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Abstract

Occasionally even the best automated method fails due to low image quality,
artifacts or unexpected behaviour of black box algorithms. Being able to predict
segmentation quality in the absence of ground truth is of paramount importance
in clinical practice, but also in large-scale studies to avoid the inclusion of invalid
data in subsequent analysis.
In this work, we propose two approaches of real-time automated quality control
for cardiovascular MR segmentations using deep learning. First, we train a neural
network on 12,880 samples to predict Dice Similarity Coefficients (DSC) on a
per-case basis. We report a mean average error (MAE) of 0.03 on 1,610 test sam-
ples and 97% binary classification accuracy for separating low and high quality
segmentations. Secondly, in the scenario where no manually annotated data is
available, we train a network to predict DSC scores from estimated quality ob-
tained via a reverse testing strategy. We report an MAE = 0.14 and 91% binary
classification accuracy for this case. Predictions are obtained in real-time which,
when combined with real-time segmentation methods, enables instant feedback on
whether an acquired scan is analysable while the patient is still in the scanner.

Introduction. Finding out that an acquired medical image is not usable for the intended purpose
is not only costly but can be critical if image-derived quantitative measures should have supported
clinical decisions in diagnosis and treatment. Real-time assessment of the downstream analysis task,
such as image segmentation, is highly desired. Ideally, such an assessment could be performed while
the patient is still in the scanner, so that in the case an image is not analysable, a new scan could be
obtained immediately (even automatically). Such a real-time assessment requires two components, a
real-time analysis method and a real-time prediction of the quality of the analysis result. This work
proposes a solution to the latter with a particular focus on image segmentation as the analysis task.
Specifically, we assess the quality of automatically generated segmentations of cardiovascular MR
(CMR) from the UK Biobank (UKBB) Imaging Study [1].

Methods In this work we perform 2 experiments with data obtained from the UKBB. We take the
Dice Similarity Coefficient (DSC) to be a measure of segmentation quality.
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Data: Our initial dataset consists of 4,882 3D (2D-stacks) end-diastolic (ED) cardiovascular magnetic
resonance (CMR) scans from the UK Biobank (UKBB) Imaging Study. All images have a manual
segmentation which is unprecedented at this scale. We take these labelmaps as reference GT. Each
labelmap contains 3 classes: left-ventricular cavity (LVC), left-ventricular myocardium (LVM) and
right-ventricular cavity (RVC) which are separate from the background class (BG). In this work,
we also consider the segmentation as a single binary entity comprising all classes: whole-heart
(WH). After re-segmenting with a random forest, our dataset comprises 16,100 score-balanced
segmentations with reference GT. From each segmentation we create 4 one-hot-encoded masks:
masks 1 to 4 correspond to the classes BG, LVC, LVM and RVC respectively. At training time,
our data-generator re-samples the UKBB images and our segmentations to have consistent shape of
[224, 224, 8, 5] making our network fully 3D with 5 data channels: the image and 4 segmentation
masks. The images are normalized such that the entire dataset falls in the range [0.0, 1.0]. For
comparison and consistency, we choose to use the same input data and network architecture for each
of our experiments. We employ a 50-layer 3D residual network written in Python with the Keras
library and trained on an 11GB Nvidia GeForce GTX 1080 Ti GPU. We use the Adam optimizer
with learning rate of 1e−5 and decay of 0.005. Batch sizes are kept constant at 46 samples per batch.
We run validation at the end of each epoch for model-selection purposes.

Experiment 1: Directly predicting DSC. Is it possible to directly predict the quality of a segmentation
given only the image-segmentation pair? In this experiment we calculate, for each class, the DSC
between our segmentations and the GT. These are used as training labels. We have 5 nodes in the
final layer of the network where the output X is {X ∈ R5 |X ∈ [0.0, 1.0]}. This vector represents
the DSC for each of the classes including background and whole-heart. We use mean-squared-error
loss and also report mean-absolute-error between the output and GT DSC. We split our data 80:20:20
giving 12,880 training samples and 1,610 samples for each of the validation and test sets. Performing
this experiment is costly as it requires the use of a large manually-labelled dataset which is not readily
available in practice.

Experiment 2: Predicting RCA scores. Considering the promising results of the RCA framework
[2, 3] in accurately predicting the quality of segmentations in the absence of large labelled datasets,
can we use the predictions from RCA as training data to allow a network to give comparatively
accurate predictions on a test-set? In this experiment, we perform RCA on all 16,100 segmentations.
To ensure that we train on balanced scores, we perform histogram binning on the RCA scores and
take equal numbers from each class. We finish with a total of 5363 samples split into training,
validation and test sets of 4787, 228 and 228 respectively. The predictions per-class are used as labels
during training. Similar to Experiment 1, we obtain a single predicted DSC output for each class
using the same network and hyper-parameters, but without the need for the large, often-unobtainable
manually-labelled training set.

Results The results from Experiment 1 in Table 1 show that our network is able to directly predict
whole-heart DSC from the image-segmentation pair with MAE of 0.03 (SD = 0.04). We see similar
performance on individual classes. For WH we report that 72% of the data have MAE less than 0.05
with outliers (DSC ≥ 0.12) comprising only 6% of the data. Results show excellent true-positive
(TPR) and false-positive rates (FPR) on a whole-heart binary classification task with DSC threshold
of 0.70. The reported accuracy of 97% is better than the 95% reported with RCA in [3]. Distributions
of the MAEs for each class can be seen in Fig 1. Our results for Experiment 2 are also recorded in
Table 1. It should be expected that direct predictions of DSC from the RCA labels are less accurate
than in Experiment 1. The reasoning here is two-fold: first, the RCA labels are themselves predictions
and retain inherent uncertainty and second, the training set here is much smaller than in Experiment
1. However, we report MAE of 0.14 (SD = 0.09) for the WH case and 91% accuracy on the binary
classification task.

Conclusion and Discussion We recognize that our networks are prone to learning features specific
to assessing the quality of random forest segmentations. We can build on this by training the network
with segmentations generated from an ensemble of methods. However, we must reiterate that the
purpose of the framework in this study is to give an indication of the predicted quality and not a direct
one-to-one mapping to the reference DSC. Currently, these networks will correctly predict whether a
segmentation is ‘good’ or ‘poor’ on some threshold, but will not confidently distinguish between two
segmentations of similar quality.
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Figure 1: Distribution of the mean absolute errors (MAE) for Experiments 1 (left) and 2 (right).
Results are shown for each class: background (BG), left-ventricular cavity (LV), left-ventricular
myocardium (LVM), right-ventricular cavity (RVC) and for the whole-heart (WH).

Table 1: Mean absolute error (MAE) for on predicted segmentation quality over individual classes
and whole-heart (WH). Standard deviations in brackets

Class Mean Absolute Error
Experiment 1 Experiment 2

BG 0.008 (0.011) 0.034 (0.042)
LV 0.038 (0.040) 0.120 (0.128)

LVM 0.055 (0.064) 0.191 (0.218)
RVC 0.039 (0.041) 0.127 (0.126)
WH 0.031 (0.035) 0.139 (0.091)

The labels for training the network in Experiment 1 are not easily available in most cases. However,
by performing RCA, one can automatically obtain training labels for the network in Experiment 2
and this could be applied to segmentations generated with other algorithms. The cost of using data
obtained with RCA is an increase in MAE. This is reasonable compared to the effort required to
obtain a large, manually-labeled dataset.

On average, the inference time for each network was of the order 600 ms on CPU and 40 ms on GPU.
This is 14,000 times faster than with RCA (660 seconds) whilst maintaining good accuracy. In an
automated image analysis pipeline, this method would deliver excellent performance at high-speed
and at large-scale. When paired with a real-time segmentation method it would be possible to provide
real-time feedback during image acquisition whether an acquired image is of sufficient quality for the
downstream segmentation task.
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