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Abstract
Let the torus T 2n be equipped with the standard symplectic structure and

a periodic Hamiltonian H 2 C3(S1 � T 2n;R): We look for periodic orbits of
the Hamiltonian �ow

�
u(t) = JrH(t;u(t)): (1)

A subharmonic solution is a periodic orbit with minimal period an integral
multiple m of the period of H, with m > 1:
THEOREM If the Hamiltonian �ow has only �nitely many orbits with the

same period as H, then there are subharmonic solutions with arbitrarily high
minimal period. Thus there are always in�nitely many distinct periodic orbits.

The results proved here were proved in the nondegenerate case by Conley
and Zehnder [CZ3] and in the case n = 1 by LeCalvez [LC].

1 Introduction.

In 1983 Conley and Zehnder published a proof of the Arnold Conjecture on
the torus, to the e¤ect that the Hamiltonian �ow from a periodic Hamiltonian
H on T 2n has at least as many orbits with period the same as that of H, as a
function on T 2n has critical points. Here is a rough idea of why it should be
true: Periodic orbits of the Hamiltonian �ow are the critical points of the action
function A on the free loop space. When H � 0, the orbits of the Hamiltonian
�ow are the constant curves; thus there is a degenerate manifold t T 2n of
critical points. A perturbation of the Hamiltonian results in a perturbation of
the action function; the critical set continues to "carry" the homology of the
torus. The di¢ culty that all critical points have in�nite index is resolved using
a �nite dimensional approximation.
In 1984 Conley and Zehnder, again using a �nite dimensional approximation,

proved the nondegenerate case of the theorem proved here: If all orbits with the
same period as H are nondegenerate, then there are subharmonic solutions with
arbitrarily high minimal period . Idea: The topology of the free loop space
�m of closed curves on T 2n with period m-times the period of H is independent
of m; thus for each m; the set of critical points in �m "carries" the homology
of the torus. A priori (as happens in the case H � 0) this topology might be
carried on iterates of critical points of smaller minimal period. But the iterates
of a nondegenerate critical point can "carry" the top- or bottom-dimensional
homology (dimension n or �n with Maslov grading) of the torus in only a �nite
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number of the spaces �m : (This follows from the Bott formula for the index of
the iterates, and will be explained below.) Conley conjectured the result proved
here in 1984 [SZ]. The conjecture cannot be proved by a re�nement of the argu-
ment used in the nondegenerate case: In the degenerate case it is possible for
all the topology in �m to be carried on critical points that have minimal period
m = 1. This is the case for example for an autonomous (time-independent)
Hamiltonian with a �nite number of (and only) isolated, completely degenerate
critical points. It is easy to see how to construct such a function, starting with a
nondegenerate Morse function, and that all the homology of �m for each m can
be carried on the constant curves at these critical points. For an autonomous
Hamiltonian when n = 1 the orbits of the Hamiltonian �ow are the level sets
of H. It is not hard to see that any neighborhood of the constant curve at
a totally degenerate, strict maximum or minimum contains an in�nite number
of subharmonic solutions, with minimal period going to in�nity. Similarly, in
our proof squeezing so much homology onto one (necessarily) degenerate criti-
cal point forces the existence of new critical points. It is remarkable however
that our proof does not ensure the existence of subharmonic solutions in a C0

neighborhood of the degenerate critical points that carry the homology. In
step 3. of the outline below, there is information about the new critical values,
but not about the critical points. This is intriguing in that it seems that the
existence of a "topologically degenerate" critical point can ensure the existence
of in�nitely many other critical points, (perhaps) far away! We will call an
isolated critical point of the action topologically degenerate if its iterates
are homologically visible (i.e. have nontrivial local homology) in dimension �n
in in�nitely many �m . This local homology forces the critical point to be
degenerate by the Bott formula: the Maslov index of the iterates of a nonde-
generate critical point would eventually have to drop. The local homology of a
topologically degenerate critical point is unstable: on a very small scale (Fig.1)
there is local homology in dimension �n, but if you back away (Fig2) it appears
that the index has dropped; that is, there is one fewer negative direction. One
gets another view of instability by turning �gures 1 and 2 upside down: the
nontrivial local class represented by ��m in �gure1"slips o¤" and becomes trivial
in �gure 2. A similar phenomenon appears in the study of closed geodesics; see
[H2],[H3].
The torus is special because one can use �nite dimensional approximation.

For other symplectic manifolds, the best technique seems to be Floer theory,
which was used in more general proofs of the Arnold Conjecture. (There is quite
a jump from the standard techniques of Fourier series which are the basis of the
�nite dimensional approximation, to Floer theory, whose basic local properties
are still mysterious. Still many believe that this is just a technical gap, i.e. that
the torus is not really special.) In 1990 Salamon and Zehnder [SZ] proved the
existence of in�nitely many subharmonic solutions in the nondegenerate case
on a symplectic manifold with vanishing second fundamental group, using Floer
homology. The general case of Conley�s conjecture on subharmonic solutions is
still open. We hope to extend the techniques of this paper to other symplectic
manifolds.
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Here is an outline of our proof:
0. Assume the Hamiltonian �ow has �nitely many orbits with the same pe-

riod as H. If there is a bound for the minimal period of subharmonic solutions,
then the action has a topologically degenerate (de�nition above) critical point
u0, of the same period as H. This argument comes from Conley and Zehnder
[CZ3].
For the rest of the proof we assume the existence of an isolated, topologically

degenerate critical point u0. Let um0 (also called u0 for simplicity, and also
called the mth iterate of u0) be the image u0 of in �m. The remainder of the
paper is devoted to the proof of the following, which now clearly implies the
Theorem.
Proposition If the action has an isolated, topologically degenerate critical

point u0, then there are subharmonic solutions with arbitrarily high minimal
period.
1. In a suitable local coordinate system, the critical point u0 is the constant

loop at the origin, and the Hamiltonian has a strict local maximum at the origin
for each �xed t:
2. If m is su¢ ciently large, there is a molar at u0 (See Lemma 7, Lemma

8 and �gures1,2): Fix m. Let cm be the critical value um0 : A molar at u0 is
a pair (�m;�

�
m) of submanifolds with u0��

�
m; �

�
m � �m as a submanifold of

codimension 1; @��m � @�m; satisfying
A. A �cm on ��m; and ��m represents a nontrivial local homology class

at u0:
B. A �cm � " on �m for some " > 0:
C. A >cm on @�m:

In fact the proof will show that we can make " as small as we like for
su¢ ciently large m.
3. Given " > 0, if m is su¢ ciently large, �m has a critical value in the

interval [cm � "; cm):
Question: Is an isolated, topologically degenerate critical point necessarily

the C0�limit of a sequence of subharmonic solutions? Perhaps a more cunning
trap could capture the new critical points C0-locally.
This research was supported by the Institute for Advanced Study where

the author was a member 1998-99. The author is grateful to Helmut Hofer,
Yi Ming Long, Breno Madero, John Mather, Dusa McDu¤, Matthias Schwarz,
Graeme Segal, and Eduard Zehnder for assistance and encouragement. Nicholas
Hingston Tenev produced the �gures. A referee was a great help in getting the
paper into a coherent form.

Contents
1 Introduction
2 Preliminaries
2.1 De�nitions/notation
2.2 Generating functions
2.3 Intersection in the symplectic group and Maslov index

3



2.4 Coordinate change
2.5 Finite dimensional approximation, local homology, and characteristic

manifold
3 Global to local (step 0 of outline)
4 Local results (step 1 of outline)
4.1 Local minimum in the characteristic manifold
4.2 Relatively autonomous Hamiltonian
4.3 Expanded characteristic manifold
4.4 Negative Hamiltonian

5 Global results (step 2,3 of outline)
5.1 Global coordinate change
5.2 Shifted Fourier series
5.3 Local molar in cZm
5.4 The molar: Global version

2 Preliminaries

2.1 De�nitions/notation

See [CZ2], [MS]. Let S1 = R=2�Z. Let the torus T 2nbe equipped with the stan-
dard symplectic structure, standard almost complex structure J; and a Hamil-
tonian H : S1 � T 2n = f(t;u)g ! R. On R2n, T 2n, or the disk D2n we will
use coordinates u = (x; y): r will denote di¤erentiation with the x; y variables,
with t �xed, and "�" will denote di¤erentiation with respect to t, with x; y �xed.
Let �m be the free loop space H1

0 (R=2m�Z; T 2n) of contractible loops of period
2m � . The action A =AH : �m ! R will be "Enclosed area �2m �(Average
value of H)":

AH(u) = A0(u)�H(u) (2)

=
1

2

2m�R
0

h�u(t); Ju(t)idt:�
2m�R
0

H(t;u(t))dt: (3)

The �rst variation of the action at a point u in the direction of a vector �eld X
along u is

�A(u)X =
2m�

�
R
0

hDu; Xidt; (4)

where
Du(t) = DHu(t) = J

�
u(t) +rH(t;u(t)): (5)

The Hamiltonian �ow : (R� T 2n)! T 2n is a 1-parameter family of symplecto-
morphisms:

�
u(t) = JrH(t;u(t)): (6)

(In spite of the inelegant local coordinates, the symplectic gradient JrH de-
pends only on H and the symplectic structure.) The critical points of A on
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�m are precisely the orbits of the Hamiltonian �ow of period 2m�. If u is such
a critical point, and X and Y are vector �elds along u, the second variation is
given by

D2A(X;Y ) =
2m�

�
R
0

hJ
�
X(t) +r2H(t;u(t)X;Y (t)idt: (7)

It will be convenient to have an expression for the "enclosed area" A0(u) in
terms of Fourier coe¢ cients: If u(t) = (x(t); y(t));where x + iy =

P
�ke

ikt=m

with x; y�Rn and �k�C
n;then

A0(u) = �
X

kj�kj2: (8)

The energy E(u) is

E(u) =:
2m�R
0

j �uj2dt = 2�

m
(
P
k2j�kj2) (9)

2.2 Generating functions

See [MS, p287]. Let � : R2n ! R2n be a symplectic map, su¢ ciently C1 close
to the indentity map. Then there is a smooth function

S : R2n ! R so that

�(x0; y0) = (x1; y1)

() (x1; y1)� (x0; y0)= JrS(x1; y0): (10)

Conversely, if S : R2n ! R is a C2 function with su¢ ciently small �rst and
second derivatives, then (10) de�nes a symplectomorphism of R2n:

2.3 Intersection in the symplectic group and Maslov in-
dex

See [B], [C], [CZ3],[H1], [L1], [L2]. If j!j = 1, let B(!) be the set in the
symplectic group Sp(2n;R) where ! is an eigenvalue; that is,

B(!) = fXjdet(X � !I) = 0g � Sp(2n;R): (11)

Example: Sp(2;R) is topologically an open solid torus, in which B(1) sits as
a cone with vertex at the identity matrix I, and two boundary circles out at
in�nity. We will assume the reader is familiar with the topology of Sp(2;R).
The nonsingular part B�(!) of B(!) is given by

B�(!) = fY : NY (!) = 1g; (12)

where
NY (!) =: dimKer(Y � !I): (13)
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The cone of positive directions (+directions)

+Cone = fAjJA positive de�nite} � sp(2n;R); (14)

provides an orientation for B�(!). A +-curve 
(t) intersects B(!) at isolated
values of t. The intersection number of an oriented curve 
 in Sp(2n;R) with
B(!) can be de�ned, if the endpoints of 
 do not lie on B(!): This intersection
number is invariant under homotopies of 
 leaving the endpoints �xed: The in-
tersection number of a +-curve intersecting B(!) at a single point Y is NY (!).
If 
 : [0; T ]! Sp(2n;R), with 
(0) = I, we de�ne:

Maslov Index(
) =: 

 =: #(B(1) \ � � 
 � �) (15)

where � : [0; 1]! Sp(2n;R) is a path of real diagonal matrices intersecting B(1)
only at �(1) = I; and � is a su¢ ciently short �curve beginning at 
(T ): More
generally we de�ne the !-index



(!) =: #(B(!) \ � � 
 � �): (16)

The Maslov index is roughly twice the "winding number" of 
 around the loop
generating �1(Sp(2n;R) = Z (roughly because 
 is not closed, and because
of the small corrections � and �. The curve � moves the left endpoint of 

away from B(1), and � (if necessary) moves the right endpoint of 
 away from
B(!):) Let � : [�1; 1] ! Sp(2n;R) be a +curve; assume for the moment �
intersects B(!) only at X = �(0): Let ��=� [�1; 0): The splitting numbers of
X = �(0) 2 B! are

S�X(!) =: lim
"!0+

#(B(!e�i") \ ��); (17)

They depend only upon the conjugacy class of X in Sp(2n;R). If X breaks up
into invariant symplectic blocks, then S� and N are additive. Moreover

S�(!) = S�(!); (18)

0 � S�X(!) � NX(!); (19)

lim
"!0+



(!e
�i") = 

(!) + S

�

(1)(!): (20)

Thus for a �xed path 
 : [0; T ] ! Sp(2n;R) beginning at I, the !- index is
constant except at the eigenvalues of 
(1); the jump at an eigenvalue is given
by the splitting numbers. If j!j 6= 1, and NX(!) = 1, then

j

(!ei")�

(!e�i")j = jS+
(1)(!)� S
�

(1)(!)j = 1: (21)

If 
 is a +-curve, and if 
 (s) = 
j[0;s]; then



(s)(!) +N
(s)(!) � 

(r)(!) (22)
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if s < r: That is, index increases along +-curves.

The index transforms under the iteration map 
 ! 
m : �! �m by Bott�s
formula



m =
X




!m=1

(!): (23)

For �xed 
, the average index



 = lim
m!1



m

m
(24)

=
1

2�

Z


(!)d! (25)

exists, and
j

m(!)�m

 j � n: (26)

2.4 Coordinate change

Consider a domain D �S1 � R2n. (The typical example will be a periodically
traveling disk.) A coordinate change will be a map u(t;w) : D !R2n; that is
a symplectic di¤eomorphism for each �xed t. This coordinate change identi�es
D with D0 = f(t;u(t;w))j(t;w) 2Dg. When composing coordinate changes in
the beginning of section 5, it will be convenient to write the coordinate change
in the form  : D !S1�R2n with  (t;w) =(t;u(t;w)). The �ow of a periodic
Hamiltonian H on D :

wH(t) :
�
wH = JrH(t;wH) (27)

will transform to a periodic Hamiltonian K on D0 in the sense

uK(t) = u(t;wH(t)) :
�
uK = JrK(t;uK) (28)

Thus the Hamiltonian �ow and the orbits are preserved under the transforma-
tion:

w! u

H ! K: (29)

The coordinate change induces a local map �m ! �m by w = w(t)! u(t) =:
u(t;w(t)): Though the action may not be preserved, the critical points of AH
are mapped bijectively to the critical points of AK: Here are two examples:
Symplectic Tansformation A symplectic di¤eomorphism ' : R2n ! R2n

induces the map u(t;w) = '(w); thus �m ! �m by w! ' �w: This map
preserves the symplectic area A0; that is, A0(' �w) = A0(w): (see [H-Z, p.7])
The Hamiltonian H transforms to H � (�� '�1);where � is the identity map on
S1. ([H-Z, p.9]) Thus H ! H � (�� '�1) and A is also preserved..
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Hamiltonian coordinate change Let D �S1 � R2n. A Hamiltonian
coordinate change will be a di¤erentiable map u(t;w) : D !R2n; a symplectic
di¤eomorphism for each �xed t, and with u(0;w) = w for all w: Such a
coordinate change is generated by a Hamiltonian h : D0 ! R using

@

@t
u(t;w) = Jrh(t;u(t;w)): (30)

(See [MS, p.287].) Note that by our de�nition, the �ow of h is a loop in the semi-
group of symplectic maps, i.e. the time-2� map of the h��ow is the identity
map. A Hamiltonian �ow H in D transforms to K in D0 where

K =h#H, i.e. K(t;u) = h(t;u) +H(t;w): (31)

See [HZ, p.144]. The product # is associative, and h has inverse

h(t;w) = �h(t;u) (32)

in the sense h#h = h#h = 0:
Suppose D =S1 �D2n, and suppose two Hamiltonians H;K are given with

H(t;0) = rH(t;0) = K(t;0) = rK(t;0) = 0 for all t. Suppose also that H;K
have the same time-2� map. Then there is a Hamiltonian coordinate change
transforming H to K, with time-t map given by

vth = u
t
K � (wt

H)
�1: (33)

The formula for h is h = K#H;see [HZ, p.144] again. Let 
; � : R! Sp(2n;R)
give the linearized �ow of H;K at their mutual orbit w = 0 = u, and suppose
further that the closed curve 
�1 � � is contractible.

Lemma 1 Given R > 0, there is an r > 0, and a di¤erentiable 1-parameter
family of Hamiltonian coordinate changes �s : S1�R2n ! R2n, supported in the
disk of radius R, and transforming H to K inside a disk of radius r. Speci�cally:

(i) �0(t;w) = w 8w (34)

(ii)�s(t;0) = 0 8s; t (35)

(iii)�s(t;w) = w if jwj � R (36)

(iv)�1(t;w) = vh(t;w) if jwj � r: (37)

Proof. We are given a map vh(t; w) de�ned on S1 � D2n; with vh(t; 0) = 0:
(What is relevant to the problem at hand is the loop of germs of the vth at
the point 0:) By (33), the loop of derivatives of the vth at the point 0; is
homotopic to 
�1 � �; :and thus contractible. Assume �rst that vth is C1�close
to the identity map inside the disk of radius 2r , for some r <R=2, and write
vh(t; x0; y0) = (xt; yt): There is a generating function S : S1 �D2n ! R with

(xt; yt)� (x0; y0)=JrS(t; xt; y0) (38)
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whenever j(x0; y0)j < 2r: Let 0 � � � 1 with

�(s; x; y) = 0 if s = 0 or j(x; y)j � 2r (39)

= s if j(x; y)j � r: (40)

We will use the generating functions �S(s; t; x; y); let �s(t; x0; y0) = (xs;t; ys;t)
with

(xs;t; ys;t)� (x0; y0)=Jr(�S)(s; t; xs;t; y0): (41)

It can be checked that �s then has properties (i)-(iv). By composing coordinate
changes, it is clear that the set of loops of germs vth that can be obtained in this
way is the connected component of the identity map.
Translating the orbit u0 to the constant loop at the origin
If u0 is an orbit of the �ow

�
uK = JrK(t;uK) of period 2�, with u0(0) = 0,

then we can locally transform u0 to the curve w � 0 in D2n and K to a
Hamiltonian H (as in (28) above) on S1�D2n with rH(t;0) � 0 and H(t;0) �
0 by a Hamiltonian coordinate change using the function h with rh(t;v) =
rK(t;u0(t)) for all v, and h(t;u0(t)) � K(t;u0(t)). Then

w = u� u0 (42)

is a local coordinate on D2n. Because this transformation is a translation for
each �xed t, ru = rw, and (31) implies that

ruK(t;u) = ruh(t;u) +rwH(t;w): (43)

When jwj is small, by a short computation using (5), (28), and (42) we get

DH(w)(t) = DK(u)(t) (44)

from which it follows, since �D is the L2-gradient of A, that

AH(w) = AK(u) + C: (45)

where C = �AK(u0): By adding a constant g(t) to K (which will not a¤ect
the �ow) we can assume C = 0. This means that under the coordinate change
u! w, the action is preserved, even though the Hamiltonian and the symplectic
area may not be.

2.5 Finite dimensional approximation, local homology, and
characteristic manifold

Finite dimensional approximation [AZ, CZ1], and characteristic manifold [GM]
can be understood loosely as two manifestations of the same idea, "saddle
point reduction": Let F : V ! R: If we can �nd coordinates (u; v; w) on V
so that

F(u; v; w) = f(u) + jvj2 � jwj2; (46)
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we restrict our attention to f , the restriction of F to the smaller space Vred :
fv = w = 0g: The critical points of F on V are exactly the critical points of f
on Vred. Even if F is not explicitly in the form (46), we can �nd a reduction
if we can �nd a foliation of V with the property that the restriction of F to
each leaf has a unique nondegenerate critical point. Given such a foliation,
let Vred � V be the space of these critical points, one for each leaf, and let f
be the restriction of F to Vred:There will again be a one-to-one correspondence
between critical points of F and critical points of f: If the critical point of the
restriction of F to each leaf has �nite index �, then the local homology (see
below) of a critical point p in V and the local homology in Vred will be related
by a shifting theorem:

H�(F; p) = H�+�(f; p) (47)

Finite dimensional approximation: Let a Hamiltonian H : S1 � T 2n =
f(t;u)g ! R be given. Following Amman-Zehnder and Conley-Zehnder [AZ,
CZ1] we get a �nite dimensional approximation for the free loop space �T 2n as
follows: Let

N > 2jr2Hj (independent of m!): (48)

For �xed N , Let Fm be the 2n(2mN + 1)-dimensional space of Fourier series
of order mN : [0; 2m�] �! R 2n: An element of Fm can be written (x(t); y(t));
where

x+ iy =
P

jkj�mN
�ke

ikt=m with x; y�Rn and �k�C
n: (49)

Let Zm = T 2n � F+m � F�m � T 2n �R2nmN �R2nmN be the quotient of Fm
by the action of Z2n (identifying curves whose image on the torus is the same).
We identify Zm with its image in �m.
The �nite dimensional approximation Fm is

Fm := fu��m : D(u)�Fmg; (50)

where

D(u)(t) = J(
�
u(t)) +rH(t;u(t)): (51)

Note Fm depends on H!
This construction �ts into the "saddle point reduction" framework described

above as follows: We foliate �m with leaves that are level sets of the �rst
(2mN + 1) Fourier integrals. Thus the leaf containing a point u0= (x0; y0) is

L(u0) = f(x0; y0) + (x; y) j x+ iy =
P

jkj>mN
�ke

ikt=mg: (52)

Call this the standard Fourier foliation. If u�Fm, equations (4) and (52)
imply that all variations of the action at u in leaf directions vanish; thus the
points in Fm are the critical points of the restriction of the action A to the
leaves. If N is large enough , the restriction of A to each leaf will have a
unique, nondegenetrate critical point.
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N is assumed to be "large enough" (i.e.(48)) through section 4. (In section
5 we will need to recalculate N after a coordinate change.) The reader can
check that (48) is the condition that makes the proof in [AZ, CZ1] work using
equation (8), page 37 in [C-Z1] with Am =: mA and hm(t; x) =: h(mt; x), or
page 188, [C]. In terms of the saddle point reduction framework, the condition
(48) ensures that in the second derivative of the action along a leaf, the (standard
quadratic) term coming from the symplectic area dominates the Hamiltonian
term. This computation will come out below (156).)
Fm is a smooth submanifold of �m of dimension 2n(2mN +1); and the crit-

ical points of the action on �m are precisely the critical points of the restriction
of the action to Fm: Each leaf of the foliation contains a unique point that can
be written as a Fourier series of order � mN , and a unique critical point of the
restricted function; this correspondence gives a smooth bijection

' : Zmf!Fm: (53)

The nullity (dimension of the null space of the second derivative) of a critical
point u0 in Fm is the same as its nullity in �m: By (50) any null direction in
�m is automatically tangent to Fm, and the fact that the nullity in Fm is no
greater than the nullity in �m folows from the fact that the isomorphism (53)
preserves the �rst (2mN+1) Fourier integrals. The relationship between Morse
index in Fm; and Maslov index of the linearized �ow 
 : [0; 2�] ! Sp(2n;R)
(also called the Maslov index of u0) is [C-Z1]

Maslov Index = Morse Index� 1
2
dimFm: (54)

For convenience we will always shift the grading on H� by (2mN + 1)n so that
it coincides with Maslov index, rather that Morse index.
Local homology at a critical point. We de�ne the local homology at

an isolated critical point p of a function f with f(p) = c on a �nite dimensional
manifold as

H�(f; p) =: H�(fc; fcnfpg) = H�(fc \ U; (fc \ U)nfpg) (55)

where fc = f�1(�1; c]; and U is any neighborhood of p: This de�nition,
which clearly does not depend upon local coordinates, comes from the book
of K.C.Chang [C, p.32], where it is shown (Theorem 4.2, page 35) that this is
equivalent to the de�nition used by Gromoll and Meyer. If p is a nondegenerate
(nullity= 0) critical point of index �, then

Hk(f; p) =

�
Z if k = �
0 otherwise.

�
(56)

If the manifold is complete, if c is the only critical value of f in [c�"; c+"],
and if p1; :::pm are the critical points of f in f�1(c), then

H�(fc+"; fc�") =
X

H�(f; pi): (57)
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If a and b are regular values with a < b, then there are (Morse theory) long exact
sequences building up H�(fb; fa) out of the groups H�(f; pi) with f(pi)�[a; b]:
Characteristic manifold: The local homology at an isolated critical point

(which can be complicated, or trivial, if the critical point is degenerate) is carried
by a characteristic manifold [GM]. If F : V ! R has an isolated critical point
at the origin in a �nite dimensional vector space V , there are local coordinates
(u; v; w) 2 R�� R� � R� on V so that

F(u; v; w) = f(u) + jvj2 � jwj2; (58)

with rf (0) = r2f(0) = 0: (59)

In this case the manifold C : v = w = 0 is characteristic. The dimension of C
is the nullity of the critical point. A shifting theorem [GM] relates the local
homology of the critical point of F on V to that of f on C :

HV
�+�(F; f0g) = HC

� (f; f0g): (60)

In particular, local homology only appears in dimensions between the index
and the index+nullity:

HV
k (F; f0g) = 0 unless � � k � �+ �: (61)

The characteristic manifold can be thought of as a local (and ultimate) �nite
dimensional approximation, and can be constructed in the same way: One
takes a foliation of V with the leaf through the origin transverse to the null
space of F: Near the origin each leaf will have a unique nondegenerate critical
point, and the set of these critical points is a smooth submanifold C of V with
the desired properties.

Invariance of the local homology
Let a �xed orbit u0 of the �ow

�
uK = JrK(t;uK) of period 2� be given. Fix

m, and supress the subscripts in Fm, Fm, Ẑm; Zm: Once a �nite dimensional
approximation F is chosen for �, the local homology of the action at u0 is
de�ned. One would hope that the the local homology is independent of the
�nite dimensional approximation. The space F near u0 depends upon the
Fourier foliation near u0 (which depends on the coordinates), and upon the
action in a neighborhood of u0: Once F is chosen, the local homology depends
only upon the restriction of the action to a neighborhood of u0 in F . The
action is not preserved by a general coodinate change. We will show however
that, with N �xed, the local homology at u0 is invariant under: (i) (time-
independent) linear symplectic transformation, (ii) translation of the orbit u0
to the origin, and (iii) Hamiltonian coordinate changes that lie in the path-
connected component of the identity transformation, in the space of coordinate
changes �xing the constant loop at the origin: Finally we show that (iv) the
local homology is independent of N if N is su¢ ciently large.
(i) A linear symplectic transformation preserves the leaves of the Fourier

foliation, and the action function. Thus the set F is preserved pointwise, and
AKjF is preserved.
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(ii) Consider the translation T : u! w = u� u0 described in section 2.4,
where u0 is a critical point of AK. T takes a neighborhood of u0 to D2n and
AH(w) = AK(u) by (45). T also preserves the leaves of the standard Fourier
foliation. Because the �nite dimensional approximation depends only upon the
foliation and the action function in a neighborhood of the critical point, the
map u! w maps the �nite dimensional approximation for AH near w = 0,
using the standard foliation, to the �nite dimensional approximation for AK
near u0, using the standard foliation. This means that the local homology is
unchanged.
(iii)Next assume H(0) = rH(0) = 0. Let

	 : [0; 1]� S1 �D2n ! D2n (62)

be a di¤erentiable family of Hamiltonian coordinate changes, parameterized by
s 2 [0; 1]; with 	(s; t;0) = 0 for all s; t, and 	(0; t;w) = w for all t;w: For
each s, 	 induces a smooth map 	s : �D2n ! �D2n , and a transformed
Hamiltonian Ks = hs#H. The �nite dimensional approximation (expressed in
terms of the coordinate u = 	s(t;w) on the right) is

Fs := fu�� : DKs(u)�Fg (63)

This is a smooth family of submanifolds of �D2n, each containing the point
u � 0. We consider the local homology of the function AKs

at the point u � 0
in Fs. If N is su¢ ciently large ( depending upon s), the leaves of the standard
foliation give a smooth map 's : F ! Fs. Thus the associated local homology
can be viewed as the local homology coming from a di¤erentiable family of
functions �s = '�1s � AKs

� 's on F , each with an isolated critical point at
the origin. (The critical point is isolated for each s since critical points of the
restriction of AKs

to Fs are period 2� orbits of the �ow of the Hamiltonian Ks,
which are, by construction, the image under 	s of period 2� orbits of the �ow of
the Hamiltonian H.) In these circumstances Gromoll and Meyer proved [GM,
Lemma 4, p.366] that the local homology is independent of s.
(iv) The �nite dimensional approximation FN ; withN su¢ ciently large, can

be thought of as a saddle point reduction intermediate between the (unreduced)
in�nite dimensional �T 2n and the (maximally reduced) manifold C. If, as is
the case with Fourier foliations LN , the foliations are compatible in the sense
LP (u) � LN (u) if P > N; then FN � FP ; the critical points of A on FN are
the same as the critical points of A on FP , and the local homology of FN at
each critical point is related to the local homology of FP by a shifting theorem.
If we use the Maslov grading, there is no shift, and the local homology of FN at
a critical point u is independent of N; provided only that N is large enough that
the leaf LP (u) does not contain any null directions. A characteristic manifold
at an isolated critical point in FN is automatically also characteristic in FP :
We call an isolated critical point of the action topologically degenerate

if its iterates are homologically visible (i.e. have nontrivial local homology) in
dimension �n in in�nitely many �m . By the above, the local homology at u0,
and the property of being topologically degenerate, are independent of N , and
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independent of coordinates, so long as we consider only coordinate changes in
the semigroup generated by (time-independent) linear symplectic transformation,
translation of the orbit u0 to the origin, and Hamiltonian coordinate changes
that lie in the path component of the identity transformation, in the space of
coordinate changes �xing the constant loop at the origin. We will start with
the standard coordinates on S1 � T 2n;and use only coordinate changes of the
above type throughout the proof.

Remark. One can de�ne a characteristic manifold without �rst having a
�nite dimensional approximation. However if the index is in�nite, there can
be no shifting theorem. For our purposes it seems simplest to de�ne the local
homology and characteristic manifold only on �nite dimensional manifolds. The
local homology was de�ned by Morse in [M].

3 Global to local

We use the homology of the free loop space to infer the existence of a topologi-
cally degenerate critical point. This is step 0 in our outline.

Lemma 2 (Existence of a topologically degenerate critical point)
Given a periodic Hamiltonian K on T 2n, suppose the Hamiltonian �ow

has �nitely many orbits with the same period as K. If there is a bound for the
minimal period of subharmonic solutions, then there is a topologically degenerate
critical point u0, of the same period as K:

Proof. This argument comes from [AZ, CZ1]: Take the standard �nite dimen-
sional approximation using Fourier series. Let D� be a ball of radius K in F�m :
Put

B = T 2n �D+ �D� (64)

B� = T 2n �D+ � @D�: (65)

If K is su¢ cently large, then all critical points of A lie in '(B); and B� is the
exit set for the �ow of r(A � ') on B. Assume all critical points of A are
isolated. Since (shifting the grading of the homology of B by 1

2 dimFm so that
it coincides with Maslov grading)

H�(B;B
�) = H��n(T

2n); (66)

a standard Morse theory argument ensures the existence of a critical point xm in
each Fm (and thus, by the basic property of a �nite dimensional approximation,
a critical point in each �m) with local homology in dimension �n: If there is a
bound for the minimal period of subharmonic solutions, and ifm is a su¢ ciently
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large prime, any critical point in �m must have minimal period 2�, and be the
iterate of an orbit in �1: If also �1 has only �nitely many critical points, then
one of these critical points must have iterates that are homologically visible in
dimension�n in in�nitely many �m. That is, there is a topologically degenerate
critical point.

4 Local Results:

We now focus on local properties of an isolated, topologically degenerate critical
point u0 of AK. As described in section 2.4, we can make a coordinate change
locally transforming our Hamiltonian K to a Hamiltonian K with rK(t;0) � 0
and K(t;0) � 0 on the disk D2n, and our critical point u0 to the critical point
w � 0 of AK . The local homology of the iterates is invariant under this coor-
dinate change, so the translated critical point is still topologically degenerate.
The goal of this section is to complete step 1 of our outline: After a further
coordinate change on S1�D2n, supported near S1�f0g, the Hamiltonian will
have a strict local maximum at the origin for each �xed t. At the beginning
of section 5 we will sum up exactly how the four local lemmas of this section �t
together with Lemma 1 to that end.

4.1 Local minimum in the characteristic manifold

Lemma 3 Given a periodic Hamiltonian on D2n, suppose there is an isolated,
topologically degenerate critical point u0. Let 
 : [0; 2�] ! Sp(2n;R) be the
linearized �ow. Then (possibly after replacing u0 by one of its powers)

A. The restriction of the action to the characteristic manifold has a strict
local minimum at the origin.
B. The linear Poincaré map 
(2�) (derivative of the time-2� Hamiltonian

�ow, at the point u0(0)) breaks up into 2�2 symplectic blocks, has no eigenvalue
but 1, and has splitting number n at the eigenvalue 1.
C. If � : [0; 2�] ! Sp(2n;R) has the same endpoints as 
, and if �(t) has

no eigenvalue but 1 for all t, then 
 � ��1 is contractible.
Proof. The nullity � of the critical point u0 is the dimension of the nullspace of
(7) i.e.� = N
(2�)(1); thus � � 2n. If the average index of u0 is not 0, then by
(26) the index of large iterates um0 will be far away from 0. But then by (61),
large iterates can not have local homology in dimension �n, a contradiction.
By (24) the average index of um0 is 0 for all m. By (26), the index of um0 is
� �n: On the other hand the fact that u0 (possibly replaced by a power) is
homologically visible in dimension �n implies that Index(u0 ) � �n by (61)
Thus Index(u0) = �n; that is, the critical point is homologically visible in
the dimension of its index. By the shifting theorem (60), the characteristic
manifold has local homology in dimension 0. That an isolated critical point
on a compact manifold with local homology in dimension 0 is a strict local
minimum is certainly well-known; there is a proof in [H2, p256]. Thus A.
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Let � be a very short, generic �path starting at 
(2�) By (22) and conti-
nuity



��(1) � �n; (67)



�� � 0: (68)

By (67), (18), (19), (20), and (21), 

��(!) � 0 for all !, which implies by
(25) that 

�� � 0. Using (68) and , (18), (19), (20), and (21) again, we see
that the right endpoint of � will have distinct eigenvalues, all lying on the unit
circle, and all close to 1, (1 will not be an eigenvalue)..Thus the only eigenvalue
of 
(2�) is 1, and 
(2�) has splitting number n at the eigenvalue 1: Because
the splitting number is additive, and is � 1 on each invariant symplectic block,
it also follows that the Poincare map 
(2�) splits into 2-by-2 blocks. Thus B.
(Each block is either the 2-by-2 identity (nullity=2) or a shear (nullity=1). The
�sign�of the shear map is determined by the fact that the splitting number is
1.)
To prove C., suppose � is such a path with �(0) = I and �(2�) = 
(2�).

Then �s = 
 � (� j[s;1])�1 is a path from I to �(s) whose right endpoint has no
eigenvalue but 1. By continuity, using (16) and (25), �s has the same average
index as 
, namely 0: But �0 is a closed path; the average index is a nontrivial
homomorphism from �1(Sp(2n;R)) � Z to Z. Thus �0 is homotopically trivial,
and C. follows.

4.2 Relatively autonomous Hamiltonian

The next step is to �nd a coordinate change that will render the Hamiltonian
�ow in a neighborhood of the translated critical point w � 0 tame in a sense
we will call "relatively autonomous". This is necessary since a wild coordinate
change will transform even the simplest Hamiltonian into something very com-
plicated. By Lemma 1, it is enough to �nd a relatively autonomous Hamiltonian
H with the same time-2� map as our Hamiltonian K (from the beginning of
section 4), and with a loop of derivatives in the correct homotopy class. We will
apply the next lemma to the time-2� map � of Hamiltonian K on the disk D2n

with properties A,B, and C from Lemma 3. From (iv) below it will follow that
the linearized �ows of H and K at their mutual orbit w � 0 are homotopic,
and thus that hypotheses of Lemma 1 are satis�ed.

Lemma 4 Given a symplectic di¤eo � of the disk D2n, with �(0) = 0, and
whose derivative at the origin breaks up into 2-by-2 blocks and satis�es: (d��
I)2 = 0. Let "; � > 0 be given. Then after making a linear symplectic change
of coordinates ' : D2n ! D2n, the restriction of of the transformed map '�1 �
� � ' to a smaller disk is the time-1 map of a hamiltonian H, with H(t;0) =
rH(t;0) = 0 for all t, and
(i) H = S + g; where S is autonomous,

jrg(t;w)j+ j@rg(t;w)
@t

j<"jrS(w)j:(relatively autonomous) (69)
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(ii)
jr2Sj < �; (70)

(iii)For all t;

r2H(t;0) =
�
0 0
0 ��

�
; (71)

with � constant and diagonal. If the time-2� map of H has splitting number n
at the eigenvalue 1, then � is nonnegative.
(iv) The linearized �ow �(t) associated to H has no eigenvalue but 1:

Proof: The Hamiltonian S will be a generating function for �, and H will be
the Hamiltonian generating the �ow whose time-t map has generating function
tS.
First we make a linear coordinate change so that d�(0) is in standard form:

d� =

�
1 2�
0 1

�
; (72)

with � diagonal. (That this is possible can be checked in Sp(2;R), because of
the 2-by-2 blocks.) As Hamiltonian S we take a generating function for �. Its
leading term at the origin is easily computed:

S(x; y) =
X

��iy2i + ::: (73)

Let � > 0 be given. After a further linear change of coordinates

(x; y)! (�x; ��1y); (74)

we can assume that j�j<�=4. Thus (ii). By restricting our attention to a
su¢ ciently small disk D, we can assume that

jrSj < � (75)

jr2Sj < � (76)

jr3Sj < Q (77)

everywhere in D for � as small as we like, and for some Q 2 R. Let (xt; yt) be
the �ow whose time-t map has generating function tS: Then

(xt; yt)� (x0; y0) = tJrS(xt; y0): (78)

Di¤erentiating, we get

(
�
xt;

�
yt) = JrS(xt; y0) + t

@

@xt
[JrS(xt; y0)]

�
xt; (79)

so that

JrH(t; xt; yt) = (
�
xt;

�
yt) (80)

= (�(xt; y0))
�1JrS(xt; y0); (81)
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where

�(xt; y0) =

"
1 + t @2S

@xt@y0
0

�t @2S
(@xt)2

1

#
: (82)

Write � = I + t�, with � = O(�) and jr�j � Q :
Let � : [0; 1]�D! D�D by

�(t; x0; y0) = (x0; y0; xt; yt): (83)

Then

@�

@t
= k � � (84)

where

k(x0; y0; xt; yt) = (0; 0; JrS(xt; y0)): (85)

Then
jrkj � �; with � = O(Q� + �): (86)

and
@

@t
r� = rk � r�: (87)

Let C > 0:(We have in mind C � 2:) If

j v �w j� C j rS(w) j; (88)

then

j rS(v)�rS(w) j� �C j rS(w) j : (89)

The quantity j rS(w) j is used in (88) and (89) as a measuring scale in two
di¤erent ways. In (88) it is meant to measure the distance between points
w and v relative to the displacement by �. By (10), j rS(w) j represents
the displacement of u by � if w =(x1; y0) and u =(x0; y0) This is somewhat
awkward, but note that for small � the distinction between w and u is relatively
unimportant, as

j u�w j= j(x1; y0)� (x0; y0)j � j(x1; y1)� (x0; y0)j =j rS(w) j : (90)

So if �C is small, (88) and (89) say that variations in rS are relatively small
(compared to j rS(w) j) in a region centered at w, roughly the size of displace-
ment of w by �: On the other hand, if rS varies by less than (say) 50% over
the path f(xt; y0)j0 � t � Tg; then (using (84) and (85))

@

@t
j�� Ij � jrS(�(t)j (91)

implies
j�� Ij � 3=2jrS(�(0)j (92)

18



if t � 1; in particular,

j(xt; yt)� (x0; y0)j � 3=2jrS(�(0)j: (93)

Putting all this together we see that if � is su¢ ciently small, each orbit of the
�ow stays relatively close to its starting point. In particular the orbits of all
points in some neighborhood of the origin stay inside the disk where � is de�ned
for 0 � t � 1, and there

jr�� Ij � e� � 1 = O(�): (94)

To see (94), let w(t) = jr�� Ij: Then dw=dt � �(w + 1); and w(0) = 0 imply
w(t) � e�t � 1:
We need to bound jrg(t;w)j and j@rg@t j relative to jrS(w)j: By (81),

rH(t; xt; yt) is relatively close to rS(xt; y0) (depending upon �); by (89),
rS(xt; y0) is relatively close to rS(xt; yt) (also depending upon �). Together
these imply that

jrg(t;w)j � O(�)jrS(w)j: (95)

To bound j@rg@t j , we �rst �nd @rH=@t along the orbit, with x0 and y0 �xed.
Using (81) and (89) we get

j@rH
@t

jx0;y0 = j(I + t�)�1(� + t
@�

@xt

@xt
@t
)(I + t�)�1JrS(xt; y0) (96)

+ (I + t�)�1J
@

@xt
(rS(xt; y0))j

@xt
@t
j (97)

� (1 + tO(�))[O(�) + tQ(1 + tO(�))jrSj]jrSj (98)

+ (1 + tO(�))O(�)(1 + tO(�))jrSj (99)

� [O(�) +QO(�)]jrSj: (100)

The di¤erence between j@(rH)=@tjx0;y0 (the derivative we have (96)) and

j@(rg)=@tjxt;yt = j@(rH)=@tjxt;yt (101)

(the derivative we want(69)) is bounded by

j @rH
@(xt; yt)

jj( �xt;
�
yt)j � j

@rH
@(xt; y0)

jj@(xt; y0)
@(xt; yt)

jj( �xt;
�
yt)j (102)

� [O(�) +QO(�)](1 +O(�))jrSj (103)

by a similar computation (using (94)). Given ", we saw that � can be made
arbitrarily small by the linear coordinate change (74) followed by a shrinking of
the disk. These choices determine Q. Since jrSj = 0 at the origin, by a further
shrinking of the disk, we can make Q� small; thus (i).
Condition (iii) can be checked directly; that � is nonnegative can be checked

in Sp(2;R): Condition (iv) is a consequence of (iii).
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4.3 Expanded characteristic manifold

In the most degenerate case, the Poincaré map 
(2�) will be the identity
I 2 Sp(2n;R), and the characteristic manifold will be of dimension 2n, tangent
to "the constants" in an appropriate coordinate system. The �nite dimensional
approximation F when N = 0 gives an explicit characteristic manifold in this
case. If the nullity is less than 2n; the same formula de�nes a useful expansion
of the characteristic manifold to dimension 2n.

Lemma 5 (Minimum in the Expanded Characteristic Manifold)

Assume we have a Hamiltonian on the 2n-disk D with H(t; 0) = rH(t;0) =
0 for all t, and that r2H(t;0) is of the form

r2H(t;0) =
�
0 0
0 ��

�
(104)

where � is constant diagonal matrix, with no negative entries. Assume the
critical point (of the action) at the origin is isolated, and that the restriction
of the action to the characteristic manifold has a strict local minimum at the
critical point. We de�ne the expanded characteristic manifold E as the space
of period 2� solutions to the di¤erential equation

E : J �
w +rH(t;w(t)) = const: (105)

Then
(i) E is a smooth 2n-dimensional submanifold of � in a neighborhood of the

origin.
(ii) The tangent space to E at the origin is the space of constant vector

�elds.
(iii) In some neighborhood of the origin, for each �xed t the evaluation map

from E to D2n is a di¤eomorphism.
(iv) if N is the nullspace of r2H(t; 0), then

C : J
�
w +rH(t;w(t)) 2 N (106)

de�nes locally a manifold that is characteristic in E and is also characteristic
in the �nite dimensional approximation F ,
(v)F ; E ; and C are compatible in the following sense: Starting in any �nite

dimensional approximation F with N � 0, we can obtain E and C by successive
saddle point reduction; the reduction from F to E has index 2nmN (i.e. � =
2nmN in equation (47)), and the reduction from E to C has index 0:
(vi)The restriction of the action to E has a strict local minimum at the

origin.
Remark E is intermediate between the characteristic manifold construction

of Gromoll and Meyer, and the �nite dimensional approximation of Amann and
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Zehnder. It follows from (v) that the local homology of the critical point at the
origin in F , E ; or C are related by a shifting theorem. The size of the shift is
equal to the index. We foliate �m near the critical point with leaves that are
level sets of the average value of u. The solutions to (105) are the critical points
of the restriction of the action to the leaves. In the case of maximal degeneracy,
E is a characteristic manifold in the sense of Gromoll-Meyer.
Proof. Statement (i)follows from the implicit function theorem: Let � : � �
R2n ! L2(S1;R2n) by

�(w;v0) = J
�
w +rH(t;w(t))� v0: (107)

The derivative is

d�(0;0)(X;Z0) = J
�
X +r2H(t;0)X � Z0: (108)

Because of the simple form of r2H(t;0), it is easy to solve for the kernel of
d�(0;0), and the nullspace of D2A (see (7)) at the critical point, using Fourier
series. The nullspace of D2A is the space of constant vector �elds with values
in N . The kernel of d�(0;0) is the space of (X;Z0) with X constant and
Z0 = r2H(t;0)X; which has dimension 2n. The map d�(0;0) is surjective: if
Y 2L2(S1;R2n) is orthogonal to the image, i.e. if

hd�(0;0)(X;Z0); Y i=
Z
hJ

�
X +r2h(t; 0)X � Z0; Y idt: (109)

= 0 8X;Z0; (110)

then the average value of Y is 0 (using Z0), and Y is in the nullspace of D2A
(using X). Thus Y = 0, and ��1(0) is a smooth 2n-dimensional manifold of
�. The tangent space to E at the origin is the space of constant vector �elds;
thus for each �xed t the evaluation map from E to T 2n is a di¤eomorphism.
The second derivative of the action at the origin in E is nonnegative on

constant vector �elds, and thus on the tangent space to E . This means the
index of the critical point in E is 0. The construction of C involves a foli-
ation with leaves that are level sets of the projection of the average value of
w onto N . Note the tangent space to the leaf containing the critical point
is transverse to the nullspace. The reader can check that in this context, the
proof of Gromoll and Meyer of the existence of a characteristic manifold be-
gins (starting in F or E) by constructing the manifold C. The argument of
Gromoll and Meyer (a Morse Lemma with parameters) shows that C is char-
acteristic. Thus we have (iv). Since E is a saddle point reduction, its local
relative homology is the local relative homology of the characteristic manifold,
shifted by the index of the critical point. It follows that the critical point
in E is homologically visible in dimension 0, and thus (using again the argu-
ment from [H2,p256]) that the action has a strict local minimum at the origin.
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4.4 Negative Hamiltonian

Lemma 6 Assume we have a Hamiltonian on the 2n-disk D with H(t; 0) =
rH(t; 0) = 0 for all t. Assume that H is relatively autonomous (69) with
su¢ ciently small constant ", that jr2Sj < � (70) for su¢ ciently small �; and
that the restriction of the action to E (105) has a strict local minimum at the
origin. Then H(t;w) < 0 for all t, if jwj is su¢ ciently small and w 6= 0.

Important Remark If H is autonomous, then the solutions to (105) are
constant. In this case Lemma 6 follows immediately from (vi) of Lemma 5. We
will show that "relatively autonomous" is enough.
Proof If w 2 E , then

�
w = J(rS +rg �W) (111)

with rS constant in space,W constant along orbits, and jrgj small compared
to jrSj . Our �rst goal is to establish that

�
jwj is also small compared to jrSj.

On a �xed orbit, rS = K+V(t) with K constant and jV(t)j � �
�
jwjmax;

where jr2Sj < � everywhere in D, and
�
jwjmax is the maximum value of

�
jwj

on the orbit. Integrating, using the fact that w is a closed curve, we have

jK�Wj �jrgjmax + �
�
jwjmax. At a point on the orbit where

�
jwj is maximal,

we have

�
jwjmax = jK�W +V(t) +rgj � 2jrgjmax + 2�

�
jwjmax

� 2"jrSjmax + 2�
�
jwjmax; (112)

which implies
�
jwjmax �

2"jrSjmax
1� 2� : (113)

If � < 1
4 ; and " is su¢ ciently small, this implies the orbit is small on the scale

jrSj; using the fact that jrSj is relatively constant (89), we can conclude that
�
jwj � 3"jrSj=(1 � 2�) at each point. From (111) and (69) we now conclude
that jrS�Wj <O(")jrSj and thus

jrH�Wj <O(")jrHj: (114)

rH andW are bounded away from 0 away from the origin since rS is.
Fix T , and parameterize E by evaluation at time T: Let U(t;w) be the

vector �eld tangent to E with U(T;w) = rH(T;w). If w(t) is an orbit of the
E-�ow, with jw(0)j su¢ ciently small, we claimZ

orbit

hU(t;w(t));W(t;w(t))idt > 0 : (115)
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The restriction of U to an orbit of the E-�ow lies in the tangent space to E and
thus is almost constant, since the tangent space to E at the origin is the space of
constant vector �elds. (Here we use the fact that E is smooth, i.e. that it has a
continuous tangent space.) SinceW is constant on orbits, andW is relatively
close torH(114);U andW are relatively equal along each orbit near the origin;
thus the inner product (115) is positive. It follows, since W is minus- the
L2�gradient of the action on �; that the action decreases along the integral
curves of (the restricted) vector �eld rH on the (time-T-parameterized) E , at
a rate bounded away from 0 away from the origin. But since the action has
a strict local minimum at the origin in E , it follows that the integral curves of
rH go to the origin, and thus that

H(T;w) < 0 (116)

if w 6= 0: �

5 Global Results

5.1 Global coordinate change

We will compile the local results from section 4 and paste them onto the torus:
Let a periodic Hamiltonian K be given on the torus T 2n; with three continuous
derivatives. Assume AK has a topologically degenerate critical point u0. By
Lemmas (1,3,4,5,6), we can make a local coordinate change S1�D2n

a ! S1�T 2n,
with D2n

a = fw : j wj <ag for some a > 0, that takes the constant loop at the
origin to u0, and transforms a Hamiltonian H to K , where H : S1 �D2n ! R
has

H(t; 0) = rH(t; 0) = 0 for all t; (117)

H(t; x; y) = �
X

�iy
2
i + :::; (118)

H is "relatively autonomous" (69) for " = 1; (119)

H(t;w) < 0 for w 6= 0: (120)

Here is an explicit description of this local coordinate change : Let u = u0+
w: Let  : S1 �D2n ! S1 � T 2n by translation:  (t;w) = (t;u). This takes
the orbits of K(t;w) to those of K(t;u), with K =h#K, using the function h
with rh(t;v) = rK(t;u0(t)) for all v, and h(t;u0(t)) � K(t;u0(t)). Let � be
the time-2� map of the Hamiltonian K: By Lemma 3, the linearized �ow of K
satis�es A,B, and C of Lemma 3., and thus � satis�es the hypotheses of Lemma
4. Let ' : D2n ! D2n be the linear symplectic map mentioned in Lemma 4.
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The symplectic transformation S1 � D2n ! S1 � D2n by (t;w) ! (t; ' � w)
takes the orbits of K�(�� ') to those of K. The time-2� map of K�(�� ')
is '�1 � � � '. Let H be the relatively autonomous Hamiltonian guaranteed
by Lemma 4. From conclusion C of Lemma 3 and (iv) of Lemma 4, it will
follow that the linearized �ows of H and K at their mutual orbit w � 0 are
homotopic, and the hypotheses of Lemma 1 are satis�ed. By Lemma 1, there is
a 1-parameter family of coordinate changes �s:S1�D2n

r ! S1�D2n
r , taking the

orbits of H to those of K�(�� ') near the origin. Because the local homology
at u0 is invariant under these coordinate changes, the transformed critical point
is still topologically degenerate, and the conclusions of Lemma 3 still hold. Thus
the hypotheses of Lemma 5 and then of Lemma 6 hold for H, and H has a strict
local maximum at the origin for each �xed t. Thus (117), (118), (119), (120)
for some a > 0: In order to complete the proof, we will need to extend this
local coordinate change to a global coordinate change �:S1 � T 2n ! S1 � T 2n

that has the e¤ect that a translation of u0 back to the origin by h now results
in a coordinate system in which the Hamiltonian H : S1�D2n

a ! R is as above
in some neighborhood D2n

a of the origin. Let ' : D2n ! D2n be a symplectic
di¤eomorphism that is the linear symplectic map mentioned in Lemma 4 near
the origin, and is the identity outside a small disk D2n

R . (That such a map exists
follows from an argument similar to that used in the proof of Lemma 1. ) The
1-parameter family of coordinate changes from Lemma 1 can also be assumed
to have support on D2n

R . The local coordinate change  
�1 � �1 � (�� ')� is

the identity near the boundary of  (S1 � D2n
R ) and thus can be extended by

the identity map to a global coordinate change � : S1 � T 2n ! S1 � T 2n that
has the desired properties.:The transformed Hamiltonian will be H, where

H(t;u)=
�

h#H(t;u) if u(t)� u0(t)�D2n
R

K(t;u) otherwise .

�
(121)

� maps the orbits of the Hamiltonian �ow of H to the orbits of the Hamiltonian
�ow of K in the sense (27),(28). Thus if the �ow ofH has subharmonic solutions
of arbitrarily high minimal period, the same is true for K.
Remark. The map �m ! �m induced by the coordinates change � �xes

u0. The loop u0 is an isolated, topologically degenerate critical point for both
AK and AH. The coordinate change stretches (74) a neighborhood of u0(0) in
f0g � T 2n in order to make the shear term � in the linear time-2� map (72)
small, and straightens the �ow in a neighborhood of u0, using �s.
We pause to demonstrate that we have nothing up our sleeve. For the rest

of the proof we will use the Hamiltonian H and the coordinates

(t;u) � � on S1 � T 2n (122)

(t;w) � � on S1 �D2n; (123)

where w = u� u0: The constants (�; ";Q;N) in the proof so far have served
their purpose in producing a negative Hamiltonian, and will not appear again
(though we may use these letters again in a new context).. The only hypoth-
esis for the remainder of the proof is the existence of the Hamiltonian
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H with a topologically degenerate critical point u0 and the property
that translation of u0 back to the origin results in a coordinate system
on S1�D2n

a for some a > 0 in which the Hamiltonian H : S1�D2n
a ! R

satis�es ((117), (118), (119), (120)). Let a0 > 0 be such that H is as
above if a < a0:
The �nal step is to show that H(t;w) < 0 (locally) implies the existence of

a "molar". The existence of subharmonic solutions of arbitrarily high minimal
period will follow immediately by a standard argument of �nite dimensional
Morse theory..

5.2 Shifted Fourier series

In our new global coordinates, we begin by taking a �nite dimensional approxi-
mation (50),(51) again. (After our coordinate change we will need to recalculate
N ; we need N > 2 jr2Hj. We will also need later that �=N is small, where �
is a (new!) bound for jr2Hj in D2n) Using the standard Fourier foliation, we
produce Fm just as before.
The loop space �m contains two submanifolds of dimension 2n(2mN + 1) :

Zm = Fm=Z2n(the image in �m of Fourier series of order � N), and Fm, the
�nite dimensional approximation space. Each is transverse to the leaves of the
standard Fourier foliation; moving along a leaf gives the map (53)

' : Zm �! Fm: (124)

In what follows, we will use the standard foliation, and the standard Fm. How-
ever we will replace Zm by the shifted space

Ẑm = fuju = w + u0;with w�Zmg � �m: (125)

That is, we will expand the loops in �m in Fourier series centered at u0. Just as
before, if N > 2 jr2Hj, independent of m, then each leaf will contain a unique
point in Fm (the unique critical point of the restriction of the action to the
leaf), and a unique point in Ẑm; let

'̂ : Ẑm �! Fm (126)

denote this correspondence. The critical points of the action on �m are of
course still precisely the critical points of the restriction of the action to Fm:
Fix a < a0. Let Bm = Bm(a) be the ball of loops in Fm that lie inside the

2n-disk of radius a, and let �m be the boundary of Bm. We will identify Bm
with its image in Ẑm :

Bm ,! Ẑm : (127)

w! u = w + u0: (128)
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When jwj is small, we have (44)

DH(u)(t) = DH(w)(t) (129)

= J(
�
w(t)) +rH(t;w(t)): (130)

The action on Ẑm � �m in these local coordinates is (8),(45):

AH(u) = AH(w) = A0(w )�H(w); (131)

where A0(w) = �
P
kj�kj2 (132)

and H(w) =
R
H(t;w(t))dt: (133)

with f�kg the Fourier coe¢ cients of w.
Because of the shift, and because of our choice of coordinates, the subman-

ifolds Ẑm and Fm are tangent at u0. It will come out below that the local
homology of AH at u0 in Ẑm is the same as the local homology of AH at u0 in
Fm. Thus Ẑm is locally an "approximation" for Fm. Alternatively, AH � '̂�1
is locally an approximation for AH on Fm. We will produce the molar in two
steps: First (Lemma 7) we show that, for large m, AH has a molar (�m;��m)
in Ẑm at u0. Next (Lemma 8) we will show that ('̂(�m); '̂(��m)) is a molar for
AH in Fm at u0.

5.3 Local molar in Ẑm
Here is one more local result. Let H : S1 � D2n ! R with (117),

(118), (120). We start with a splitting

Fm = F�m + F
<
m ; (134)

where the second derivative of the action (131) is � 0 on F�m and <0 on F<m ,
and a vector subspace Vm of Fm containing F�m as a subspace of codimension
1: The vector space F�m consists of (x; y) with

F�m : (xj + iyj)(t) =
P

0�k�mN
�ke

ikt=m for 1 � j � n;

and F<m consists of (x; y) with

F<m : (�xj + i
1

�
yj)(t) =

P
�mN�k<0

�ke
ikt=m for 1 � j � n;

with � < 1 chosen (depending on m) so that the second derivative of the action
is < 0 on F<m . (This is possible since the enclosed area A0 is independent
of �, but H ! 0 as � ! 0. Note � is introduced only to demonstrate that
F�m is a maximal nonnegative subspace in the proof of A below, and will not
appear again.) Vm is the subspace of Fm spanned over F�m by v� = (x; y) with
(x1 + iy1) = e�it=m; and (xj + iyj)(t) = 0; j > 1: Let
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�m = Vm \Bm � Ẑm; (135)

then the boundary @�m of �m lies in �m. Let ��m = �m \ F�m :

Lemma 7 If m is su¢ ciently large, (�m;��m) is a (C
0�local ) molar in Ẑm,

that is (see Fig.2),

A.��m represents a nontrivial class in the upside-down local homology

Hn(A0H ;A0Hnf0g) (136)

where A0H = A�1H [0;1) � Fm:
B.

AH � ��a2 on �m: (137)

C.If m is su¢ ciently large,

AH > 0 on @�m: (138)

Apology The author sincerely apologizes to the reader for using upside-
down homology. It does avoid several other very awkward signs.

Proof From the explicit expression (131),( 132),( 133) note that�H(w ) >
0 unless w � 0. A0(w ) � 0 on F�m . Thus the action will have a strict lo-
cal minimum at the origin in F�m ; A follows from the stated properties of the
splitting Fm = F�m + F

<
m .

Let w(t) = �v�(t) + (x(t); y(t)) be in @�m; where

xj + iyj =
P

0�k�mN
�ke

ikt=m (��R ; �k�C): (139)

Note w 2 @�m implies that kwksup = a; thus
R
jw(t)j2dt �

R
a2dt =

2m�a2 :Since (from (139))

2m�R
0

jw(t)j2dt = 2m�(�2 +
P
j�kj2); (140)

�2 � a2 , and we have B.
To prove C., we consider three cases:(i) good second derivative, (ii) small

energy, and (iii) large L2 norm. In cases (ii) and (iii), we need to show that the
Hamiltonian term �H(v) is positive enough to make up for the de�cit caused
by the one negative term -�2 coming from �v�.
(i) If �2 <

P
kj�kj2;then A0(w) > 0; and �H(w) � 0, so A > 0.

(ii) Let " > 0, and suppose �2 < "2;and
P
kj�kj2 < 2"2: The maximum

possible value of the energy is then (using e.g. Lagrange multipliers)

E =:
2m�R
0

j �wj2dt = 2�

m
(�2 +

P
k2j�kj2) (141)

� 4�"2(N +
1

m
) (142)
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This, together with kwksup = a, implies that jwj � a=2 on a set of measure
at least L = a2=4�"2N: (See �gure 3; it is well known that the path covering a
�xed distance in a �xed time at minimal energy has constant velocity; we leave
it to the reader to check this implies that, for �xed energy, the minimal elapsed
time occurs for constant velocity. ) If " is su¢ ciently small, this will imply
(since H < 0) � H(w ) > 2�a2; together with A this implies A(w ) > 0: We
now so �x "; assume also " < a:
(iii) Given " > 0 (chosen in (ii)), 9� > 0 so that

�H(w) � � m if �2 +
P
j�kj2 � "2: (143)

Reason: If �2 +
P
j�kj2 � "2; and kwksup = a, then jwj � "=2 on a set of

measure at least

L =
3m�

2

"2

a2 � "2=4 (144)

(See �gure 4), which is proportional to m: Now use H < 0: Thus (using (143));
A(w) > 0 if m is su¢ ciently large (depending upon a), and if �2+

P
j�kj2 � "2:

(i), (ii), and (iii) together imply C.
In fact looking a little more closely, we see that, given " positive but su¢ -

ciently small, we can make

�H (w) � 2�a2 (145)

for m su¢ ciently large unlessP
kj�kj2 � 2"2; and �2 +

P
j�kj2 < "2: � (146)

5.4 The molar: Global version

Lemma 7 implies the existence of a critical point of the restriction of the action
to Ẑm with critical value in (��a2; 0): But we have a correspondence between
critical points on Fm and those on �m, not between critical points on Ẑm and
those on �m. The next lemma shows that there is also a "molar" in the �nite
dimensional approximation space Fm:

Lemma 8 Let a periodic Hamiltonian H be given on the torus T 2n; with three
continuous derivatives. Assume that there is a topologically degenerate critical
point u0 with the property that translation of u0 back to the origin results in
a coordinate system on S1 � D2n

a for some a > 0 in which the Hamiltonian
H : S1 �D2n

a ! R satis�es ((117), (118), (119), (120)). If m is su¢ ciently
large, ('̂(�m); '̂(��m)) is a molar in Fm, that is,

A�.AH � 0 on '̂(��m); and '̂(��m) represents a nontrivial class in the
upside-down local homology

Hn(A0H;A0Hnf0g) (147)
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where A0H = A�1H [0;1) � Fm:
B�.

AH > �2�a2 on '̂(�m): (148)

C�.If m is su¢ ciently large,

AH > 0 on '̂(@�m): (149)

Corollary 9 If a is su¢ ciently small, and m is su¢ ciently large (de-
pending upon a), then Fm (and thus �m) has a critical point of AH
with critical value in (�2�a2; 0).

Proof. We will use the coordinate u and the Hamiltonian H on Fm, since we
can no longer work locally. (Remember though that if u = u0 + w, with jwj
small, then H(u) =H(w).)
A�: That A � 0 on '̂(��m) will come out below. Together with the fact

that '̂(��m) is embedded at u0;and that '̂(�
�
m) has dimension equal to the

index-plus-nullity of the upside-down critical point , this implies that the class
'̂(��m) is nontrivial.

Proof of B�;C�: Let u 2 �m: The leaf containing u is the set of all points
of the form

v(t) = u(t) +
P

k>mN


ke
ikt=m +

P
k<�mN

�ke
ikt=m (150)

(using complex notation). We are interested in the di¤erence between the action
A(u), and the action at the critical point of the restriction of the action to the
leaf. The latter action, which we will call AC(u), is given by

AC(u) = Sup
f�kg

Inf
f
kg

A(v): (151)

Quite clearly
AC(u) � A+C(u) = Inf

f
kg
A(v) (152)

Thus in order to �nd a lower bound for AC(u), it will be su¢ cient to �nd a
lower bound for A+C(u), the critical point of the restriction of the action to the
leaf of the "positive" foliation with leaf consisting of points of the form

v(t) = u(t) +
P

k>mN


ke
ikt=m (153)

Consider a path along the leaf of the positive foliation:

u(s; t) = u(t) + s
P

k>mN


ke
ikt=m: (154)

Along the above path,

d2A
ds2

= 2�
P
k

k>mN

j
kj2 +
R
r2H(

P

ke

ikt=m;
P

ke

ikt=m)dt: (155)
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If N > 2jr2Hj; then
d2A
ds2

�
P
k

k>mN

j
kj2: (156)

(This explains the requirement (48); if N > 2�jr2Hj, then each leaf has a
unique critical point.) This means that we can estimate the minimum value
of A along the path, using the value of dA=ds at the initial point. This value
we will compute in local coordinates. The path begins at a point u = u0 +w:
Assume that w 2�m: In local coordinates, the path (154) is given by

w(s; t) = w(t) + s
P

k>mN


ke
ikt=m (157)

Using the the form for A (131) in local coordinates, it follows that for s � 0;

A(s) � A(0) + s2

2

P
k

k>mN

j
kj2 � 2�sm
P
�k
k; (158)

where �k�C
n are the Fourier coe¢ cients of rH(w) for k > mN:(Note the

left hand and right hand sides of (158) have the same derivative with respect to
s at s = 0; we have used w 2�m., which simpli�es the derivative.) It follows
(solving to �nd the sequence { 
kg that gives the least value for the minimum
value of A(s) along the path (157)) that

A(s) � A(0)� 2�
2

N2

P
k>mN

kj�kj2 : (159)

But (using jr2Hj < �)

P
k>mN

kj�kj2 �
1

mN

P
k>mN

k2j�kj2 (160)

� 1

2�N

R
j d
dt
rH(t;w(0; t))j2dt (161)

� 2

2�N

R
(jr2Hj2j@w

@t
j2 + j @

@t
rH(t;w(0; t))j2)dt (162)

� 2�2

2�N

2�

m
(�2 +

P
1�k�mN

k2j�kj2) (163)

+
2

2�N

R
jrH(t;w(0; t))j2)dt (164)

� 2�2( �
2

mN
+

P
1�k�mN

kj�kj2) +
2

2�N

R
2�jH(t;w(0; t))jdt (165)

In step (164) we used the fact that H is relatively autonomous, with " = 1.
In the last step we get jrH(t;w(0; t))j2 � 2�jH(t;w(0; t))j by looking, along
an integral curve of rjHj starting near the origin, at the comparison equation
d2w=ds2 � �; w(0) � 0; dw=ds(0) � 0; which has dw=ds �

p
2�w: (Q. If your
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maximum acceleration is �, what do you do to attain a given speed in the least
distance? A. Floor it.) Note the last term is equal to �(�H(0))=�N:
Putting everything together, we have

A(s) � ���2(1+ 4��2

mN3
)�H(0)(1� 4��

N3
)+( �

P
1�k�mN

kj�kj2)(1�
4�

N2
�2): (166)

(Note each of the three terms has the form (Term from A(0))(1 � O(�=N)):
Assume that N is large enough so that each of the terms O(�=N) is < 1=4.
From (166) A� and B� are clear. Now assume that w 2 @�. In the caseP
kj�kj2 � 2"2;and �2 +

P
j�kj2 < "2, A(s) is clearly positive. Otherwise use

(145) to conclude that �H(0) � 2�a2; so that A(s) > 0:
Proof of Corollary :
��m can be deformed to the boundary in Bm. Thus the nontrivial class

of '̂(��m) in Hn(A0;A0nf0g) has trivial image in Hn(A��a
2

;A0nf0g). Under
the assumption that �m contains only isolated critical points, a maximin argu-
ment in (B;B+) ((64), (65), [HZ]) shows that the action has a critical value in
(��a2; 0):
Proof of Proposition (and thus of Theorem): Let u0 2 �1be an

isolated, topologically degenerate critical point. Assume A(u0) = 0. If a is
such that the action on �1 has no critical value in (��a2; 0), then for every
su¢ ciently large prime p, there will be a critical point in �p with critical value
in (��a2; 0), which must clearly have minimal period 2p�. �
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