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ABSTRACT 

In practice, object-oriented design models have been less useful 
throughout the lifetime of software systems than they should be. 
Design models are often large and monolithic, and the structure of 
the designs is generally quite different from that of requirements. 
As a result, developers tend to discard the design, especially as the 
system evolves, since it is too difficult to keep its relationship to 
requirements and code accurate, especially when both are 
changing. This paper presents a different approach to designing 
systems, based on flexible decomposition and composition, that 
closely aligns designs with both requirements specifications and 
with code. We illustrate how this approach permits the benefits of 
designs to be maintained throughout a system’s lifetime. 

Keywords 
Analysis and design methods, so&ware engineering practices. 

1. INTRODUCTION 
Software design is an important activity within the software 
lifecycle and its benefits are well documented (e.g., [Bch94, 
CAB93, CD94, Jac94, MS91, RL+90, SM89]). They include 
early assessment of the technical feasibility, correctness and 
completeness of requirements; management of complexity and 
enhanced comprehension; greater opportunities for reuse; and 
improved evolvability. These benefits are seldom realised in 
practice in large-scale software systems, however. In our 
experience, many developers either do not create designs at all, 
create very minimal, informal design “sketches” that are discarded 
once system development is underway, or fail to keep their 
designs up-to-date as requirements and code evolve. At best, this 
means that developers cannot obtain the benefits of design 
through the maintenance and evolution phases, which constitute 
the majority of a software system’s lifetime. The popularity of 
UML [BR98] might lead to more, and more widely understood, 

Permission to make digital or hard copies of all or part of this work for 

personal or classroom use is granted without fee provided that 

copies are not made or distributed for profit or commercial advant 

-age and that copies bear this notice and the full citation on the first page. 

To copy otherwise, to republish, to post on servers or to 

redistribute to lists, requires prior specific permission and/or a fee. 

OOPSLA ‘99 1 l/99 Denver, CO, USA 

0 1999 ACM l-581 13-23%7/99/0010...$5.00 

IBM T.J. Watson Research Center, 
P.O. Box 704, 

Yorktown Heights, 
NY 10598. 

+I-914-784-7278 
{harrisn, ossher, tarr}@watson.ibm.com 

designs being created during the design phase, but creating 
designs during the initial design phase does not address the issue 
of keeping designs up-to-date later in the software lifecycle. 

We believe that three primary problems underlie the inability or 
disinclination of developers to use object-oriented designs 
throughout the software lifecycle. First, design models are often 
large and monolithic. This reduces comprehension, 
maintainability, and reusability. Further, monolithic designs can 
inhibit many useful forms of concurrency during design processes. 
The abstraction units in object-oriented designs-interfaces, 
classes, and packages-are centralised notions; only one designer 
at a time can work on a given unit. Centralisation means that 
designers are forced to commit early to the structure and contents 
of shared design units and concepts, which may overly constrain 
the set of possible designs too early and may consequently lead to 
significant impact of change. 

Second, we believe that designs are too difftcult to reuse. 
Designs, like code, tend to bundle too many pieces together. 
Complete classes designed for a particular system are typically too 
specialised to be of general use. If they really are more generally 
useful, they often include much more functionality than any given 
client would use, which decreases comprehensibility and, 
potentially, usability. Further, effective reuse requires powerful 
mechanisms for customisation and adaptation. The standard 
object-oriented mechanisms-subclassing, polymorphism, 
delegation and design patterns-are usetil in this context, but not 
sufficient, particularly because they require a considerable amount 
of preplanning. Developers may therefore be forced to make 
invasive, rather than additive, changes to adapt design units, 
which compromises reuse and future evolution. 

Finally, and perhaps most importantly, there is significant 
structural misalignment between requirements and code, with 
design caught in the middle. The units of abstraction and 
decomposition in requirements tend to relate to features and 
capabilities and other major concepts in the end user domain. 
New or changed requirements, which cause system evolution, also 
tend to be structured this way. Object-oriented code, however, 
focuses on interfaces, classes, and methods. These dramatically 
different structures mean that traceability between requirements 
and code is poor. Moreover, scattering and tangling may occur: a 
single requirement is implemented by code in many classes 
(scattering), and a single class contributes towards implementing 
many requirements (tangling). This leads to a host of problems, 
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including impaired comprehension, inability to determine how a 
change in one artefact affects others, increased complexity of 
addition, removal, or modification of requirements, and 
potentially high impact of change-even a relatively small, well- 
contained change to requirements can affect a large part of the 
design. 

The use of modem object-oriented design languages, including 
UML, produces designs that align well with object-oriented code, 
and for good reason. As a result, however, these designs align 
poorly with requirements, introducing traceability and tangling 
problems. When a requirement is added or changed, it typically 
leads to widespread changes across both design models and code. 
Developers can be forgiven for not incurring the cost of dealing 
with such changes twicmnce in design and once in code--and 
changing only the code. As long as requirements, design, and 
code are misaligned, we believe these problems are fundamental. 

In this paper, we discuss an approach to design that addresses this 
misalignment problem and, in so doing addresses the other 
problems noted earlier that have impeded the successful use of 
designs. The approach is based on the flexible decomposition and 
composition provided by subject-oriented programming [H093, 
OK+96]. This approach permits standard design models to be 
decomposed into smaller, potentially overlapping, units, called 
design subjects. Each design subject encapsulates a single, 
coherent piece of hmctionality (e.g., one or more features or 
components, ohen cutting across multiple classes), designed from 
its own perspective and modelled using standard, object-oriented 
design constructs. Unlike the units of modularity present in 
object-oriented design languages, design subjects may be chosen 
so as to align with the structure of the requirements. Design 
subjects may then be composed together in different ways to 
produce complete designs or larger-scale design hagments. 
Concept overlaps and mismatches between design subjects are 
resolved during the composition process. The composition 
mechanism facilitates a range of additional capabilities, including 
the ability to mix-and-match features, and to specie and enforce 
expected interactions among classes. 

Subject-oriented programming allows object-oriented code to be 
decomposed into subjects in similar fashion. The code subjects 
are then composed to produce the entire system. Each design 
subject can therefore be refined separately to a code subject, and 
the details of the code composition can be derived from those of 
the design composition. There is excellent traceability at this 
level, because code and design subjects correspond directly, and 
within a single subject, standard object-oriented design or code 
are used. This traceability facilitates both evolution and “round- 
tripping”: projecting changes in the design into the code and 
requirements or, for that matter, reflecting the changes made in 
the code back into the design and requirements. 

When a requirement is added or changed, a new design subject 
can be created to address it. The new design subject can then be 
composed with the existing design, thus enhancing or replacing 
parts of the existing design. Then the design subject can be 
refined to a code subject, which is similarly composed with the 
existing code. The changes are localised, so there is no tangling, 
and traceability is preserved. In addition to thus dealing with the 
alignment problem, the decomposition into subjects reduces the 
monolithic nature of the design and allows for concurrent 
development, while subject-oriented composition provides a 

powerful mechanism for integration, evolution, customisation 
adaptation and improved reuse. 

We describe our approach in the context of UML, though it can 
also be applied to other object-oriented design languages. We 
introduce, informally, minimal extensions to UML to allow for 
decomposition into subjects and specification of the relationships 
between them. Any existing I&IL design can be used unchanged 
as a single subject, or can be decomposed into multiple subjects if 
desired. Subject-oriented design, like subject-oriented 
programming, can therefore be adopted gradually. 

The rest of this paper is organised as follows. We begin, in 
Section 2, by introducing an example that motivates the need for 
subject-like composition and decomposition. In Section 3, we 
describe our model of subject-oriented design. Then, in Section 
4, we apply the model to the example from Section 2 and 
demonstrate how the division of the original design into subjects, 
based on the requirements, addresses many of the issues that are 
raised in Section 2. Section 5 describes related work. Finally, 
Section 6 presents some conclusions and future work. 

2. MOTIVATION 
‘To illustrate some of the pervasive and serious problems that help 
motivate our work we present a running example (partially 
introduced in [TO+99]) involving the construction and evolution 
of a simple software engineering environment (SEE) for programs 
consisting of expressions. We assume a simplified software 
development process, consisting of informal requirements 
specification in natural language, design in UML, and 
implementation in Java. 

2.1 The Initial Software System 
We begin initially with the following requirements specification 
for the SEE: 

The desired SEE supports the specification of expression 
programs. It contains a set of tools that share a common 
representation of expressions. The initial tool set should include 
an evaluation capability, which determines the result of 
evaluating expressions; a disphy capability, which depicts 
expressions textually; and a check capability, which optionally 
determines whether expressions are syntactically and 
semantically correct. The SEE should permit optional logging 
of operations. 

This requirements specification identifies several concerns that 
must be realised in the design: the SEE, expressions, the 
evaluation tool, display tool, check tool, and a logging utility that 
can be included or excluded horn the environment. 

Based on these requirements, we produce a Uh4L design for the 
system, shown in Figure 1. The design represents expressions as 
abstract syntax trees (ASTs) and defines a class for each type of 
AST node, where each class contains accessor and modifier 
methods, plus methods evaluateo, display0 and 
check ( ) , which realise the required tools in a standard, object- 
oriented manner’. Logging is modelled as a separate, singleton 

i Clearly, countless alternative designs are also possible. We 
chose to use a simple one here, and we will describe, later in 
this section, some general kinds of problems that other 
approaches - notably, those that use design patterns - produce. 
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class (Logger); the intent is for each AST operation to invoke 
Logger. beforeInvoke ( ) prior to performed its action, then 
to invoke Logger. afterInvoke ( ) just before it terminates. 
The Logger permits applications to turn logging on and off with 
its turnLoggingOn() and turr&oggingOff () methods. 
When logging is off, Logger's beforeInvoke and 
afterInvoke ( ) methods are essentially no-ops. This permits 
logging to be optional, as required. 

The design demonstrates some important features. The mapping 
from design to code is straightforward and quite direct-every 
concern (i.e., class) in the UML class diagram has a direct 
correspondent in the code. This is not unexpected, since both are 
object-oriented, and much of the reason for the trend toward 
object-oriented design is that it permits a direct mapping between 
design and object-oriented code. 

The mapping between requirements and design, on the other 
hand, is extremely complex. Note, for example, the following 
problems: 

. The SEE tools (evaluation, checking, and display), which are 
described as encapsulated concerns in the requirements, are 
not encapsulated in the design. In fact, these capabilities are 
scattered across the AST classes-each class contains a 
method that implements these capabilities for its own 
instances. Scattering is negative from an evolutionary 
perspective: the impact of a change to a single requirement, 
well localised at the requirements level, can nonetheless be 
extremely high, because that change necessitates multiple 
changes across a class hierarchy. 

. The logging capability is realised as a first-class concern in 
both the requirements and the design. Nonetheless, the 
protocol for logging requires co-operation from each method 
in each AST class, to appropriately invoke 
Logger .beforeInvoke () and Logger.afterInvoke(). 

This is tangling-satisfying a given requirement necessitates 
interleaving design details that address the requirement with 
details that address other requirements. Tangling is a serious 
detriment to software comprehension, reuse, and evolution, 
because it is impossible to deal with the design details 
pertaining to one requirement without constantly 
encountering and having to worry about intertwined details 
pertaining to other requirements. For example, it is dificult 
both to determine how a change to the logging requirement 
will impact the design, and to effect such a change additively, 
rather than invasively 

Scattering and tangling are also devastating from the point of view 
of traceability: the ability to determine readily how a piece of one 
software artefact (e.g., requirement, design, code) affects others. 
Traceability makes it possible to look at a change to a 
requirement, and to tind those parts of the design and code details 
that are affected by the change. Traceability is essential to keeping 
requirement and design documents up-to-date with respect to 
evolving code. Without it, these documents are likely to become 
obsolete and useless, since, when it is difficult to determine how a 
proposed change to one will impact the other, changes may not be 
propagated across them consistently, or at all. 

These problems, and others present in this design, occur because 

the concerns identified in the requirements, which are based on 
features of the SEE, are different from those used to modularise 
the design, which are the objects and cfasses that implement the 
SEE. Thus, the requirements concerns generally are not, and 
cannot readily be, encapsulated in the design. This is different 
from the relationship between design and code, where the 
respective sets of concerns are very similar. In the process of 
creating designs from requirements, UML and other object- 
oriented design formalisms and languages necessitate a transition 
from feature (or other) concerns to object concerns. 

+ asString() : string 
+ getName : String 
+ setName(String) 
+ getTypeDescriptor() : String 

Logger 
- loggingOn : boolean 
- instance : Loacrer 

+ lnstance~ 
+ beforelnvoke() 
+ aftarlnvoke() 
+ tumLogginOn() 
+ tumLoggingOff() 

+ Iw9ingW 
- Sm3() 
- lOad + display() 

+ evaluate0 

Figure 1: UML Design for SEE 
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This transition essentially results in the discarding of the 
encapsulation of those concerns identified during requirements 
specification in favour of concerns mandated by the design and 
coding paradigms. In achieving a close tie to code, object-oriented 
design loses one of its two “faces”: the one that connects it with 
requirements. Scattering and tangling are, in fact, symptomatic of 
this mismatch. Some earher design paradigms, notably those that 
permitted functional decomposition, exhibited the opposite 
problem: they facilitated the production of designs that aligned 
well with requirements, but that did not align well with object- 
oriented code. 

This point is particularly important. In general, most design 
paradigms are not suflciently power&l to permit designs to 
wear both faces -they allow the design to align with either the 
requirements or the code, but not both. Thus, designs fail to 
achieve one of their primary purposes: to promote truceabilify by 
bridging the gap between requirements and code. Traceability is 
an important prerequisite to evolution, as is encapsulation, which 
aids in limiting the impact of any given change. Note, for 
example, that it is difficult both to determine how a change to the 
logging requirement will impact the design, and to effect such a 
change additively, rather than invasively. Limited traceability and 
encapsulation, as is present in the SEE design, result in reduced 
evolvability. Consequently, they also result in the eventual 
obsolescence of requirements, design or both, since changes may 
not be propagated across them consistently if it is difficult to 
determine how a proposed change to one will impact the other. 

The misalignment of requirements and design also has 
ramifications for the design process itself. For example, designers 
are limited in their ability to work concurrently on the design 
(and, in fact, on the code), to a much greater degree than when 
producing a requirements specification. Specifically, it would be 
desirable to have a compiler expert work on the AST 
representation itself, a user interface expert work on the design of 
the display feature, etc. The scattering and tangling of these 
features results, however, in interdependencies across these 
features and across the classes that hampers concurrent design and 
implementation. Classes are inherently centralised notions, so it 
is also often fairly difficult to permit concurrent development of 
the same classes. Further, while the logging capability can be 
designed independently of the AST classes, all of the other 

developers must be aware of its presence and must design with it 
in mind. For the same reasons, all of the SEE tool designers must 
wait for the “core” AST to be defined before they can work 
effectively even if designers could work in parallel on features. 
This opens the door to a variety of errors, and it can result in 
delays while designers wait for one another. 

2.2 An Evolving Headache 
After using the SEE for some time, the clients request the 
inclusion of different forms of optional checking; initially, they 
ask for a defluse checker and a style checker that verifies 
conformance to local naming conventions. The check feature thus 
becomes a “mix-and-match” capability---clients can choose any 
combination of syntax, deWuse, and/or style checking to be run on 
their expression programs when they invoke the check tool. 

This change in requirements is additive-it need not affect any 
other requirement. At the design level, however, the change is not 
as straightforward, since the check feature is not encapsulated as a 
concern in the design. In fact, this change necessarily affects all 
AST classes in the design. One possible approach to designing 
the new forms of checking would be to create new subclasses of 
the AST classes, where a given subclass overrides the original 
(syntax) check ( ) method with one intended to provide defYuse 
or style checking for a particular kind of AST class. Clearly, 
while this approach is non-invasive, it is completely impractical, 
as it results in combinatorial explosion of classes with each new 
feature. A better approach is to use the Visitor design pattern 
[GH+94] to represent checking, and to provide different visitors 
that correspond to the different kinds of checking. 

The visitor approach, which is depicted in Figure 2 facilitates 
‘Lmix-and-match” without combinatorial explosion. It requires, 
however, an invasive change to all of the AST classes, to replace 
the check0 methods with accept(Visitor) methods.The 
use of visitors also introduces a second complication. The logging 
feature requires the visitors to invoke 
Logger.beforeInvoke() andLogger.afterInvokeO 
appropriately, further increasing the scattering and tangling 
problems associated with this feature. 

I Visitor I 

+ visiiVar(VariableExpression) 
+ visilNum(NumberExprassion) I 
+ visitUnar~Plus(Unar~PlusOpj 

+ visitUnaryMinus(UnaryMinusOp) 
1 + viritPIus(PIu;pa;oi) t 

+ visitMinus(MinusOperator) 

i 

1 Expression 
I 

+ visitVar(VariabteExpression) 
+ visitNum(NumberExpression) 

+ visitVar(VariableExpression) 

+ visitNum(NumberExpression) 

+ visitNum(NumberExpression) 

+ visitUnaryMinus(UnaryMinusOp) 

Figure 2: Using Visitor to Separate Check Functions 
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This evolutionary change, which appeared to be straightforward 
and additive from the clients’ perspective and from its impact on 
the requirements, demonstrates, in a microcosm, the spectrum of 
problems resulting from the misalignment problem. Scattering and 
tangling lead to weak traceability and poor encapsulation of 
requirements-level concerns within the design, and subsequently, 
the code. They also make the propagation of requirements 
changes to design and code very difficult and invasive. It is even 
difficult to determine which design elements are affected by a 
given requirements change. The level of effort needed to 
propagate changes from requirements to design is much greater 
than the effort to propagate the changes from design to code, 
precisely because of the misalignment. 

2.3 When the Solution is the Problem... 
Countless other design approaches are possible for the SEE, and 
some of them address some of the issues that have been raised. 
For example, the judicious application of design patterns might 
help solve some of these problems. While it is impossible to 
elaborate the possible design approaches (with or without design 
patterns) exhaustively, we explore briefly some of the design 
pattern alternatives to illustrate why neither they, nor other 
approaches, address the whole problem. 

Visitor: The initial use of the visitor pattern to model checking 
would have facilitated greatly the addition of the new checkers. 
Note that this is the case precisely because visitors provide 
encapsulation of features, which results in better alignment of 
design with requirements. While visitors promote some forms of 
evolution, they hinder other forms. For example, adding a new 
type of expression, like assignment, is simple in the original 
design shown in Figure 1, but it would necessitate invasive 
changes to all visitors [GH+94]. 

Observer with Factorv: To reduce the coupling between the 
logger and the AST classes, we might have chosen to accomplish 
logging via observers. Since observer operates at the instance 
level, rather than the class level, it would be best to use a factory 
to create objects, since the factory can decide transparently 
whether or not to register the logger with any newly created 
objects. This approach would achieve the looser coupling. 
Observer is, however, an extremely heavyweight solution that 
incurs high overhead, in both complexity and performance. 
Further, it does not improve the scattering problem, as AST 
methods must notify any observers, thereby scattering the 
implementation of logging across all the AST classes. Used in 
conjunction with visitors for the AST tools, the design for the 
SEE becomes significantly larger and more complex, with many 
more interrelationships among the classes to be represented and 
enforced. 

Decorator with Factory: As an alternative to observer, we could 
choose to represent logging using the decorator pattern, where 
decorators perform logging (if desired). Decorator, like observer, 
helps to reduce coupling, and, unlike observer, it reduces tangling 
by segregating logger notification code into separate, decorator 
objects. Again, since decorators operate on a per-instance basis, 
the use of a factory would be prudent. Unfortunately, the 
decorator solution is significantly more problematic than the 
observer solution, because of the object schizophrenia problem. 
That is, to ensure that logging occurs consistently, it is necessary 
to ensure that all messages to all objects go through the decorator, 
not directly to the object itself. Once a method on an object is 

invoked, however, that method may invoke others, which, in turn, 
must go through the decorator. This means that the object must 
know about its decorator(s), which introduces a new form of 
coupling and tangling (i.e., each class must include code to 
implement the interaction with the decorator). 

Summarv: Design patterns and other design approaches can help 
to alleviate some, but not all, of the problems we have identified. 
Unfortunately, in ameliorating some problems, they introduce 
other problems or restrictions [GH+94, Vli98]. The need to 
preplan for change-which we see in the use of all design 
pat-terns, since designs and code must be pre-enabled with the 
pattern to avoid subsequent invasive changes to incorporate 
them-is especially problematic. It is impossible to anticipate 
every kind of change that might be required; even if it were 
possible, flexibility always comes at a cost in terms of conceptual 
complexity and/or performance overhead, as the visitor, observer, 
and decorator patterns demonstrate. Enabling for some forms of 
change inhibits other kinds of chang-for example, introducing 
visitors will promote the future addition of new types of checkers, 
but it greatly complicates the addition of new types of 
expressions. 

Thus, while design patterns and other design approaches are very 
useful, they cannot address the issues we have raised-their use 
results in the exchange of one set of problems for another. In 
some cases, the new set of problems is acceptable, but in others, it 
is not. As long as the misalignment problem exists, its 
consequences--weak traceability, low comprehensibility, 
scattering, tangling, coupling, poor evolvability (including high 
impact of change and invasive change), reduced concurrency in 
development, etc.-will be present. 

3, MODEL 
Two general approaches exist to addressing the misalignment of 
requirements, design, and code. One is to impose the same 
development paradigm on all software artefacts. This is, in fact, 
precisely the approach that has been used to provide closer 
alignment between designs and code--both are written in the 
object-oriented paradigm. This approach is not appropriate when 
applied to requirements specifications, however, as requirements 
deal with concepts in the user’s domain, while designs and code 
deal with concepts in theprogramming domain. 

The other approach to addressing the misalignment problem is to 
provide additional means of further decomposing artefacts written 
in one paradigm so that they can align with those written in 
another. This approach suggests, for example, that it must be 
possible to reify features and other kinds of concerns [TO+991 
within the object-oriented paradigm to permit encapsulation of 
feature concerns, as specified in the requirements, within designs 
and code. We have chosen to adopt this approach, in recognition 
of the fact that different paradigms are appropriate under different 
circumstances, so that homogeneity, while appealing, is likely to 
be inadequate. Our approach, which we call subject-oriented 
design, is an outgrowth of the work on subject-oriented 
programming, which addressed misalignment and related 
problems at the code level [H093, OK+96]. Like subject-oriented 
programming, subject-oriented design supports decomposition of 
object-oriented software into modules, called subjects, that cut 
across classes, and integration of subjects to form complete 
designs. 
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A subject-oriented design is an object-oriented design model that 
is divided into design subjects. Each design subject separately 
describes that part of a system or component that pertains to a 
particular concern @.I%]. Composition relationships describe 
how these design subjects relate to one another, and hence, how 
they can be understood together as a complete design. 

3.1 Design Subjects 
Each design subject is an object-oriented design model that 
encapsulates the design of just that part of a system that pertains 
to a particular concern. In the context of alignment of 
requirements, design and code, a design subject might encapsulate 
those design elements whose purpose is to satisfy a specific 
requirement, or perhaps a coherent set of related requirements. 

For example, the requirements specification for the expression 
SEE described in Section 2 identifies a requirement for a 
“display” feature. In the UML class diagram shown in Figure 1, 
operations to support the display feature appear in all of the 
expression AST nodes; thus, the display feature cuts across many 
UML classes, reflecting the misalignment problem. To permit 
better alignment of design with requirements, it is desirable to 
encapsulate the display operations into a single design unit. 

Conceptually, a design subject can be written in any design 
language, but our focus in this paper is on UML. A UML design 
subject can contain any valid UML diagrams, but we deal only 
with class and interaction diagrams in this paper. Application of 
this approach to other design languages and to the other UML 
diagrams remain interesting issues for future research. The kinds 
of requirements whose designs can he described in design subjects 
are many and varied. They include units of tinctionality, features 
[TF+98, GF+98], so-called cross-cutting requirements, like 
persistence or distribution, that affect multiple units of 
functionality, and variants (requirements that identify particular 
selections in a space of choices, such as of target system or level 
of capability). Design subjects can also encapsulate concerns of 
other kinds, such as units of change, or subdomains [T0+99]. 

Design subjects thus provide an additional means of decomposing 
systems, complementing those provided by the other Uh4L 
diagrams. They permit the encapsulation of all, and only, those 
design elements that pertain to a given concern. Whereas the 
design elements in a conventional Uh4L design model must be 
defined completely with respect to the entire system, the design 
elements in a design subject need only contain those details that 
are relevant to the concern it encapsulates. 

It is possible---indeed, expected-that some of the same concepts 
may be relevant to multiple design subjects. For example, both 
the “display” and “check” features require knowledge about how 
to traverse expression ASTs; thus, if they were each modelled as a 
separate design subject, they would both include their own views 
of the child attributes of AST classes, These views may, but need 
not, be identical; one might, for example, model the links to each 
child as a separate structural relationship, while another might 
model the links to all children as a single one-to-many 
relationship. Design subjects may therefore overlap, and they may 
include some differences in their views of overlapping parts. This 
is a strength of design subjects-they permit each of the different 
parts of a system under design to model the same concepts in 
whatever way is most appropriate to that subject’s view and 
purpose. Differences in views can be identified and resolved, 

using composition relationships (discussed in the next section), as 
part of the design process. With UML, design elements that 
support the same concept, but have different views that necessitate 
different specifications, must be specified separately. However, 
since there is no means of synthesising a complete design from 
incomplete pieces in UML, such elements will remain separate 
throughout the design cycle. 

The criteria for choosing a set of design subjects into which to 
decompose a system are much the same as for any design 
decomposition activity. The decomposition of a design into 
subjects is generally based on attempts to satisfy different system 
and sofhvare engineering goals and requirements, including 
reusability, evolvability, traceability, comprehensibility, etc. We 
do not prescribe any particular selection criteria or design 
process-many are appropriate. In this paper, we emphasise 
design subjects that match requirements, thus addressing the 
misalignment problem. We also note that design subjects are 
particularly well suited to languages that produce views of objects 
that overlap and “cut across” one another. Two exemplars are 
role modelling [RW+95] and use case analysis [BR98]. 

Design subjects are represented as UML packages with design 
elements contained within them, either directly, or by reference to 
other parts of the overall design. 

3.2 Composition Specification 
As noted above, design subjects support the decomposition of 
systems into potentially overlapping design models. Overlap 
occurs whenever two design subjects describe their own views of 
the same concepts. For example, the subjects encapsulating the 
“display” and “check” features both model views of Expressions; 
one describes Expressions to have a display ( ) operation, the 
other a check ( ) operation, but they share the concept 
“Expression.” The ability to describe overlapping design models 
provides considerable decomposition and encapsulation power. It 
also means, however, that understanding the system as a whole 
requires the identification of corresponding elements from 
different design subjects, and understanding of how these 
elements tit together to describe the shared concept fully. 

We therefore enhance UML to support composition specification. 
We introduce a new kind of relationship called a composition 
relationship, which identifies corresponding design elements in 
different subjects, and may be annotated with optional 
reconciliation and integration specifications which describe how 
the corresponding elements are to be understood as a whole. 
Many of the details derive from the composition rules used for 
specifying composition of code subjects [OK+96]. 

3.2.1 Composition Relationships 
Composition relationships between two or more design elements 
in different subjects denote the fact that those design elements 
correspond, in the sense that they represent views of a single 
concept, and may be composed into a single entity. Composition 
relationships can be described between design elements of any 
kind (e.g., classes, operations, design models, etc.), but all 
elements in a given relationship must be of the same kind. This 

new kind of relationship that we introduce into UML coexists 
with all other UML relationships. 

For example, if we rea.lise the display and checking requirements 
as design subjects, both subjects would contain classes that model 
the concept “Expression” in different ways. These classes 
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therefore correspond, and this correspondence is specified by 
means of a composition relationship. 

Where there is considerable overlap between design subjects, 
specifying all appropriate correspondences between design 
elements individually would be a great deal of work, and would 
lead to highly cluttered designs. Instead, we exploit uniformity, 
noting that within a particular context, one can often characterise 
a multitude of correspondences succinctly by means of a matching 
specification, which is a rule for computing correspondences. For 
example, a common strategy for computing correspondences is 
based on matching the names of design elements, as in the case of 
the display and checking subjects. Matching specifications, such 
as matchrname], are attached to higher-level, explicit 
correspondence specifications, and apply to all design elements 
within the corresponding elements. 

For example, all classes, operations and instance variables in the 
SEE design subjects are to correspond by name. This can be 
specified by means of a match[name] specification attached to a 
composition relationship at the highest level: between the design 
subjects themselves. These general matching specifications can be 
overridden as needed to describe exceptions to the general rule 
[OK+96]. 

Composition relationships are shown in UML diagrams as fat 
composition arrows; the positioning of the arrowheads depends 
on the kind of integration involved (described below). Matching 
specifications are shown as annotations on composition arrows. 
Correspondences implied by matching specifications are not 
shown as separate arrow~.~ 

3.2.2 Reconciliation SpeciJcations 
Corresponding design elements in different subjects may represent 
either the same or different views of a concept. When the views 
are the same, composition relationships identifying the 
corresponding elements are sufficient. When the views are 
different, however, it is also necessary to describe how the 
differences among the corresponding elements are to be 
reconciled-that is, how the different views relate to one another. 
This is done by means of reconciliation spedjkations attached to 
composition relationships. In UML diagrams, they are shown as 
annotations attached to composition arrows. 

The SEE example, as presented, does not require reconciliation 
specifications. As we shall see, this is common in cases where 
design subjects are produced together as part of an integrated 
design effort. Suppose, however, that users had imposed an 
additional requirement-to support textual display in addition to 
graphical display. In the overall design, that feature would be 
specified a.~ a subject separate from the graphical display subject. 
In the textual display subject, the expression class would be likely 
to include an operation display (Stream s) . In defining the 
correspondence, this textual display operation would 
correspond to the graphical display subject’s display ( ) 
operation. This would result in a signature mismatch between the 
two displays that would have to be reconciled. The 
reconciliation could be accomplished, for example, by specifying 
a default stream for the textual display, 

’ It might, of course, be desirable to be able to view the full set of 
correspondences. Appropriate tool support could provide this 
capability readily. 

3.2.3 Integration Spec#cations 
Composition relationships also specify how the collection of 
corresponding design elements is to be formed from its elements. 
In the example above, for instance, where the two “display” 
operations correspond, the designer may need to specify whether 
one of the specifications completely defines the desired result or if 
both are to be satisfied. If both are to be satisfied, the designer 
must indicate in what order the two specifications should be 
satisfied and, in the case of a value-returning function, how a 
single return value should be computed. Integration specifications 
may also be part of a composition relationship to speci& these 
details. 

Although integration specifications specify how to synthesise a 
single, composed design element from a collection of 
corresponding elements, the synthesis need not be carried out as 
part of the design process. Synthesis of the composed design is 
optional; it might be desirable, for example, to permit 
completeness checking or various forms of analysis. In this case, 
the designs can be composed as guided by the composition 
relationships, in much the same way as code is composed in 
subject-oriented programming [OK+96]. By focusing on the issue 
of the formation of the result from the separate subjects’ 
specifications, the integration specifications facilitate an 
understanding of a complete design. The fact that it allows the 
description of the composed design to rise above the details of 
each design also simplifies the forward projection of 
requirements’ changes into changes in the design. 

Three common types of integration specifications are called: 
merge, override, and select. 

“Meree” intemation: Merge integration is, perhaps, the most 
commonly useful form. When subjects represent different 
optional features of a system, or when different teams have 
concurrently designed various subjects, the merge integration 
specification is generally appropriate. For the SEE example, 
merging the “display” and “check” subjects, each of which 
contain definitions for the Expression class, yields a single 
specification for Expression that contains both the display ( ) 
and check ( ) operations. Where there is no overlap of concept 
definitions between subjects, the merge integration denotes a 
simple union of all the design elements in the subjects being 
merged. Where overlap exists, and composition relationships 
define correspondences (either explicitly, or implicitly via 
matching), the meaning of a merge integration for different kinds 
of corresponding design elements varies in ways appropriate to 
the kind of element. 

Looking at some design language constructs Corn UML, for 
classzjiers and attributes, merge indicates that the composed 
design contains a single element whose elements are obtained, by 
aggregation or identification, from the subjects connected by the 
composition relationship. Merging corresponding operations 
indicates that the specification of the (unified) operation results 
from the aggregation of the specifications of those operations in 
all of the corresponding subjects. This aggregation has consequent 
implications on other diagrams in the design, most of which are 
straightforward. For example, in interaction diagrams, a call to an 
aggregated operation implies a call to each of the operations in the 
aggregate. Another example is illustrated by the treatment of 
dependency and association relationships. Eiements in the 
composed subject are dependent (dependency relationship), or are 
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associated (association relationship) if they are 
dependent/associated within any of the subjects being composed. 
The construction and display of a synthesised composite design is 
especially useful for illustrating such deeper consequences of a 
composition relationship. 

At the opposite extreme, automatic synthesis of a single set of 
generalisation (inheritance) relationships for a composite design 
is both dzjkxdt and dubious, even though the manual definition of 
the merged inheritance relationships can be both meaningful and 
useful. A simple merge of hierarchies that have classes in common 
has the potential of resulting in inheritance anomalies (e.g., 
cycles), making it dzy$cult. Within any one subject, 
generalisations can be defined to indicate that elements inherit 
properties from the other elements. But, for purposes of 
composition, each element can be taken as having a complete 
meaning to itself, regardless of whence that meaning cam?. This 
means that an element resulting from the composition is 
completely specified without needing generalisation relationships, 
making them dubious. The difficulty with anomalies is, in fact, a 
symptom of the dubiousness of an automatic synthesis. For 
example, an element and one of its specialisations within one 
subject might correspond to two unrelated elements in another 
subject. In a case like this, it cannot be determined automatically 
what generalisation relationship, if any, is appropriate in the 
composed subject. This problem with inheritance relationships 
also occurs in other generalisation relationships. 

In most cases, however, it is possible to re-synthesise 
generalisation relationships in the composed subject from those in 
the subjects being composed. This can be accomplished with 
appropriate tooling whose details, in the case of inheritance 
relationships, may be target-language specific. Such re- 
synthesised relationships can be used as an aid to the composition 
designer in understanding the composed subject. 

Merge integration is denoted by a multi-headed composition 
arrow, with the design elements to be merged at the ends of the 
arrow. 

“Override” integration: A subject can be created which, either 
by serendipity or with knowledge of some other subject, is 
intended to extend, customise or in some way change the 
behaviour specified by other subjects. In such cases, the system 
designer specifies that the new subject’s design elements override 
those to which they correspond in the other subject in an 
integration process. The composition relationships indicate which 
corresponding design elements are to be replaced. In the case of 
override integration, reconciliation specifications are not required 
or used. For ClassiJiers, attributes and relationships, the 
specifications of design elements in the subject to be updated are 
nullified in favour of the corresponding specifications of the 
elements in the overriding subject. For operations, the 
specification of an operation comes solely from the specification 
of the overriding operation. As with merge integration, override 
integration may have implied consequences on other Uh4L 
diagrams. For example, any interaction diagrams containing 

3 In subject-oriented programming, the process of making all 
inherited information explicit is called flattening. Definitions 
are copied down from where they are defined into each class 
that inherits them [OK+96]. Flattening is also used to define the 
meaning of specialised elements in subject-oriented design. 

operations that are replaced are effectively changed by using the 
full interaction definition of the operation in the replacing subject 
instead of the full interaction definition of the operation to be 
replaced. Complete interaction diagrams may themselves be 
replaced. 

The discussion of the usefulness of displaying synthesised 
interaction diagrams and of the issues surrounding the 
generalisation relationship is the same for override as they are for 
merge. 

Override integration is denoted by a one-way composition arrow, 
with the arrowhead at the end of the element to be overridden. 

“Select* integration: Sometimes corresponding operations 
describe different ways of performing some functionality. For 
example, the SEE has two different style checkers, each of whose 
“check” operations performs the checking in a different way. 
Merge specifies that, whenever a user requests checking, both 
kinds of checks are to be performed. Override integration chooses 
one, at design time. A third alternative is to specify in the design 
some criterion that can be used to select the appropriate one to 
execute at run time, whenever an actual “check” call is made. The 
criterion, in this case, might be the value of an environment or 
preference variable set by the user to indicate which kind of style 
checking should be used. In general, it might be the type or value 
of anything accessible to the called operations, such as parameters 
and “global” variables. 

Select integration thus provides multiple dispatch, even though 
UML itself does not model multiple dispatch. It is appropriate in 
situations where: 

. Different subjects describe different behavioural variants. 

. All variants should be available at run time. 

. Only one (or a subset) of the variants should be executed at 
run time. 

. The choice of which to execute is made upon each call, based 
on some runtime criterion. 

If all variants should be executed, merge integration should be 
used; if one variant is to be chosen at design time and the others 
excluded entirely, override integration should be used. 

Select integration is denoted by a multi-headed composition 
arrow, with the design elements to be included in the composition 
at the ends of the arrow. Annotations must be attached to the 
branches of the arrow to specify the selection criteria. 

3.3 An Open-ended Set of Specifications 
There are many ways to specify correspondence, reconciliation 
and integration, of which we have described only a few, and 
developed only a few more. Our goal is to describe a useM basic 
set, but that set cannot be complete. An open-ended approach is 
therefore needed that allows sophisticated users to define their 
own specifications. Tools that support composition of 
implementations or the visualisation of synthesised equivalents of 
a composite design can support an open-ended set, a tiamework 
with pluggable pieces for implementing different approaches, as 
in the subject-oriented programming implementation [OK+96]. 
The extension of Uh4L to include open-ended concepts (whether 
composition specifications or simply types of relationships) is 
beyond the scope of this paper. 

332 



3.4 Composition Patterns and Guides 
In some contexts, composition relationships are quite complex, 
potentially involving multiple correspondences among multiple 
subjects and their constituent elements, with reconciliation 
specifications and detailed integration specifications attached to 
them. Common patterns of such composition relationships might 
emerge, or be expected, when the same or similar subjects are 
used in different contexts. It is convenient to identify, name and 
define such composition patterns. Portions that might vary in 
different contexts can be separated out as parameters. 
Relationship patterns can thus be thought of as lambda 
abstractions over sets of composition relationships. They can be 
instantiated whenever needed by naming them and supplying the 
parameters. This provides an important level of abstraction when 
specifying composition relationships; comprehensibility is 
improved and duplication of detail is avoided, thereby reducing 
the probability of errors. 

A collection of design subjects might represent the design of not 
just a single system, but of a family of related systems. In this 
case, some design subjects might be alternatives, whereas others 
are written to collaborate. In addition to composition patterns 
specifying useful compositions, it might also be valuable to 
specify composition guides, identifying properties of composition 
relationships that should normally hold for any composition. For 
example, a composition guide might specify that only one of a set 
of alternative design subjects should normally be included in a 
composition. 

The author of a subject, or a coherent set of subjects, often has 
some common forms of use and some guides in mind. 
Composition patterns and guides provide a means for these to be 
expressed for the benefit of future users of the subject(s), and 
might be supplied by the authors along with the subjects 
themselves. Users then have a number of choices. They can use 
one or more of the patterns exactly as specified, by instantiating 
them. They can also, if desired, specify additional composition 
relationships that enhance or override details specified in the 
patterns. Alternatively, they can avoid using the patterns entirely, 

r asubject~ 
Kernel 

and specify their own composition relationships. Composition 
patterns and guides, provided by the authors of design subjects, 
are intended as aids, not as mandates. The author of a subject 
cannot know all the ways in which that subject will be used in the 
future. The developer responsible for creating an integrated design 
from a number of subjects, on the other hand, is expected to 
understand enough about all the design subjects to be able to 
specify details of their relationships. This developer therefore has 
the last word, including the ability to override composition 
constraints. Such overriding must be done explicitly; in its 
absence, constraint violations are considered to be errors. 

The use of composition patterns and constraints is illustrated in 
Section 4. Further details are beyond the scope of this paper. 

4. APPLYING THE MODEL 
To illustrate how subject-oriented design addresses the 
misalignment problem and achieves better, more flexible system 
design, we apply it to the construction and evolution of the 
expression SEE. 

4.1 The Initial Software System 
To align design with requirements, we define one design subject 
per feature identified in the requirements specification. Thus, we 
define a kernel subject supporting the representation of 
expressions; an evaluation subject; a check subject; a display 
subject; and a subject responsible for logging of operations. We 
discuss these subjects individually in Section 4.1.1.) and their 
integration by means of composition relationships in Section 
4.1.2. 

4.1.1 Design Subjects 
Figure 3 shows the Kernel subject. As in the original design, we 
represent expressions as abstract syntax trees. Notice, however, 
that the kernel design subject only defines the AST classes and 
their primitive accessor methods-it does not tangle support for 
any of the required SEE features with the expression 
representation. 

operand1 
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Literal 

- value : Number 
unalyoperator 

+ getValue : Number * 

+ setValue(Number) 

# operand : Expression :: 

+ getOperand() : Expression 

+ setOperand(Expression) 

VariableExpression NumberExpression 

- name : String 
- value : Number I I 1 

# operand1 : Expression 
# operand2: Expression 

+ g&Operand10 : Expression 

+ setOperandl(Expression) 

+ Q&Operand20 : Expression 

1 : ‘J::~:J~~~~~~;Q 1, wv ] UnalyMinusOp, 1: 
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Figure 3: Kernel Subject Structure Diagram 
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Check 

# opmndl: Expression 

# operanti Expression 

I+ getTypeDesmiptor() : String 1‘. 1 MinusOnerator 

Figure 4: Check Subject Structure Diagram 

Similarly, the design subjects for each of the other required 
features, a representative example for the Check subject which 
appears in Figure 4, are “pure”~ne subject each supports 
checking, evaluating and displaying expressions, and operation 
logging. For space reasons, we show the structure diagrams of 
only the Kernel subject (Figure 3) the Check subject (Figure 4) 
and the Logger subject (Figure 5). 

These design subjects illustrate some important features of 
subject-oriented design. First, the kernel, check, evaluate and 
display subjects realise and encapsulate their respective SEE tools 
in a standard object-oriented manner, with appropriate methods in 
each of the AST classes. While there is unavoidable scattering of 
tool support across classes within each subject, encapsulation is 
nonetheless achieved by each subject as a whole. This provides 
clear alignment of the design to the requirements, as each subject 
represents the design of a particular feature in total, and contains 
no reference to any other feature; all cross-feature interactions are 
specified by means of composition relationships. Encapsulation of 
the logger feature also avoids tangling of logger functionality with 
the rest of the design. 

A second important feature of this subject-oriented design 
approach is that each of the subjects specifies its own view of 
overlapping design elements. For the SEE, the AST structure of 
an expression is manifested in every subject, except the Logger 
subject. Yet each subject defines a slightly different view of the 
AST class hierarchy; for example, the Check subject does not 
define the BinaryOperator, UnaryflusOp, and 
UnaryMinusOp classes in its hierarchy, as they are not affected 
directly by the checking methods. Similarly, the Evaluation 
subject and the Display subject, not illustrated here, do not 
include theBinaryOperator andunaryoperator classes. 
The designers of the individual subjects need not be concerned 
about these differences, as identification and resolution of any 
differences is supported by composition relationships. This 
increases the amount of concurrent design that is possible. It also 
enables each subject to include whatever model of AST it finds 
most appropriate to its task, rather than requiring premature 

commitment to a single AST definition. This property helps to 
improve the individual subjects, to insulate each designer from the 
effects of changes in other subjects, and to eliminate coupling 
across subjects. 

ctsubjecb> 

Logger 

Figure 5: Logger Subject Structure Diagram 

The Logger subject illustrates another interesting feature of 
subject-oriented design. The SEE requirements specification 
imposed a requirement for optional logging of operations. The 
ability to log operations is not particular to expressions or ASTs, 
however, so the logger subject can be designed independently of 
the operations to be logged (Figure 5). Composition relationships 
will establish connections between the SEE subjects (or any 
others) and Logger, thereby specifying exactly when logging is to 
take place. This approach has the advantage of separating the 
design of logging from that of the SEE, addressing the tangling 
problem that manifests itself primarily in the behavioural 
specifications for operations that are to be logged (not shown). It 
also results in a subject that is generally reusable for any 
application that requires logging of operations. 

This is a good scenario for the use of composition patterns. We 
might define a pattern called TotalLogging as an abstraction for 
composition relationships. It specifies that when Logger is 
composed with other subjects, all operations of all classes within 
those subjects are to be logged by invoking Logger’s 
be f oreInvoke ( ) method before execution of each operation, 
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and Logger’s afterInvoke ( ) method immediately afterwards. 
This pattern, provided by the author of Logger along with the 
subject itself, makes specification of standard logging especially 
simple, as we shall see later in this section. 

4.1.2 Composition Relationships for Design 
Synthesis 
Taken together, the collection of design subjects described above 
actuaIly defines a family of SEES. That is, the set of features 
encapsulated in the individual design subjects can be integrated in 
a number of different combinations-eg., some versions of SEES 
might include the evaluation feature but not the checking feature, 
and some might include logging while others might not. This 
ability to “mix and match” features is another benefit of subject- 
oriented design. It requires only the specification of composition 
relationships among whatever design subjects are to be included 
in any given member of the SEE family. For example, Figure 6 
illustrates the composition relationships required to define a SEE 
that includes all of the possible features (display, check, 
evaluation, and logging). The relationships between the kernel, 
check, evaluate and display subjects indicate match[name] 
correspondence with merge integration, while the logger subject is 
composed based on the TotalLogging pattern. This set of 
composition relationships is complete and sufftcient to either 
derive the appropriate composition rules in the subject-oriented 
programming domain, or to produce the composed design as 
illustrated and described in the Appendix. A match[name] 
correspondence with merge integration means that in a composed 
design subject, if produced, classes and attributes having the same 
name in different design subjects would appear once, and 
operations having the same name would be aggregated. Since no 
inheritance anomalies result from the merge integration in this 
case, composed generalisation relationships can be constructed 
easily. The composition relationships involving Logger use the 
composition pattern, TotalLogging, introduced in Section 4.1.1, 
which specifies concisely that all operations are to be logged. 

Producing a SEE that excludes any of the features is equally 

simple-we need only exclude the subject supporting that feature 
from all composition relationships. Because each requirement is 
encapsulated in a separate subject, removal of a feature does not 
impact the design of any other feature. An interesting example of 
how this is useful is in the design of the logger. In the original 
logger design, two methods, turnLoggingOn (1 and 
turnLoggingOff ( ), had to be included to support this 
feature. Two alternative approaches to achieving this feature 
optionality are possible with subject-oriented design. One is to 
include or exclude the Logger subject from compositions, 
depending on whether or not logging is required. Another 
alternative is have composition relationships with Logger in both 
cases, but with a select integration specification that provides an 
appropriate runtime selection criterion for the inclusion or 
exclusion of logging functionality dynamically. Both approaches 
have the benefit of not requiring any modifications to the design 
subjects. 

4.1.3 Producing Code from the Design 
We have already described how the subject-oriented design just 
described aligns with requirements. There are two approaches to 
aligning it with code. The first approach is to code each individual 
design subject as a code subject in the subject-oriented 
programming paradigm, and then compose the code subjects with 
a composition rule [OK+961 derived from the composition 
specifications in the design. The second approach is for the 
designers to construct an integrated design, and then write 
standard object-oriented code based on it. In either case, however, 
this two-faced alignment of subject-oriented design supports the 
realisation of one of so&ware design’s primary purposes-to 
bridge the gap between requirements and code. The first approach 
is preferred, however, because it results in code that is directly 
aligned with requirements, and that therefore has the same 
properties of traceability and, especially, evolvability, described 
earlier for subject-oriented designs. It also simplifies the process 
of round-tripping. 

Figure 6: High-Level Subject Composition Relationships 
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4.2 EvoIution Made Easy 
The original SEE design suffered from the problem that what 
appeared to be simple, additive changes ended up being pervasive 
and invasive. Specifically, clients requested the inclusion of 
different foims of optional checking, thus rendering the check 
feature a “mix-and-match” capability.‘ The solutions considered 
either resulted in combinatorial explosion of classes (using a non- 
invasive, subclassing approach), or required invasive changes to 
all of the AST classes (retrofitting design patterns). The subject- 
oriented design avoids all of these problems. Each different kind 
of checking is designed in a separate subject. Effecting the change 
request simply requires the definition of two new subjects: one to 
support the design of a defluse checker, and one to support 
verifying conformance to local naming conventions. Selective use 
of composition relationships permits designers to decide what 
kind(s) of check(s) are to be performed in any particular system 
produced from the design; the use of select integration defers this 
decision to users at run time. 

This example illustrates the general point that subject-oriented 
design facilitates additive, rather than invasive, changes, 
significantly increasing the ease of system evolution. 

5. RELATED WORK 
There is a rapidiy growing realisation that decomposition of 
object-oriented systems by class is necessary, but not sufficient for 
good software engineering. Classes often contain intertwined code 
pertaining to many different concerns. The work on subject- 
oriented programming [H093,OK+96] provided a means of 
separating these concerns at the code level, and is the foundation 
of the work presented in this paper. The primary additional 
contributions of this paper are: more detailed analysis and 
illustration of requirements-design-code alignment problems; the 
application of the approach to design in general and to UML in 
particular; and introduction of the notions of composition patterns 
and guides and select integration. 

Many other approaches have also provided improved separation 
of some kinds of concerns in object-oriented software, including 
aspect-oriented programming [KL+97], role modelling [RW+95, 
DW98, K096], contracts [HH+90, Ho192], propagation patterns 
[Lie96], composition filters [AB+92] and views [SS89, SU96]. 
The relationships of these and others to subject-oriented 
programming have been previously described in 
[H093,QK+96,TO+99]. In the remainder of this section, we 
concentrate on two approaches that have particularly emphasised 
design rather than code: role modelling and contracts. 

Role modelling. The goals of subject-oriented design and those of 
the role modelling work from the OORam software engineering 
method [RW+95] are similar. OORam shows how to apply role 
modelling by describing large systems through a number of 
distinct models. Derived models can be synthesised from base role 
models, as specified by synthesis relations. Synthesis relations can 
be specified both between models and between roles within the 
models, much like our composition relationships. The synthesis 
process is equivalent to the synthesis of subjects defined with a 
merge interaction specification. The subject-oriented design 
model distinguishes itself with its notion of override and select 
integration, and more particularly, with the open-ended semantics 
of subject integration. In addition, the potential provided by 

composition patterns and guides provide for more sophisticated, 
complex possibilities for combination patterns. 

Role modelling with Catalysis [DW98] is based on UML, using 
horizontal and vertical slices to separate a package’s contents 
according to concerns. Composition of artefacts is based on a 
definition of the UML import relationship, called join. The 
designer is instructed to form a new design containing the simple 
union of design elements, with re-naming in the event of 
unintended name clashes. This approach is similar to the meaning 
of a merge interaction specification with property matching by 
name. Catalysis encourages a design strategy in which an initial 
design is gradually modified to produce a completed bne, which is 
a single, fully integrated design. We, instead, encourage a design 
strategy in which pieces (subjects) are identified and designed 
separately, and remain separate in the completed design, though 
related by composition relationships. This enhances the 
traceability of requirements that lead to various artefacts. For 
example, Catalysis describes the rules and decisions a designer 
should (might) follow to form the result of joining two packages, 
while we retain the original packages and, instead, define a way of 
specifying the rules and decisions as annotations on the 
composition relationship(s) relating them. Making a more 
complete specification of the sort we advocate necessitates the 
introduction of a wider and more sophisticated set of composition 
concepts, like matching and integration specifications. Reusable 
design components are supported in Catalysis with template 
frameworks, containing placeholders that may be imported, with 
appropriate substitutions, into model frameworks. This is similar 
to merging reusable design subjects that have no overlapping 
design elements, possibly using composition patterns. 

Roles from Kristensen [K096] extend an object’s intrinsic 
properties and may contain additional state and behaviour. Roles 
may be dynamically attached to objects, and more than one role 
can be bound to an object at a given time. Support for subject 
composition [Kris97], which is based on [HO93], combines class 
hierarchies by re-establishing the hierarchies to be composed as 
role hierarchies of a new intrinsic hierarchy. This maintains a 
clean separation of the different roles of objects, but does not 
address well the specification of concerns that cut across multiple 
hierarchies. 

Other approaches to roles, of which MON [MD941 is an example, 
separate role specification from the intrinsic object specification, 
supporting the changing behaviour of objects in different stages of 
their lifecycles. In general, roles are defined at the object level of 
granularity, not for groups of collaborating objects. 

Contracts: An approach to interaction-oriented design using 
contracts is described in [HH+90, Hol92], where contracts specify 
behavioural compositions and obligations on participants. They 
capture explicitly and abstractly the behavioural dependencies 
amongst co-operating objects. Contract specljication identifies 
the participants in a behavioural composition and their contractual 
obligations. Contract conformance checks classes to ensure that 
they behave appropriately relative to all contracts in which they 
participate. Contract instantiation creates objects at run time that 
interact as described by the contract. Programming language 
constructs are required to use contracts fully. There is a difference 
of emphasis between contracts and subject-oriented design that 
might be thought of as “object composition” (concern with how 
functionality is provided by interacting objects), versus “clans 
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composition” (concern with synthesising full class definitions 
from partial definitions reflecting different points of view). An 
individual contract describes an object composition; combination 
of contracts involves class composition. An individual design 
subject, on the other hand, is a collection of classes, not of 
objects. Other differences between the approaches include the 
fact that a design subject is a (partial) design in a standard 
language (e.g., UML) rather than a new kind of construct, the 
openness of composition relationships versus the specific, though 
more precisely defined, contract combination rules, and the fact 
that composition relationships can specify combination of 
methods and sharing of instance variables across design subjects. 

6. CONCLUSIONS AND FUTURE WORK 
Standard object-oriented designs do not align well with 
requirements. Requirements are typically decomposed by 
function, feature, property or other kind of user-level concern, 
whereas object-oriented designs are always decomposed by class. 
This misalignment results in a host of well-known problems, 
including weak traceability, poor comprehensibility, scattering, 
tangling, coupling, poor evolvability, low reuse, high impact of 
change and reduced concurrency in development. 

In this paper, we proposed and illustrated subject-oriented design 
as a means of achieving alignment between requirements and 
object-oriented designs, and hence alleviating these problems. 
This alignment is possible because requirements criteria can be 
used to decompose subject-oriented designs into subjects, which 
can then be synthesised as specified by composition relationships 
and their reconciliation and integration annotations. Subjects can 
be designed independently, even if they interact or cut across one 
another. 

Support from the subject-oriented programming domain ensures 
that this level of alignment can be followed through to the code 
implementing the system. Propagation of changes from the 
requirements through to the design is therefore greatly simplified. 
This increases the chances of development teams keeping the 
design specitications up-to-date with the code, and alleviates the 
problems associated with misalignment at the code level also. 

Much work remains to be done. The syntax and semantics of 
composition relationships and their reconciliation and integration 
specifications supported within the current model are being 
defined, together with ensuring that the model is an open, 
extensible framework that supports composition patterns and 
guides. As a start, this work will be done in the context of, and 
integrated with, the LJML meta-model [UML99], though over 
time, it would be interesting to pursue its semantics independently 
of any particular design language’s constructs. Support for all 
kinds of UML design models, in addition to the structural and 
interaction models discussed in this paper, must be included in the 
framework. Automation of the link from subject-oriented design 
to subject-oriented programming is also an important area we are 
interested in pursuing. This has a number of compnents, including 
generation of subject code from subject designs, and generation of 
composition rules from composition relationships. Environment 
support for subject-oriented design that includes such automation 
is needed, and it will provide the opportunity for validating the 
approach and gaining experience with its use. 
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APPENDIX: Composed Designs 
As discussed in the body of the paper, tools can be applied to 
reduce composite designs to their fully expanded form. Such a 
transformation, while optional (as noted earlier), can be useful, 
particularly to a developer attempting to understand the full 
semantics of a composed design and all of the ramifications of a 
set of composition relationships. Figure 7 is an example of a fully 
expanded composed design-in this case, for the design shown in 
Figure 6. Not surprisingly, the fully expanded composed design 
shown in Figure 7 is very similar to the original SEE design 
depicted in Figure 1, except that classes are shown in flattened 
form, with all inherited members explicitly copied from 
superclasses to subclasses. The importance and use of flattening in 
composition semantics are discussed in [OK+96]. 

We can illustrate how it is derived with some examples. Consider 
the class UnaryPlusOp. It exists in the result because of its 
presence in the Kernel subject. In its flattened form, it contains 
(among others) the operations check ( ) , getoperand ( ) and 
setoperand (), which are derived by merging the flattened 
forms of UnaryPlusOp in the Kernel subject (which has 
getOperand and setoperand 0 because itinheritsthem 
from UnaryOperator) and UnaryOperator in the Check 
subject(which contains check()). Classes UnaryPlusOp and 
UnaryOperator are merged here, despite their different names, 
because the Check subject does not contain a UnaryPlusOp 
class; in the case of no name match, the default is for a class to be 
composed with the same class as its superclass [OK+96]. In 
addition, composition with the Logger subject has caused the 
sequence of actions performed on operation calls to be updated. 
For example, when the check ( ) operation is invoked on a 
UnaryPlusOp, it causes a sequence of methods to be executed: 
beforeInvoke(), check0 and afterInvoke(), as 
shown. A similar situation is obtained for all other operations, but 
is not shown in the figure. 
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- name : string 
- typeDescriptor : String 
-value : Number 

+ asString : String 
+ getName0 : String 

+ setName(String) 

+ getTypeDescrtptor() : String 

+ check0 
+ display0 

+ evaluate0 

+ getValue() : Number 

+ setValue() : Number 

+ beforelnvoke() 

+ aflerlnvoke() 

._- -v,’ ,i,C I^ dL.. .“..^ . “. _ 

+ asString() : String 

{ beforelnvoke() 9 
check0 
afterlnvoke() } 1 

Expression 

+ asString : String 

+ display0 

+ evaluate0 

+ check0 

+ getTypeDescriptor() 

+ beforelnvoke() 

+ afterInvoke 

Literal 
- value : Number I 1~ 

+ getValue() : Number 
+ setValue(Number) 

+ asString() : String 

+ evaluate0 

I- 
+ display0 

+ check0 
+ getTypeDesuiptor() 

+ beforelnvoke() 
+ afterlnvoke() 

I.; ,‘,Ii 

+ asStting() : String 
+ getTypeDesuiptor() : String 

+ check0 

+ evaluate0 
+ display0 
+ beforelnvoke() 

BinaryOperator Bin 

SOP # operand1 : Expression 

# operand2 : Expression # operand2 : Expression 

+ g&Operand1 0 : Expression + g&Operand1 0 : Expression 

+ setOperandl(Expression) 

+ getOperand : Expression 
+ setOperand2(Expression) 

+ asSbing() : String 

+ getTypeDescriptor() : String 

+ check0 
+ evaluate0 
+ display0 

+ atsptayt) 

+ evaluatag 

+ getValue() : Number 

+ satValue0 : Number 

+ beforelnvoke() 

+ afterlnvoke() 

Figure 7: Composed SEE Design, Fully Expanded 
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