
Subject-Oriented Design: Towards Improved Alignment of
Requirements, Design and Code

SiobhAn Clarke-t, William Harrison, Harold Ossher, Peri Tarr

tSchool of Computer Applications,
Dublin City University,

Dublin 9,
Republic of Ireland.
+353-l -8388 702

sclarke@compapp.dcu.ie

ABSTRACT

In practice, object-oriented design models have been less useful
throughout the lifetime of software systems than they should be.
Design models are often large and monolithic, and the structure of
the designs is generally quite different from that of requirements.
As a result, developers tend to discard the design, especially as the
system evolves, since it is too difficult to keep its relationship to
requirements and code accurate, especially when both are
changing. This paper presents a different approach to designing
systems, based on flexible decomposition and composition, that
closely aligns designs with both requirements specifications and
with code. We illustrate how this approach permits the benefits of
designs to be maintained throughout a system’s lifetime.

Keywords
Analysis and design methods, so&ware engineering practices.

1. INTRODUCTION
Software design is an important activity within the software
lifecycle and its benefits are well documented (e.g., [Bch94,
CAB93, CD94, Jac94, MS91, RL+90, SM89]). They include
early assessment of the technical feasibility, correctness and
completeness of requirements; management of complexity and
enhanced comprehension; greater opportunities for reuse; and
improved evolvability. These benefits are seldom realised in
practice in large-scale software systems, however. In our
experience, many developers either do not create designs at all,
create very minimal, informal design “sketches” that are discarded
once system development is underway, or fail to keep their
designs up-to-date as requirements and code evolve. At best, this
means that developers cannot obtain the benefits of design
through the maintenance and evolution phases, which constitute
the majority of a software system’s lifetime. The popularity of
UML [BR98] might lead to more, and more widely understood,

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial advant

-age and that copies bear this notice and the full citation on the first page.

To copy otherwise, to republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee.

OOPSLA ‘99 1 l/99 Denver, CO, USA

0 1999 ACM l-581 13-23%7/99/0010...$5.00

IBM T.J. Watson Research Center,
P.O. Box 704,

Yorktown Heights,
NY 10598.

+I-914-784-7278
{harrisn, ossher, tarr}@watson.ibm.com

designs being created during the design phase, but creating
designs during the initial design phase does not address the issue
of keeping designs up-to-date later in the software lifecycle.

We believe that three primary problems underlie the inability or
disinclination of developers to use object-oriented designs
throughout the software lifecycle. First, design models are often
large and monolithic. This reduces comprehension,
maintainability, and reusability. Further, monolithic designs can
inhibit many useful forms of concurrency during design processes.
The abstraction units in object-oriented designs-interfaces,
classes, and packages-are centralised notions; only one designer
at a time can work on a given unit. Centralisation means that
designers are forced to commit early to the structure and contents
of shared design units and concepts, which may overly constrain
the set of possible designs too early and may consequently lead to
significant impact of change.

Second, we believe that designs are too difftcult to reuse.
Designs, like code, tend to bundle too many pieces together.
Complete classes designed for a particular system are typically too
specialised to be of general use. If they really are more generally
useful, they often include much more functionality than any given
client would use, which decreases comprehensibility and,
potentially, usability. Further, effective reuse requires powerful
mechanisms for customisation and adaptation. The standard
object-oriented mechanisms-subclassing, polymorphism,
delegation and design patterns-are usetil in this context, but not
sufficient, particularly because they require a considerable amount
of preplanning. Developers may therefore be forced to make
invasive, rather than additive, changes to adapt design units,
which compromises reuse and future evolution.

Finally, and perhaps most importantly, there is significant
structural misalignment between requirements and code, with
design caught in the middle. The units of abstraction and
decomposition in requirements tend to relate to features and
capabilities and other major concepts in the end user domain.
New or changed requirements, which cause system evolution, also
tend to be structured this way. Object-oriented code, however,
focuses on interfaces, classes, and methods. These dramatically
different structures mean that traceability between requirements
and code is poor. Moreover, scattering and tangling may occur: a
single requirement is implemented by code in many classes
(scattering), and a single class contributes towards implementing
many requirements (tangling). This leads to a host of problems,

325

including impaired comprehension, inability to determine how a
change in one artefact affects others, increased complexity of
addition, removal, or modification of requirements, and
potentially high impact of change-even a relatively small, well-
contained change to requirements can affect a large part of the
design.

The use of modem object-oriented design languages, including
UML, produces designs that align well with object-oriented code,
and for good reason. As a result, however, these designs align
poorly with requirements, introducing traceability and tangling
problems. When a requirement is added or changed, it typically
leads to widespread changes across both design models and code.
Developers can be forgiven for not incurring the cost of dealing
with such changes twicmnce in design and once in code--and
changing only the code. As long as requirements, design, and
code are misaligned, we believe these problems are fundamental.

In this paper, we discuss an approach to design that addresses this
misalignment problem and, in so doing addresses the other
problems noted earlier that have impeded the successful use of
designs. The approach is based on the flexible decomposition and
composition provided by subject-oriented programming [H093,
OK+96]. This approach permits standard design models to be
decomposed into smaller, potentially overlapping, units, called
design subjects. Each design subject encapsulates a single,
coherent piece of hmctionality (e.g., one or more features or
components, ohen cutting across multiple classes), designed from
its own perspective and modelled using standard, object-oriented
design constructs. Unlike the units of modularity present in
object-oriented design languages, design subjects may be chosen
so as to align with the structure of the requirements. Design
subjects may then be composed together in different ways to
produce complete designs or larger-scale design hagments.
Concept overlaps and mismatches between design subjects are
resolved during the composition process. The composition
mechanism facilitates a range of additional capabilities, including
the ability to mix-and-match features, and to specie and enforce
expected interactions among classes.

Subject-oriented programming allows object-oriented code to be
decomposed into subjects in similar fashion. The code subjects
are then composed to produce the entire system. Each design
subject can therefore be refined separately to a code subject, and
the details of the code composition can be derived from those of
the design composition. There is excellent traceability at this
level, because code and design subjects correspond directly, and
within a single subject, standard object-oriented design or code
are used. This traceability facilitates both evolution and “round-
tripping”: projecting changes in the design into the code and
requirements or, for that matter, reflecting the changes made in
the code back into the design and requirements.

When a requirement is added or changed, a new design subject
can be created to address it. The new design subject can then be
composed with the existing design, thus enhancing or replacing
parts of the existing design. Then the design subject can be
refined to a code subject, which is similarly composed with the
existing code. The changes are localised, so there is no tangling,
and traceability is preserved. In addition to thus dealing with the
alignment problem, the decomposition into subjects reduces the
monolithic nature of the design and allows for concurrent
development, while subject-oriented composition provides a

powerful mechanism for integration, evolution, customisation
adaptation and improved reuse.

We describe our approach in the context of UML, though it can
also be applied to other object-oriented design languages. We
introduce, informally, minimal extensions to UML to allow for
decomposition into subjects and specification of the relationships
between them. Any existing I&IL design can be used unchanged
as a single subject, or can be decomposed into multiple subjects if
desired. Subject-oriented design, like subject-oriented
programming, can therefore be adopted gradually.

The rest of this paper is organised as follows. We begin, in
Section 2, by introducing an example that motivates the need for
subject-like composition and decomposition. In Section 3, we
describe our model of subject-oriented design. Then, in Section
4, we apply the model to the example from Section 2 and
demonstrate how the division of the original design into subjects,
based on the requirements, addresses many of the issues that are
raised in Section 2. Section 5 describes related work. Finally,
Section 6 presents some conclusions and future work.

2. MOTIVATION
‘To illustrate some of the pervasive and serious problems that help
motivate our work we present a running example (partially
introduced in [TO+99]) involving the construction and evolution
of a simple software engineering environment (SEE) for programs
consisting of expressions. We assume a simplified software
development process, consisting of informal requirements
specification in natural language, design in UML, and
implementation in Java.

2.1 The Initial Software System
We begin initially with the following requirements specification
for the SEE:

The desired SEE supports the specification of expression
programs. It contains a set of tools that share a common
representation of expressions. The initial tool set should include
an evaluation capability, which determines the result of
evaluating expressions; a disphy capability, which depicts
expressions textually; and a check capability, which optionally
determines whether expressions are syntactically and
semantically correct. The SEE should permit optional logging
of operations.

This requirements specification identifies several concerns that
must be realised in the design: the SEE, expressions, the
evaluation tool, display tool, check tool, and a logging utility that
can be included or excluded horn the environment.

Based on these requirements, we produce a Uh4L design for the
system, shown in Figure 1. The design represents expressions as
abstract syntax trees (ASTs) and defines a class for each type of
AST node, where each class contains accessor and modifier
methods, plus methods evaluateo, display0 and
check () , which realise the required tools in a standard, object-
oriented manner’. Logging is modelled as a separate, singleton

i Clearly, countless alternative designs are also possible. We
chose to use a simple one here, and we will describe, later in
this section, some general kinds of problems that other
approaches - notably, those that use design patterns - produce.

326

class (Logger); the intent is for each AST operation to invoke
Logger. beforeInvoke () prior to performed its action, then
to invoke Logger. afterInvoke () just before it terminates.
The Logger permits applications to turn logging on and off with
its turnLoggingOn() and turr&oggingOff () methods.
When logging is off, Logger's beforeInvoke and
afterInvoke () methods are essentially no-ops. This permits
logging to be optional, as required.

The design demonstrates some important features. The mapping
from design to code is straightforward and quite direct-every
concern (i.e., class) in the UML class diagram has a direct
correspondent in the code. This is not unexpected, since both are
object-oriented, and much of the reason for the trend toward
object-oriented design is that it permits a direct mapping between
design and object-oriented code.

The mapping between requirements and design, on the other
hand, is extremely complex. Note, for example, the following
problems:

. The SEE tools (evaluation, checking, and display), which are
described as encapsulated concerns in the requirements, are
not encapsulated in the design. In fact, these capabilities are
scattered across the AST classes-each class contains a
method that implements these capabilities for its own
instances. Scattering is negative from an evolutionary
perspective: the impact of a change to a single requirement,
well localised at the requirements level, can nonetheless be
extremely high, because that change necessitates multiple
changes across a class hierarchy.

. The logging capability is realised as a first-class concern in
both the requirements and the design. Nonetheless, the
protocol for logging requires co-operation from each method
in each AST class, to appropriately invoke
Logger .beforeInvoke () and Logger.afterInvoke().

This is tangling-satisfying a given requirement necessitates
interleaving design details that address the requirement with
details that address other requirements. Tangling is a serious
detriment to software comprehension, reuse, and evolution,
because it is impossible to deal with the design details
pertaining to one requirement without constantly
encountering and having to worry about intertwined details
pertaining to other requirements. For example, it is dificult
both to determine how a change to the logging requirement
will impact the design, and to effect such a change additively,
rather than invasively

Scattering and tangling are also devastating from the point of view
of traceability: the ability to determine readily how a piece of one
software artefact (e.g., requirement, design, code) affects others.
Traceability makes it possible to look at a change to a
requirement, and to tind those parts of the design and code details
that are affected by the change. Traceability is essential to keeping
requirement and design documents up-to-date with respect to
evolving code. Without it, these documents are likely to become
obsolete and useless, since, when it is difficult to determine how a
proposed change to one will impact the other, changes may not be
propagated across them consistently, or at all.

These problems, and others present in this design, occur because

the concerns identified in the requirements, which are based on
features of the SEE, are different from those used to modularise
the design, which are the objects and cfasses that implement the
SEE. Thus, the requirements concerns generally are not, and
cannot readily be, encapsulated in the design. This is different
from the relationship between design and code, where the
respective sets of concerns are very similar. In the process of
creating designs from requirements, UML and other object-
oriented design formalisms and languages necessitate a transition
from feature (or other) concerns to object concerns.

+ asString() : string
+ getName : String
+ setName(String)
+ getTypeDescriptor() : String

Logger
- loggingOn : boolean
- instance : Loacrer

+ lnstance~
+ beforelnvoke()
+ aftarlnvoke()
+ tumLogginOn()
+ tumLoggingOff()

+ Iw9ingW
- Sm3()
- lOad + display()

+ evaluate0

Figure 1: UML Design for SEE

327

This transition essentially results in the discarding of the
encapsulation of those concerns identified during requirements
specification in favour of concerns mandated by the design and
coding paradigms. In achieving a close tie to code, object-oriented
design loses one of its two “faces”: the one that connects it with
requirements. Scattering and tangling are, in fact, symptomatic of
this mismatch. Some earher design paradigms, notably those that
permitted functional decomposition, exhibited the opposite
problem: they facilitated the production of designs that aligned
well with requirements, but that did not align well with object-
oriented code.

This point is particularly important. In general, most design
paradigms are not suflciently power&l to permit designs to
wear both faces -they allow the design to align with either the
requirements or the code, but not both. Thus, designs fail to
achieve one of their primary purposes: to promote truceabilify by
bridging the gap between requirements and code. Traceability is
an important prerequisite to evolution, as is encapsulation, which
aids in limiting the impact of any given change. Note, for
example, that it is difficult both to determine how a change to the
logging requirement will impact the design, and to effect such a
change additively, rather than invasively. Limited traceability and
encapsulation, as is present in the SEE design, result in reduced
evolvability. Consequently, they also result in the eventual
obsolescence of requirements, design or both, since changes may
not be propagated across them consistently if it is difficult to
determine how a proposed change to one will impact the other.

The misalignment of requirements and design also has
ramifications for the design process itself. For example, designers
are limited in their ability to work concurrently on the design
(and, in fact, on the code), to a much greater degree than when
producing a requirements specification. Specifically, it would be
desirable to have a compiler expert work on the AST
representation itself, a user interface expert work on the design of
the display feature, etc. The scattering and tangling of these
features results, however, in interdependencies across these
features and across the classes that hampers concurrent design and
implementation. Classes are inherently centralised notions, so it
is also often fairly difficult to permit concurrent development of
the same classes. Further, while the logging capability can be
designed independently of the AST classes, all of the other

developers must be aware of its presence and must design with it
in mind. For the same reasons, all of the SEE tool designers must
wait for the “core” AST to be defined before they can work
effectively even if designers could work in parallel on features.
This opens the door to a variety of errors, and it can result in
delays while designers wait for one another.

2.2 An Evolving Headache
After using the SEE for some time, the clients request the
inclusion of different forms of optional checking; initially, they
ask for a defluse checker and a style checker that verifies
conformance to local naming conventions. The check feature thus
becomes a “mix-and-match” capability---clients can choose any
combination of syntax, deWuse, and/or style checking to be run on
their expression programs when they invoke the check tool.

This change in requirements is additive-it need not affect any
other requirement. At the design level, however, the change is not
as straightforward, since the check feature is not encapsulated as a
concern in the design. In fact, this change necessarily affects all
AST classes in the design. One possible approach to designing
the new forms of checking would be to create new subclasses of
the AST classes, where a given subclass overrides the original
(syntax) check () method with one intended to provide defYuse
or style checking for a particular kind of AST class. Clearly,
while this approach is non-invasive, it is completely impractical,
as it results in combinatorial explosion of classes with each new
feature. A better approach is to use the Visitor design pattern
[GH+94] to represent checking, and to provide different visitors
that correspond to the different kinds of checking.

The visitor approach, which is depicted in Figure 2 facilitates
‘Lmix-and-match” without combinatorial explosion. It requires,
however, an invasive change to all of the AST classes, to replace
the check0 methods with accept(Visitor) methods.The
use of visitors also introduces a second complication. The logging
feature requires the visitors to invoke
Logger.beforeInvoke() andLogger.afterInvokeO
appropriately, further increasing the scattering and tangling
problems associated with this feature.

I Visitor I

+ visiiVar(VariableExpression)
+ visilNum(NumberExprassion) I
+ visitUnar~Plus(Unar~PlusOpj

+ visitUnaryMinus(UnaryMinusOp)
1 + viritPIus(PIu;pa;oi) t

+ visitMinus(MinusOperator)

i

1 Expression
I

+ visitVar(VariabteExpression)
+ visitNum(NumberExpression)

+ visitVar(VariableExpression)

+ visitNum(NumberExpression)

+ visitNum(NumberExpression)

+ visitUnaryMinus(UnaryMinusOp)

Figure 2: Using Visitor to Separate Check Functions

328

This evolutionary change, which appeared to be straightforward
and additive from the clients’ perspective and from its impact on
the requirements, demonstrates, in a microcosm, the spectrum of
problems resulting from the misalignment problem. Scattering and
tangling lead to weak traceability and poor encapsulation of
requirements-level concerns within the design, and subsequently,
the code. They also make the propagation of requirements
changes to design and code very difficult and invasive. It is even
difficult to determine which design elements are affected by a
given requirements change. The level of effort needed to
propagate changes from requirements to design is much greater
than the effort to propagate the changes from design to code,
precisely because of the misalignment.

2.3 When the Solution is the Problem...
Countless other design approaches are possible for the SEE, and
some of them address some of the issues that have been raised.
For example, the judicious application of design patterns might
help solve some of these problems. While it is impossible to
elaborate the possible design approaches (with or without design
patterns) exhaustively, we explore briefly some of the design
pattern alternatives to illustrate why neither they, nor other
approaches, address the whole problem.

Visitor: The initial use of the visitor pattern to model checking
would have facilitated greatly the addition of the new checkers.
Note that this is the case precisely because visitors provide
encapsulation of features, which results in better alignment of
design with requirements. While visitors promote some forms of
evolution, they hinder other forms. For example, adding a new
type of expression, like assignment, is simple in the original
design shown in Figure 1, but it would necessitate invasive
changes to all visitors [GH+94].

Observer with Factorv: To reduce the coupling between the
logger and the AST classes, we might have chosen to accomplish
logging via observers. Since observer operates at the instance
level, rather than the class level, it would be best to use a factory
to create objects, since the factory can decide transparently
whether or not to register the logger with any newly created
objects. This approach would achieve the looser coupling.
Observer is, however, an extremely heavyweight solution that
incurs high overhead, in both complexity and performance.
Further, it does not improve the scattering problem, as AST
methods must notify any observers, thereby scattering the
implementation of logging across all the AST classes. Used in
conjunction with visitors for the AST tools, the design for the
SEE becomes significantly larger and more complex, with many
more interrelationships among the classes to be represented and
enforced.

Decorator with Factory: As an alternative to observer, we could
choose to represent logging using the decorator pattern, where
decorators perform logging (if desired). Decorator, like observer,
helps to reduce coupling, and, unlike observer, it reduces tangling
by segregating logger notification code into separate, decorator
objects. Again, since decorators operate on a per-instance basis,
the use of a factory would be prudent. Unfortunately, the
decorator solution is significantly more problematic than the
observer solution, because of the object schizophrenia problem.
That is, to ensure that logging occurs consistently, it is necessary
to ensure that all messages to all objects go through the decorator,
not directly to the object itself. Once a method on an object is

invoked, however, that method may invoke others, which, in turn,
must go through the decorator. This means that the object must
know about its decorator(s), which introduces a new form of
coupling and tangling (i.e., each class must include code to
implement the interaction with the decorator).

Summarv: Design patterns and other design approaches can help
to alleviate some, but not all, of the problems we have identified.
Unfortunately, in ameliorating some problems, they introduce
other problems or restrictions [GH+94, Vli98]. The need to
preplan for change-which we see in the use of all design
pat-terns, since designs and code must be pre-enabled with the
pattern to avoid subsequent invasive changes to incorporate
them-is especially problematic. It is impossible to anticipate
every kind of change that might be required; even if it were
possible, flexibility always comes at a cost in terms of conceptual
complexity and/or performance overhead, as the visitor, observer,
and decorator patterns demonstrate. Enabling for some forms of
change inhibits other kinds of chang-for example, introducing
visitors will promote the future addition of new types of checkers,
but it greatly complicates the addition of new types of
expressions.

Thus, while design patterns and other design approaches are very
useful, they cannot address the issues we have raised-their use
results in the exchange of one set of problems for another. In
some cases, the new set of problems is acceptable, but in others, it
is not. As long as the misalignment problem exists, its
consequences--weak traceability, low comprehensibility,
scattering, tangling, coupling, poor evolvability (including high
impact of change and invasive change), reduced concurrency in
development, etc.-will be present.

3, MODEL
Two general approaches exist to addressing the misalignment of
requirements, design, and code. One is to impose the same
development paradigm on all software artefacts. This is, in fact,
precisely the approach that has been used to provide closer
alignment between designs and code--both are written in the
object-oriented paradigm. This approach is not appropriate when
applied to requirements specifications, however, as requirements
deal with concepts in the user’s domain, while designs and code
deal with concepts in theprogramming domain.

The other approach to addressing the misalignment problem is to
provide additional means of further decomposing artefacts written
in one paradigm so that they can align with those written in
another. This approach suggests, for example, that it must be
possible to reify features and other kinds of concerns [TO+991
within the object-oriented paradigm to permit encapsulation of
feature concerns, as specified in the requirements, within designs
and code. We have chosen to adopt this approach, in recognition
of the fact that different paradigms are appropriate under different
circumstances, so that homogeneity, while appealing, is likely to
be inadequate. Our approach, which we call subject-oriented
design, is an outgrowth of the work on subject-oriented
programming, which addressed misalignment and related
problems at the code level [H093, OK+96]. Like subject-oriented
programming, subject-oriented design supports decomposition of
object-oriented software into modules, called subjects, that cut
across classes, and integration of subjects to form complete
designs.

329

A subject-oriented design is an object-oriented design model that
is divided into design subjects. Each design subject separately
describes that part of a system or component that pertains to a
particular concern @.I%]. Composition relationships describe
how these design subjects relate to one another, and hence, how
they can be understood together as a complete design.

3.1 Design Subjects
Each design subject is an object-oriented design model that
encapsulates the design of just that part of a system that pertains
to a particular concern. In the context of alignment of
requirements, design and code, a design subject might encapsulate
those design elements whose purpose is to satisfy a specific
requirement, or perhaps a coherent set of related requirements.

For example, the requirements specification for the expression
SEE described in Section 2 identifies a requirement for a
“display” feature. In the UML class diagram shown in Figure 1,
operations to support the display feature appear in all of the
expression AST nodes; thus, the display feature cuts across many
UML classes, reflecting the misalignment problem. To permit
better alignment of design with requirements, it is desirable to
encapsulate the display operations into a single design unit.

Conceptually, a design subject can be written in any design
language, but our focus in this paper is on UML. A UML design
subject can contain any valid UML diagrams, but we deal only
with class and interaction diagrams in this paper. Application of
this approach to other design languages and to the other UML
diagrams remain interesting issues for future research. The kinds
of requirements whose designs can he described in design subjects
are many and varied. They include units of tinctionality, features
[TF+98, GF+98], so-called cross-cutting requirements, like
persistence or distribution, that affect multiple units of
functionality, and variants (requirements that identify particular
selections in a space of choices, such as of target system or level
of capability). Design subjects can also encapsulate concerns of
other kinds, such as units of change, or subdomains [T0+99].

Design subjects thus provide an additional means of decomposing
systems, complementing those provided by the other Uh4L
diagrams. They permit the encapsulation of all, and only, those
design elements that pertain to a given concern. Whereas the
design elements in a conventional Uh4L design model must be
defined completely with respect to the entire system, the design
elements in a design subject need only contain those details that
are relevant to the concern it encapsulates.

It is possible---indeed, expected-that some of the same concepts
may be relevant to multiple design subjects. For example, both
the “display” and “check” features require knowledge about how
to traverse expression ASTs; thus, if they were each modelled as a
separate design subject, they would both include their own views
of the child attributes of AST classes, These views may, but need
not, be identical; one might, for example, model the links to each
child as a separate structural relationship, while another might
model the links to all children as a single one-to-many
relationship. Design subjects may therefore overlap, and they may
include some differences in their views of overlapping parts. This
is a strength of design subjects-they permit each of the different
parts of a system under design to model the same concepts in
whatever way is most appropriate to that subject’s view and
purpose. Differences in views can be identified and resolved,

using composition relationships (discussed in the next section), as
part of the design process. With UML, design elements that
support the same concept, but have different views that necessitate
different specifications, must be specified separately. However,
since there is no means of synthesising a complete design from
incomplete pieces in UML, such elements will remain separate
throughout the design cycle.

The criteria for choosing a set of design subjects into which to
decompose a system are much the same as for any design
decomposition activity. The decomposition of a design into
subjects is generally based on attempts to satisfy different system
and sofhvare engineering goals and requirements, including
reusability, evolvability, traceability, comprehensibility, etc. We
do not prescribe any particular selection criteria or design
process-many are appropriate. In this paper, we emphasise
design subjects that match requirements, thus addressing the
misalignment problem. We also note that design subjects are
particularly well suited to languages that produce views of objects
that overlap and “cut across” one another. Two exemplars are
role modelling [RW+95] and use case analysis [BR98].

Design subjects are represented as UML packages with design
elements contained within them, either directly, or by reference to
other parts of the overall design.

3.2 Composition Specification
As noted above, design subjects support the decomposition of
systems into potentially overlapping design models. Overlap
occurs whenever two design subjects describe their own views of
the same concepts. For example, the subjects encapsulating the
“display” and “check” features both model views of Expressions;
one describes Expressions to have a display () operation, the
other a check () operation, but they share the concept
“Expression.” The ability to describe overlapping design models
provides considerable decomposition and encapsulation power. It
also means, however, that understanding the system as a whole
requires the identification of corresponding elements from
different design subjects, and understanding of how these
elements tit together to describe the shared concept fully.

We therefore enhance UML to support composition specification.
We introduce a new kind of relationship called a composition
relationship, which identifies corresponding design elements in
different subjects, and may be annotated with optional
reconciliation and integration specifications which describe how
the corresponding elements are to be understood as a whole.
Many of the details derive from the composition rules used for
specifying composition of code subjects [OK+96].

3.2.1 Composition Relationships
Composition relationships between two or more design elements
in different subjects denote the fact that those design elements
correspond, in the sense that they represent views of a single
concept, and may be composed into a single entity. Composition
relationships can be described between design elements of any
kind (e.g., classes, operations, design models, etc.), but all
elements in a given relationship must be of the same kind. This

new kind of relationship that we introduce into UML coexists
with all other UML relationships.

For example, if we rea.lise the display and checking requirements
as design subjects, both subjects would contain classes that model
the concept “Expression” in different ways. These classes

330

therefore correspond, and this correspondence is specified by
means of a composition relationship.

Where there is considerable overlap between design subjects,
specifying all appropriate correspondences between design
elements individually would be a great deal of work, and would
lead to highly cluttered designs. Instead, we exploit uniformity,
noting that within a particular context, one can often characterise
a multitude of correspondences succinctly by means of a matching
specification, which is a rule for computing correspondences. For
example, a common strategy for computing correspondences is
based on matching the names of design elements, as in the case of
the display and checking subjects. Matching specifications, such
as matchrname], are attached to higher-level, explicit
correspondence specifications, and apply to all design elements
within the corresponding elements.

For example, all classes, operations and instance variables in the
SEE design subjects are to correspond by name. This can be
specified by means of a match[name] specification attached to a
composition relationship at the highest level: between the design
subjects themselves. These general matching specifications can be
overridden as needed to describe exceptions to the general rule
[OK+96].

Composition relationships are shown in UML diagrams as fat
composition arrows; the positioning of the arrowheads depends
on the kind of integration involved (described below). Matching
specifications are shown as annotations on composition arrows.
Correspondences implied by matching specifications are not
shown as separate arrow~.~

3.2.2 Reconciliation SpeciJcations
Corresponding design elements in different subjects may represent
either the same or different views of a concept. When the views
are the same, composition relationships identifying the
corresponding elements are sufficient. When the views are
different, however, it is also necessary to describe how the
differences among the corresponding elements are to be
reconciled-that is, how the different views relate to one another.
This is done by means of reconciliation spedjkations attached to
composition relationships. In UML diagrams, they are shown as
annotations attached to composition arrows.

The SEE example, as presented, does not require reconciliation
specifications. As we shall see, this is common in cases where
design subjects are produced together as part of an integrated
design effort. Suppose, however, that users had imposed an
additional requirement-to support textual display in addition to
graphical display. In the overall design, that feature would be
specified a.~ a subject separate from the graphical display subject.
In the textual display subject, the expression class would be likely
to include an operation display (Stream s) . In defining the
correspondence, this textual display operation would
correspond to the graphical display subject’s display ()
operation. This would result in a signature mismatch between the
two displays that would have to be reconciled. The
reconciliation could be accomplished, for example, by specifying
a default stream for the textual display,

’ It might, of course, be desirable to be able to view the full set of
correspondences. Appropriate tool support could provide this
capability readily.

3.2.3 Integration Spec#cations
Composition relationships also specify how the collection of
corresponding design elements is to be formed from its elements.
In the example above, for instance, where the two “display”
operations correspond, the designer may need to specify whether
one of the specifications completely defines the desired result or if
both are to be satisfied. If both are to be satisfied, the designer
must indicate in what order the two specifications should be
satisfied and, in the case of a value-returning function, how a
single return value should be computed. Integration specifications
may also be part of a composition relationship to speci& these
details.

Although integration specifications specify how to synthesise a
single, composed design element from a collection of
corresponding elements, the synthesis need not be carried out as
part of the design process. Synthesis of the composed design is
optional; it might be desirable, for example, to permit
completeness checking or various forms of analysis. In this case,
the designs can be composed as guided by the composition
relationships, in much the same way as code is composed in
subject-oriented programming [OK+96]. By focusing on the issue
of the formation of the result from the separate subjects’
specifications, the integration specifications facilitate an
understanding of a complete design. The fact that it allows the
description of the composed design to rise above the details of
each design also simplifies the forward projection of
requirements’ changes into changes in the design.

Three common types of integration specifications are called:
merge, override, and select.

“Meree” intemation: Merge integration is, perhaps, the most
commonly useful form. When subjects represent different
optional features of a system, or when different teams have
concurrently designed various subjects, the merge integration
specification is generally appropriate. For the SEE example,
merging the “display” and “check” subjects, each of which
contain definitions for the Expression class, yields a single
specification for Expression that contains both the display ()
and check () operations. Where there is no overlap of concept
definitions between subjects, the merge integration denotes a
simple union of all the design elements in the subjects being
merged. Where overlap exists, and composition relationships
define correspondences (either explicitly, or implicitly via
matching), the meaning of a merge integration for different kinds
of corresponding design elements varies in ways appropriate to
the kind of element.

Looking at some design language constructs Corn UML, for
classzjiers and attributes, merge indicates that the composed
design contains a single element whose elements are obtained, by
aggregation or identification, from the subjects connected by the
composition relationship. Merging corresponding operations
indicates that the specification of the (unified) operation results
from the aggregation of the specifications of those operations in
all of the corresponding subjects. This aggregation has consequent
implications on other diagrams in the design, most of which are
straightforward. For example, in interaction diagrams, a call to an
aggregated operation implies a call to each of the operations in the
aggregate. Another example is illustrated by the treatment of
dependency and association relationships. Eiements in the
composed subject are dependent (dependency relationship), or are

331

associated (association relationship) if they are
dependent/associated within any of the subjects being composed.
The construction and display of a synthesised composite design is
especially useful for illustrating such deeper consequences of a
composition relationship.

At the opposite extreme, automatic synthesis of a single set of
generalisation (inheritance) relationships for a composite design
is both dzjkxdt and dubious, even though the manual definition of
the merged inheritance relationships can be both meaningful and
useful. A simple merge of hierarchies that have classes in common
has the potential of resulting in inheritance anomalies (e.g.,
cycles), making it dzy$cult. Within any one subject,
generalisations can be defined to indicate that elements inherit
properties from the other elements. But, for purposes of
composition, each element can be taken as having a complete
meaning to itself, regardless of whence that meaning cam?. This
means that an element resulting from the composition is
completely specified without needing generalisation relationships,
making them dubious. The difficulty with anomalies is, in fact, a
symptom of the dubiousness of an automatic synthesis. For
example, an element and one of its specialisations within one
subject might correspond to two unrelated elements in another
subject. In a case like this, it cannot be determined automatically
what generalisation relationship, if any, is appropriate in the
composed subject. This problem with inheritance relationships
also occurs in other generalisation relationships.

In most cases, however, it is possible to re-synthesise
generalisation relationships in the composed subject from those in
the subjects being composed. This can be accomplished with
appropriate tooling whose details, in the case of inheritance
relationships, may be target-language specific. Such re-
synthesised relationships can be used as an aid to the composition
designer in understanding the composed subject.

Merge integration is denoted by a multi-headed composition
arrow, with the design elements to be merged at the ends of the
arrow.

“Override” integration: A subject can be created which, either
by serendipity or with knowledge of some other subject, is
intended to extend, customise or in some way change the
behaviour specified by other subjects. In such cases, the system
designer specifies that the new subject’s design elements override
those to which they correspond in the other subject in an
integration process. The composition relationships indicate which
corresponding design elements are to be replaced. In the case of
override integration, reconciliation specifications are not required
or used. For ClassiJiers, attributes and relationships, the
specifications of design elements in the subject to be updated are
nullified in favour of the corresponding specifications of the
elements in the overriding subject. For operations, the
specification of an operation comes solely from the specification
of the overriding operation. As with merge integration, override
integration may have implied consequences on other Uh4L
diagrams. For example, any interaction diagrams containing

3 In subject-oriented programming, the process of making all
inherited information explicit is called flattening. Definitions
are copied down from where they are defined into each class
that inherits them [OK+96]. Flattening is also used to define the
meaning of specialised elements in subject-oriented design.

operations that are replaced are effectively changed by using the
full interaction definition of the operation in the replacing subject
instead of the full interaction definition of the operation to be
replaced. Complete interaction diagrams may themselves be
replaced.

The discussion of the usefulness of displaying synthesised
interaction diagrams and of the issues surrounding the
generalisation relationship is the same for override as they are for
merge.

Override integration is denoted by a one-way composition arrow,
with the arrowhead at the end of the element to be overridden.

“Select* integration: Sometimes corresponding operations
describe different ways of performing some functionality. For
example, the SEE has two different style checkers, each of whose
“check” operations performs the checking in a different way.
Merge specifies that, whenever a user requests checking, both
kinds of checks are to be performed. Override integration chooses
one, at design time. A third alternative is to specify in the design
some criterion that can be used to select the appropriate one to
execute at run time, whenever an actual “check” call is made. The
criterion, in this case, might be the value of an environment or
preference variable set by the user to indicate which kind of style
checking should be used. In general, it might be the type or value
of anything accessible to the called operations, such as parameters
and “global” variables.

Select integration thus provides multiple dispatch, even though
UML itself does not model multiple dispatch. It is appropriate in
situations where:

. Different subjects describe different behavioural variants.

. All variants should be available at run time.

. Only one (or a subset) of the variants should be executed at
run time.

. The choice of which to execute is made upon each call, based
on some runtime criterion.

If all variants should be executed, merge integration should be
used; if one variant is to be chosen at design time and the others
excluded entirely, override integration should be used.

Select integration is denoted by a multi-headed composition
arrow, with the design elements to be included in the composition
at the ends of the arrow. Annotations must be attached to the
branches of the arrow to specify the selection criteria.

3.3 An Open-ended Set of Specifications
There are many ways to specify correspondence, reconciliation
and integration, of which we have described only a few, and
developed only a few more. Our goal is to describe a useM basic
set, but that set cannot be complete. An open-ended approach is
therefore needed that allows sophisticated users to define their
own specifications. Tools that support composition of
implementations or the visualisation of synthesised equivalents of
a composite design can support an open-ended set, a tiamework
with pluggable pieces for implementing different approaches, as
in the subject-oriented programming implementation [OK+96].
The extension of Uh4L to include open-ended concepts (whether
composition specifications or simply types of relationships) is
beyond the scope of this paper.

332

3.4 Composition Patterns and Guides
In some contexts, composition relationships are quite complex,
potentially involving multiple correspondences among multiple
subjects and their constituent elements, with reconciliation
specifications and detailed integration specifications attached to
them. Common patterns of such composition relationships might
emerge, or be expected, when the same or similar subjects are
used in different contexts. It is convenient to identify, name and
define such composition patterns. Portions that might vary in
different contexts can be separated out as parameters.
Relationship patterns can thus be thought of as lambda
abstractions over sets of composition relationships. They can be
instantiated whenever needed by naming them and supplying the
parameters. This provides an important level of abstraction when
specifying composition relationships; comprehensibility is
improved and duplication of detail is avoided, thereby reducing
the probability of errors.

A collection of design subjects might represent the design of not
just a single system, but of a family of related systems. In this
case, some design subjects might be alternatives, whereas others
are written to collaborate. In addition to composition patterns
specifying useful compositions, it might also be valuable to
specify composition guides, identifying properties of composition
relationships that should normally hold for any composition. For
example, a composition guide might specify that only one of a set
of alternative design subjects should normally be included in a
composition.

The author of a subject, or a coherent set of subjects, often has
some common forms of use and some guides in mind.
Composition patterns and guides provide a means for these to be
expressed for the benefit of future users of the subject(s), and
might be supplied by the authors along with the subjects
themselves. Users then have a number of choices. They can use
one or more of the patterns exactly as specified, by instantiating
them. They can also, if desired, specify additional composition
relationships that enhance or override details specified in the
patterns. Alternatively, they can avoid using the patterns entirely,

r asubject~
Kernel

and specify their own composition relationships. Composition
patterns and guides, provided by the authors of design subjects,
are intended as aids, not as mandates. The author of a subject
cannot know all the ways in which that subject will be used in the
future. The developer responsible for creating an integrated design
from a number of subjects, on the other hand, is expected to
understand enough about all the design subjects to be able to
specify details of their relationships. This developer therefore has
the last word, including the ability to override composition
constraints. Such overriding must be done explicitly; in its
absence, constraint violations are considered to be errors.

The use of composition patterns and constraints is illustrated in
Section 4. Further details are beyond the scope of this paper.

4. APPLYING THE MODEL
To illustrate how subject-oriented design addresses the
misalignment problem and achieves better, more flexible system
design, we apply it to the construction and evolution of the
expression SEE.

4.1 The Initial Software System
To align design with requirements, we define one design subject
per feature identified in the requirements specification. Thus, we
define a kernel subject supporting the representation of
expressions; an evaluation subject; a check subject; a display
subject; and a subject responsible for logging of operations. We
discuss these subjects individually in Section 4.1.1.) and their
integration by means of composition relationships in Section
4.1.2.

4.1.1 Design Subjects
Figure 3 shows the Kernel subject. As in the original design, we
represent expressions as abstract syntax trees. Notice, however,
that the kernel design subject only defines the AST classes and
their primitive accessor methods-it does not tangle support for
any of the required SEE features with the expression
representation.

operand1

I

Literal

- value : Number
unalyoperator

+ getValue : Number *

+ setValue(Number)

operand : Expression ::

+ getOperand() : Expression

+ setOperand(Expression)

VariableExpression NumberExpression

- name : String
- value : Number I I 1

operand1 : Expression
operand2: Expression

+ g&Operand10 : Expression

+ setOperandl(Expression)

+ Q&Operand20 : Expression

1 : ‘J::~:J~~~~~~;Q 1, wv] UnalyMinusOp, 1:

, ,,‘, ., “,,.l~~r,‘,,lrir:: 1,,.._’ “_

Figure 3: Kernel Subject Structure Diagram

333

asubject))

Check

opmndl: Expression

operanti Expression

I+ getTypeDesmiptor() : String 1‘. 1 MinusOnerator

Figure 4: Check Subject Structure Diagram

Similarly, the design subjects for each of the other required
features, a representative example for the Check subject which
appears in Figure 4, are “pure”~ne subject each supports
checking, evaluating and displaying expressions, and operation
logging. For space reasons, we show the structure diagrams of
only the Kernel subject (Figure 3) the Check subject (Figure 4)
and the Logger subject (Figure 5).

These design subjects illustrate some important features of
subject-oriented design. First, the kernel, check, evaluate and
display subjects realise and encapsulate their respective SEE tools
in a standard object-oriented manner, with appropriate methods in
each of the AST classes. While there is unavoidable scattering of
tool support across classes within each subject, encapsulation is
nonetheless achieved by each subject as a whole. This provides
clear alignment of the design to the requirements, as each subject
represents the design of a particular feature in total, and contains
no reference to any other feature; all cross-feature interactions are
specified by means of composition relationships. Encapsulation of
the logger feature also avoids tangling of logger functionality with
the rest of the design.

A second important feature of this subject-oriented design
approach is that each of the subjects specifies its own view of
overlapping design elements. For the SEE, the AST structure of
an expression is manifested in every subject, except the Logger
subject. Yet each subject defines a slightly different view of the
AST class hierarchy; for example, the Check subject does not
define the BinaryOperator, UnaryflusOp, and
UnaryMinusOp classes in its hierarchy, as they are not affected
directly by the checking methods. Similarly, the Evaluation
subject and the Display subject, not illustrated here, do not
include theBinaryOperator andunaryoperator classes.
The designers of the individual subjects need not be concerned
about these differences, as identification and resolution of any
differences is supported by composition relationships. This
increases the amount of concurrent design that is possible. It also
enables each subject to include whatever model of AST it finds
most appropriate to its task, rather than requiring premature

commitment to a single AST definition. This property helps to
improve the individual subjects, to insulate each designer from the
effects of changes in other subjects, and to eliminate coupling
across subjects.

ctsubjecb>

Logger

Figure 5: Logger Subject Structure Diagram

The Logger subject illustrates another interesting feature of
subject-oriented design. The SEE requirements specification
imposed a requirement for optional logging of operations. The
ability to log operations is not particular to expressions or ASTs,
however, so the logger subject can be designed independently of
the operations to be logged (Figure 5). Composition relationships
will establish connections between the SEE subjects (or any
others) and Logger, thereby specifying exactly when logging is to
take place. This approach has the advantage of separating the
design of logging from that of the SEE, addressing the tangling
problem that manifests itself primarily in the behavioural
specifications for operations that are to be logged (not shown). It
also results in a subject that is generally reusable for any
application that requires logging of operations.

This is a good scenario for the use of composition patterns. We
might define a pattern called TotalLogging as an abstraction for
composition relationships. It specifies that when Logger is
composed with other subjects, all operations of all classes within
those subjects are to be logged by invoking Logger’s
be f oreInvoke () method before execution of each operation,

334

and Logger’s afterInvoke () method immediately afterwards.
This pattern, provided by the author of Logger along with the
subject itself, makes specification of standard logging especially
simple, as we shall see later in this section.

4.1.2 Composition Relationships for Design
Synthesis
Taken together, the collection of design subjects described above
actuaIly defines a family of SEES. That is, the set of features
encapsulated in the individual design subjects can be integrated in
a number of different combinations-eg., some versions of SEES
might include the evaluation feature but not the checking feature,
and some might include logging while others might not. This
ability to “mix and match” features is another benefit of subject-
oriented design. It requires only the specification of composition
relationships among whatever design subjects are to be included
in any given member of the SEE family. For example, Figure 6
illustrates the composition relationships required to define a SEE
that includes all of the possible features (display, check,
evaluation, and logging). The relationships between the kernel,
check, evaluate and display subjects indicate match[name]
correspondence with merge integration, while the logger subject is
composed based on the TotalLogging pattern. This set of
composition relationships is complete and sufftcient to either
derive the appropriate composition rules in the subject-oriented
programming domain, or to produce the composed design as
illustrated and described in the Appendix. A match[name]
correspondence with merge integration means that in a composed
design subject, if produced, classes and attributes having the same
name in different design subjects would appear once, and
operations having the same name would be aggregated. Since no
inheritance anomalies result from the merge integration in this
case, composed generalisation relationships can be constructed
easily. The composition relationships involving Logger use the
composition pattern, TotalLogging, introduced in Section 4.1.1,
which specifies concisely that all operations are to be logged.

Producing a SEE that excludes any of the features is equally

simple-we need only exclude the subject supporting that feature
from all composition relationships. Because each requirement is
encapsulated in a separate subject, removal of a feature does not
impact the design of any other feature. An interesting example of
how this is useful is in the design of the logger. In the original
logger design, two methods, turnLoggingOn (1 and
turnLoggingOff (), had to be included to support this
feature. Two alternative approaches to achieving this feature
optionality are possible with subject-oriented design. One is to
include or exclude the Logger subject from compositions,
depending on whether or not logging is required. Another
alternative is have composition relationships with Logger in both
cases, but with a select integration specification that provides an
appropriate runtime selection criterion for the inclusion or
exclusion of logging functionality dynamically. Both approaches
have the benefit of not requiring any modifications to the design
subjects.

4.1.3 Producing Code from the Design
We have already described how the subject-oriented design just
described aligns with requirements. There are two approaches to
aligning it with code. The first approach is to code each individual
design subject as a code subject in the subject-oriented
programming paradigm, and then compose the code subjects with
a composition rule [OK+961 derived from the composition
specifications in the design. The second approach is for the
designers to construct an integrated design, and then write
standard object-oriented code based on it. In either case, however,
this two-faced alignment of subject-oriented design supports the
realisation of one of so&ware design’s primary purposes-to
bridge the gap between requirements and code. The first approach
is preferred, however, because it results in code that is directly
aligned with requirements, and that therefore has the same
properties of traceability and, especially, evolvability, described
earlier for subject-oriented designs. It also simplifies the process
of round-tripping.

Figure 6: High-Level Subject Composition Relationships

335

4.2 EvoIution Made Easy
The original SEE design suffered from the problem that what
appeared to be simple, additive changes ended up being pervasive
and invasive. Specifically, clients requested the inclusion of
different foims of optional checking, thus rendering the check
feature a “mix-and-match” capability.‘ The solutions considered
either resulted in combinatorial explosion of classes (using a non-
invasive, subclassing approach), or required invasive changes to
all of the AST classes (retrofitting design patterns). The subject-
oriented design avoids all of these problems. Each different kind
of checking is designed in a separate subject. Effecting the change
request simply requires the definition of two new subjects: one to
support the design of a defluse checker, and one to support
verifying conformance to local naming conventions. Selective use
of composition relationships permits designers to decide what
kind(s) of check(s) are to be performed in any particular system
produced from the design; the use of select integration defers this
decision to users at run time.

This example illustrates the general point that subject-oriented
design facilitates additive, rather than invasive, changes,
significantly increasing the ease of system evolution.

5. RELATED WORK
There is a rapidiy growing realisation that decomposition of
object-oriented systems by class is necessary, but not sufficient for
good software engineering. Classes often contain intertwined code
pertaining to many different concerns. The work on subject-
oriented programming [H093,OK+96] provided a means of
separating these concerns at the code level, and is the foundation
of the work presented in this paper. The primary additional
contributions of this paper are: more detailed analysis and
illustration of requirements-design-code alignment problems; the
application of the approach to design in general and to UML in
particular; and introduction of the notions of composition patterns
and guides and select integration.

Many other approaches have also provided improved separation
of some kinds of concerns in object-oriented software, including
aspect-oriented programming [KL+97], role modelling [RW+95,
DW98, K096], contracts [HH+90, Ho192], propagation patterns
[Lie96], composition filters [AB+92] and views [SS89, SU96].
The relationships of these and others to subject-oriented
programming have been previously described in
[H093,QK+96,TO+99]. In the remainder of this section, we
concentrate on two approaches that have particularly emphasised
design rather than code: role modelling and contracts.

Role modelling. The goals of subject-oriented design and those of
the role modelling work from the OORam software engineering
method [RW+95] are similar. OORam shows how to apply role
modelling by describing large systems through a number of
distinct models. Derived models can be synthesised from base role
models, as specified by synthesis relations. Synthesis relations can
be specified both between models and between roles within the
models, much like our composition relationships. The synthesis
process is equivalent to the synthesis of subjects defined with a
merge interaction specification. The subject-oriented design
model distinguishes itself with its notion of override and select
integration, and more particularly, with the open-ended semantics
of subject integration. In addition, the potential provided by

composition patterns and guides provide for more sophisticated,
complex possibilities for combination patterns.

Role modelling with Catalysis [DW98] is based on UML, using
horizontal and vertical slices to separate a package’s contents
according to concerns. Composition of artefacts is based on a
definition of the UML import relationship, called join. The
designer is instructed to form a new design containing the simple
union of design elements, with re-naming in the event of
unintended name clashes. This approach is similar to the meaning
of a merge interaction specification with property matching by
name. Catalysis encourages a design strategy in which an initial
design is gradually modified to produce a completed bne, which is
a single, fully integrated design. We, instead, encourage a design
strategy in which pieces (subjects) are identified and designed
separately, and remain separate in the completed design, though
related by composition relationships. This enhances the
traceability of requirements that lead to various artefacts. For
example, Catalysis describes the rules and decisions a designer
should (might) follow to form the result of joining two packages,
while we retain the original packages and, instead, define a way of
specifying the rules and decisions as annotations on the
composition relationship(s) relating them. Making a more
complete specification of the sort we advocate necessitates the
introduction of a wider and more sophisticated set of composition
concepts, like matching and integration specifications. Reusable
design components are supported in Catalysis with template
frameworks, containing placeholders that may be imported, with
appropriate substitutions, into model frameworks. This is similar
to merging reusable design subjects that have no overlapping
design elements, possibly using composition patterns.

Roles from Kristensen [K096] extend an object’s intrinsic
properties and may contain additional state and behaviour. Roles
may be dynamically attached to objects, and more than one role
can be bound to an object at a given time. Support for subject
composition [Kris97], which is based on [HO93], combines class
hierarchies by re-establishing the hierarchies to be composed as
role hierarchies of a new intrinsic hierarchy. This maintains a
clean separation of the different roles of objects, but does not
address well the specification of concerns that cut across multiple
hierarchies.

Other approaches to roles, of which MON [MD941 is an example,
separate role specification from the intrinsic object specification,
supporting the changing behaviour of objects in different stages of
their lifecycles. In general, roles are defined at the object level of
granularity, not for groups of collaborating objects.

Contracts: An approach to interaction-oriented design using
contracts is described in [HH+90, Hol92], where contracts specify
behavioural compositions and obligations on participants. They
capture explicitly and abstractly the behavioural dependencies
amongst co-operating objects. Contract specljication identifies
the participants in a behavioural composition and their contractual
obligations. Contract conformance checks classes to ensure that
they behave appropriately relative to all contracts in which they
participate. Contract instantiation creates objects at run time that
interact as described by the contract. Programming language
constructs are required to use contracts fully. There is a difference
of emphasis between contracts and subject-oriented design that
might be thought of as “object composition” (concern with how
functionality is provided by interacting objects), versus “clans

336

composition” (concern with synthesising full class definitions
from partial definitions reflecting different points of view). An
individual contract describes an object composition; combination
of contracts involves class composition. An individual design
subject, on the other hand, is a collection of classes, not of
objects. Other differences between the approaches include the
fact that a design subject is a (partial) design in a standard
language (e.g., UML) rather than a new kind of construct, the
openness of composition relationships versus the specific, though
more precisely defined, contract combination rules, and the fact
that composition relationships can specify combination of
methods and sharing of instance variables across design subjects.

6. CONCLUSIONS AND FUTURE WORK
Standard object-oriented designs do not align well with
requirements. Requirements are typically decomposed by
function, feature, property or other kind of user-level concern,
whereas object-oriented designs are always decomposed by class.
This misalignment results in a host of well-known problems,
including weak traceability, poor comprehensibility, scattering,
tangling, coupling, poor evolvability, low reuse, high impact of
change and reduced concurrency in development.

In this paper, we proposed and illustrated subject-oriented design
as a means of achieving alignment between requirements and
object-oriented designs, and hence alleviating these problems.
This alignment is possible because requirements criteria can be
used to decompose subject-oriented designs into subjects, which
can then be synthesised as specified by composition relationships
and their reconciliation and integration annotations. Subjects can
be designed independently, even if they interact or cut across one
another.

Support from the subject-oriented programming domain ensures
that this level of alignment can be followed through to the code
implementing the system. Propagation of changes from the
requirements through to the design is therefore greatly simplified.
This increases the chances of development teams keeping the
design specitications up-to-date with the code, and alleviates the
problems associated with misalignment at the code level also.

Much work remains to be done. The syntax and semantics of
composition relationships and their reconciliation and integration
specifications supported within the current model are being
defined, together with ensuring that the model is an open,
extensible framework that supports composition patterns and
guides. As a start, this work will be done in the context of, and
integrated with, the LJML meta-model [UML99], though over
time, it would be interesting to pursue its semantics independently
of any particular design language’s constructs. Support for all
kinds of UML design models, in addition to the structural and
interaction models discussed in this paper, must be included in the
framework. Automation of the link from subject-oriented design
to subject-oriented programming is also an important area we are
interested in pursuing. This has a number of compnents, including
generation of subject code from subject designs, and generation of
composition rules from composition relationships. Environment
support for subject-oriented design that includes such automation
is needed, and it will provide the opportunity for validating the
approach and gaining experience with its use.

7. ACKNOWLEDGMENTS
We are grateful to John Vlissides for his help with the use of
design patterns. We thank Rob Walker and the anonymous
reviewers for their comments. Thanks are also due to IBM Ireland
Ltd. for partially finding Siobhitn Clarke’s work.

8. REFERENCES
[AB+92]

[3ch94]

PR981

[CAB931

[CD941

[DW98]

[GH+94]

[GF+98]

[HH+901

[Ho931

[Ho1921

[Jac94]

[K096]

M./&sit, L.Bergmans, SVural. “An object-oriented
language-database integration model: The
composition filters approach” In Proc. European
Conference on Object-Oriented Programming
(ECOOP) 1992

G. Booth, “Object-Oriented Analysis and Design
with Applications (2& ed.) ” Benjamin-Cummings,
1994

G. Booth,, J. Rumbaugh, I. Jacobson, “The Unified
Modelling Language User Guide ” Addison-Wesley,
1998

D. Coleman, P. Arnold, S. Bodoff, “Object-Oriented
Development: The Fusion Method” Prentice Hall
1993

S. Cook, J. Daniels, “Designing Object Systems:
Object-Oriented Modelling with Syntropy ” Prentice-
Hall 1994

D. D’Souza, AC. Wills, “Objects, Components and
Frameworks with UML. The Catalysis Approach”
Addison-Wesley, 1998

E. Gamma, R. Helm, R. Johnson, J. Vlissides,
“Design Patterns. Elements of Reusabie Object-
Oriented Software “. Addison-Wesley 1994

M. Griss, J. Favaro, M. d’Allessandro, “‘Integrating
Feature Modeling with the RSEB” In Proc.
International Conference on Software Reuse (ICSR)
1998

R. Helm, I. Holland, D. Gangopadhyay. “Contracts:
Spect@ng Behavioral Compositions in Object-
Oriented Systems” In Proc. Object-Oriented
Programming Systems, Languages and Applications
(OOPSLA) 1990

W. Harrison, H. Ossher, “Subject-Oriented
Programming (a critique of pure objects) ” In Proc.
Object-Oriented Programming Systems, Languages
and Applications (OOPSLA) 1993

I.M.Holland. “Spectfiing reusable components using
contracts” In Proc. European Conference on Object-
Oriented Programming (ECOOP) 1992

I. Jacobson. “Object-Oriented Sofiware
Engineering: A Use Case Driven Approach”
Addison-Wesley 1994

B.B.Kristensen, K.(asterbye. “Roles: Conceptual
Abstraction Theory and Practical Language Issues”
Theory and Practice of Object Systems, Volume
2(3), 143-160 (1996)

337

[Klis97]

[KS981

w+971

[Lie961

[MS911

[OH+951

[OK+961

[Par721

[Rw+951

[RL+90]

[SM89]

[SS89]

[SU96]

[TF+98]

B. Kristensen “Subject Composition by Roles” In
P~oc. Object-Oriented Information Systems (001s)
1997

R. Keller, R. Schauer, “Design Components:
Towards Software Composition at the Design Level”
In Proc. International Conference on Software
Engineering (ICSE) 1998

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J. Loingtier, J. Irwin, “Aspect-Oriented
Programming” In Proc. European Conference on
Object-Oriented Programming (ECOOP) 1997

K. J. Lieberherr. “Adaptive Object-Oriented
Sofmare: The Demeter Method with Propagation
Patterns. ” PWS Publishing Company, 1996.

S. Mellor, S. Shlaer, “Object Lifecycles: Modelling
the World in States “- Prentice Hall, 1991

H. Ossher, W. Harrison, F. Budinsky, I. Simmonds,
“Subject-oriented programming: Supporting
decentralized development of objects” In Proc. 7’h
IBM Conference on object-oriented technologies,
Santa Clara, CA. March (1995)

H. Ossher, M. Kaplan, A. Katz, W. Harrison, V.
Ktl.lSkal, “SpecifLing Subject-Oriented
Composition” Theory and Practice of Object
Systems, Volume 2(3), 179-202, 1996

D.L.Pamas. “On the criteria to be used in
decomposing systems into modules”
Communications of the ACM, 15(12):1053-1058,
December 1972

T. Reenskaug, P. Wold, O.A. Lehne, “Working with
Objects: The OORam Sofhare Engineering
Method”. Prentice Hall, 1995

J. Rumbaugh, W. Lorenson, M. Blaha, “Object-
Oriented Modelling and Design ” Prentice Hall 1990

S. Shlaer, S. Mellor, “Object-Oriented Systems
Analysis: Modelling the World in Data” Prentice
Hall 1989

J.J.Shilling, P.F.Sweeney. “Three steps to views:
Extending the object-oriented paradigm” In Proc.
Object-Oriented Programming Systems, Languages
and Applications (OOPSLA) 1989

R.B.Smith, D.Ungar. “A Simple and Unifying
Approach to Subjective Objects” Theory and
Practice of Object Systems, Volume 2(3), 161-178
(1996)

C. Reid Turner, Alfonso Fuggetta, Luigi Lavazza,
and Alexander L. Wolf. ‘Feature Engineering.”

[TO+991

wm991

[Vli98]

Proceedings of the 9* International Workshop on
Software Specification and Design, April 1998.

P. Tan, H. Ossher, W. Harrison, S. Sutton. “N
Degrees of Separation: Multi-Dimensional
Separation of Concerns” In Proc. International
Conference on Software Engineering (ICSE) 1999

“OMG Unified Modeling Language Spectjkation
(draff) ” Version 1.3 beta R7. June 1999

John Vlissides. “Pattern I-Latching: Design Patterns
Applied” The Software Patterns Series, Addison-
Wesley 1998

APPENDIX: Composed Designs
As discussed in the body of the paper, tools can be applied to
reduce composite designs to their fully expanded form. Such a
transformation, while optional (as noted earlier), can be useful,
particularly to a developer attempting to understand the full
semantics of a composed design and all of the ramifications of a
set of composition relationships. Figure 7 is an example of a fully
expanded composed design-in this case, for the design shown in
Figure 6. Not surprisingly, the fully expanded composed design
shown in Figure 7 is very similar to the original SEE design
depicted in Figure 1, except that classes are shown in flattened
form, with all inherited members explicitly copied from
superclasses to subclasses. The importance and use of flattening in
composition semantics are discussed in [OK+96].

We can illustrate how it is derived with some examples. Consider
the class UnaryPlusOp. It exists in the result because of its
presence in the Kernel subject. In its flattened form, it contains
(among others) the operations check () , getoperand () and
setoperand (), which are derived by merging the flattened
forms of UnaryPlusOp in the Kernel subject (which has
getOperand and setoperand 0 because itinheritsthem
from UnaryOperator) and UnaryOperator in the Check
subject(which contains check()). Classes UnaryPlusOp and
UnaryOperator are merged here, despite their different names,
because the Check subject does not contain a UnaryPlusOp
class; in the case of no name match, the default is for a class to be
composed with the same class as its superclass [OK+96]. In
addition, composition with the Logger subject has caused the
sequence of actions performed on operation calls to be updated.
For example, when the check () operation is invoked on a
UnaryPlusOp, it causes a sequence of methods to be executed:
beforeInvoke(), check0 and afterInvoke(), as
shown. A similar situation is obtained for all other operations, but
is not shown in the figure.

338

- name : string
- typeDescriptor : String
-value : Number

+ asString : String
+ getName0 : String

+ setName(String)

+ getTypeDescrtptor() : String

+ check0
+ display0

+ evaluate0

+ getValue() : Number

+ setValue() : Number

+ beforelnvoke()

+ aflerlnvoke()

._- -v,’ ,i,C I^ dL.. .“..^ . “. _

+ asString() : String

{ beforelnvoke() 9
check0
afterlnvoke() } 1

Expression

+ asString : String

+ display0

+ evaluate0

+ check0

+ getTypeDescriptor()

+ beforelnvoke()

+ afterInvoke

Literal
- value : Number I 1~

+ getValue() : Number
+ setValue(Number)

+ asString() : String

+ evaluate0

I-
+ display0

+ check0
+ getTypeDesuiptor()

+ beforelnvoke()
+ afterlnvoke()

I.; ,‘,Ii

+ asStting() : String
+ getTypeDesuiptor() : String

+ check0

+ evaluate0
+ display0
+ beforelnvoke()

BinaryOperator Bin

SOP # operand1 : Expression

operand2 : Expression # operand2 : Expression

+ g&Operand1 0 : Expression + g&Operand1 0 : Expression

+ setOperandl(Expression)

+ getOperand : Expression
+ setOperand2(Expression)

+ asSbing() : String

+ getTypeDescriptor() : String

+ check0
+ evaluate0
+ display0

+ atsptayt)

+ evaluatag

+ getValue() : Number

+ satValue0 : Number

+ beforelnvoke()

+ afterlnvoke()

Figure 7: Composed SEE Design, Fully Expanded

339

