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Abstract

In the quest to make Brain Computer Interfacing (BCl) morahles, dry elec-

trodes have emerged that get rid of the initial 30 minutesired for placing an

electrode cap. Another time consuming step is the requirdididualized adapta-
tion to the BCI user, which involves another 30 minutes calibn for assessing
a subject’s brain signature. In this paper we aim to also xentlis calibration

proceedure from BCI setup time by means of machine leartingarticular, we

harvest a large database of EEG BCI motor imagination réogsd83 subjects)
for constructing a library of subject-specific spatio-tergl filters and derive a
subject independent BCI classifier. Our offline resultsdath that BCl-naive
users could start real-time BCI use with no prior calibnati only a very moder-
ate performance loss.

1 Introduction

The last years in BCI research have seen drastically redwagdng and calibration times due
to the use of machine learning and adaptive signal proags$schniques (see [9] and references
therein) and novel dry electrodes [18]. Initial BCI systewsre based on operant conditioning
and could easily require months of training on the subjed siefore it was possible to use them
[1, 10]. Second generation BCI systems require to recorded talibration session during which
a subject assumes a fixed number of brain states, say, movanagination and after which the
subject-specific spatio-temporal filters (e.g. [6]) areeinéd along with individualized classifiers
[9]. Recently, first steps to transfer a BCI user’s filters aladsifiers between sessions was studied
[14] and a further online-study confirmed that indeed suahdfer is possible without significant
performance loss [16]. In the present paper we even will goostep further in this spirit and propose
a subject-independent zero-training BCI that enables both experienced and novice BCI subjects to
use BCl immediately without calibration.

Our offline study applies a number of state of the art learmmeghods (e.g. SVM, Lasso etc.)
in order to optimally construct such one-size-fits-all sifisrs from a vast number of redundant
features, here a large filter bank available from 83 BCI us@ise use of sparsifying techniques
specifically tell us what are the interesting aspects in Bigbdre predictive to future BCl users. As
expected, we find that a distribution of different alpha biadures in combination with a number of
characteristic common spatial patterns (CSPs) is higtdgiptive for all users. What is found as the
outcome of a machine learning experiment can also be viegwacampact quantitative description
of the characteristic variability between individuals lretlarge subject group. Note that it is not
the best subjects that characterize the variance necdesargubject independent algorithm, rather
the spread over existing physiology is to be representedisely. Clearly, our proceedure may also
be of use appart from BCI in other scientific fields, where caxgharacteristic features need to
be homogenized into one overall inference model. The pastipiiovides an overview of the data
used, then the ensemble learning algorithm is outlinedsisting of the procedure for building the



filters, the classifiers and the gating function, where weyaparious machine learning methods.
Interestingly we are able to successfully classify tridla@sel subjects with zero training suffering
only a small loss in performance. Finally we put our resuits perspective.

2 Available Data and Experiments

We used 83 BCI datasets (sessions), each consisting ofia0ftom 83 individual subjects. Each
trial consists of one of two predefined movement imaginatidaeing left and right hand, i.e. data
was chosen such that it relies only on these 2 classes, ghtariginally three classes were cued dur-
ing the calibration session, being left hand (L), right héRiland foot (F). 45 EEG channels, which
are in accordance with the 10-20 system, were identified toob@mon in all sessions considered.
The data were recorded while subjects were immobile, sestedcomfortable chair with arm rests.
The cues for performing a movement imagination were givexisyal stimuli, and occurred every
4.5-6 seconds in random order. Each trial was referenced3seaond long time-window starting
at 500 msec after the presentation of the cue. Individuatexgents consisted of three different
training paradigms. The first two training paradigms caesi®f visual cues in form of a letter or
an arrow, respectively. In the third training paradigm thbject was instructed to follow a moving
target on the screen. Within this target the edges lit updicate the type of movementimagination
required. The experimental proceedure was designed telglfdlow [3]. Electromyogram (EMG)
on both forearms and the foot were recorded as well as etentlogram (EOG) to ensure there
were no real movements of the arms and that the movemente ely#s were not correlated to the
required mental tasks.

3 Generation of the Ensemble

The ensemble consists of a large redundant set of subjperadent common spatial pattern fil-

ters (CSP cf. [6]) and their matching classifiers (LDA). Ealziaset is first preprocessed by 18
predefined temporal filters (i.e. band-pass filters) in pelrédee upper panel of Figure 1). A cor-

responding spatial filter and linear classifier is obtairegdefvery dataset and temporal filter. Each
resulting CSP-LDA couple can be interpreted as a potendisistfunction. Finding an appropriate

weighting for the classifier outputs of these basis fundisnof paramount importance for the ac-
curate prediction. We employed different forms of regrasgind classification in order to find an

optimal weighting for predicting the movement imaginataata of unseen subjects[2, 4]. This pro-
cessing was done by leave-one-subject-out cross-valiate. the session of a particular subject
was removed, the algorithm trained on the remaining trial$hie other subjects) and then applied
to this subject’s data (see lower panel of Figure 1).

3.1 Temporal Filters

The p-rhythm (9-14 Hz) and synchronized components ingheand (16-22 Hz) are macroscopic
idle rhythms that prevail over the postcentral somatosgnsortex and precentral motor cortex,
when a given subject is at rest. Imaginations of movementgetisas actual movements are known
to suppress these idle rhythms contralaterally. Howeteretare not only subject-specific differ-
ences of the most discriminative frequency range of the imeed idle-rhythms, but also session
differences thereof.

We identified 18 neurophysiologically relevant temporaéfs, of which 12 lie within thei-band,

3 in the 5-band, two in betweep- and 5-band and one broadbarid— 30Hz. In all following
performance related tables we used the percentage of ssdd trials, or 0-1 loss.

3.2 Spatial Filters and Classifiers

CSP is a popular algorithm for calculating spatial filtersed for detecting event-related (de-
)synchronization (ERD/ERS), and is considered to be theé-gtaindard of ERD-based BCI systems
[13, 19, 6]. The CSP algorithm maximizes the variance oftrliggmd trials, while simultaneously
minimizing the variance for left hand trials. Given the twavariance matrices; andX,, of size
channels x concatenated timepoints, the CSP algorithm returns the matridésandD. 1V is a ma-
trix of projections, where the i-th row has a relative vadawofd; for trials of class 1 and a relative
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Figure 1: 2 Flowcharts of the ensemble method. The red patichthe top panel illustrate the
inactive nodes of the ensemble after sparsification.

variance ofl — d; for trials of class 2.D is a diagonal matrix with entrie € [0, 1], with lengthn,
the number of channels:

wx, Wt =D and WeoWt =1-D (1)

Best discrimination is provided by filters with very high (phazising one class) or very low eigen-
values (emphazising the other class), we therefore chasdydanclude projections with the highest
2 and corresponding lowest 2 eigenvalues for our analysis.u¥¢ Linear Discriminant Analysis
(LDA) [5], each time filtered session corresponds to a CSRis#to a matched LDA.

3.3 Final gating function

The final gating function combines the outputs of the indiailblensemble members to a single one.
This can be realized in many ways. For a number of ensembleadgethe mean has proven to be
a surprisingly good choice [17]. As a baseline for our endemig simply averaged all outputs of
our individual classifiers. This result is givenmasan in Table 2.

ClassificationWe employ various classification methods such as k NearéghlNer (kKNN), Linear
Discriminant Analysis (LDA), Support Vector Machine (SVMdijd a Linear Programming Machine
(LPM) [12].

Quadratic regression with ¢, regularization

argmin Z (hi(x) — y(z)) + a$ Z Z Z cij(x (Z Z |w(k)| + |b|> )

k N
w® zex\x, i=1 jES\ Sy zEX\ X, i=1 jES\ Sk

Z Z wfjk)c” —-b 3)

=1 jeS\Sk

wherec;;(z) € [—o0; oo] is the continuous classifier output, before thresholdibggined from the
sessionj by applying the bandpass filtér B is the number of frequency bandsthe complete set
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Figure 2: Feature selection during cross-validation: vddishes mark the features kept after regu-
larization for the prediction of the data of each subjecte filambers on the vertical axis represent
the subject index as well as the Error Rate (%). The red lipgctiethe baseline error of individual
subjects (classical auto-band CSP). Features as well ebriasrrors are sorted by the error mag-
nitude of the self-prediction. Note that some of the featae useful in predicting the data of most
other subjects, while some are rarely or never used.

of sessionsX the complete data sefy, the set of sessions of subject X, the dataset for subject
k, y(x) is the class label of tria andw@ in equation (3) are the weights given to the LDA outputs.
The hyperparameter in equation (2) was varied on a logarithmic scale and migtipby a dataset
scaling factor which accounted for fluctuations in votingplation distribution and size for each
subject. The dataset scaling factor is computed usjf(@), for all z € X \ X,. For computational
efficiency reasons the hyperparameter was tuned on a smdmasubset of subjects whose labels
are to be predicted from data obtained from other subjeas that the resulting test/train error
ratio was minimal, which in turn affected the choice (leaviut) of classifiers among the 83x18
candidates. Thé regularized regression with this choicecofvas then applied to all subjects, with
results (in terms of feature sparsification) shown in Fig2irdn fact the exemplary CSP patterns
shown in the lower part of the Figure exhibit neurophysigally meaningful activation in motor-
cortical areas. The most predictive subjects show smootiopmlar patterns, while subjects with a
higher self-prediction loss slowly move from dipolar tolvat ragged maps. From the point of view
of approximation even the latter make sense for capturie@tterall ensemble variance.

The implementation of the regressions were performed uSir} a package for specifying and
solving convex programs [11]. We coupled &nloss with an¢; penalty term on a linear voting
scheme ensemble.

Least Squares Regressiols a special case of equation (2), with= 0.

3.4 Validation

The subject-specific CSP-based classification methodsanitbmatically, subject-dependent tuned
temporal filters (termed reference methods) are validayeaht8-fold cross-validation, splitting the
data chronologically. The chronological splitting for sgevalidation is a common practice in EEG
classification, since the non-stationarity of the dataus threserved [9].

To validate the quality of the ensemble learning we emplogelgave-one-subject out cross-
validation (LOSO-CV) procedure, i.e. for predicting thédds of a particular subject we only use
data from other subjects.

4 Results

Overall performance of the reference methods, other beseiethods and of the ensemble method
is presented in Table 2. Reference method performanceb@cdtspecific CSP-based classification
are presented with heuristically tuned frequency bandsH@fthermore we considered much sim-
pler (zero-training) methods as a control. Laplacian stdodthe power difference in two Laplace
filtered channels (C3 vs. C4) and simple band-power standsdgower difference of the same two



classification regression
% ofdatal| kNN LDA LPM SVM || LSR LSRY;
10 31.3 453 373 31.3] 46.0 30.7
20 32.0 40.0 38.0 28.7| 420 313
30 327 387 373 331 380 30.0
40 327 36.0 379 313|367 293

Table 1: Main results of various machine learning algorghm

approach machine learning I classical

zero training training
method || mean| kNN | LDA | LPM | SVM | LSR | LSR-(; || Lap | BP CSP
#<25% 31 30 18 14 29 19 36 24 11 39

25%-tile || 17.3 | 17.3 | 27.3 | 26.7 | 18.7 | 26.0| 16.0 22.0] 31.3 11.9
median || 30.7 | 31.3 | 36.0| 37.3 | 28.7 | 36.7| 29.3 34.7| 38.7 25.9
75%-tile | 41.3 | 42.0| 43.3 | 440 | 41.3 | 44.0| 40.7 45.3 | 45.3 41.4

Table 2: Comparing ML results to various baselines.

channels without any spatial filtering. For the simple zeaining methods we chose a broad-band
filter of 7— 30Hz, since it is the least restrictive and scored one of thegeréormances on a subject
level. The biag in equation (3) can be tuned broadly for all sessions or cteckindividually by
session, and implemented for online experiments in meltigys [16, 20, 15]. In our case we chose
to adap® without label information, but operating under the assuompthat class frequency is bal-
anced. We therefore simply subtracted the mean over db wiaa given session. Table 1 shows
a comparison of the various classification schemes. We ateathe performance on a given per-
centage of the training data in order to observe informagain as a function of datapoints. Clearly
the two best ML techniques are on par with subject-depend8mt classifiers and outperform the
simple zero-training methods (not shown in Table 1 but inl&&) by far. While SVM scores the
best median loss over all subjects (see Table 1), L1 regeldriegression scored better results for
well performing BCI subjects (Figure 3 column 1, row 3). lig&ie 3 and Table 2 we furthermore
show the results of the L1 regularized regression and SVMugethe auto-band reference method
(zero-training versus subject-dependent training) as agels. the simple zero-training methods
Laplace and band-power. Figure 4 shows all individual teralfdters used to generate the ensem-
ble, where their color codes for the frequency they were ts@dedict labels of previously unseen
data. As to be expected mosjlyband related temporal filters were selected. Contrary tatwhe
may expect, features that generalize well to other subjdata do not exclusively come from BCI
subjects with low self-prediction errors (see white dash&sgure 2), in fact there amdme features

of weak performing subjects that are necessary to capturarénce of the ensemble. However
there is a strong correlation between subjects with a lofyediction loss and the generalizability
of their features to predicting other subjects, as can be ge¢he right part of Figure 4.

4.1 Focusing on a particular subject

In order to give an intuition of how the ensemble works in dete will focus on a particular
subject. We chose to use the subject with the lowest refenerathod cross-validation error (10%).
Given the non-linearity in the band-power estimation (siegife 1) it is impossible to picture the
resulting ensemble spatial filter exactly. However, by agéerg the chosen CSP filters with the
weightings, obtained by the ensemble and multiplying thgrthieir LDA classifier weight, we get
an approximation:

B
Pgns = Z Z wijWij Cij )
i=1 j€S\Sk
wherew;; is the weight matrix, resulting from thg regularized regression, given in equations (2)
and (3),W;; the CSP filter, corresponding to temporal filter i and subjestdC;; the LDA weights
(B in Figure 5). For the case of classical auto-band CSP implg reduces tadPcsp = WC (Ain
Figure 5). Another way to exemplify the ensemble perfornedado refer to a transfer function. By
injecting a sinusoid with a frequency within the correspgagdand-pass filter into a given channel
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Figure 3. Compares the two best-scoring machine learnirtgads/, -regularized regression and
Support Vector Machine to subject-dependent CSP and aitiheteszero-training approaches. The
axis show the classification loss in percent.
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and processing it by the four CSP filters, estimating the pener of the resulting signal and finally
combining the four outputs by the LDA classifier, we obtairesponse for the particular channel,
where the sinusoid was injected. Repeating this proceduredch channel results in a response
matrix. This procedure can be applied for a single CSP/LDA, fr@wever we may also repeat
the given method for as many times as features were chosendiven subject by the ensemble
and hence obtain an accurate description of how the ensgrdesses the given EEG data. The
resulting response matrices are displayed in panel C ofr€iguWhile the subject-specific pattern
(classical) looks less focused and more diverse the gepatigirn matches the one obtained by the
ensemble. A third way of visualizing how the ensemble wovks,show the primary projections
of the CSP filters that were given the 6 highest weights by tisemble on the left panel (F) and
the distribution of all weights in panel D. The spatial pimsis of highest channel weightings differ
slightly for each of the CSP filters given, however the maxghthe projection matrices are clearly
positioned around the primary motor cortex.

5 Conclusion

On the path of bringing BCI technology from the lab to a moragtical every day situation, it
becomes indispensable to reduce the setup time which isdaysanore than one hour towards
less than one minute. While dry electrodes provide a firg &ieavoid the time for placing the
cap, calibration still remained and it is here where we ¢buate by dispensing with calibration ses-
sions. Our present study is an offline analysis providing sitiye answer to the question whether
a subject independent classifier could become reality for a BCl-naive user. Weehiaken great
care in this work to exclude data from a given subject whediptig his/her performance by using
the previously described LOSOCV. In contrast with previaxask on ensemble approaches to BCI
classification based on simple majority voting and Adab{itist8] that have utilized only a limited
dataset, we have profitted greatly by a large body of highitpu@tperimental data accumulated over
the years. This has enabled us to choose by means of machinalgtechnology a very sparse set
of voting classifiers which performed as well as standamtesbf-the-art subject calibrated meth-
ods. ¢; regularized regression in this case performed better tkizer onethods (such as majority
voting) which we have also tested. Note that, interestinly chosen features (see Figure 2), do
not exclusively come from the best performing subjectsaitt 5ome average performer was also
selected. However most white dashes are present in thedléfi.e. most subjects with high auto-
band reference method performance were selected. Inteyigstome subjects with very high BCI
performance are not selected at all, while others generaditl in the sense that their model are able
to predict other subject’s data. No single frequency bandidated classification accuracy — see
Figure 4. Therefore, the regularization must have seletiteztse features. Nevertheless, as can be
seen in panel G of Figure 5 there is significant redundanaydsst classifiers in the ensemble. Our
approach of finding a sparse solution reduces the dimerigioofthe chosen features significantly.
For very able subjects our zero-training method exhibilggatsperformance decrease, which how-
ever will not prevent them from performing successfully i€IBThe sparsification of classifiers,
in this case, also leads to potential insight into neurojaihygical processes. It identifies relevant
cortical locations and frequency bands of neuronal pojmuiatctivity which are in agreement with
general neuroscientific knowledge. While this work concatet] on zero training classification and
not brain activity interpretation, a much closer look is raated. Movement imagination detection
is not only determined by the cortical representation ofithb whose control is being imagined (in
this case the arm) but also by differentially located caitiegions involved in movement planning
(frontal), execution (fronto-parietal) and sensory fegab(occipito-parietal). Patterns relevant to
BCI detection appear in all these areas and while dominagtidiinant frequencies are in the
range, higher frequencies appear in our ensemble, albedrirbination with less focused patterns.
So what we have found from our machine learning algorithnukhbe interpreted as representing
the characteristic neurophysiological variation a langigject group, which in itself is a highly rel-
evant topic that goes beyond the scope of this technicaystuture online studies will be needed
to add further experimental evidence in support of our figdinWe plan to adopt the ensemble
approach in combination with a recently developed EEG cambalry electrodes [18] and thus to
be able to reduce the required preparation time for setting tunning BCI system to essentially
zero. The generic ensemble classifier derived here is alega@atlent starting point for a subsequent
coadaptive learning procedure in the spirit of [7].
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filter (red), heuristic (blue). F: primary projections o&th ensemble members that received highest
weights. G: Broad-band version of the ensemble for a singltgest. The outputs of all basis
classifiers are applied to each trial of one subject. The ®@p(broad) gives the label, the second
row (broad) gives the output of the classical auto-band @8&,each of the following rows (thin)
gives the outputs of the individual classifiers of other sotg. The individual classifier outputs are
sorted by their correlation coefficient with respect to ttass labels. The trials (columns) are sorted
by true labels with primary key and by mean ensemble outpatsecondary key. The row at the
bottom gives the sign of the average ensemble output.
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