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Abstract
Visual distortions in processed 360-degree visual content

and consumed through head-mounted displays (HMDs) are per-

ceived very differently when compared to traditional 2D con-

tent. To better understand how compression-related artifacts af-

fect the overall perceived quality of 360-degree videos, this paper

presents a subjective quality assessment study and analyzes the

performance of objective metrics to correlate with the gathered

subjective scores. In contrast to previous related work, the pro-

posed study focuses on the equiangular cubemap projection and

includes specific visual distortions (blur, blockiness, H.264 com-

pression, and cubemap seams) on both monoscopic and stereo-

scopic sequences. The objective metrics performance analysis is

based on metrics computed in both the projection domain and

the viewports, which is closer to what the user sees. The results

show that overall objective metrics computed on viewports are

more correlated with the subjective scores in our dataset than the

same metrics computed in the projection domain. Moreover, the

proposed dataset and objective metrics analysis serve as a bench-

mark for the development of new perception-optimized quality as-

sessment algorithms for 360-degree videos, which is still a largely

open research problem.

Introduction
Virtual reality (VR) and immersive media technologies have

recently drawn significant interest from both end users and re-

searchers, resulting in many incremental advancements in the last

few years. As one of these new immersive media technologies,

omnidirectional (or 360-degree) images and videos that capture

the 360-degree field of view of a scene, have gained popularity

in many areas, such as entertainment, education, and robotics.

Omnidirectional visual content provides the user with the ability

to navigate the scene with three degrees of freedom (3DoF), re-

sulting in more realistic and immersive experiences, particularly

when the user consumes the content wearing a head-mounted dis-

play (HMD). Such content, however, requires a massive amount

of data to be captured, processed, and transmitted; this challenges

current technologies and infrastructure and calls for new solutions

in the whole immersive media delivery pipeline.

Despite being naturally a spherical signal, 360-degree sig-

nals are commonly mapped to and stored as planar 2D im-

ages in order to reuse existing image and video processing

technologies [5]. Different projections have been proposed to

optimize the pixels distribution on the planar layout, such as

equirectangular (ERP), cube map (CMP), and equiangular cube

map (EAC)1 [5]. To be presented to the end user, the planar signal

1https://youtube-eng.googleblog.com/2017/03/improving-vr-
videos.html

is mapped back to the spherical domain, and, at each instant, the

portion of the sphere watched by the viewer, known as viewport,

is rendered and displayed. When the visualization happens via an

HMD, the viewports (one per eye) are seamlessly updated follow-

ing the user’s head movements, which provides the user with an

increased sense of presence.

Similar to traditional 2D image and video, visual quality as-

sessment (VQA) methods also play a fundamental role in the dif-

ferent stages of the immersive media distribution chain, e.g., in

the design of recording devices, representations, and compression

of digital information, as well as streaming, and display. Indeed,

advances in immersive media VQA are of fundamental impor-

tance to provide high-quality and optimized services that guaran-

tee the best trade-off between resource usage and good end-user

quality of experience (QoE). Although it is related to traditional

2D and stereoscopic 3D visual content, VQA of processed 360-

degree media visualized via HMDs brings its own specificities. In

particular, the appearance of new types of distortions [1], the mag-

nification of the content, an increased field-of-view, and the fact

that the user is fully immersed in the content completely change

the QoE perspective. These new requirements call for the devel-

opment of new methods and good practices for the visual quality

and QoE assessment of 360-degree visual content [1].

This paper describes a subjective quality study and estab-

lishes a dataset to get a deeper understanding on the perceptibility

of compression artifacts and how they affect the overall QoE of

360-degree visual content consumed through HMDs. Previously,

we have performed a preliminary experiment to get the range of

allowed visual distortions in 360-degree videos [2]. Based on

those initial findings, we perform here a subjective VQA study

based on the Single Stimulus with hidden reference [10] method-

ology. In total, 21 subjects rated 128 sequences (120 distorted +

sequences + 8 original ones), where the included distortions are

blur, blockiness, cube map seams [1], and H.264 compression.

Finally, we provide the subjective data analysis and measure the

performance of standard objective quality metrics computed in

both the projection and viewport domains on our dataset. The

developed dataset is unique when compared to previous work be-

cause: (1) it includes individual visual distortions (previous work

on 360-degree images/video subjective VQA include distortions

through different quality parameters in traditional compression al-

gorithms, which results in mixed visual distortions); (2) it is the

first to use the EAC projection to handle spherical signal; and (3) it

mixes both monoscopic and stereoscopic versions of the content.

The rest of the paper is structured as follows. First, we dis-

cuss related work and compare them with our study. Then, we

detail the methodology, stimulus preparation, and subjects’ pro-

file of our subjective study. Based on the data gathered on the



subjective study, we present the analysis of objective metrics per-

formance. Finally, conclusions and future work are discussed.

Related work
Even though there is still no standard methodology for per-

forming subjective 360-degree quality studies, researchers agree

that it does not come as a straightforward extension of traditional

2D-only studies. The research community has been actively dis-

cussing best practices for 360-degree VQA, and some subjective

quality studies have been recently performed [1, 13]. Initial ex-

periments were based on presenting the rendered viewports using

traditional displays [4, 21]. Such an approach, however, lacks

important immersive features that can only be assessed when the

user is wearing an HMD. Hence, we focus mainly on the studies in

which the user uses an HMD. Most of the methodologies in use to-

day for 360-degree subjective VQA are adaptations of traditional

ones, used for 2D videos in planar displays. They include both

Single Stimulus —e.g., Absolute Category Rating (ACR) and Ab-

solute Category Rating with Hidden Reference (ACR-HR) [9]—

and Double Stimulus methods [10]. When performing subjective

tests using HMDs, additional data such as head and eye motion,

sickness, and sense of presence are also interesting [1]. The recent

studies include both image-only and video-based VQA.

Regarding image datasets, Upenik et al. [17] presents a

testbed for the subjective evaluation of 360-degree images that

allows both to collect raw scores and record tracking information.

Based on the proposed testbed, they discuss a pilot study using

6 different omnidirectional image contents compressed with four

JPEG quality parameters. ACR-HR with a five-grade quality scale

is used as the test methodology. Based on the testbed proposed

in [17], Perrin et al. [14] uses a dual stimulus method for measur-

ing the quality of High Dynamic Range (HDR) omnidirectional

images considering well-known tone mapping operators. Huang

et al. [8] presents a single stimulus ACR-based study for omni-

directional images. It studies both spatial resolution and JPEG

distortions for ERP images. The study found that the ideal view-

ing duration for 360-degree images is 20 seconds, which allows

the user to explore the content entirely.

Regarding video-based datasets, Xu et al. [18] establishes a

video quality dataset using the SSCQS (Single Stimulus Continu-

ous Quality Scale) methodology [10]. Before building the dataset,

they perform a preliminary study to analyze the users’ head mo-

tion (HM) when watching 360-degree videos. They conclude that:

(i) the viewing directions are highly consistent with the video con-

tent, hence, there is no need for fixing the viewing directions in

VQA studies for 360-degree content; and (ii) at least 20 subjects

should be involved in 360-degree VQA studies. In particular, al-

lowing free head movement during controlled subjective tests has

the advantage of keeping the test environment closer to the real

one where the media will be consumed. Duan et al. [7] presents

a dataset composed of 10 original 360-degree videos, 15 seconds

each, which are rated by 13 subjects using a single stimulus 0–5

continuous scale. The study explores the influence of resolution,

frame rate, and different H.264 bitrate. Li et al. [12] establishes

a database that includes both VQA scores and the corresponding

HM and eye motion (EM) data for studying the relationship be-

tween visual quality and human behavior. The dataset includes

three projections types, ERP, RCMP (Reshaped Cubemap), and

TSP (Truncated Square Pyramid), and three H.265 compression

levels as distortions. Queluz et al. [15] presents the result of a

subjective quality study for ERP 360-degree videos that includes

spatial and temporal subsampling, HEVC compression, and their

combination. Based on the gathered data, the authors also analyze

the performance of different objective metrics on their dataset.

Building on the lessons learned in the previous studies, we

report here our subjective VQA study focused on the impact of

specific visual distortions on the perceived quality of 360-degree

content. Different from previous work, we add specific visual dis-

tortions (blur, blockiness, and seams) and mix both monoscopic

and stereoscopic versions of the original content in our dataset.

By mixing the monoscopic and stereoscopic versions of the con-

tent, we can provide insights on how the same artifact affects

viewers’ perceived quality on mono and stereo viewing modes.

Also, to allow us to analyze the impact of mixing difference vi-

sual distortions, we include H.264/AVC compression as one of

the possible distortions. Finally, we focus on the EAC map pro-

jection, which has not been studied by any of the previous works,

and analyzes the performance of objective metrics computed in

the viewports domain, which is also a novelty of our work.

VQA Subjective study
Environment setup

The subjective experiment was performed in two sites:

Youtube, Mountain View, CA; and EPFL, Lausanne, Switzer-

land. In both sites, we used a Lenovo Mirage Solo HMD

(2560x1440@75Hz) for visualization and the user sits on a swivel

chair so that she/he is free to explore the content. We developed

our own software that allows the user to watch the 360-degree

video content and rate it without the need of removing the HMD.

Fig. 2 shows the user inferface used to select the quality score.

Methodology
The used methodology is based on Single stimulus with hid-

den reference [9]. The user evaluates each stimulus, one-by-

one, and voting is performed after each viewing. Both the orig-

inal (pristine) and the distorted content are included so that it is

possible to take into account the video content when computing

the subjective ratings. Subjects do not know which ones are the

reference content. We provide the user with a continuous 0–100

scale divided into a 5-level categorical scale (“5-Excellent”, “4-

Good”, “3-Fair”, “2-Poor”, and “1-Bad”) (see Fig. 2). Each stim-

ulus duration is 10s and the same stimulus is presented twice, with

a 2s mid-gray screen between them, so that the user is able to ex-

plore different parts of the 360-degree content. Fig. 1 shows the

methodology used in the experiments, which is divided into:

Study presentation. The subjects are presented with the goal of

the study and informed that, due to characteristics of distortions in

360-degree videos and the use of an HMD, they might feel some

discomfort or sickness, in which case, they are free to leave the

experiment at any time.

Pre-experiment subject screening. The subjects are screened for

color blindness and stereoscopic vision issues. The color blind-

ness test is based on the Ishihara Color Test2. For the stereoscopic

vision test, we show a stereoscopic 3D video pattern on the HMD.

The participants can see different numbers if they have normal

stereoscopic vision.

2https://colour-blindness.com/colour-blindness-tests/ishihara-colour-
test-plates/



Figure 1: Methodology Figure 2: User interface
Training. The user is presented with the overall process. Exam-

ples of distorted content containing the minimum, medium, and

maximum levels of each distortion are presented to the subjects.

Also, they are informed about each of the distortion levels associ-

ated with the presented content. The data gathered in this session

is not used in the data analysis process.

Test sessions (1–4). The stimuli are randomly divided into 4

equal-sized sets that were evaluated in 4 sessions by each user.

In each session, the subject watches each stimulus (pristine or

distorted sequence) twice, with the 2s mid-gray screen between

them. After that, the subject is asked to rate the quality of that

stimulus using the scale depicted in Fig. 2. To avoid fatigue, we

perform a break of 5–10min. between the sessions. The subject

is able to control the time of the break so that he could continue

when she/he is comfortable to do it. Due to time restrictions, some

subjects also performed the first two sessions in one day and the

next ones in the following day. Besides gathering the subjective

score given to each stimulus, we also record the head motion of

the user while watching the 360-degree content in our dataset.

Stimuli
Source sequences. 5 original sequences are included in the

study (see Fig. 3), being 3 stereoscopic content and 2 monoscopic

ones. Based on the original ERP content, we re-project each of the

sequences to EAC, using a 3840x2160 resolution. For the origi-

nal stereoscopic sequences, we added both the monoscopic and

the stereoscopic versions to the study.

Distortion simulation. We consider four main distortions: block-

ing, seams, blur, and H.264 compression. The blocking distor-

tions are simulated using the H.263 algorithm with different qual-

ity parameters (QP). The seam distortion is simulated through

a Gaussian blur filter only in the discontinuities (i.e., where the

cube faces meet) in the EAC content. The blur distortion is added

through a Gaussian filter on the whole frame. To avoid the ap-

pearance of seams in the blur content, the blur command is per-

formed on a padded version of the EAC frame. Then, the correct

resolution is cropped from it. Finally, the H.264 compression dis-

tortions are created using the H.264 algorithm with different QPs.

More details on the commands used for generating the different

distortions can be found in [2].

Distortion levels. The visibility and range of visual distortion

perceptibility for 360-degree content watched on HMDs are not

the same as those of traditional images watched on planar 2D dis-

plays. Thus, it is not straightforward to use the same distortion

levels as the ones commonly used in traditional 2D visual qual-

ity studies. Prior to performing our VQA experiments, we have

performed a task-based exploratory study to better understand the

range of allowed distortions in 360-degree visual content [2]. We

have asked the subjects to find, using an interactive interface, the

first just-noticeable distortion (JND) and the Break-in-Presence

points when incrementally adding distortions to 360-degree visual

content. JND is a statistical quantity that accounts for the max-

imum distortion that stays unnoticeable to a human being [20].

We define the “1st JND” as the maximum amount of distortion

that can be added to the pristine (non-distorted) content before the

user perceives any difference in it. Presence is defined as the sense

of “being there”, inside a space, even when physically located in

a different location [11]. We define the Break-in-presence point

as the amount of visual distortion that can not anymore induce a

sense of presence. The chosen distortion levels are then sampled

inside the “1st JND” and Break-in-presence ranges through expert

viewing.

Subjects
In total, we recruited 21 subjects to participate in the study,

14 males and 7 females. All the participants have passed on the

pre-experiment subject screening tests.

Data processing
A common issue with subjective studies is that different

users use the rating scale differently. To account for such is-

sues, we process the RAW score based on BT.500-12 [10]. First,

for stimuli j and subject i, we compute the difference score:

di j = sref
i j − si j , where si j is the raw score subject i gave to stim-

ulus j and sref
i j is the score given to the corresponding reference

(original) video; then, the z-scores are computed: zi j =
(di j−µi)

σi
,

where µi and σi are the mean and standard deviation of subject i’s

scores; These scores are then scaled to [0,100]: z′i j = 100
(

zi j+3

6

)

.

The Differential Mean Opinion Score (DMOS) for each sequence

is then computed: DMOS j =
1
N ∑

N
i=1 z′i j.Finally, to have a scale

in which higher values means better quality, we compute the Re-

versed DMOS as: rDMOS j = 100−DMOS j.

Results and discussion
Fig. 4a shows the histogram of all rates and Fig. 4b shows

the MOS values for each source content. We can observe that,

overall, when comparing the same content, the stereoscopic con-

tent is commonly rated worse than the monoscopic one. Such

a behavior is also replicated in the distorted content, as will be

discussed later. The “World tour” is an exception that can be

explained by the fact that the pristine content itself is not per-

fect and also includes some stitching artifacts (see bottom part of

Fig. 3(e)). Fig. 6 shows the processed Reversed DMOS values for

each distorted sequence.

Objective metrics performance
For assessing the performance of objective metrics into the

proposed subjective dataset, we use standard objective image

quality metrics computed in the EAC projection domain and the

same metrics computed on viewports, which better represents the

final content as viewed by the user when wearing an HMD. The

objective metrics computed on the projection domain are: Peak



(a) Aerial (b) Alcatraz (c) Cartoon (d) Obama (e) World tour

Figure 3: Monoscopic versions of the source sequences used in the experiment

(a) Histogram of rates.

(b) Pristine content MOS.

Figure 4: Results based on the RAW scores.

signal-to-noise (PSNR); Structural Similarity (SSIM) [23]; Multi-

scale Structural Similarity (MSSSIM) [22]; Visual Information

Fidelity in pixel domain (VIFp) [16], and Gradient Magnitude

Similarity Deviation (GMSD) [19].

The metrics above are also computed on the viewports, fol-

lowing the proposal of Birkbeck et al. [3]. For computing the

viewport-based metrics, we pre-process the EAC video, generat-

ing N viewports for each frame, which are then merged into a

collage frame (see Fig. 5). The collage frames are then used for

computing the quality metrics on the viewports domain. Fig. 5

shows both the sampling pattern, named unifom, that we have

used to compute the viewports and an example of a collage frame.

(We have also tested the tropical and the equator sampling of [3],

but the uniform sampling has provided the best correlation results

due to a better coverage of the sphere.) In addition, for the con-

figuration above, we have tested three different fields of view for

the viewports: 30deg, 40deg, and 50deg.

(a) (b)

Figure 5: Example of uniform sampling (a) and collage frame (b)

used to compute the viewport-based objective metrics.

In both the projection domain and viewport-based ver-

sions, the objective metrics are computed individually for each

frame and then pooled with an average method. Finally, the

standard performance indexes Pearson linear correlation coef-

ficient (PLCC) and Spearman rank order correlation coeffi-

cient (SROCC) are computed between the reversed DMOSs and

the fitted logistic regression function: s′ = β1−β2

1+e
−

S−β3
||β4 ||

+β2.

Results and discussion

Fig. 7 shows the fitted logistic regression curve, and Table 1

shows the PLCC and SROCC results for the different metrics

in our dataset. From the results, it is possible to conclude that:

(i) the metrics that performed best on our dataset are SSIM for

blockiness, MSSIM for H.264, and VIFP for blur and cubemap

seams. (ii) overall, VIFP computed in the viewports using a 40-

degree field of view is the best performing metric when consid-

ering all the distortions (correlation of 0.8421). (iii) when com-

paring the individual metrics in the different domains, there is

a significant improvement when assessing the visual quality of

the 360-degree content based on viewports instead of using the

EAC projection domain. (It is expected that such a behavior is

even more pronounced when the ERP format is used in the pla-

nar domain, which has more re-sampling and geometrical distor-

tion than EAC.); (iv) the uniform sampling with 40-degree field-

of-view provides the best performance for most of the metrics;

(v) none of the metrics performs good enough on seams, which is

a highly localized distortion that can be hidden on the global met-

rics; this result highlights the need for specific artifact metrics,

such as [6]; and (vi) finally, it is possible to notice that the per-

formance of the different metrics varies significantly according to

the different distortion types and that there is not a single metric

that performs the best for each individual distortion.

Conclusion

We established a subjective quality dataset for EAC 360-

degree videos that includes specific visual distortion types and

mixes both monoscopic and stereoscopic content. Then, we ana-

lyzed the performance of objective metrics computed both in the

projection domain and in viewports extracted from the 360-degree

content against the gathered subjective scores. Our experiments

show that: visual distortions tend to affect more the quality of

360-degree stereoscopic content than its monoscopic counterpart;

computing objective metrics in viewports provides a better cor-

relation with subjective studies than computing them in the pro-

jection domain; and there is still a need for new perceptually-

oriented metrics that can reliably measure specific visual distor-

tions happening in processed 360-degree content, as it can be seen

by the fact that there is not a single metric that performs the best

for all the different distortions. As future work, we will extend

the dataset to include other visual distortions that appear on 360-

degree content [1], analyze the performance of stereoscopic met-

rics on our dataset, and design perceptually-optimized metrics for

360-degree videos that both consider different distortions and the

user behavior when watching immersive content via HMDs.



(a) Aerial
(b) Alcatraz (c) Cartoon (Stereo)

(d) Cartoon (Mono)

(e) Obama (Stereo)

(f) Obama (Mono)
(g) World tour (Stereo)

(h) World tour (Mono)

Figure 6: Reversed DMOS results.

Figure 7: Frame-based objective metrics vs. subjective score plots with the fitted logistic function.

Figure 8: Viewport-based (uniform sampling with 40deg FoV) objective vs. subjective score plots with the fitted logistic function.



Table 1: Objective metrics performance (two best highlighted for each column).
Metric Blur Blockiness Seams H.264 All but seams All

Projection domain LCC SROCC LCC SROCC LCC SROCC LCC SROCC LCC SROCC LCC SROCC

PSNR 0.9102 0.85565 0.6975 0.73387 0.37234 0.40391 0.87439 0.82588 0.80067 0.81114 0.7698 0.6984

PSNRHVS 0.90453 0.85565 0.72396 0.7544 0.4752 0.49799 0.87654 0.83761 0.79789 0.80956 0.77025 0.71917

PSNRHVSM 0.90127 0.86783 0.72272 0.75257 0.4752 0.39291 0.87206 0.83871 0.79951 0.8112 0.78126 0.75778

SSIM 0.8871 0.80261 0.73684 0.76503 -0.00633 0.01826 0.87597 0.83065 0.83346 0.84026 0.79829 0.70389

MSSSIM 0.87287 0.79043 0.71906 0.7423 -0.29563 -0.29826 0.88409 0.84421 0.83293 0.83507 0.79794 0.71481

GMSD 0.89075 0.84609 0.76701 0.79362 0.4752 0.49799 0.89152 0.86217 0.83136 0.83626 0.82336 0.80654

VIFP 0.92313 0.82522 0.62213 0.65946 0.5464 0.46704 0.87197 0.78959 0.82656 0.82954 0.79601 0.6891

Viewports domain (Mirage) / UniformFov30 LCC SROCC LCC SROCC LCC SROCC LCC SROCC LCC SROCC LCC SROCC

VP-U30-PSNR 0.91901 0.87304 0.66811 0.67485 0.3094 0.18103 0.86842 0.80425 0.81023 0.80901 0.78006 0.71927

VP-U30-PSNRHVS 0.9055 0.86783 0.70385 0.71554 0.28705 0.15712 0.88511 0.84384 0.81274 0.81835 0.78103 0.72291

VP-U30-PSNRHVSM 0.89778 0.86000 0.72625 0.73754 0.33252 0.30174 0.89208 0.84384 0.82147 0.82735 0.7866 0.71652

VP-U30-SSIM 0.89034 0.82000 0.82190 0.82735 0.29789 0.30490 0.89517 0.83138 0.86308 0.84617 0.83062 0.72872

VP-U30.MSSSIM 0.87516 0.82261 0.77593 0.7665 0.29491 0.21826 0.90958 0.84238 0.85678 0.83808 0.82564 0.72698

VP-U30-GMSD 0.88364 0.83478 0.80219 0.80132 0.39352 0.38696 0.90207 0.85997 0.84500 0.84335 0.83167 0.80068

VP-U30-VIFP 0.92522 0.86261 0.73905 0.75147 0.34261 0.27224 0.90959 0.83431 0.87505 0.86176 0.84186 0.73738

Viewports domain (Mirage) / UniformFov40 LCC SROCC LCC SROCC LCC SROCC LCC SROCC LCC SROCC LCC SROCC

VP-U40-PSNR 0.89387 0.82957 0.70128 0.69685 0.30829 0.08753 0.88145 0.82845 0.80472 0.80446 0.77457 0.70745

VP-U40-PSNRHVS 0.8796 0.83304 0.7226 0.72471 0.3182 0.07565 0.89239 0.84311 0.80397 0.81252 0.77197 0.70842

VP-U40-PSNRHVSM 0.87617 0.82957 0.73905 0.74927 0.31157 0.21304 0.89771 0.84384 0.81371 0.82339 0.77859 0.70633

VP-U40-SSIM 0.87759 0.81391 0.83158 0.84128 0.29789 0.3049 0.90306 0.83358 0.86258 0.84947 0.82861 0.72511

VP-U40-MSSSIM 0.86279 0.80783 0.7885 0.77419 0.25424 0.1513 0.91662 0.85521 0.85636 0.84201 0.82351 0.72004

VP-U40-GMSD 0.86537 0.81826 0.8126 0.80938 0.40609 0.40261 0.9081 0.85997 0.83936 0.83474 0.82443 0.79005

VP-U40-VIFP 0.91709 0.86783 0.74454 0.7489 0.11579 0.10438 0.91598 0.83138 0.8764 0.86306 0.84214 0.72975

Viewports domain (Mirage) / UniformFov50 LCC SROCC LCC SROCC LCC SROCC LCC SROCC LCC SROCC LCC SROCC

VP-U50-PSNR 0.8944 0.82435 0.73644 0.70931 0.32978 0.27834 0.89299 0.82735 0.8117 0.80921 0.78018 0.70505

VP-U50-PSNRHVS 0.87971 0.82609 0.73504 0.74707 0.32978 0.11142 0.89803 0.85630 0.80637 0.8139 0.77334 0.70028

VP-U50-PSNRHVSM 0.87642 0.82522 0.74008 0.76026 0.29801 0.16009 0.90048 0.85521 0.81314 0.82519 0.77747 0.70192

VP-U50-SSIM 0.8796 0.80609 0.83011 0.84128 -0.00867 -0.00087 0.90651 0.84787 0.86528 0.85777 0.82952 0.72452

VP-U50-MSSSIM 0.86259 0.81565 0.78856 0.77896 0.29789 0.3049 0.91954 0.85447 0.8586 0.84698 0.82371 0.71539

VP-U50-GMSD 0.86693 0.81826 0.81726 0.81488 0.32185 0.3887 0.91177 0.86217 0.84243 0.83899 0.81914 0.77657

VP-U50-VIFP 0.91659 0.86087 0.7389 0.7511 0.11579 0.09157 0.91682 0.83871 0.87655 0.86715 0.84167 0.72665
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