
2

. �12�

The amplitude of the first subharmonic solution either van-

ishes �C=0�, or becomes

C =�
o
2 −

1

4
2 + g1�2 + ��2�2 − 
2b2

g0

, �13�

where

� = � 1

2
−

1 −
3

4
2


0
2 − 
2 � , �14�

g0 = 1�1 −
3

8
2


0
2

+
1

2

1 +
3

8
2


0
2 − 
2 � +

3

8

2�1

4
−

1 +
3

8
2


0
2 − 
2 � ,

�15�

and

g1 =
1


0
2�
0

2 − 
2�
�1 −

1 −
3

2
2


0
2 − 
2 � −

3

4


2

�
0
2 − 
2�2

−
1


0
2 − 
2

+ �
0
2 −

9

4

2�−1�1 +

3

4
2


0
2 − 
2

−
1

2
��1

2
−

1 −
9

4
2


0
2 − 
2 � . �16�

Theoretically the solution of Eq. �13� can only exist if

the term �2�2−
2b2 is positive. This corresponds to the well-

known theoretical threshold for the existence of subharmon-

ics,

�th�
� =

b

�
. �17�

The threshold determines the regime where the subharmonic

solution is stable. However, as discussed by Prosperetti and

others
16,25

, depending on the initial conditions the subhar-

monic solution may still not exist. Another threshold is pro-

vided by the regime where the linear solution of Eq. �11�
becomes unstable. In this regime the only stable solution is

the subharmonic solution. The instability threshold, �in is

given by
16,25
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�in�
� =� 1

2g1
2
�2 − 2g1�
0

2 −
1

4

2�

−��4 − 4g1��
0
2 −

1

4

2��2 + g1
2b2�1/2

,

�18�

which for 
=2
0 reduces to �in=�th.

From Eq. �17� it is clear that the threshold for subhar-

monics increases with increased damping. However, from

Eq. �10� and Eq. �14� it follows that � and consequently �th

vary with �eff−8�eff. �eff−8�eff is determined by the initial

condition of the phospholipid shell. In Fig. 1 we have plotted

�th at 
=2
0 as a function of �eff−8�eff for the linearized

free gas bubble model from Prosperetti
18

and for the coated

bubble model with ��R� described by Eq. �2� for

R0=3.8 �m. The damping for the coated bubble is deter-

mined by Eq. �9� where we assume the shell viscosity is

equal to �s=3�10−8 kg /s as determined by van der Meer et

al. for the same type of bubbles.
28

This brings the total

damping for the coated bubble to bcoated=0.5. For the un-

coated bubble the damping is determined by the bubble size

and � only, bringing the total damping of the uncoated

bubble to bfree=0.1. We observe that depending on the initial

condition of the shell �eff−8�eff, the threshold for a coated

bubble can vary. If ��eff−8�eff� is sufficiently large, the

threshold for the coated bubble can be lower than the thresh-

old for an uncoated bubble. This provides a possible expla-

nation that even for a fivefold increase of the damping as a

result of the shell, the threshold for the existence of subhar-

monics for coated bubbles can be lower than for uncoated

bubbles depending on the initial conditions of the bubble

shell.

The ultrasound contrast agent models with a purely elas-

tic shell regime
26,27,30

cannot predict a decrease in the thresh-

old pressure as a function of the initial conditions since in

these models �eff is either zero or of the same order as �eff,

hence ��eff−8�eff� remains about 1 N/m, which is too low to

explain subharmonic enhancement for contrast agents. In the

shell buckling model proposed by Marmottant et al.
38

we can

identify that close to the transition point from the elastic to

the buckled regime, ��R� changes rapidly from �max

	2.5 N /m to �=0 N /m, corresponding to a large ��R�. In

fact, in the current model of Marmottant et al. ��R� is unde-

fined at the transition points. At the transition points ��R0�
��eff can be much higher than ��R0���eff, hence

��eff−8�eff� can be large enough to enable subharmonic en-

hancement for contrast agents. In Fig. 2 we have fixed �eff

=0.55 N /m �corresponding to the average shell elasticity

�eff found by van der Meer et al.
28

for the same type of

bubbles� and �eff=504.4 N /m. In Fig. 2 we have plotted

both �th and �in as a function of 
 /
0 for both the free gas

bubble and the coated bubble model with ��R� described by

Eq. �2�. As a result of the initial conditions we observe that

both thresholds ��th and �in� for a coated microbubble are as

low as 6 kPa, much lower than those for a free gas bubble

where the threshold is near 90 kPa.

B. Full numerical solution

The analytical solutions presented in the previous sec-

tion provide a fundamental understanding of the source of

subharmonic behavior of coated microbubbles. However, for

these calculations we have assumed an infinitely long driving

pressure pulse and a sufficiently small amplitude of oscilla-

tion neglecting higher order terms in Eq. �7�. In practice, the

driving pressure pulse has a finite length and the amplitudes

of oscillation of the microbubbles exceed the small ampli-

tude limit. In the following we will therefore solve Eq. �1�
numerically. Solving the equation numerically requires a

model for the relation between the bubble radius and the

effective surface tension ��R�.
We will assume ��R� to be described as proposed in the

model of Marmottant et al.
38

In agreement with what is

known for the static behavior of phospholipid monolayers,

Marmottant et al. assume it is the surface concentration of

FIG. 1. �Color online� The mathematical threshold �th at 
 /
0=2 given by

Eq. �17� plotted as a function of the term �eff−8�eff for R0=3.8 �m with

fixed �eff=0.55 N /m. We observe that if ��eff−8�eff� is large enough, the

threshold for a coated bubble can decrease below the threshold of a free gas

bubble despite its additional shell damping. The damping for the free gas

bubble is determined by the reradiation damping and the liquid viscosity, for

this bubble b=0.1. For the coated bubble model the shell damping intro-

duces and extra damping described by the shell viscosity which is taken

3�10−8 kg /s resulting in a total damping of bcoated=0.5.

FIG. 2. �Color online� The mathematical threshold �th and the instability

threshold �in as a function of 
 /
0 for R0=3.8 �m. The damping for the

coated and the free bubble are the same as in Fig. 1, i.e., the damping

coefficient for the coated bubble is five times as large as for the uncoated

bubble. Even so, the threshold for a coated bubble is only 6 kPa, much lower

than for an uncoated bubble which has a threshold of 90 kPa. This decrease

of the threshold for the coated bubble results from the rapid change of in the

effective surface tension as a function of R described by �eff=0.55 N /m and

�eff=504.4 N /m ��eff−8�eff=500 N /m�.
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phospholipids on the surface of the bubble that determines

the surface tension experienced by the bubble. For low sur-

face concentrations of phospholipids, the surface tension of

the water-air interface of the bubble is unaltered and thus

equal to �water=0.072 N /m. This regime corresponding to

an expanded bubble �area� is referred to as the ruptured re-

gime. If the surface concentration of phospholipids on the

surface of the bubble increases for example by compressing

the bubble, the surface tension of the bubble decreases and

the bubble enters the elastic regime. In the model of Mar-

mottant et al. it is assumed that in the elastic regime the

surface tension of the bubble varies linearly with the radius

of the bubble according to ��R�=2�max�R /R0−1� as in the

model of de Jong et al.
26

The shell elasticity in the elastic

regime is referred to as the maximum shell elasticity �max.

We know from Overvelde et al.
42

that the maximum shell

elasticity in the elastic regime for these type of microbubbles

is �max=2.5 N /m. Below a certain radius the surface con-

centration of phospholipids cannot increase more and at this

point the bubble enters the buckled regime with a corre-

sponding minimum surface tension of ��R�=0. In the model

of Marmottant et al. the shell elasticity varies with bubble

radius from zero in the buckled and ruptured regime to �max

in the elastic regime. The variation of the shell elasticity with

bubble radius is defined by ��R�, i.e., the derivative of the

shell elasticity with respect to R. In the model of Marmottant

et al. ��R� is undefined near the two transition points from

the buckled regime to the elastic regime and from the elastic

regime to the ruptured regime. The piecewise affine function

introduced by Marmottant et al. is a practical idealization of

the shell response which is smoother in physical reality.

The smoothening represented by the ��R� parameter can

be considered a second-order or non-linear elastic correction.

In order to have ��R� defined for all R we assume ��R� in the

two transition regimes to be defined by two quadratic func-

tions. A quadratic function is the first order correction on a

linearly varying surface tension and requires the introduction

of only one new parameter. This modification to the original

model of Marmottant et al. is described in more detail in the

Appendix. The Appendix starts with a more detailed descrip-

tion of the model of Marmottant et al. after which the two

quadratic functions and their corresponding boundary condi-

tions are introduced. The shell parameters of the model that

are undetermined up to now are the initial surface tension

��R0�, the shell viscosity �s and finally the value of � in the

two transition regimes of the effective surface tension. From

the theoretical threshold for the existence of subharmonics

�Eq. �17�� we expect that these three shell parameters

strongly influence the subharmonic behavior. The shell vis-

cosity increases the damping b of the system and is therefore

expected to decrease the subharmonic response. On the other

hand, the initial surface tension ��R0� and the quadratic tran-

sition determined by � strongly affect �eff and thus � in Eq.

�17�.
The effect of ��R0� on the subharmonic behavior of

phospholipid coated microbubbles is shown in Fig. 3. In

Fig. 3 two different responses of a 3.8 �m radius bubble

driven at an acoustic pressure of 40 kPa with a frequency of

2.4 MHz are shown. We observe that the bubble with a small

initial surface tension, ��R0� close to the buckled regime

shows a large subharmonic response. In contrast, for a

bubble with an initial surface tension in the elastic regime no

subharmonic response is observed. Note also that the funda-

mental response for both bubbles is similar and is almost

unaffected by ��R0�.
To investigate the effect of the shell parameters on the

subharmonic behavior, a parametric study was conducted.

The results are shown in Fig. 4. In the parametric study the

driving pulse pressure amplitude and frequency were kept

constant at 40 kPa and 2.4 MHz, respectively. The driving

frequency corresponds to two times the resonance frequency

of the bubble. The corresponding pulse shape of the driving

pressure pulse is shown in Fig. 3�a� and is the same as was

used in the experiments which will be discussed in the next

section. The initial bubble radius was 3.8 �m and it was

found that the results presented in Fig. 4 are similar for all

bubbles with an initial bubble radius between 1 �m and

5 �m. Finally, while one of the shell parameters was varied

the other four parameters were fixed as in Fig. 3, i.e.,

��R0�=0.001 N /m, �=2000 N /m, �s=3�10−8 kg /s and

�max=2.5 N /m.

The fundamental response in all three cases in Fig. 4 is

observed to vary little as compared to the subharmonic re-

sponse which strongly depends on shell parameters. The sub-

harmonic threshold is observed to strongly depend on the

damping �s. In Fig. 4�b� we observe that for

�s=6�10−8 kg /s the threshold for the initiation of subhar-

monics is 40 kPa corresponding to the driving pressure am-

plitude. For smaller �s the subharmonic response is observed

to increase. In agreement with what was found in the weakly

non-linear analysis we find that the subharmonic response

FIG. 3. �Color online� Top figures: An example of the driving pressure

waveform �a�, and �b� its corresponding power spectrum. Bottom figures:

The radius time curve �c� and the corresponding Fourier transform ampli-

tude AFFT �d� for two bubbles with a different initial surface tension ��R0�
driven with a driving pressure pulse of 40 kPa with a frequency of 2.4 MHz.

The dotted line represents the numerical simulation for a bubble with

��R0�=0.001 N /m and the solid line corresponds to a bubble with ��R0�
=0.01 N /m. The initial bubble radius and the other shell parameters are

the same for both bubbles, �=2000 N /m, �s=3�10−8 kg /s and

�max=2.5 N /m.
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depends strongly on the change of the initial shell elasticity.

Indeed, the subharmonic behavior is only observed for mi-

crobubbles that have an initial surface tension close to

��R0�	0 or ��R0�	�water, close to the transitions from the

elastic regime to the two other regimes corresponding to a

large second derivative of the effective surface tension. The

local minima observed in the subharmonic response in

Fig. 4�a� are a result of transient effects resulting from the

finite length of the driving pressure pulse. These local

minima disappear for an increased length of the driving pres-

sure pulse. As with the linearized model we can conclude

that the change in the effective surface tension is of funda-

mental importance to be able to predict subharmonic behav-

ior for phospholipid coated microbubbles at low driving

pressure amplitudes. Furthermore, a difference in the initial

surface tension of bubbles caused by the initial phospholipid

surface concentration explains why in some experiments

subharmonics are observed at low driving pressures while in

other experiments no subharmonics are observed for mi-

crobubbles similar to the ones used in this

study.
10,29,32–35,37,38

Finally, the subharmonic response is also observed to

increase with increasing �; see Fig. 4�c�. For an increased �

also �eff=2R0�����R0�� /�R� increases, provided ��R0�	0.

The transition from the elastic regime to the other two re-

gimes becomes sharper. Following Fig. 1 such an increase

would result in a decrease of the threshold for the generation

of subharmonics. The maximum subharmonic response is

observed to saturate for a value of ��5000 N /m. Based on

the experimental relation between surface tension and phos-

pholipid surface concentration found in the literature �see

e.g., Wen and Franses
43

and Cheng and Chang
44� the magni-

tude of � is expected to be at least three orders of magnitude

larger than the elasticity � in order to explain the abrupt

elasticity change found for collapsing phospholipid mono-

layers. With � of order 1000 N/m and � of order 1 N/m, this

is indeed the case in our study.

III. EXPERIMENTAL

The previous sections have shown that the subharmonic

behavior of phospholipid coated bubbles is predominantly

determined by the driving pulse frequency, pressure ampli-

tude, and the initial phospholipid surface concentration of the

microbubble. Experimentally, the initial phospholipid surface

concentration of the phospholipid shell of the microbubble is

difficult to control as opposed to the frequency and the am-

plitude of the driving pulse. We therefore have recorded the

radial dynamics of 39 different isolated microbubbles with

the Brandaris ultra high-speed camera
39

as a function of both

the driving pressure pulse frequency and amplitude.

A. Setup

The experimental setup is schematically shown in Fig. 5.

The setup consists of a cylindrical Plexiglass container that

was mounted under an upright microscope �BXFM, Olym-

pus Optical, Japan�. Within the container the microbubbles

were confined inside an OptiCell cell culture chamber

�Thermo Fisher Scientific, Waltham, MA, USA�. The acous-

tic transmit circuit consists of a focused 3-MHz center fre-

quency transducer �PA168, Precision Acoustics Ltd., Dorset,

U.K.� that was mounted under an angle of 45° under the

OptiCell. A 0.2 mm needle hydrophone �Precision Acoustics

Ltd., Dorset, U.K.� that moves in and out of the combined

optical and acoustical focus was used to calibrate and align

FIG. 4. �Color online� The absolute value of the Fourier transforms of a

parametric study on the simulated radius-time curve presented in Fig. 3. The

fundamental response to the driving pressure of 2.4 MHz is clearly visible in

all three figures while the subharmonic response is observed to strongly vary

for each shell parameter varied independently. �a� For ��R0� varied between

0 and �water the subharmonic response is only visible for the initial condition

of the bubble satisfying ��R0�	0 or ��R0�	�water. �b� As expected the

subharmonic response is observed to decrease for �s increasing from 0 to

10−7 kg /s and �c� for � increasing from 342 to 10 000 N/m the subharmonic

is observed to increase but for ��5000 N /m the amplitude of the subhar-

monic response saturates.
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the transducer. The transmit transducer was excited with a

sequence of pulses generated by an arbitrary waveform gen-

erator �Tabor Electronics Ltd., Model 8026, Haifa, Israel�
and amplified by a power amplifier �ENI, Model 350L with

50 � input impedance, Rochester, NY�. To calibrate and

align the transmit transducer, a broadband chirp function was

used to excite the transducer. The output response of the

transducer was measured with the calibrated needle hydro-

phone in the focus of the transducer. From the response the

transmit transfer function of the transducer was determined

as is described in Ref. 45.

The optical focus of a 100� microscope objective was

positioned in the acoustical focus of the transducer. It was

illuminated from below with a high intensity xenon flashlight

�MVS 7010 XE, Perkin Elmer, Waltham, MA�. A

continuous-wave light source �ACE I, Schott, NY� in com-

bination with a CCD camera �LCL-902K, Qwonn� was used

to monitor the bubble in between experiments. The image

plane of the microscope objective was coupled into the Bran-

daris 128 ultra high speed imaging facility. The high-speed

camera consists of 128 separate highly sensitive CCD

�Charge Coupled Device� sensors that are illuminated con-

secutively by a rotating mirror. The mirror turbine is driven

by a mass-flow controlled flow of Helium, at a revolving rate

of up to 20,000 revolutions per second, corresponding to a

frame rate of 25 million frames per second. Six consecutive

movies of 128 frames each can be stored in a memory buffer

with a time interval of 80 ms. We employed the microbubble

spectroscopy method detailed in Ref. 28 to characterize the

bubbles. The microbubbles were excited with a smoothly

windowed driving pressure waveform with a frequency rang-

ing from 1 to 4 MHz, all with peak rarefactional amplitudes

ranging from 5 to 150 kPa and a fixed length of 8.9 �s. An

example of a driving pressure waveform is shown in Fig.

3�a�. In preparation of the experiment 12 driving pressure

pulses were uploaded to the arbitrary waveform generator.

The frequencies of each of the waveforms were varied and

equally spaced near two times the resonance frequency of the

microbubble. In this way the radial subharmonic resonance

behavior of the bubble was quantified. The optical recordings

consisted of two times six movies at a frame rate near 13

Mfps. The movies were stored on a PC, and all data were

post-processed using Matlab �The Mathworks, Natick, MA�.
The image sequence of the oscillating bubble was analyzed

with Matlab through a semi-automatic minimum cost

algorithm
28

to give the radius of the bubble as a function of

time R�t�.
All the results discussed in this paper were conducted

with microbubbles located against the top wall of the Opti-

Cell. The experimental setup is compatible with an optical

tweezers setup that was coupled through the microscope into

the microscope objective. With this combined setup we could

also position the microbubbles 100 �m away from the top

wall. The details of this setup are described in full detail in

previous work.
46,47

To investigate the effect of the wall on

the subharmonic behavior of coated microbubbles we have

conducted several scans around the subharmonic resonance

of different microbubbles both when the bubble was located

against the top wall of the OptiCell and when brought

100 �m away from the wall. Based on these experiments we

conclude that the presence of a wall does not alter the sub-

harmonic behavior of ultrasound contrast agents to be ex-

perimentally observable in the current setup. In the following

we therefore only consider the results based on the setup

without the optical tweezers.

IV. RESULTS

In total, 39 individual microbubbles were included in

this study. Subharmonic responses were observed for ap-

proximately 50% of the microbubbles. The other 50% of the

microbubbles could not be forced into subharmonic oscilla-

tions for the driving pressure amplitudes and/or pulse lengths

employed in this study which were always smaller than

150 kPa. This finding confirms previous results by Bhaga-

vatheeshwaran et al.
36

and by Kimmel et al.
37

In those cases

where subharmonic oscillations were observed these were

initiated already at driving pressure amplitudes smaller than

40 kPa confirming the results found by another set of

authors.
10,29,32–35

Figure 6 shows a typical example of an ultra high-speed

recording of a microbubble with an initial bubble radius of

3.8 �m. The bubble was excited with 12 different frequen-

cies near two times its resonance frequency, which was

1.3 MHz following van der Meer et al.
28

The subharmonic

response is clearly visible both in the time and frequency

domain.

We observe a maximum for the relative amplitude of the

subharmonic response around a driving pressure frequency

of 2.4 MHz corresponding to a 1.2 MHz subharmonic oscil-

lation. At this frequency the amplitude of the �radial� subhar-

monic response is even higher than the amplitude of the

fundamental response. One should keep in mind that here we

display the radial response of the bubble. The acoustic re-

sponse of the bubble, including its subharmonic component,

can be directly calculated from the radial response, see e.g.

Ref. 48. Based on conservation of mass and momentum one

FIG. 5. �Color online� A schematic overview of the experimental setup that

was used to optically record the radial dynamics of coated microbubbles

located inside an optically and acoustically transparent OptiCell chamber.

The driving pressure waveform produced by an arbitrary waveform genera-

tor �AWG� was amplified and transmitted by a focused transducer. The

radial dynamics were recorded through a 100� objective coupled through

an inverted microscope into the Brandaris ultra high-speed camera.

J. Acoust. Soc. Am., Vol. 128, No. 5, November 2010 Sijl et al.: Subharmonic behavior of coated microbubbles 3245 A
u

th
o

r'
s
 c

o
m

p
li
m

e
n

ta
ry

 c
o

p
y



can deduce that the subharmonic pressure amplitude will be

decreased by a factor of four as compared to the fundamental

echo amplitude.

Both above and below the resonance frequency the sub-

harmonic response decreases and a subharmonic resonance

curve �data not shown� can be obtained similar to the reso-

nance curve produced with microbubble spectroscopy by van

der Meer et al.
28

Furthermore, as expected, the fundamental

response of the microbubble does not show a resonance be-

havior since it is excited far above its resonance frequency,

which also explains why the fundamental response is ob-

served to decrease for increasing driving pulse frequency.

Finally, note that most of the responses presented in Fig. 6

show a zero order frequency component even though the

initial bubble radius was subtracted from the radius-time

curve before the Fourier transform was performed. The zero

order component results from the compression-only behavior

of the bubble, i.e., the bubble appears to compress more than

it expands.
49,50

The experimental data is compared to the theoretical

predictions. Figure 7 shows a best fit of the model of Mar-

mottant et al.
38

for the radius-time curve that shows the

maximum subharmonic response in Fig. 6�e�. The unknown

parameters of the model, �, the shell viscosity �s and the

initial surface tension ��R0� of the bubble are varied using

the iterative fit function fit in Matlab. The driving pressures

for the simulated and measured radius-time curve are identi-

cal. The goal of the fit was not to determine the definitive

values for the three shell parameters but to see if the model

proposed by Marmottant et al. is able to predict subharmonic

behavior of coated microbubbles at these low driving pres-

sure amplitudes as observed in the experiments.

The agreement between the two radius-time curves is

very good. It can be appreciated that the oscillation ampli-

tude at the subharmonic frequency is of the same order as

that at the fundamental frequency with a value of 5% of the

initial bubble radius at the driving pressure amplitude of

40 kPa. The best fit parameters found are in good agreement

with the parametric study presented in Sec. II B and the val-

ues found elsewhere in the literature. The best fit value for

the shell viscosity �s=3�10−8 kg /s is in agreement with

van der Meer et al.
28

To explain the amplitude of the subhar-

monic oscillations observed in Fig. 7 we observe in Fig. 4

that the amount of damping depicted by �s=3�10−8 kg /s

requires a large value for �. Based on the experimentally

measured relation between surface tension and phospholipid

surface concentrations found in the literature the magnitude

of � is expected to be at least three orders of magnitude

larger than � in order to explain the abrupt elasticity change

FIG. 6. The radius-time curves �left column� of a 3.8 �m microbubble

excited with twelve different driving pulses all with an amplitude of 40 kPa

and different frequencies. In the corresponding absolute value of the Fourier

transform �sampling rate 50 MHz, length pulse 501 points� of the radius-

time curves �right column� we observe clear subharmonic behavior. We can

identify a subharmonic resonance curve that peaks at a driving frequency of

2.4 MHz, about twice the resonance frequency of the bubble.

FIG. 7. �Color online� The best fit of the fifth radius-time curve from

Fig. 6�e� with the model proposed by Marmottant et al. with the shell pa-

rameters �max=2.5 N /m, �=2000 N /m �s=3�10−8 �kg /s� and

��R0�=0.001 N/m both in �a� the time domain and �b� in the frequency

domain �sampling rate both curves 50 MHz, 501 points�.
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found for collapsing phospholipid monolayers.
43,44

This is in

agreement with the value for � found in the best fit, namely

�=2000 N /m. Furthermore, in Sec. II B and from the ana-

lytical solutions in Sec. II A, we found ��R0� should be close

to zero which agrees well with the best fit value found in

Fig. 7, ��R0�=0.001 N /m.

To investigate the frequency dependence of the subhar-

monic behavior of phospholipid coated microbubbles we

varied the driving frequency as shown in Fig. 6. An overview

of the frequency behavior presented in Fig. 6 is shown as a

single plot in the spectrogram in Fig. 8�b�. The horizontal

axis of the figure is divided into twelve columns representing

the twelve driving frequencies. The vertical axis represents

the response frequencies corresponding to the horizontal axis

of the figures in the right column of Fig. 6. A frequency of

50 MHz was used to interpolate the radius-time curves. The

color coding in Fig. 8 represents the absolute value of the

Fourier transform of the radius-time curves. The zero order

frequency component was filtered out completely. Two other

spectrograms for different bubble radii are presented in Figs.

8�a� and 8�c�.
Figure 9 shows the full �sub�harmonic resonance behav-

ior of the very same bubbles presented in Fig. 8. The initial

surface tension and � were assumed to be equal to the values

found in the previous fit �see Fig. 7� and the shell viscosity

was assumed to vary with initial bubble radius as shown by

van der Meer et al.
28

The color coding for the simulated

spectra is identical to those in Fig. 8 allowing for a quanti-

tative comparison between the experimental an theoretical

subharmonic behavior. Both the simulated spectra and the

measured spectra show subharmonic resonance behavior at

the same frequencies. Furthermore, we identify a good agree-

ment between the absolute amplitude of the subharmonic

response between the simulated and the measured spectra.

To determine the threshold pressure for the initiation of

subharmonic oscillations for coated bubbles the experiment

as presented in Fig. 6 was repeated for different driving pres-

sure amplitudes. The maximum response frequency for the

FIG. 8. The amplitude of the Fourier transform of the radial response of

three differently sized bubbles as measured with the Brandaris ultra high-

speed camera represented by a color. The horizontal axis represents twelve

different driving pressure frequencies with a fixed driving pressure ampli-

tude of 40 kPa. The response frequency is represented by the vertical axis.

FIG. 9. Simulated subharmonic resonance behavior of coated microbubbles

with the same initial bubble radii as in Fig. 8 using the best fit shell param-

eters found in Fig. 7
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experimentally determined subharmonic oscillations was

observed to decrease from 1.4 MHz ��5 kPa� to 1 MHz

��80 kPa� for increased driving pressures. This can be at-

tributed to a non-linear phenomenon, where the frequency of

maximum response of the bubble decreases for increased

driving pressure.
18,42

In Fig. 10�a�, the subharmonic oscilla-

tion amplitude at the maximum subharmonic response fre-

quency is plotted as a function of the driving pressure am-

plitude. We observe that the threshold pressure for the

initiation of subharmonic oscillations is smaller than 5 kPa,

much lower than that of a free gas bubble without a shell and

much lower than is expected based on the additional

damping introduced by the phospholipid shell of the

bubble.
10,29,32–35

For the 5 kPa driving pressure the only

driving frequency showing a subharmonic response was

2.8 MHz corresponding to a resonance frequency of

1.4 MHz.

Interestingly, we observe that the subharmonic ampli-

tude decreases for increasing driving pressure amplitudes

above a pressure of 80 kPa. To investigate these results in

more detail we conducted numerical simulations using three

different models, a free gas bubble model as described by

Lotsberg et al.,
32

a purely linear viscoelastic shell model
26

and the model proposed by Marmottant et al.
38

The shell

parameters for the model of Marmottant et al. were taken

from the best fit from Fig. 7. For the linear viscoelastic shell

model we used the very same shell viscosity. The shell elas-

ticity was taken from van der Meer et al.,
28

�eff=0.55 N /m, who determined the shell elasticity for a

linear viscoelastic shell model. The initial surface tension in

the linear viscoelastic shell model is assumed to be the same

as found in the best fit from Fig. 7. In the numerical simula-

tions, the initial bubble radius and driving pressures were

those of the experiments. As discussed before, the maximum

subharmonic/linear response frequency varies slightly for in-

creased driving amplitudes. Therefore, similar to the experi-

ments, we varied the driving frequency around twice the

resonance frequency of the bubble to find the maximum sub-

harmonic response frequency. The maximum subharmonic

oscillation amplitude for the three different models at the

maximum subharmonic response frequency was plotted

against the driving pressure amplitude together with the ex-

perimental data in Fig. 10�a�. From this figure it is clear that

the free gas bubble model starts to show subharmonic behav-

ior for driving pressure amplitudes between 50 and 80 kPa

whereas the experimental data shows subharmonic behavior

already at a driving pressure amplitudes of 5 kPa. As a result

of the increased damping introduced by the bubble shell, the

linear viscoelastic shell model shows no subharmonics up to

a driving pressure amplitude of 240 kPa. The model by Mar-

mottant et al. on the other hand predicts that the threshold

pressure for the initiation of subharmonics almost vanishes,

which is in agreement with what is found experimentally.

Overall the agreement between the theoretical predictions of

the model proposed by Marmottant et al.
38

and the experi-

mental data is very good. Also the decrease of the subhar-

monic oscillation amplitude for higher pressures seems to be

correctly predicted by the model. The very same experiments

and numerical simulations were conducted for two other mi-

crobubbles: one for a bubble with an initial bubble radius of

4.8 �m and one for a 2.4 �m radius bubble; these are pre-

sented in Figs. 10�b� and 10�c�, respectively. The shell vis-

cosity was adapted to the initial bubble radius of the bubble

in accordance with the results of van der Meer et al.,
28

who

found a shell viscosity depending on bubble size, or more

precisely on dilatation rate. The shell viscosity was directly

taken from Fig. 8�b� from van der Meer et al.
28

For the

4.8 �m radius bubble the shell viscosity was therefore taken

to be equal to 4.3�10−8 kg /s and for the 2.4 �m radius

bubble it was taken to be equal to 1.2�10−8 kg /s.

FIG. 10. �Color online� The maximum amplitude of the subharmonic oscil-

lations of a �a� 3.8 �m, �b� 4.8 �m and �c� 2.4 �m bubble as a response to

different driving pressure amplitudes. The measured responses are compared

with the subharmonic responses for the same initial bubble radii predicted

by three different models. The model proposed by Marmottant et al.
38 �solid

line�, and a purely linear viscoelastic shell model �dashed line� and a free

gas bubble model �dotted line�.
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In Figs. 10�c� and 10�b�, we again observe that the sub-

harmonic threshold pressure has decreased considerably

compared to the threshold pressure predicted for a free gas

bubble of the same size. The linear viscoelastic shell model

is unable to predict subharmonics at such low driving pres-

sure amplitudes.

Figures 10�a�–10�c� show that the subharmonic oscilla-

tion amplitude of the largest and smallest bubble is of com-

parable magnitude. Furthermore it is found that the threshold

pressure for the initiation of subharmonic oscillations does

not vary strongly with bubble radius. We also observe that

for all three bubble sizes the model of Marmottant et al.

predicts a maximum for the subharmonic oscillation ampli-

tude between a driving pressure of 50 and 100 kPa.

V. DISCUSSION

From the comparison between the analytical, numerical

and experimental results we conclude that the subharmonic

behavior of phospholipid coated microbubbles at low acous-

tic driving pressure amplitudes can be explained by a rapid

change of the effective surface tension of the bubble shell.

We also find that the subharmonic behavior of phospholipid

coated microbubbles is predominantly determined by the ini-

tial phospholipid surface concentration on the bubble wall.

The description of the effective surface tension of a phospho-

lipid coated microbubble as a function of bubble radius pro-

posed by Marmottant et al.
38

is based on the quasi-static

behavior of phospholipid monolayers.
51,52

Here we show that

the main features of the model responsible for the subhar-

monic behavior of phospholipid coated microbubbles, such

as the large change of the initial shell elasticity, also provide

excellent agreement with experimental observations at

higher frequencies. The phospholipid molecules covering the

surface of BR-14 microbubbles, are distearoylphosphatidyl-

choline �DSPC�, and dipalmytoylphosphatidylglycerol

�DPPG�. These are well known pulmonary surfactants
53

and

their dynamic behavior has been the subject of numerous

studies. Hereto, researchers make use of a so-called pulsating

bubble surfactometer.
54

In a pulsating bubble surfactometer a

bubble of around 500 �m is coated with the surfactant of

interest while the radius of the bubble is varied through an

externally applied pressure. The pressure in and outside the

bubble, which is monitored during the oscillations, provides

direct information on the dynamic surface tension of the

bubble. From dynamic surface tension measurements con-

ducted by Wen et al.
43

and Cheng et al.
44

on DPPC �similar

to DPPG and DSPC� we observe that the change of the shell

elasticity is indeed much larger than the shell elasticity itself

for an initial surface tension close to the phospholipid sur-

face saturation concentration �which can be appreciated from

the sharp peaks for low effective surface tension and round

peaks for large effective surface tension in Fig. 2 of Ref. 43

and Fig. 1 of Ref. 44.

The functional form of the effective surface tension fig-

ure proposed by Marmottant et al.
38

is based on a few ap-

proximations: a perfectly elastic regime can be defined, the

elasticity is zero in the buckled regime and after rupture of

the shell, buckling and rupture are reversible, the surface

tension goes to zero in the buckled state. Furthermore, a

more realistic description should account for several factors

that are known to influence the dynamic behavior of phos-

pholipids monolayer, such as the ionic strength and pH of the

solution, temperature, impurities and dissolved surfactants.
53

An explanation why around 50% of the microbubbles

studied in this paper and similar studies by other authors
36,37

showed no subharmonic behavior at low acoustic driving

pressures could be that the surface of these bubbles was in-

sufficiently saturated with phospholipids. This would result

in an insufficiently large change of the initial shell elasticity

to initiate subharmonic behavior.

The findings presented in this paper are valuable for the

application of phospholipid coated microbubbles in medical

ultrasound imaging. By controlling the initial conditions of

the microbubbles, their subharmonic behavior can be en-

hanced leading to an improved contrast to tissue ratio in

contrast-enhanced ultrasound imaging. One way of changing

and controlling the initial conditions of the phospholipid

shell is through a change of the ambient pressure. This idea

has very recently been shown by Frinking et al.
55

and pro-

vides new possibilities for non-invasive in vivo hydrostatic

pressure estimations inside the heart and large vessels.

VI. CONCLUSIONS

Through a weakly non-linear analysis we provided an

explanation for the decrease of the threshold amplitude of the

driving pressure above which the subharmonic behavior of

phospholipid coated microbubbles is initiated. We show that

a decrease of the subharmonic threshold for coated mi-

crobubbles can only be explained if the shell elasticity of the

bubble shell, ��R�, varies rapidly with the amplitude of os-

cillation. Unlike the purely linear viscoelastic

models
26,27,30,31

the model of Marmottant et al.
38

assumes

that the shell of a phospholipid coated microbubble is elastic

only in a small radius domain. Outside this domain the shell

elasticity is zero. It is shown that as a result of this rapid

change in the shell elasticity, the subharmonic behavior of

coated microbubbles is likely to occur already for driving

pressure amplitudes as low as 6 kPa.

In a full parametric study of the model we show that the

initial surface tension of the bubble shell, i.e., the initial

phospholipid surface concentration, determines whether or

not subharmonics occur. If the initial surface tension of the

bubble is sufficiently close to the buckled regime and the

collapse of the phospholipid monolayer from the elastic re-

gime to the buckled regime determined by � is sufficiently

abrupt subharmonic behavior is enhanced. Furthermore it is

confirmed that the subharmonic behavior is enhanced for a

smaller shell viscosity.

Experimentally the subharmonic radial dynamics of dif-

ferently sized microbubbles was studied for different driving

pressure frequencies near two times the resonance frequency

of the bubble for different driving pressure amplitudes. Sub-

harmonic oscillations were observed for bubbles insonified

with driving pressures with amplitudes as low as 5 kPa. This

indicates that the threshold pressure above which subhar-

monic oscillations may occur is even smaller for phospho-
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lipid coated microbubbles than for free gas bubbles, even

though as a result of the shell viscosity coated bubbles are

more heavily damped.
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APPENDIX

As a first approximation Marmottant et al.
38

assumed

three regimes for ��R�, an elastic regime, for small bubble

oscillations and two regimes where the shell elasticity is zero

in accordance with the known quasi-static behavior of phos-

pholipid monolayers. The shell elasticity � in the elastic re-

gime is assumed to be constant and the function ��R� as a

whole is assumed to be identical for all bubbles independent

of the initial bubble radius. Therefore this model introduces

only one additional parameter as compared to the model pro-

posed by de Jong et al.:
26

the initial surface tension of the

bubble ��R0�, which directly relates to the phospholipid con-

centration on the interface of the bubble.

In the model described by Marmottant et al. ��R� is

defined as a piecewise affine function, implying that ��R�,
i.e., the derivative of ��R� with respect to R is zero except at

the two transition points ��R�=0 and ��R�=�water, where

this quantity is not defined. As already pointed out by Mar-

mottant et al.,
38

this is a practical idealization of the shell

response which is smoother in reality.

In the original model � was undefined in the two transi-

tion regions. With the introduction of the two quadratic func-

tion the constant � can now be defined. This suggests that a

new shell parameter must be introduced, however, since in

the original model � was undefined, and was in fact deter-

mined by the step size of the numerical solution of the

Rayleigh-Plesset equation, the original model could also be

considered as having already incorporated �in an uncon-

trolled way� the � shell parameter.

In order to have ��R� defined for all R we propose to

introduce two quadratic crossover functions, Y1�R� and

Y2�R� in the two transition regions as depicted in Fig. 11. In

order for both the effective surface tension and the shell elas-

ticity to remain continuous at the two transition points the

two quadratic functions at the two different transitions

should each satisfy a set of boundary conditions. For the

transition from the so called buckled regime to the elastic

regime the function Y1�R� should be chosen such that ��R�
satisfies

��RBuck� = 0 N/m,

���RBuck�/�R = 0 N/m2,

���RElas�/�R = 2�max/R0 N/m2, �A1�

where RBuck marks the transition to the buckled regime and

RElas to the elastic regime. In a separate experiment by Over-

velde et al.
42

resonance curves of phospholipid coated BR-14

microbubbles were measured at very low driving pressures.

This allowed for measurements of the resonance curves of a

bubble in a purely elastic state as the oscillations were con-

fined to the elastic regime. In this way the maximum shell

elasticity in the elastic regime could be determined and was

found to be �max=2.5 N /m. For radii between RBuck and

RElas the shell elasticity is determined by Y1 as shown in Fig.

11. To limit the number of free parameters of the model we

have assumed the transition from the buckled regime to the

elastic regime and from the elastic regime to the ruptured

regime to be identical. The boundary conditions that should

FIG. 11. �Color online� In the model of Marmottant et al.
38

the second derivative of ��R� with respect to R is undefined in the transitions from the buckled

regime to the elastic regime, and from the elastic regime to the free gas bubble regime. To correct this, we propose to expand the original model with two

quadratic functions Y1 and Y2 that describe the two transition points.
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be satisfied for this latter transition are therefore

��RFree� = 0.072 N/m,

���RElas2�/�R = 2�max/R0 N/m2,

���RFree�/�R = 0 N/m2. �A2�

The end of the elastic regime is now marked by RElas2 and

the start of the ruptured regime is marked by Rfree. From the

boundary conditions we find the following quadratic func-

tions:

Y1 =
1

2
�� R

RBuck

− 1�2

for RBuck � R � RElas, �A3�

Y2 = �water −
1

2
�� R

RBuck

−
RFree

RBuck

�2

for RElas2 � R � RFree. �A4�

With these two new quadratic functions the final func-

tion of ��R� becomes

��R� =�
0 R � RBuck

Y1�R� RBuck � R � RElas

2�max� R

R0

− 1� RElas � R � RElas2

Y2�R� RElas2 � R � RFree

�water R � RFree.

� �A5�

Note that in this model the initial effective surface tension of

��R0� is adjusted by shifting the function of ��R� horizon-

tally while fixing R0, see Fig. 11.
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