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Florin Popescu

Benjamin Blankertz
Klaus-Robert Müller

Abstract

In the quest to make Brain Computer Interfacing (BCI) more usable, dry elec-
trodes have emerged that get rid of the initial 30 minutes required for placing an
electrode cap. Another time consuming step is the required individualized adapta-
tion to the BCI user, which involves another 30 minutes calibration for assessing
a subject’s brain signature. In this paper we aim to also remove this calibration
proceedure from BCI setup time by means of machine learning.In particular, we
harvest a large database of EEG BCI motor imagination recordings (83 subjects)
for constructing a library of subject-specific spatio-temporal filters and derive a
subject independent BCI classifier. Our offline results indicate that BCI-naı̈ve
users could start real-time BCI use with no prior calibration at only a very moder-
ate performance loss.

1 Introduction

The last years in BCI research have seen drastically reducedtraining and calibration times due
to the use of machine learning and adaptive signal processing techniques (see [9] and references
therein) and novel dry electrodes [18]. Initial BCI systemswere based on operant conditioning
and could easily require months of training on the subject side before it was possible to use them
[1, 10]. Second generation BCI systems require to record a brief calibration session during which
a subject assumes a fixed number of brain states, say, movement imagination and after which the
subject-specific spatio-temporal filters (e.g. [6]) are inferred along with individualized classifiers
[9]. Recently, first steps to transfer a BCI user’s filters andclassifiers between sessions was studied
[14] and a further online-study confirmed that indeed such transfer is possible without significant
performance loss [16]. In the present paper we even will go one step further in this spirit and propose
a subject-independent zero-training BCI that enables both experienced and novice BCI subjects to
use BCI immediately without calibration.
Our offline study applies a number of state of the art learningmethods (e.g. SVM, Lasso etc.)
in order to optimally construct such one-size-fits-all classifiers from a vast number of redundant
features, here a large filter bank available from 83 BCI users. The use of sparsifying techniques
specifically tell us what are the interesting aspects in EEG that are predictive to future BCI users. As
expected, we find that a distribution of different alpha bandfeatures in combination with a number of
characteristic common spatial patterns (CSPs) is highly predictive for all users. What is found as the
outcome of a machine learning experiment can also be viewed as a compact quantitative description
of the characteristic variability between individuals in the large subject group. Note that it is not
the best subjects that characterize the variance necessaryfor a subject independent algorithm, rather
the spread over existing physiology is to be represented concisely. Clearly, our proceedure may also
be of use appart from BCI in other scientific fields, where complex characteristic features need to
be homogenized into one overall inference model. The paper first provides an overview of the data
used, then the ensemble learning algorithm is outlined, consisting of the procedure for building the
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filters, the classifiers and the gating function, where we apply various machine learning methods.
Interestingly we are able to successfully classify trials of novel subjects with zero training suffering
only a small loss in performance. Finally we put our results into perspective.

2 Available Data and Experiments

We used 83 BCI datasets (sessions), each consisting of 150 trials from 83 individual subjects. Each
trial consists of one of two predefined movement imaginations, being left and right hand, i.e. data
was chosen such that it relies only on these 2 classes, although originally three classes were cued dur-
ing the calibration session, being left hand (L), right hand(R) and foot (F). 45 EEG channels, which
are in accordance with the 10-20 system, were identified to becommon in all sessions considered.
The data were recorded while subjects were immobile, seatedon a comfortable chair with arm rests.
The cues for performing a movement imagination were given byvisual stimuli, and occurred every
4.5-6 seconds in random order. Each trial was referenced by a3 second long time-window starting
at 500 msec after the presentation of the cue. Individual experiments consisted of three different
training paradigms. The first two training paradigms consisted of visual cues in form of a letter or
an arrow, respectively. In the third training paradigm the subject was instructed to follow a moving
target on the screen. Within this target the edges lit up to indicate the type of movement imagination
required. The experimental proceedure was designed to closely follow [3]. Electromyogram (EMG)
on both forearms and the foot were recorded as well as electrooculogram (EOG) to ensure there
were no real movements of the arms and that the movements of the eyes were not correlated to the
required mental tasks.

3 Generation of the Ensemble

The ensemble consists of a large redundant set of subject-dependent common spatial pattern fil-
ters (CSP cf. [6]) and their matching classifiers (LDA). Eachdataset is first preprocessed by 18
predefined temporal filters (i.e. band-pass filters) in parallel (see upper panel of Figure 1). A cor-
responding spatial filter and linear classifier is obtained for every dataset and temporal filter. Each
resulting CSP-LDA couple can be interpreted as a potential basis function. Finding an appropriate
weighting for the classifier outputs of these basis functions is of paramount importance for the ac-
curate prediction. We employed different forms of regression and classification in order to find an
optimal weighting for predicting the movement imaginationdata of unseen subjects[2, 4]. This pro-
cessing was done by leave-one-subject-out cross-validation, i.e. the session of a particular subject
was removed, the algorithm trained on the remaining trials (of the other subjects) and then applied
to this subject’s data (see lower panel of Figure 1).

3.1 Temporal Filters

Theµ-rhythm (9-14 Hz) and synchronized components in theβ-band (16-22 Hz) are macroscopic
idle rhythms that prevail over the postcentral somatosensory cortex and precentral motor cortex,
when a given subject is at rest. Imaginations of movements aswell as actual movements are known
to suppress these idle rhythms contralaterally. However, there are not only subject-specific differ-
ences of the most discriminative frequency range of the mentioned idle-rhythms, but also session
differences thereof.
We identified 18 neurophysiologically relevant temporal filters, of which 12 lie within theµ-band,
3 in theβ-band, two in betweenµ- andβ-band and one broadband7 − 30Hz. In all following
performance related tables we used the percentage of misclassified trials, or 0-1 loss.

3.2 Spatial Filters and Classifiers

CSP is a popular algorithm for calculating spatial filters, used for detecting event-related (de-
)synchronization (ERD/ERS), and is considered to be the gold-standard of ERD-based BCI systems
[13, 19, 6]. The CSP algorithm maximizes the variance of right hand trials, while simultaneously
minimizing the variance for left hand trials. Given the two covariance matricesΣ1 andΣ2, of size
channels x concatenated timepoints, the CSP algorithm returns the matricesW andD. W is a ma-
trix of projections, where the i-th row has a relative variance ofdi for trials of class 1 and a relative
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Figure 1: 2 Flowcharts of the ensemble method. The red patches in the top panel illustrate the
inactive nodes of the ensemble after sparsification.

variance of1− di for trials of class 2.D is a diagonal matrix with entriesdi ∈ [0, 1], with lengthn,
the number of channels:

WΣ1W
T = D and WΣ2W

T = I − D (1)

Best discrimination is provided by filters with very high (emphazising one class) or very low eigen-
values (emphazising the other class), we therefore chose toonly include projections with the highest
2 and corresponding lowest 2 eigenvalues for our analysis. We use Linear Discriminant Analysis
(LDA) [5], each time filtered session corresponds to a CSP setand to a matched LDA.

3.3 Final gating function

The final gating function combines the outputs of the individual ensemble members to a single one.
This can be realized in many ways. For a number of ensemble methods the mean has proven to be
a surprisingly good choice [17]. As a baseline for our ensemble we simply averaged all outputs of
our individual classifiers. This result is given asmean in Table 2.
ClassificationWe employ various classification methods such as k Nearest Neighbor (kNN), Linear
Discriminant Analysis (LDA), Support Vector Machine (SVM)and a Linear Programming Machine
(LPM) [12].
Quadratic regression with `1 regularization
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wherecij(x) ∈ [−∞;∞] is the continuous classifier output, before thresholding, obtained from the
sessionj by applying the bandpass filteri, B is the number of frequency bands,S the complete set
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Figure 2: Feature selection during cross-validation: white dashes mark the features kept after regu-
larization for the prediction of the data of each subject. The numbers on the vertical axis represent
the subject index as well as the Error Rate (%). The red line depicts the baseline error of individual
subjects (classical auto-band CSP). Features as well as baseline errors are sorted by the error mag-
nitude of the self-prediction. Note that some of the features are useful in predicting the data of most
other subjects, while some are rarely or never used.

of sessions,X the complete data set,Sk the set of sessions of subjectk, Xk the dataset for subject
k, y(x) is the class label of trialx andwk

ij in equation (3) are the weights given to the LDA outputs.
The hyperparameterα in equation (2) was varied on a logarithmic scale and multiplied by a dataset
scaling factor which accounted for fluctuations in voting population distribution and size for each
subject. The dataset scaling factor is computed usingcij(x), for all x ∈ X \ Xk. For computational
efficiency reasons the hyperparameter was tuned on a small random subset of subjects whose labels
are to be predicted from data obtained from other subjects such that the resulting test/train error
ratio was minimal, which in turn affected the choice (leave in/out) of classifiers among the 83x18
candidates. Thè1 regularized regression with this choice ofα was then applied to all subjects, with
results (in terms of feature sparsification) shown in Figure2. In fact the exemplary CSP patterns
shown in the lower part of the Figure exhibit neurophysiologically meaningful activation in motor-
cortical areas. The most predictive subjects show smooth monopolar patterns, while subjects with a
higher self-prediction loss slowly move from dipolar to rather ragged maps. From the point of view
of approximation even the latter make sense for capturing the overall ensemble variance.
The implementation of the regressions were performed usingCVX, a package for specifying and
solving convex programs [11]. We coupled an`2 loss with an`1 penalty term on a linear voting
scheme ensemble.
Least Squares RegressionIs a special case of equation (2), withα = 0.

3.4 Validation

The subject-specific CSP-based classification methods withautomatically, subject-dependent tuned
temporal filters (termed reference methods) are validated by an 8-fold cross-validation, splitting the
data chronologically. The chronological splitting for cross-validation is a common practice in EEG
classification, since the non-stationarity of the data is thus preserved [9].
To validate the quality of the ensemble learning we employeda leave-one-subject out cross-
validation (LOSO-CV) procedure, i.e. for predicting the labels of a particular subject we only use
data from other subjects.

4 Results

Overall performance of the reference methods, other baseline methods and of the ensemble method
is presented in Table 2. Reference method performances of subject-specific CSP-based classification
are presented with heuristically tuned frequency bands [6]. Furthermore we considered much sim-
pler (zero-training) methods as a control. Laplacian stands for the power difference in two Laplace
filtered channels (C3 vs. C4) and simple band-power stands for the power difference of the same two
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classification regression
% of data kNN LDA LPM SVM LSR LSR-̀ 1

10 31.3 45.3 37.3 31.3 46.0 30.7
20 32.0 40.0 38.0 28.7 42.0 31.3
30 32.7 38.7 37.3 33.1 38.0 30.0
40 32.7 36.0 37.9 31.3 36.7 29.3

Table 1: Main results of various machine learning algorithms.

approach machine learning classical
zero training training

method mean kNN LDA LPM SVM LSR LSR-̀ 1 Lap BP CSP
# <25% 31 30 18 14 29 19 36 24 11 39
25%-tile 17.3 17.3 27.3 26.7 18.7 26.0 16.0 22.0 31.3 11.9
median 30.7 31.3 36.0 37.3 28.7 36.7 29.3 34.7 38.7 25.9
75%-tile 41.3 42.0 43.3 44.0 41.3 44.0 40.7 45.3 45.3 41.4

Table 2: Comparing ML results to various baselines.

channels without any spatial filtering. For the simple zero-training methods we chose a broad-band
filter of 7−30Hz, since it is the least restrictive and scored one of the best performances on a subject
level. The biasb in equation (3) can be tuned broadly for all sessions or corrected individually by
session, and implemented for online experiments in multiple ways [16, 20, 15]. In our case we chose
to adaptb without label information, but operating under the assumption that class frequency is bal-
anced. We therefore simply subtracted the mean over all trials of a given session. Table 1 shows
a comparison of the various classification schemes. We evaluate the performance on a given per-
centage of the training data in order to observe informationgain as a function of datapoints. Clearly
the two best ML techniques are on par with subject-dependentCSP classifiers and outperform the
simple zero-training methods (not shown in Table 1 but in Table 2) by far. While SVM scores the
best median loss over all subjects (see Table 1), L1 regularized regression scored better results for
well performing BCI subjects (Figure 3 column 1, row 3). In Figure 3 and Table 2 we furthermore
show the results of the L1 regularized regression and SVM versus the auto-band reference method
(zero-training versus subject-dependent training) as well as vs. the simple zero-training methods
Laplace and band-power. Figure 4 shows all individual temporal filters used to generate the ensem-
ble, where their color codes for the frequency they were usedto predict labels of previously unseen
data. As to be expected mostlyµ-band related temporal filters were selected. Contrary to what one
may expect, features that generalize well to other subjects’ data do not exclusively come from BCI
subjects with low self-prediction errors (see white dashesin Figure 2), in fact there aresome features
of weak performing subjects that are necessary to capture all variance of the ensemble. However
there is a strong correlation between subjects with a low self-prediction loss and the generalizability
of their features to predicting other subjects, as can be seen on the right part of Figure 4.

4.1 Focusing on a particular subject

In order to give an intuition of how the ensemble works in detail we will focus on a particular
subject. We chose to use the subject with the lowest reference method cross-validation error (10%).
Given the non-linearity in the band-power estimation (see Figure 1) it is impossible to picture the
resulting ensemble spatial filter exactly. However, by averaging the chosen CSP filters with the
weightings, obtained by the ensemble and multiplying them by their LDA classifier weight, we get
an approximation:

PENS =

B
∑

i=1

∑

j∈S\Sk

wijWijCij (4)

wherewij is the weight matrix, resulting from thè1 regularized regression, given in equations (2)
and (3),Wij the CSP filter, corresponding to temporal filter i and subjectj andCij the LDA weights
(B in Figure 5). For the case of classical auto-band CSP this simply reduces toPCSP = WC (A in
Figure 5). Another way to exemplify the ensemble performance is to refer to a transfer function. By
injecting a sinusoid with a frequency within the corresponding band-pass filter into a given channel
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Figure 3: Compares the two best-scoring machine learning methods`1-regularized regression and
Support Vector Machine to subject-dependent CSP and other simple zero-training approaches. The
axis show the classification loss in percent.
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Figure 4: On the left: The used temporal filters and in color-code their contribution to the final L1
regularized regression classification (the scale is normalized from 0 to 1). Clearyµ-band temporal
filters between10 − 13Hz are most predictive. On the right: Number of features usedvs. self-
predicted cross-validation. A high self-prediction can beseen to yield a large number of features
that are predictable for the whole ensemble.
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and processing it by the four CSP filters, estimating the bandpower of the resulting signal and finally
combining the four outputs by the LDA classifier, we obtain a response for the particular channel,
where the sinusoid was injected. Repeating this procedure for each channel results in a response
matrix. This procedure can be applied for a single CSP/LDA pair, however we may also repeat
the given method for as many times as features were chosen fora given subject by the ensemble
and hence obtain an accurate description of how the ensembleprocesses the given EEG data. The
resulting response matrices are displayed in panel C of Figure 5. While the subject-specific pattern
(classical) looks less focused and more diverse the generalpattern matches the one obtained by the
ensemble. A third way of visualizing how the ensemble works,we show the primary projections
of the CSP filters that were given the 6 highest weights by the ensemble on the left panel (F) and
the distribution of all weights in panel D. The spatial positions of highest channel weightings differ
slightly for each of the CSP filters given, however the maximaof the projection matrices are clearly
positioned around the primary motor cortex.

5 Conclusion

On the path of bringing BCI technology from the lab to a more practical every day situation, it
becomes indispensable to reduce the setup time which is nowadays more than one hour towards
less than one minute. While dry electrodes provide a first step to avoid the time for placing the
cap, calibration still remained and it is here where we contribute by dispensing with calibration ses-
sions. Our present study is an offline analysis providing a positive answer to the question whether
a subject independent classifier could become reality for a BCI-naı̈ve user. We have taken great
care in this work to exclude data from a given subject when predicting his/her performance by using
the previously described LOSOCV. In contrast with previouswork on ensemble approaches to BCI
classification based on simple majority voting and Adaboost[21, 8] that have utilized only a limited
dataset, we have profitted greatly by a large body of high quality experimental data accumulated over
the years. This has enabled us to choose by means of machine learning technology a very sparse set
of voting classifiers which performed as well as standard, state-of-the-art subject calibrated meth-
ods. `1 regularized regression in this case performed better than other methods (such as majority
voting) which we have also tested. Note that, interestingly, the chosen features (see Figure 2), do
not exclusively come from the best performing subjects, in fact some average performer was also
selected. However most white dashes are present in the left half, i.e. most subjects with high auto-
band reference method performance were selected. Interestingly some subjects with very high BCI
performance are not selected at all, while others generalize well in the sense that their model are able
to predict other subject’s data. No single frequency band dominated classification accuracy – see
Figure 4. Therefore, the regularization must have selecteddiverse features. Nevertheless, as can be
seen in panel G of Figure 5 there is significant redundancy between classifiers in the ensemble. Our
approach of finding a sparse solution reduces the dimensionality of the chosen features significantly.
For very able subjects our zero-training method exhibits a slight performance decrease, which how-
ever will not prevent them from performing successfully in BCI. The sparsification of classifiers,
in this case, also leads to potential insight into neurophysiological processes. It identifies relevant
cortical locations and frequency bands of neuronal population activity which are in agreement with
general neuroscientific knowledge. While this work concentrated on zero training classification and
not brain activity interpretation, a much closer look is warranted. Movement imagination detection
is not only determined by the cortical representation of thelimb whose control is being imagined (in
this case the arm) but also by differentially located cortical regions involved in movement planning
(frontal), execution (fronto-parietal) and sensory feedback (occipito-parietal). Patterns relevant to
BCI detection appear in all these areas and while dominant discriminant frequencies are in theα
range, higher frequencies appear in our ensemble, albeit incombination with less focused patterns.
So what we have found from our machine learning algorithm should be interpreted as representing
the characteristic neurophysiological variation a large subject group, which in itself is a highly rel-
evant topic that goes beyond the scope of this technical study. Future online studies will be needed
to add further experimental evidence in support of our findings. We plan to adopt the ensemble
approach in combination with a recently developed EEG cap having dry electrodes [18] and thus to
be able to reduce the required preparation time for setting up a running BCI system to essentially
zero. The generic ensemble classifier derived here is also anexcellent starting point for a subsequent
coadaptive learning procedure in the spirit of [7].

7



Figure 5: A: primary projections for classical auto-band CSP. B: linearly averaged CSP’s from
the ensemble. C: transfer function for classical auto-bandand ensemble CSP’s. D: weightings of 28
ensemble members, the six highest components are shown in F.E: linear average ensemble temporal
filter (red), heuristic (blue). F: primary projections of the 6 ensemble members that received highest
weights. G: Broad-band version of the ensemble for a single subject. The outputs of all basis
classifiers are applied to each trial of one subject. The top row (broad) gives the label, the second
row (broad) gives the output of the classical auto-band CSP,and each of the following rows (thin)
gives the outputs of the individual classifiers of other subjects. The individual classifier outputs are
sorted by their correlation coefficient with respect to the class labels. The trials (columns) are sorted
by true labels with primary key and by mean ensemble output asa secondary key. The row at the
bottom gives the sign of the average ensemble output.
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