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SUMMARY

A general and basic model for inference about characteristics of a finite
population of distinguishable elements is presented from a subjectivistic­
Bayesian point of view. A subjectivist analogue to simple random sampling,
based on the notion of exchangeable random variables, is discussed and
the inputs and assumptions underlying the model are shown to involve
nothing more than is required for inference under Bayesian models for
infinite populations. The model is illustrated by a number of particular
examples including one based on the multinomial distribution which
incorporates a prior distribution representing an extreme position of initial
ignorance. Inferences under this particular model are shown to agree
closely in several respects with usual "classical" results. Finally, an extension
of the results is presented involving the use of concomitant measurements, and
under this Bayesian model several common ratio and regression estimators
are shown to arise as means of posterior distributions.

1. PRELIMINARIES

FOLLOWING several recent writers, Godambe (1955), Hajek (1959), Godambe (1965),

and others, we define a finite population of N distinguishable elements labelled by the

integers 1,2, ... , N. We let JV' = {I, 2, ... , N}, the label set, and X= (Xl' X2, ... , X N ) ,

where Xi is the unknown value of some characteristic possessed by the ith population

element. The unknown Xi can be taken as vector valued, a case of considerable

practical importance, though only the scalar case will be treated here. Inference

concerns the N-dimensional real vector parameter X or, more realistically, some

simple function g(X) of X say. Here we will be mainly concerned with the simple

functions T= ~ J " Xi' fL = TIN, and a2 = I/N~J"(Xi-fL)2, the population total,
mean, and variance.

A sample of size m, s* is defined quite generally to be an ordered sequence of m

of the population elements it, i:, ...,i~ (1'[ E.X, j = I, ... , m, repetitions allowed)

together with the sequence of their associated observed characteristic values

x* = (xi.(U' X i . (2)' ... , Xi.(l/tl), i.e. we observe for each ij that Xi.(j) = xi.(j)'
j = 1,2, ... , m. While it is therefore assumed that if elementj is included in the sample

then the value of X, becomes known with certainty the model is being extended to

weaken this restriction and thereby incorporate response error, bias, and non­

response.

A sample design is then defined by some countable set S* of ordered sequences,

s*, together with a probability measure assigned by choosing a function p(s*);::0,

~S.ES.P(S*) = I, where p(s*) is the probability of choosing the sample s*. That any

such sample design may be implemented by an element by element sampling procedure

has been demonstrated by Hanurav (1962).
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For any such sample (s*, x*) we define the statistic (s, x) to be the set of indices

of distinct population elements, s = {iI' ... , in)s;A", included in the observed sequence

s* together with the observed values Xj of Xj,jES. For notational convenience, given

any sample s* containing the n distinct units s = {iI' ... , in}' we define the (matrix)

operator S such that SeX) = (Xi(ll' ... , Xi(n») (for definiteness we assume

i1 < i2 < ... < in); the complementary operator S such that

SeX) = (Xj<lb Xj(2), ... , Xj(lV-nl)

for all ji E.;fI - s, (A <t, < ... <jlV-n); and the vector x = (Xi(lb ... , Xi(n») of observed
values of SeX).

It is obvious under this model that for any joint prior probability distribution of

the vector parameter X given by the general density p'(X1, ... , XlV) the posterior

probability distribution of X given the sample (s*, x*) is precisely the same as that
given only the statistic (s, x). It then follows immediately from the Bayesian definition

of sufficiency that (s, x) is a sufficient statistic, a fact previously demonstrated or

noted using the more usual (and equivalent) definitions by Basu (1958), Hajek (1959),
and others.

It also follows that given (s*, x*) the likelihood function of X (the likelihood

function being unique only up to an arbitrary positive multiplicative constant) is
given by

(

kP(S*), for XI SeX) = x,
I{X; (s*, x*)} = I{X; (s, x)} = .

0, otherwise,
(1)

where k >°is an arbitrary constant.
Hence given a joint N-dimensional prior on X, with density p'(X), posterior

distribution of X conditional on a sample of the sort described above has a density

given by

(

P(s*)P'(X ) for XI SeX) = x,
p{XI (s, x)} o: .° otherwise.

(2)

(Here and in the sequel, for notational convenience and where it will not lead to
confusion, we will use the same symbol, for instance, X, to indicate both a random

variable and its generic value.)
Finally, if p(s*) is independent of X (the case to be assumed here) then this

posterior density is given by

(

P'(X )/ps<xl X), for X ISeX) = x,
p{XI (s, x)} = .

0, otherwise,
(3)

where Ps<X)(x) of-°is just the marginal prior density of SeX).
Several writers, notably Godambe (1966), have viewed the likelihood function,

(1), as being almost, if not completely, uninformative and have adopted principles of

inference eschewing the likelihood principle. Our view here, quite to the contrary, is

that when reasonable prior distributions are introduced, their revision by sample data
can lead to meaningful and useful inferences on those functions of X which are

typically of interest. No new principles of inference are necessary.
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In this paper we examine several instances of what we consider to be the simplest
useful class of prior distributions-those reflecting exchangeable or symmetrically
dependent opinions regarding the X/So Such priors seem, in some sense, to yield a
subjectivist analogue to inference under simple random sampling. Some basic
notions and discussion of subjective Bayesian views in sampling are given in the next
section while specific examples and results are given in Sections 3 and 4. Section 5
presents some results on the use of auxiliary information in setting priors.

Before proceeding we note the following earlier relevant work. One of the earliest
published examples of a posterior distribution of a mean or total of a finite population
appears in a paper of Karl Pearson (1928). In this paper Pearson gives the posterior
distribution of the number or proportion of elements possessing some attribute using
a "diffuse" prior, by essentially normalizing the hypergeometric likelihood function.
Pearson's result is a special case of the results of Section 4. More recently, Aggarwal
(1959, 1966) has used some normal distribution priors, mainly as a technique for
generating minimax estimators in finite populations. Some of his Bayes estimators
are special cases of those given in Section 3.

Hill (1968) has considered the posterior distributions of means and percentiles
of finite and infinite populations using quite a different model from that of the present
paper. Also, independently, Roberts (1967), using a model similar to that given below,
has obtained a few of the results given in Sections 3.1 and 3.2.

Other writers, notably Cochran (1939, 1946), Godambe (1955 and later), Hajek
(1959), have used prior distributions (or their equivalents) in sampling theory. These
uses have been almost exclusively in discussion of optimum design strategy and not
with a view to obtaining useful posterior distributions.

2. EXCHANGEABLE PRIORS

The view taken here is a purely subjectivistic Bayesian one which essentially views
statistical inference as a process of revision, by relevant evidence, of one's degrees
of belief or ignorance as measured by subjective probability. That is, in the model
outlined in the preceding section, p'(X) represents one's initial betting odds on the
X/s in the subjective probability sense of de Finetti, Savage, and others. Perhaps the
simplest class of prior distributions is that given by taking p'(X) = IIi" P~(Xi)' that
is, by viewing the X/s as independent a priori. The meaning and consequences of
such a prior are clear-given a sample we learn for certain that Xi = Xi for i E s but
such information does not alter our opinions in any way regarding the non-sampled
Xi'S. It seems doubtful that there are many, if any, real problems in which one's real
opinions would be so expressible.

The simplest useful class of prior distributions in this situation would seem to be
that in which the X/s are viewed as exchangeable random variables. This notion was
introduced by de Finetti and discussions are available in de Finetti (1937) and briefly
in Feller (1966). De Finetti's monograph is available in English translation and with
new notes in Kyburg and Smokler (1964).) The notion is one of symmetry: random
variables Xl' ... , XN are said to be exchangeable if each of the N! permutations,
Xi(ll' ... , Xi(Nl> has the same joint probability distribution. Exchangeability thus
expresses the prior knowledge that while the units of the finite population are identi­
fiable by their labels (here the integers 1,2, ... , N) there is no information carried by
these labels regarding the associated X/s; that is, under exchangeability, given
1:( r s; N, one's initial betting behaviour regarding events defined by the unknown
quantities Xi<!l> ... , X i l r ) is invariant over the ordered sets of indices i l , · · · , i..
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(4)

(5)

(6)

Alternatively, exchangeability is akin to viewing the finite population as being

effectively randomized. I believe that the notion of exchangeability and exchangeable

prior distributions very closely approximates the real opinions of thoughtful "classical"

practitioners in many situations where they deem simple random sampling to be

appropriate.

Assuming that the X;'s are viewed as exchangeable, one still faces the problem of

assigning the N-dimensional joint prior distribution, p'(X). One may be aided in

this task by noting that a wide class of prior distributions p'(X) representing

exchangeability may be generated by viewing the X/s as independent, identically

distributed conditional on some real or hypothetical parameter 6 = (81, ... , 8k) with

general density p(XiI6) and where 6 is assigned the probability distribution function

F(6). The joint prior density p'(X) is then taken as the marginal distribution of X

given by the mixture

p' (X) = Ie i5/(Xi 16) dF(6).

The generation of a joint prior distribution by this approach is, barring differences

in probabilistic interpretation, equivalent to viewing the finite population as a sample

from an infinite superpopulation having unknown parameter 6. This notion has been

used previously in sampling theory. (See Cochran, 1939, 1946, for example.) Here,

unlike earlier uses of the superpopulation concept, the parameter 6 is itself assigned a

subjective probability distribution. This "superpopulation' notion seems more

generally reasonable from the present viewpoint than under objectivist interpretations

of probability.

2.1. Posterior Distribution

Combining a prior distribution of the sort generated by (4) with the likelihood

function (1) resulting from a sample (s*, x*) which yields the sufficient statistic (s, x)

we find that the posterior distribution of X is given by the density

{
r IT p(Xi 16) IT P(Xi16) dF(6), for X ISeX) = x,

p{XI(s, x)} a: Je i~s iES

0, elsewhere.

Noting that the posterior distribution of the "superpopulation" parameter 6, is

proportional to IT i ESP(x iI6)dF(6), the posterior on X may be expressed as

{
r IT p(XiI6)dF(6j x), XI SeX) = x,

p{XI(s,x)} = Jeus

0, otherwise,

where F(6Ix) is the posterior distribution function of 6. Thus it is seen that one's

posterior opinions regarding the unobserved X/s are also exchangeable but now with

a density yielded by a mixing distribution equal to the usual posterior on the

parameters, 6. Note that under this formulation both the prior and posterior

distributions of X can be viewed as predictive distributions of the unobserved com­

ponents of X under the parametric model specified by p(XiI6) and the prior F(6).

The notion of predictive distributions has been used and discussed by Roberts (1965).
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2.2. Discussion

Several points should be noted explicitly. First, the basic finite population model
which yields the likelihood function given in (I) above is general and virtually free
from any subjective element. From a Bayesian point of view the subjectivity enters
solely through the choice of the prior, p'(X). When one's prior knowledge regarding
the X/s is such that they may be viewed as exchangeable then, as indicated in
expression (4), the assessment of such a prior may be thought of as involving (a) the
choice of a parametric family of distributions, p(Xil 6), and (b) the choice of a prior
distribution of 6. The same two specifications, where both typically involve some
degree of subjectivity, are precisely the ones required for a Bayesian approach in
most parametric inference problems.

The second point is that the basic notions given above can be extended in several
directions to give formal expression for a much wider class of realistic prior knowledge.
Two fairly obvious extensions are to cases where the elements of the population can
be partitioned into k subsets such that within each such subset one views the X/s as
exchangeable and to cases where one's opinions regarding the X/s are exchangeable
conditional on some known auxiliary measures Yi' i = I, ... , N. These extensions have
obvious connections with "classical" notions of stratification and regression and
ratio estimation. Some specific results along the latter lines will be given in Section 5.
Stratification will be dealt with in a subsequent paper.

A final point, to be noted explicitly here and used in the sequel, concerns intimate
similarities between subjective prior knowledge expressible by exchangeable prior
distributions of X and objective distributions induced by simple random sampling.
Recall that under the general model put forth above the units of the population are
distinguished by an associated tag (name, address, etc., of the element)-here taken
to be coded by the integers I, ... , N. Thus Xi is the (unknown) variate value possessed
by the population element tagged by the integer i (or with name, address, etc.,
coded by i).

From an objectivist point of view if a simple random sample of n of the N

population elements is drawn then each of the (~) subsets, s = {ii' ... , in}<;:.h~ has

probability pes) = I / (~). Thus conditional on X = x the probability that the n

sample units assume the values Xi(lb ... , Xi(n) is given by

P(Xi(lb ""Xilnd X = x) = pes) = I / (~).

This distribution, ofcourse, yields the sampling distributions and moments offunctions
of the sample observations upon which standard sampling theory inferences are

based.
From a Bayesian view suppose that a joint prior distribution, p'(X), has been

assessed which reflects exchangeable prior knowledge of the X/so Let s' be any
prespecified subset of n of the population elements-for definiteness we will suppose
Sf = {I, 2, ... , n}. Then the marginal prior distribution of Xi' i E Sf is the same as that
for any other subset of n elements, that is,
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This in turn implies, by simply looking at mixtures, that one's prior distribution of

Xl' ... , X n is precisely the same as that on the variate values attached to n units
selected by simple random sampling (or indeed by any fixed size probability sampling

design). Further we note the property of such priors that given X = x then

, __ {I, if Xi = Xi' i=l, ... .n,
p(XI,···,Xn!X-x)- .

0, otherwise,

While this stands in contrast to the objectivist's sampling distribution there is another

aspect of an exchangeable prior which is tantamount to the sampling distribution.

Let X* = (xt, ...,Xt) denote the collection of values of X without their distinguishing
labels (or under an arbitrary labelling). Note that X* = x* whenever X equals any

permutation of the co-ordinates of x* = (xt, ... , xt). It then follows immediately

from the exchangeability of p'(X) that conditional on X* = x* the X/s are still
exchangeable random variables and hence

p'(XIX* = x*) = liN!

for X equal to any permutation of the co-ordinates of x*; and for any nco-ordinates

of x*, Xi.(l)' ,,,,xi.(n)

p'(XI = x i • W , ... , Xn = xi.(n>!X* = x*) = ~p'(XIX* = x*) = (N-n)!/N!

Finally, if we ignore the ordering by letting X n = {xi.w, ... , xi.(nl} denote the event

that xi.w, ""xi.(n) are the values assumed by Xl' ... , Xn in any order then

p'(Xn = {x i •W' ""Xi.(nl}IX* = x*) = I / (~).

Thus it follows strictly from an exchangeable prior on X that given the collection, X*,

of the N population variate values, but not knowing the units to which they are
attached, the probability that any prespecified subset of n of the population units will

assume any subset of these N values is precisely the same as if the subset were drawn

by simple random sampling from the N elements of X*.

As immediate consequences of this result we have that, if the prior on X is
exchangeable and if s denotes any specified set of n of the population elements, and

letting % and s~ be the mean and variance of these X/s (i E s), then

and

E(%I fL) = E(%I fL, a2
) = fL,

N-n a2

V(%lfL, a
2

) = N-I n'

E( 21 2) _ 2 n
sn fL, a - a N _ l'

(7)

(8)

(9)

where fL and a2 are the finite population mean and variance, respectively, as defined

earlier. These may also be seen directly by observing that conditional on fL (or on fL

and a2
) the X/s remain exchangeable random variables and hence have common

means, variances, and covariances, and using the conditions:

ECiLlfL) = fL,

V(fLIfL, a 2
) = 0,
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(10)

2.3. A Result on the Posterior Mean of fL

In this section we show that under reasonably general conditions the posterior
expectation of fL, E(fL I(s, x) is a weighted average of x and the prior expectation of fL,

E(fL), with weights respectively inversely proportional to the prior variance of fL, V(fL),

and the prior expectation of the conditional "sampling" variance of X. This appealing
form follows as a corollary of a similar result for "infinite" populations given by

Ericson (1969).

By way of preliminaries observe that under the model above the posterior

expectation of fL = ~1" XiiN is given by

1 _
E{fLl (s, x)} = "N[nx+(N-n) E{Xi I(s, x)}],

and since conditional on a the X/s are independent identically distributed it follows

that

E{Xi !(s, x)} = E{fL(a) I(s,x)},

where fL(a)=E(Xil a), the common superpopulation mean. Thus we have

1
E{fLl(s,x)} = "N[nx+(N-n)E{fL(a)l(s,x)}].

Assuming the existence of the expectations used below and that V{fL(a)} > 0 we have
the following theorem.

Theorem. If E {fL(a)I(s, x)} = exx+ fJ where ex and fJ are independent of the x/s then

E{ I( )} = xV(fL) +m'Ep, V(X\fL) (11)
fL s,x V(fL) +Ep, V(XlfL) ,

where V(fL) is the prior variance of fL, m'=E(fL), the prior mean of fL and Ep, V(XlfL)

is the prior expectation of the conditional variance of X given fL.

Proof It was shown by the author (1969) that under the conditions of the present
theorem

(12)

Now note that

m'=E(fL) = EeE(fLla) = E{fL(a)},

and by the conditional independence of the X/s

1
V(fL) = e,V(fLl a)+ VeE(fL Ia) = NEe V(Xil a)+ V{fL(a)}

and
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Substituting these results in (12) and simplifying we find

E{ I( x)} = xV(fL)+m'{(N-n)/Nn}Ee V(XiI6)

fL s, V(fL) +{(N-n)/Nn} s, V(X;j6)

The asserted result then follows using (8) and noting that

V(XI fL) = £"'/1 V( XI fL,a
2)

and

-I -I 2 N-n ?

£1' VeX fL) = £1',,,, vex fL, a) = (N -I) n £(a-)

N-n N-n
=(N I EeE(a216)=--EeV(XiI6). (13)

- )n nN

It will be noted that in all of the examples discussed in Sections 3 and 4 below, as

well as many others, the condition of the theorem holds, and thus the form (II) holds

for a variety of distribution assumptions for finite populations. The usefulness of this

theorem is that the condition E {fL(6) I(s, x)} = !Xx + f3 is very easily verified, while to

show (II) directly has been found often to require considerable manipulation. The

last form in (13) also provides an easy way to evaluate £1' V(X!fL) rather than using

the conditional distribution of X given fL.

2.4. The Role of Randomization

A few fragmentary comments are in order on the subtle subject of the role of

randomization in inference and particularly as it pertains to the specific model

outlined above. These comments are in the spirit of general comments on randomiza­

tion in Bayesian inference given by Savage (1962).

The first point to be re-emphasized here is that under the present model and any

prior on X the form of the posterior conditional on the sample sufficient statistic (s, x)

is given by (3) no matter how the sample was selected. (Provided, of course, that the

measure p(s*) is independent of X). The problem of an initial choice of sample design

still remains and one might, for example, adopt a criterion such as choosing the

design to minimize the prior expectation of the posterior variance of fL. The choice

of design under this model will quite realistically depend on one's prior knowledge

of the population as reflected here in p'(X) as well as on the economics of implementing

various alternative designs.

It is also immediately evident by symmetry that if one's initial knowledge regarding

the X/s is truly reflected by an exchangeable prior on X then, economics aside, there

are no a priori grounds for preferring a sample consisting of any particular subset of n
of the N units over any other subset of the same size. Under this state of prior

knowledge and for the purposes of one's own personal inference, ceteris paribus, one

may feel rather indifferent regarding randomization and depending on its cost may

have preferences against it. When observational costs are introduced there would still

remain the question of economic sample size.

Randomization seems compelling because the real world differs from the idealiza­

tion of the preceding paragraph in at least two important respects. First, sample

information is seldom obtained solely for one's own personal inference purposes.

Clearly even if one has truly exchangeable opinions regarding the X/s the use of

randomization may more than offset its cost through the increased utility of the

resulting sample to others.



1969] ERICSON - Subjective Bayesian Models 203

Second, it would appear that one's true prior opinions are rarely exactly

represented by an exchangeable prior distribution of X = (Xl' ... , X.v). Note,
however, that for any prior on X, p~(X) say, if the original identifiability of the
population units is to be destroyed by a replacement of their labels (integers I, ... , N)

by one of the N! permutations of these integers chosen with equal probability then

the prior distribution of the resulting X' = (X~, ... , X:v ) (under the random labelling)
is given by the exchangeable prior p'(X'). (p'(X') being merely the equally weighted

mixture of p ~ ( X ) over all N! permutations of labels.) In view of this, if one's initial
opinions regarding X were roughly exchangeable there may be considerable economy

of thought and effort through symmetry and little loss in directly assessing the

exchangeable prior p'(X') rather than agonizing in detail over the contingencies needed
to assess p'(X). In this case the model discussed above is exactly applicable for

inference regarding X' and functions of X', and as pointed out above one would be

indifferent among samples consisting of any subset of n of the randomly relabelled
units. Finally, for inference regarding permutation-invariant functions of X (mean,

total, variance, percentiles, etc.) this procedure is tantamount to taking p'(X) = p'(X'),

that is, the exchangeable prior on the original identifiable units, and then selecting the
sample of n by simple random sampling.

3. RESULTS FOR SPECIFIC DISTRIBUTIONS

In this section we give illustrative results for two special cases obtained by taking

p(xii a) to be normal with either known or unknown variance and taking dF(a) to be

either natural conjugate or diffuse. The case where p(Xil a) is binomial is a special
case of results given in Section 4. Similar results are readily obtained under various

other distributional assumptions. In carrying out this program much of the notation

follows that of Raiffa and Schlaifer (196 I). The reader will also find that a good deal
of the required distribution theory used below is given in their monograph.

3.1. Normal-Superpopulation Variance Known

As a first example which may not be useful in characterizing real prior opinion but
which sets the pattern for many of the results persisting under different assumptions,

suppose ptX, Ia) is taken as a normal density with unknown mean e and known

variance v and suppose further that dF(e) is taken as the conjugate prior-normal with
mean m' and variance o', It follows readily that the prior on X is an N-dimensional

symmetric normal distribution with common means, m', common variances, v+v', and

common covariances, c', The prior distribution on fL = N -1 ~ r Xi is thus normal

with mean E(fL) = m' and variance

V(fL) = v' +1'/N. (14)

As one expects under such a model, the prior distribution of a2 = ~r(Xi-fL)2/N,

the variance of the finite population, is such that No-]» has a X2 distribution on N-l
degrees of freedom-reflecting little prior uncertainty regarding a 2•

Given a sample consisting of n distinct units and observed variate values x, the
posterior on fLea), here equal to e, is, by well-known normal distribution theory,

normal with mean

E{el ( )} = "= .YL
J -v m'c]«

s, x ssm , I

V +l';n
(15)
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" 1 (ujn ) , (
v =nju+lju'= u'+ujn v, 16)

that is, the posterior mean of the superpopulation mean () is a weighted average of the
sample mean, X, and the prior mean, m', with weights inversely proportional to the

variances V(XI ()) and V( ()), while the posterior variance of () is the reciprocal of

the sum of these weights. These forms carryover to the finite population in a very

natural way.
From the form (6) it is clear that the posterior distribution of X is an N-dimensional

singular normal distribution with all its probability concentrated in the subspace where
S(X) = x, or equivalently the posterior distribution on the unobserved co-ordinates

S(X) is (N-n)-dimensional normal with common means, m", common variances and

covariances given by u+v" and o" respectively, where v" is as in (16).

It then follows immediately that the finite population mean 1-'-, which we write in

the form

I-'- = N-l (n.i:+ ~ Xi)'
i,s

being a linear combination of normal random variables has a normal posterior

distribution with mean

E{I-'-I(s,x)} = N-l{nx+(N-n)m"}

and variance

V{I-'-I (s,x)} = N-2{(N-n)(u+u")+(N-n)(N-n-l)v"}.

Substituting from (14), (15), and (16) these quantities may be rewritten as

E{ I( )} = n(Nu'+v)x+(N-n)um'
I-'- s,X N( , )nu +u

and

V{ I(s x)} = N-n v(Nv' +v) = N-n .ss: V( ).
1-'-, N2 (nu' +v) N v' +vjn I-'-

(17)

(18)

This last expression for the posterior variance is instructive, for the first factor is a

finite population correction factor and the second factor is just that by which the
data reduce the prior variance of the superpopulation mean (compare with (16)). It

is also clear from the theorem of Section 2.3 and the linearity of E {()I(s,x)} in x
(formula (15)) that the weights in (17) have the interpretation given in (11). This is

also directly verified using (14) and from (13) noting that Ell V(XII-'-) = {(N-l)jnN}v.

Alternatively, under the present model, it is easily verified that Xn' the mean of any

n of the X/s, and I-'- have a bivariate normal distribution. From this and the sufficiency
of X n it follows that the distribution of X n given I-'- is N[I-'-,{(N-n)jN}(vjn)], while

the marginal on I-'- is N{m',(Nv' +v)jN}. Thus using standard normal prior-to­

posterior results it follows that the posterior distribution of I-'- given (s, x) is normal
with mean and variance given by (15) and (16), with v' replaced by (Nv' +v)jN and v

by (N - n) vjN. It also follows immediately that in the present case

V(XII-'-) = Ell V(XII-'-)'
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Finally, note that if the prior on B is taken as degenerate uniform on the whole
real line than the posterior on the finite population mean J1, is normal with mean x

and variance {(N - n)/N}(v/n).

3.2. Normal-Superpopulation Mean and Variance Unknown

Suppose now, somewhat more realistically, that the finite population is viewed
as a sample from a normal superpopulation with unknown mean B and unknown
variance l/h, thus we here take 6 = (B,h). Hence

p(Xlh, ()) o: hiNexp( -thNa2) exp ( -thN(J1,- ())2} = hiNexp {-th ~ (Xi - ())2}, (19)

where again J1, and a2 are the mean and variance of the finite population. Note that
here a2 is not equal to l/h.

Suppose further that F(6) is taken to be non-degenerate normal-gamma with
density

f( (), h) a: exp{- thn'( B- m')2}hi8( n ' ) exp ( - thv' v') hip -1, 0 < h < 00, - 00 < () < 00,

v', n', v' > O. (20)

(See Raiffa and Schlaifer, 1961, for further discussion.)
By defining o(n') = 0 if n' = 0 and o(n') = 1 for n' > 0 various degenerate priors

can be had as special cases of this density: for example, taking n' = v' = 0 (20)
reduces to

f(B,h)och-1, ts-chcco, -00< ()<OO. (21)

This is merely the often used prior discussed by Jeffreys (1948) and Savage (1961),
which seems a successful representation of vagueness in that it is uniform in Band in
the logarithm of the variance, h-1•

It is shown in the Appendix that under this model the prior distribution of the
finite population mean, J1" is "Student" that is, J1, is distributed like

, {(N+n')v'}i (22)
m +tp' n'N '

where tpo is a standard t random variable on v' degrees of freedom. Thus the prior
mean and variance of J1, are m' and v'v'(N+n')/n'N(v' -2) respectively.

The main result concerning the posterior distribution of J1, is given in the following:
Theorem. (a) With the joint prior on X implied by (19) and (20) and given the

sample (s, x) with mean x and variance S2 the posterior distribution of J1, is "Student",
that is, J1, is distributed like the quantity

V(J1,)x+ V(XIJ1,)E(J1,) [N-n V{BI (s, x)} V( )v"-2]!
V(J1,) + V(XIJ1,) +t

p'
N V(B) J1, v"' (23)

where v" = v'+n, V( ()I(s, x)) and V( ()) are the posterior and prior variances of B,

V(XI J1,) is the prior variance of the mean ofa sample of sizen given the finite population
mean, V(Jl,) and E(J1,) are the prior variance and mean of J1" respectively, and t p' is a
standard t random variable on v" degrees of freedom.

(b) Under the prior on X generated by (19) and (21) the posterior distribution of J1,

given (s, x) is such that J1, is distributed like the quantity

x+tn - 1 (N~n ~r- (24)
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(25)

A proof of this result, along with a number of alternative expressions, explicit
formulae, and some results on the prior and posterior distributions of the finite
population variance, a 2

, are given in the Appendix. We note here merely that the
posterior mean of fL is again of the weighted average form given in equation (11), and
where, in this particular instance, V(XI fL) is independent of fL. Also from (23) it
follows that the posterior variance of fL, {(N -n)/N} [V(81 (s, x)}jV(8)] V(fL), is simply
the prior variance reduced by the same two factors as in the preceding example
(compare (18). Finally, for a diffuse prior on the superpopulation parameters the
posterior mean and variance of fL are seen to be x and {(N-n)/N}{(n-I)/(n-3)}s2/n
respectively, in close agreement with that which one might expect from traditional
sampling theory.

4. EXTREME PRIOR VAGUENESS AND THE MULTINOMIAL

Analyses of the sort given in the preceding section can, of course, be carried through
under various alternative assumptions regarding p(Xil 6), for example, by assuming
the superpopulations to be Poisson, gamma, binomial (a special case of the results
given below), etc. Under these models one's prior uncertainty is represented in terms
of his imperfect knowledge regarding 6 and, to a lesser extent especially for large
finite populations, by viewing the population as a sample from a superpopulation.
While such models may often adequately approximate one's prior uncertainty
regarding the unknown X, nevertheless they do assume strong prior knowledge
regarding the shape of the finite population distribution by taking the superpopulation
form as known. Weaker prior knowledge of the shape of the finite population can be
modelled by taking the p(Xil 6) in (4) to be a member of a more flexible family of
distributions, for example, the power distributions used by Box and Tiao (1962).
Other approaches might take p'(X) as a more complicated mixture. An alternative
approach, based on the multinomial distribution and incorporating extreme vagueness
regarding the shape of the finite population, is developed in this section. Special
cases of the results below are the early result of Pearson (1928) suitable for
dichotomous populations (using (4) with a binomial superpopulation), and a
generalization using more general beta priors on 8 than the uniform one used by
Pearson.

4.1. The Basic Model

Suppose that each X t can only assume one of the finite set of numerical values

qy = {YI,Y2, ""Yk}, YI <Y2<'" <Yk' where k may be an extremely large integer having
no relation whatever to N, the population size. This assumption clearly recognizes
the inherent discreteness of almost all observation due to limitations of measuring
instruments, etc. Suppose that the probability that Xi equals Yj is Pj' that is,

k

P{Xi=Yjlp}=pj, j= l, ... ,k, 2:,Pj= 1,
j=l

and where p = (PI' ... ,Pk-l)' Here p is assumed unknown and plays the role of 6 in
(4). The X/s are assumed independent and identically distributed with the distribution
(25). Thus for any y = (Yi<1l> "',YiLV», Yilj) E qy, a joint prior on X can be given by

r N
p'(X = y) = .!p}]/i<il!'(p)dp, (26)
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where f'(p) is a prior density on the superpopulation parameter p. The class of
prior distributions of X of the form (26) again reflects exchangeability regarding

the X/so
We shall find it more convenient in dealing with certain aspects of this model to

consider it in slightly different terms. Let N, be the unknown number of the N

population elements for which Xi = Yj,j = I, ... , k. In this notation fL = N-l ~ r ~ I Y j N,

and a2 = N-l(~r=IYJ N, - NfL2). In this manner inferences regarding these and other
symmetric functions of the unknown finite population X/s are expressible in terms
of the unknown N/s. From (26) it follows that the joint prior distribution on the
N/s is given in non-singular form by

f.
f(N+I) k-l ( k-l ).Y~~!-I.Yi

p'(N)= k-l (k-l) .TIp;" 1- ~ P i f'(p)dp, (27)
P TIf(Ni+l)f N- ~ N i + 1 , ~ 1 1

i=1 1 /

where N = (N1, N 2, ... , N k - 1) , p = (Pl,P2' ,,,,Pk-l)' and the integral is over the
simplex {pi 0 ~Pi ~ I, ~t-l Pi ~ I}.

To summarize briefly and in slightly different form: Under the present model both
the real finite population and the hypothetical "superpopulation" are defined by

unknown distributions over the k distinct and ordered values Yl' ...• }'!... The real
finite population is defined by the unknown distribution function (d.f.)

where ..F;r = {iIYi~x}. In addition this finite population is assumed to have been
generated by N independent observations on a random variable having unknown
distribution function defined by

where ..F(z) = {iIYi~z}.

Choice off'(P)

To this point the model outlined above seems straightforward and realistic. The
difficulty, however, is in choosing appropriate and useful prior distributions for the
parameter p. Pending further study and only as a tentative and convenient approxima­
tion in certain special cases, we will take the prior on p to be a (k - I)-dimensional
Dirichlet distribution, (see Wilks, 1962) with density

feE) k-l (k-l ) < - ~ i k - l < i - l

f'(P) = k-l (k-l ) Dl p~;-1 1- t Pi , (28)
TI r(Ei) f E- ~ Ei

1 1



208 ERICSON - Subjective Bayesian Models [No.2,

for parameter values Ei>O, i= I, ... ,k, (E=LtEi)' It is well known that this
distribution has means, variances, and covariances given by

E(Pi) = EdE, i = 1, ... , k,

Ei(E- Ei)
V(Pi) = E2(E+ 1)' i = 1, ... , k,

-E·E·
COV(Pi,Pj) = E2(E: ~ ) ' i#-j = 1, ... ,k.

It then follows immediately that the mean and variance of the distribution function
Fz(z) of the "superpopulation" are given by

{

O' Z<Yk'

E{Fz(z)} = ~ LEi' Yt ~z~Yk,
E .f(z)

1, z>Yk'

where ~ was defined above, and

(

O'

V{Fz(z)} = 1
E+ 1E{Fz(z)}[I-E{Fz(z)}],

Z<Y1 or z > Yk'

It then follows that by the choice of the E/S (up to an arbitrary positive multiplicative
constant) the prior expectation of the d.f., Fz(z), can assume almost any desired shape,
while by choosing that constant so that E = Lt Ei is small, the variance of Fz(z) can
be made large-representing vagueness regarding this unknown "superpopulation"
d.f. It is in fact only for such small values of Ei and Ethat we believe such a Dirichlet

• prior is at all tenable in this setting and even then it is only tentatively put forth to
represent an initial state of extreme vagueness.

Before discussing this further we note that the resulting prior on N is given,
using (27) and (28), as

p'(N) = jgcM:1)(N I N, E,E)=

k-1 (k-1 k-1 )
r(N+ 1) i!:I

1
r(Ni +Ei) r N- ~ Ni+E- f Ei r(E)

k-1
Ni = 0, I, ... ,N, L Ni~N,

i=l

(29)

and where E = (E1, ... , Ek-1)'

This joint distribution is merely a straightforward generalization of what Raiffa
and Schlaifer (1961) have termed the beta-binomial distribution. It might analogously
be termed the Dirichlet-multinomial distribution; Mosimann (1962) has termed it the
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compound multinomial distribution. We will adopt the notation ftt'M1 J (NIN, E, e) to
denote the (k - 1)-dimensional Dirichlet-multinomial distribution whose density is

given in (29). It is also easily seen that this joint distribution arises by: assuming that

the N/s are independent Poisson random variables with parameters ,,\, i = 1, ... , k,
assuming that the .:Vs are independent gamma random variables with parameters Ei

and common scale parameter ex, and then finding the joint marginal distribution of the

N/s conditioned on 'L.Ni = N. Thus this prior has the property that the only relation­
ship among the N/s is due to the constraint that they sum to N. When the finite

population is viewed microscopically as envisaged under the present model (i.e.

when k is huge and the collection of y;'s represents all possible observations on any
Xi to the practical limitations of one's measuring ability), such a feature of one's

prior opinions does seem approximately realistic. However, this property persists

even when large numbers of adjacent cell frequencies, N j , are grouped. This class
of priors thus seems incapable of giving formal expression to prior knowledge which is

characterized by vagueness concerning the shape of the finite population and a belief

that the grouped frequencies, at least, are "smooth".

We proceed to examine some consequences arising from the adoption of such a

Dirichlet-multinomial prior with emphasis on the case where the E/S and their sum
are chosen to be small. In such a case this prior seems to represent an extreme

position of prior vagueness, not even incorporating prior belief in the "smoothness"

of grouped frequencies. As will be seen below, even though in any sample from the
finite population almost all cells have an observed frequency of zero, seemingly

realistic and useful posterior inferences can be made about those properties of the

population typically of interest in sampling. Such inferences depend little on the

actual choice of the E/S, providing they and their sum are small. However, since there
are aspects of this class of priors which are not at all realistic, it is to be expected that

certain features of the resulting posteriors will be disturbing.

Properties of the prior on N

Before proceeding with the analysis of aspects of the posterior distributions it is

useful for future reference to catalogue some properties of the prior distribution of

several characteristics of the finite population. Since, given p, the N/s are multi­

nomially distributed while the p/s have means and variances given in the preceding
section, it follows readily that

k

E(JL) = 'L.YjEj/E
1

and

where again JL is the finite population mean.

Similarly, the prior expectation of the population variance, a2, is given by

(30)

(31)

(32)
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Also if ~ 17 is defined as the zrth percentile of the finite population, that is, ~ 17 = Yj

if j is the smallest integer for which 'L{=1Ni/N;;;;7T, then since ~17~Yj whenever

'L{=1 Ni;;;; N7T the prior distribution function of ~ 1 7 is given by

~ N r(E)r(Cj+f Ei) r(N+€-Cj-*Ei)

, , ~ 1 , " J J r C~:,) r (,- , ~ : , ) r(N+,j ,

1,

j= l, ... ,k-l,

j= k,

(33)

(34)

where {N7T} denotes the smallest integer not less than N7T. This follows since, given

p, 'L{=1 Ni= cj has a binomial distribution with parameters Nand 'L{=IPi while, by

properties of the Dirichlet distribution on p, 'L{=1Pi has a beta distribution. The

successive terms in the sum (33) are merely the terms of the beta-binomial distribution.

For further discussion of this distribution see Raiffa and Schlaifer (1961).

There is a further interesting and useful property implicit in the use of the prior (29)

which we have assumed. If s denotes any subset of n of the N distinct population

elements and if nj denotes the number of those X/s (i ES) equal to Yj then the joint

prior distribution on n = (n1, ... , nk-1) given N is simply the generalized hypergeometric

k-l (Ni) (N - 'Li-1
Ni)

IT "\'k-1
'( IN) = i=1 ,ni n- ..... 1 ni 0 N

P n . (~) , ni = , ..., i»

This result follows readily from (26) since the joint distribution of Nand n is given, in

singular form, by

k

= ~ (N-n)! r(E) l} r(Ni+Ei)

k k k

IT nil IT (Ni - ni)! IT r(Ei) r(N+ E)
1 1 1

The result (34) then follows by dividing this expression by p'(N) (formula (29)).

This conditional "sampling" distribution is a property of the exchangeable prior

distribution and does not, in the usual sense, depend on random sampling. We

record, for future reference, some well-known properties of this conditional

distribution:

n
E(n·IN) = -N·tNt'

V( .IN) = (N-n)nNlN-Ni)
~ N~N-l)'

(35)

(36)
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(37)

4.2. Posterior Inference

We now proceed to develop some important aspects of the posterior distribution

of several characteristics of the finite population typically of interest in survey work.

Given any sample, no matter how selected, consisting of n distinct population units

with their associated observed variate values, that is, given (s, x), it follows

immediately from (5) and (26) that the posterior distribution of X is given by

{
rnPilj) IT pj'i!'(p)dp, yIS(y) = x,

p{X = y!(s,x)} ex: )PNS j ~ 1 (38)

0, otherwise,

where y = (Yill), ···,YiCY» and nj (j = I, ... ,k) is the number of the n observed x/s
equal to Yj' Combining the second product in the integral above with the Dirichlet

density f'(p) it is clear that the posterior distribution on the unsampled units is of the

same form as the prior, (29). It is immediately evident that the posterior distribution

on the parameter p is of the same form as the prior-a (k-l)-dimensional Dirichlet

with the €i'S replaced by (€i+ni)'S.

Thus letting M, = Nj-nj be the number of unsampled X / ~ which are equal to

Yj,j = 1, ... ,k, n = (n1, .•• ,nk-l)' and M = N-n it follows that the posterior distribu­
tion of M = (M1, ••• , M k - 1) is also (k-l)-dimensional Dirichlet-multinomial with

parameters M, € +n, and E +n, that is, has a density given by

p{MI(s,x)} =fl5'M1l(MIM,€+n,E+n) (39)

in the notation of formula (29). The posterior distribution of N is then immediately

obtainable by substitution.

This posterior distribution, of course, is exactly that resulting by taking (34) as a

likelihood function using the observed n, with the prior (29): that is, (39) is, as a func­

tion of N, proportional to the product of (34) and (29). Also it should be emphasized

that a posteriori the M/s are distributed multinomially given p while p has the

(k - 1)-dimensional Dirichlet distribution defined by the parameters €i +n..

The posterior mean of tt

Given any sample (s, x) with observed sample mean, x, the posterior distribution

of the finite population mean, tt, has a mean E{ttl (s, x)} which is again of the weighted

average form displayed in (11): also, for all intents and purposes, E{ttl(s,x)}=x.

We note first that

and

E{Mil(s, x)} = (N-n)(€i+ni>'
€+n

V{M.I(s x)} = (N-n)(N+€)(€i+ni)(€+n-€i- n;)

tI ' (€+n)2(€+n+ I)

(40)

(41)

(42)
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These formulae follow most easily by conditioning on p initially, using moments of

the multinomial and Dirichlet distributions. Since 11' = N -1 ~ t Yi(Mi +nJ and since

n-1 ~tniYi = n-1 ~iESXi = X, it follows readily using (40) and (30) that

E{ I( )} = n(N+€)x+(N-n)€E(p,)
11' s,x N(€+n)'

It is then clear that if € is small, as assumed here, then

E{p,!(s,x)}=x;

(43)

(44)

even if € is near unity the relative weight assigned to E(p,) is the typically small fraction

(N-n)jN(n+I).

It is here again easily verified that the condition of the theorem of Section 2.3
holds with I} = p under the present model, and hence the posterior mean, (43), can

be recast in the form (11). We then have

k k

p,(p) = E(Xi!p) = EN1pE(XiIN,p) = ENlp~YiNijN= ~YiPi'
1 1

and using the fact that p has, a posteriori, a Dirichlet distribution it follows that

E{ (P)I( )}
_ ~ ni+€i _ nx+€E(p,)

11' s,x - ":"Yi-- - ,
1 n+€ n+€

which is linear in X, as required.
We can thus deduce by equating (43) with (11) and using (31) and (32) that

E{V(Xlp,)} = N-n E(a
2

) ,

N-l n

where E(a2
) is as given in (32).

(45)

(46)

(47)

(49)

The posterior variance of 11'

Several results can now be demonstrated concerning the variance of the posterior

distribution 11', V(p,I(s, x)). Clearly

V{p,l(s,x)} = ;2 V (JIMjYj I(s, X)),
and using the results (41) and (42) we find the expression

V{ I(s x)} = (N-n)(N+€) { ~ ~ ( € i + n i ) ( € + n - € i - n i ) "" .. (€i+ni)(€j+nj))
11' , N2 1 Y, (€+n)2(€+n+ 1) i'":/'Y} (€+n)2(€+n+ l)j'

(48)

The first result, in analogy with results given in Section 3, is that if p,(p)=~t YiPi,

the superpopulation mean, then using (31), and the facts that the posterior variance

of p,(P) is merely the quantity in curly brackets in (48) and that the prior variance of

p,(p) is the same quantity with ni = n = 0 for all i, it follows from (48) that

V{ I·(s x)} = N-n[v{p,(p)l(s,x)}] V( )
11', N V{p,(P)} 11' •
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The other, more interesting, results come from re-expressing (48) in a more

enlightening form. By letting S2 = (n - l)-lO:t=l Y1 ni - nx 2), the observed sample

variance, then after some algebraic manipulation it may be verified that (48) is

equivalent to

V{ I(s x)} = (N-n)(N+E)(n-l)s2 + E(E+ I)(N-n) V(fL)
fL, N2(n+E)(n+E+l) N(n+E)(n+E+I)

nE(N-n)(N+E){x-E(fL)}2 (50)
+ N2(n+E)2(n+E+I) .

From this form it follows that if the prior parameter E is chosen small (approaching

zero) then

V{ I( )} -'- N - n n - 1 S2 ...:... N - n S2
fL s,x - ----- - ---.

N n+ InN n
(51)

Even if E is near unity the first term in (50) may be an adequate approximation if n is

large, for the latter two terms of (50) are of O(I/n2
) . Thus under the extreme diffuse­

ness of prior knowledge captured in this model the posterior distribution of the finite

population mean, fL, has approximate mean xand variance given by (51). This provides

a Bayesian interpretation for the usual unbiased estimates in traditional sample survey

theory. Conclusions like this, especially regarding the mean, under an interesting

alternative Bayesian model have been obtained earlier by Hill (1969).

The final result concerns the exact form (50). At first glance it appears similar to

that obtained for the posterior variance of fL assuming a normal superpopulation

with unknown mean and variance (Section 3.2). On closer examination it turns out

that V{fL I(s, x)}, (50), is of precisely the same form as under that normal distribution

model! This may be seen by comparing (50) with the result (A21) of the Appendix

and using (A 7) and taking E = n' and E + 3 = v'. This coincidence is being studied

further.

The posterior mean of a2

It is also interesting to note how the data change the expectation of the variance,

a2,of the finite population. Since a2 = N-l(~f Y1 N, - NfL2) it follows that the posterior

expectation of a2 is given by

E{a21 (s, x)} = ~ [ *yHni +E{Mil (s, x)} - NV{fLl (s, x)} - NE2{fLl (s, xm]. (52)

Substituting from (40), (43), and (50) and after some further algebra using (32) and

(33) it may be verified that

E{a21 (s, x) = ~ [(N+E){NE+n(N+ 1)}(n-l)s2

N N(n+E)(n+E+I)

(N-n)(E+ I){Nn+ E(N-1)} E(a2) (N -n)(N+ E)(nE){X-E{fL)}2]

+ (N-1)(n+E)(n+E+ 1) + N(n+E)(n+E+ I) .

(53)

Using (32) it follows that if E is very small then

{ 21 ( )} ...:... N + I n - 1 2
E a s,x - --,:r- n+l s, (54)
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where S2 is, as before. the observed sample variance. For € near unity the two other

terms in (53) playa more important role than in V{fLI(s, x)}, for here they are each

of O(l/n).
Here too it may be verified that the expression (53) is formally identical to that

(formula (A26) of the Appendix) under the normal model, by making the correspon­

dence € = n' and €+3 = v',

Posterior distribution ofpercentiles

In this section we obtain quite easily the exact posterior distribution of t", the
rrth percentile of the finite population. It is then briefly demonstrated that standard
confidence intervals for percentiles agree approximately with posterior probability

intervals under the model being treated here. An alternative subjectivistic approach

to the distribution of percentiles has been given by Hill (1968).

To obtain the posterior distribution of t". as defined below equation (32). we note

that t,,";;Yj whenever ' L . { ( M i + n i ) ~ N 7 T and thus

{

j j 1
p{t" ";;Yjl (s, x)} = p ~ Mi~ N7T- ~ nil (s, x)r

As with the prior distribution on t" the posterior distribution of L{~1 M, is given by
the beta-binomial distribution:

{

i ,

p ~Mi=ul(s,x)f

I
I (N- n) r r(n + e) wr:,;(ll/+e;l-1 (1 - w)ll+e~r:,;(ni+ei)-1

= wU(I- w),\-n-u dw
o u r{'L.{(ni+€i)}r{n+€-'L.{(ni+€i)}

= (N-n) r(n + €)r{u+ 'L.{ (ni+ €i)} r{N + €- u- 'L.{ (ni+ €i)}

u r{'L.{ (ni + €i)}{rn + €- 'L.{ (ni+ €i)} r(N + e) ,

u=O,I, ... ,N-n. (55)

It follows that

j

O. if{N7T}-'L.ni>N-n, j= I •... ,k,
1

s :« {j } O<{N7T}-'L.{ni,,;;N-n,
p{t" ";;YjI(s, x)} = 'L. p 'L. M, = ul (s, x) ,

u={N,,}-r:Jn/ 1 j= I, ... ,k-I,

I,
j

if j = k and/or {N7T} - 'L. ni";;0,
1

(56)

where again {N7T} denotes the smallest integer not less than N7T, and where the terms
in the sum are given by (55). This expression of course yields the posterior distribution

on t" for any configuration of sample observations. It is clear from (55) and (56) that
with the extremely diffuse prior (including no smoothness beliefs) under this model,

that is, €i and € small, most of the posterior probability is unrealistically concentrated

on those values, Yi' observed in the sample. Nonetheless, posterior probability is
attached to intervals in approximate agreement with standard confidence intervals.
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To show briefly the relationship between inferences based on the above posterior
distribution and standard confidence intervals for percentiles we assume, for
simplicity, that the n sample observations are distinct, in other words that nj is either
zero or one for all j. We denote by Xli) the ith sample order statistic, thus

X(l) < X(2) < ... < x(n); and suppose also that xli) = Yl<Y", = x(j) for any i <j. We
finally approximate the distribution in (56) by taking Ei = 0, i = I, ... , k, in (55).

Under these assumptions it is first clear that if nj = °then p{e7T = Yj I(s, x)} = 0.
Additionally if nj = 1 then using (55) and (56) and for notational convenience letting

Vj == j~lni' (Vj+ 1 = .f ni ) ,
i=l t ~ l

one has

p(~7T=Yjl(s,x))= 1 f N~n (U+Vj) (N-U-Vj-2)

(
N - l ) \U~{N7T}-"j-1 Vj n-vj-2

n-l

N-n ('U+V.-l) (N-U-V.-l)\- ~} } I.

n ~ { N 7 T } - V j vj-l n-vj-l, f

Using the well-known identity G) = G=~) + (n~ 1), this expression reduces to the

hypergeometric term

(57)

m

p{Xli) < ~7T ~ x(jd (s, x)} = ~ P{~7T = Yj I(s, x)}
j~l+l

. ({N7T}-I) (N-l-({N7T}-I))
}-l v N-l-v

= ~ . (58)
v=i (N-l)

n-l

Finally, if N is large relative to n and since ({N7T} -1)j(N-1) == 7T, using the binomial
approximation to the hypergeometric we have

= 17T (i,n - i) - Irr (j, n - j ), (59)

where I/u, v) is the usual incomplete beta function. This expression is then recognized
as approximately the confidence coefficient attached to the statement that ~ r r is trapped
within the random interval {xli), X(j)} (see Wilks, 1948).
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(63)

5. SOME RESULTS ON THE USE OF AUXILIARY MEASUREMENTS

In this section we give a simple extension of some of the earlier results to indicate
how the basic model may be extended to incorporate a priori knowledge of some

concomitant measurements YI'Y2' "',YN and one's prior knowledge regarding the
relation of the unknown X/s to these values, by using them to help assess the
requisite N-dimensional prior distribution of X. Under various assumed relationships
between y and X some commonly used ratio and regression estimators turn out to
be the means of the posterior distribution of iL under diffuse priors.

5.1. Regression Model

In the following it is assumed that the y/s are known positive values associated
with the distinguishable population elements. Let Zi = g(Yi), i = 1, ... , N, where g is
some pre-specified positive valued function. We consider the model obtained by
assuming that given Yi' ex, and h, the X/s are independent normally distributed with
means exYi and variances z.fh, i = 1, ... , N. The parameter (ex, h) is assumed unknown
and assigned a normal-gamma prior.

We will be interested in three special cases obtained by taking zi to be Y~, 1, and
Yi respectively. Each of these cases is equivalent to a regression through the origin
with three different assumptions regarding the error variances.

Letting v = l/h note that these three cases are respectively equivalent to:

(a) Xi/Yi=ex+Ei, where Ei~N(O,v), (60)

that is, it is assumed that the unknown ratios Xi/Yi' given Yi' are equal to an unknown
constant, ex, plus a normally distributed error having unknown variance, v.

(b) Xi = exYi+Ei, where Ei~N(O,v), (61)

a regression through the origin with constant unknown error variance.

(c) Xi/Yi = ex+Ei' where Ei~N(O,v/Yi)' (62)

that is, the ratios Xi/Yi equal an unknown constant plus a normal error having an
unknown variance proportional to Yi 1•

Before proceeding one further comment seems appropriate. Although it is
assumed here that the investigator can, on the basis of his prior information and
knowledge, adequately approximate his prior distribution by appropriately choosing
zi' this is not completely required. He can let the data (sample) point the way by his
choosing only a family of functions, say Zi = Y~, where r is unknown and then
assigning a joint prior distribution on (ex, h, r). The basic form of the analysis to
derive the posterior distribution of iL remains unchanged. This remark is in the spirit
of the important paper of Box and Cox (1964.)

5.2. Analysis of Model: Prior to Posterior

Under this model for setting a joint prior on X

p(Xlex,h) ex: .n (~)l eXP{- -2
1 ~(Xi-exYi)2)f'

i=l Zi Zi

the conditioning on the y/s being implicit. It is assumed that a normal-gamma prior
distribution is assigned (ex, h) having density

f''(«, h) ex: exp{- ihn'(ex- &')2} hl 8( n ' ) exp ( - lhv'v') hl.'-I, (64)
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where 8(n') = °if n' = °and one otherwise. The "diffuse" prior,

f'(a, h) cc h", (65)

will be considered as a special case obtained by putting n' = Vi = °in (64). The joint
prior distribution of X can then be obtained by multiplying (63) by (64) and integrating

out (a,h).

Given a and h, tt = ~f XiiN is clearly normally distributed with mean a ~f Yi/ N

and variance ~ f zi/(N2 h), and thus has density

p(tt Ih, a) ex: (N2 h/z)i exp {- t(N2 h/z) Ctt - ay)2},

where z = ~~IZi and y = ~lf_lYdN. Multiplying by f'(a,h) and integrating out
(a, h) we find, after some simplification and assuming n' > 0, Vi> 0, that the prior

density of tt is given by

{

n' N2 }-((V'+1)/2l

pi(tt) ex: v' + ,(' 2)(tt - ii'y)2 '
v nz+y

where Y = Ny = ~f Yi' From well-known properties of the "Student" distribution
it follows that

and
" , + 2

V( ) = ~ ~ , 2
tt v' _ 2 n' N2' v > .

To obtain the posterior distribution of tt given the sample (s, x) we recall the fact

that tt = (nxs+(N-n)fLg)/N where tts = ~i~sXi/(N-n) and x s is the sample mean.
Proceeding conditionally we have that, given (s, x), a and h, tt s has a normal density

{
(N - n)2h}i f 1h(N-n)2 - 2}

PCttsl(s,x),a,h)oc Zs exp \- 2 Zs (fLg-ays)' (66)

where Zs = ~i~s Zi and Ys = ~i~sYi/(N - n).
Next the posterior distribution of (a, h) given (s, x) has density

f{ a, hi(s, x)} o: hn /2exp {_ th ~ (Xi ~ a
Yi)2}

tES zi

exp {- thn'(a - ii')2} hi8( n ' ) exp ( - thv'v') hiv'-1.

This, after some simplification, can be written as

f{ a, h i(s, x)} o: exp {- thn"(a - ii")2} hi8( n ' ) exp{ - thv"v"} hiv'- l, (67)

where

n" = ~Y7!zi+n',
iE8

(68)

(69)

(70)

(71)
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Writing the distribution in this fashion it is immediately obvious that it is still of
the normal-gamma family. Thus the derivation of the posterior distribution of p.,s is
analogous to that of the prior on p.,. The result is again a "Student" density,

f n"(N-n)2 \-W-ll
f{p.,s I(s, x)} ex lV" + ."( " 2)(p.,s - a"ys)2j ,

v n zs+Ys

where Ys = (N-n).Jis = ~i¢SYi; and hence the posterior mean and variance of p.,s are
given by

E {p.,s I(s, x)} = a"ys

and

v"v" n"zs+ y ~
V{p.,sl(s,x)}="-2 "(N )2' v">2.

V - n -n

It now follows immediately that the posterior distribution of p., given (s, x) is like
that of the quantity

N - f "( " 2)\1n _ _" n _ v n zs+ Ys \
»>'> ~ Ys + tv' t n"N2 J'

where tv' is a standard t random variable on v" degrees of freedom. Thus

and

«»: (n"zs+Y~)
V{p.,!(s,x)} ="-2 "N2'v - n

(72)

(73)

(74)

The posterior distribution of the finite population mean, p." with only diffuse prior
information on (ex, h) is immediately obtainable from the above results simply by

letting v' = n' = o(n') = O. It then follows that given the n distinct sample elements,

(s, x), p., is distributed like a linear function of a standard t random variable on n - 1

degrees of freedom. This situation will be discussed explicitly for the three special
cases mentioned earlier.

5.3. Special Cases of Diffuseness

Several interesting results obtain by reconsidering the three cases introduced in
Section 5.1 with only vague prior information on ex and h, as represented by the

improper prior density of (65). Under each of these models the posterior "Student"

distribution of p., turns out to be centred on (has mean equal to) a familiar and natural
"classical" estimator. This then gives some formal subjective Bayesian interpretation

or justification for these estimators and some insight into the sort of prior distributions

which might result in their use. Exact Bayesian credible intervals on p., are immediately

obtainable using (72). In each case below we merely state the posterior mean and
variance of p., obtained from (73) and (74) using the definitions (67)-(71) and taking
v' = n' = o(n') = O.

In the first case (a) (z, = yn one finds

1 I
E{p.,I(s,x)} = N(n,'(s +Fys) = N{n(''(s-FyJ+Fy}, (75)
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(76)

where r= L.iEsrdn, y = L.i'"Yi and ri = xi/Yi' Also

V{fLl(s,x)} = (:=~)~nL.iE~27+Y~,

where s; = L.iES sr, - r)2/(n- I). This posterior mean is a natural average of ratios

estimator.
In case (b) (z, = I) one finds

I
E{fLl(s,x)} = N{nxs+eX(y-nys)}, (77)

where eX = L.sxiydL.sy7 is the usual least-squares estimator of ex, and Ys = L.sYi/n.

Also

V{ I( )} = n - I ~(N-n)L.sY7-Y~
fL s,x n-3 Sex N2 '

where

2 _ L.sy7 L.sX7-(L.sXiYi)2
Sci - (n-I)(L.y7)2

is also the usual "classical" estimator of the variance of eX.

Finally, in the last model (c) (z, = Yi) one finds

I } s,
E{fL (s, x) = -=- y,

Ys

the usual ratio estimator, and

where

(78)

(79)

(80)

S2 = L.sYi L.sX7!Yi - (L.sXi)2,

(n- 3) L.sYi

Y and Ys are the totals over the population and sample respectively of the y/s, and

Ys = Y-Ys'
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ApPENDIX

We give here a proof of the theorem of Section 2.3, as well as a number of related
results under the normal distribution model of that section.

Prior on (}.t, a2
)

We begin by obtaining the prior distribution on X. Multiplying (19) by (20) and
integrating out 8 and h one finds that the prior on X is "Student" with density

p'(X) ex{v' +(X-m')H(X-m')l}-l(N+v'), -00 <X<oo,

where the superscript t denotes transpose, m' = (m', ... , m') and

(AI)

-1

N+n'-I

-1

-1 ]-1

N + ~ ' - l .

(A2)
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(A4)

The prior distribution of fL can be readily deduced from this distribution, but
since we wish the prior on a2 as well we take the following seemingly easier approach.
Note that given hand 8 the joint distribution of fL and a2 has density

f(fL, a21 h, 8) o: hi exp{ - thN(fL- 8)2}(a2)!v-l h!v exp (- tNa2), (A3)

where v= N -1. This follows since given hand 8, Na2 h '" x; independently of
(hN)iCfL- 8) which is distributed as N(O, 1). Multiplying (A3) by (20) and integrating
out hand 8 one finds that the joint prior on fL and a2 has density

{

n'N } -!{v+v'+8(n')}

f(fL,a2)oc(Na2)iv-1 Na2+v'v'+N+n,CfL-m')2 .

This may be integrated with respect to fL and a2 as shown in Raiffa and Schlaifer
(1961) and yields the result that the prior distribution of fL has a "Student" density
given by

{

n'N } -i{v'+8(n')j

fCfL) oc v' +(n' +N) v' CfL - m')2 ,

Expression (22) then follows immediately. Hence

ECfL) = m'

and

-OO<fL<OO. (AS)

(A6)

_ v'v' (1 1 ) _ (1 1) N 2
V(fL) - v' -2 Jii+N - Jii+N N-l E(a), (A7)

the last equality follows from (A9) below.
Similarly, by integrating fL out of the joint density (A4) one finds that the prior

density of 002 is given by

(A8)

i.e. Noo2J(Noo2+ v'v') has a prior beta distribution, or Noo2 has what Raiffa and Schlaifer
term an "inverted beta-2" distribution. The prior mean and variance of 002 are given by

and

E( 2)= v'v' N - 1
a v'-2 N '

v'>2, (A9)

V( 2)=2(v+v'-2)(v'V')2(N-l)2 v'>4.
a v(v' -2)(v' -4) N '

(AlO)

Posterior on fL

Turning to the posterior distribution of fL we proceed as follows: given the sample
(s,x) with observed mean x and variance S2 = (n-l)-l ~ i E S ( X i - X ) 2 , the posterior
distribution of the superpopulation parameters (with the prior given in (20» is also
normal-gamma with density given by

f{h, 81 (s, x)}o: exp{ - thn"(8-m")2}h! exp( - tv"v"h)h!v--l, (All)
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where

and
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" n'm'+n.\'
fll = , ,

n +11

n" = n' +n,

,
"" "( 1) 2 nn (- ')2V V = VD + n- s +'------+ x-m ,

n n

v" = v' + 8(n')+n-1.

[No.2,

(AI2)

(AI3)

(AI4)

(AI5)

(AI7)

From well-known properties of the normal-gamma distribution it follows that the
posterior expectation of 0 = E(Xil 0,h) is m" which, being linear in i, implies by the
theorem of Section 2.3 that the posterior mean of f-t must be of the weighted average
form displayed in (11). By the same argument used in obtaining (AI), the posterior
distribution of X is of the same form as the prior on X and is a degenerate N­
dimensional "Student" distribution concentrated in the subspace of dimension N - n
where S(X) = x. Equivalently, the posterior distribution of the N - n unobserved
X/s is a non-singular N - n dimensional "Student" distribution having a density of

precisely the same form as the prior on X, (AI), obtained by replacing X by S(X),

N by (N - n), and the primed parameters by the double-primed parameters given in
(AI2)-(AI5). The derivation of the posterior distribution of f-t is analogous to that
of the prior. Let

and

2_ 1 ~( 2
as - N 1 .:... Xi-f-ts)

-n- i¢s

be the mean and variance of the unobserved X/s, i.e. of the elements of S(X). It is
then clear that

!{P-s' a~ Ih, 0,(s,x)} ex h~ exp {- HN- n) (P-s - 0)2}

(a~)l(N-n-l)-l h1(N-n-l) exp{ - HN-n -1) a ~ h } . (A16)

Multiplying this expression by the posterior density of (h, 0) given (s,x), (All), and
integrating out (h, 0) we find, in direct analogy with (A4), that

!{f-ts' a~1 (s, x)} ex {(N -n -1) a n l ( N - n ~ l ) - l

I(N I) 2 "" n"(N-n) ( ")2\~1(N-n+v')
I -n- as+v v +n" +(N-n) f-ts- m f

Integrating out a~, one finds

{

n"(N- n) }-l(V'+!)

!{f-tsl(s, x)}ex v" +(" N )" (f-ts- m ")2 ,
n + -n v

(AIS)

or the posterior distribution of P-s is like that of m" +tA(N-n+n")v"/(N-I1)n"}~,

where tv' is a standard t random variable on v" degrees of freedom.
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(AI9)

(A20)

(A21)

(A22)

(A23)

Since fL = {nx +(N - n) fLs}/N, it follows readily that the posterior distribution of fL

given (s, x) is like that of

n _ N-n" {(N-n+n") (N-n) V"}t
Nx+~m +tV" n"N2 '

and thus using (A12)-(AI5)

E{ I( )} - n - N-n ,,_ n(N+n')x+(N-n)n'm'
fL S,x - Nx+~m - N(n'+n) ,

and
N-n+n" (N-n)v"v"

V{fLl(s,x)} = "N2 "2n v -

N -n N+n' {v'v' +(n-l)s2+ nn'(x-m')2/(n+n')

= ---y;j2 n+n' v' +8(n')+n-3

Since the condition of the theorem of Section 2.3 holds here, we may identify
(A20) and (11). Making use of the fact that V(fL) has the form in (A7) we deduce that

N-n v'v'
EV(XI fL) = -N -'---2"n v -

Further in this case it follows from the fact that the joint prior on X is "Student"

(formula (AI» that the conditional distribution of X given fL has density

{

nN }-t<v'+8(n')}

I(XI fL) oc v' +v'(N-n) (X- fL)2

and hence it follows (Raiffa and Schlaifer, 1961) that

N-n v'v'
V(XI fL) = - -,- = EV(XI fL),

nN v-2

and thus the posterior mean of fL, (A20), may be recast as

E{ I( )} = V(fL)x+V(XlfL)m' (A24)
fL s,x V(fL)+ V(XlfL) .

Finally, it may be observed, using (A7), (A21) and known properties of the normal­
gamma distribution, that

V{ I( )} = N-n { v"v" n'(v' -2)} yt,,) = N-n V{OI(s,x)} Vf,,) (A25)
fL s,x N n"(v"-2) v'v' \1'" N V(O) \1'" •

Part (a) of the theorem is thus established using these results and (AI9).
In the special case ofthe diffuse prior on (0,h) given by (21), all of the above results

hold merely by taking n' = v' = 8(n') = O. This yields part (b) of the theorem.

Posterior on a2

While the posterior distribution of a 2 is relatively messy, low moments may be
found. For example, the posterior expectation of a2 may be found as follows: First
we note that

9
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where P-s is the mean of the N-n unobserved X/so Taking the expectation of this

expression, first conditional on B, II, and (s, x) we find

Then taking the expectation of this quantity with respect to the posterior distribution

of (B,h) given (s, x), using known properties of that normal-gamma distribution, and

. after some manipulation we have

E{U21(s,x)} = (n-l)S2[1+ ( N - ~ ) { ~ ( n + ~ ' ) - n ' } ]
N N(n+n){v + o(n )+n-3}

(v' -2)(N-n){N(n+n')-n'}E(u2)

+ N(N-l)(n+n'){v' + o(n')+n-3}

nn'(N-n) [n'{v' + o(n')+n-4}+N(n+n')] C -E( )}2
+ N2(n+n')2 {v' + o(n')+n-3} x p-.

For the diffuse prior obtained by taking v' = n' = o(n') = 0

(A26)

DISCUSSION ON PROFESSOR ERICSON'S PAPER

Professor M. R. SAMPFORD (University of Liverpool): It gives me great pleasure to see
Professor Ericson here, and to have the opportunity of proposing the vote of thanks on
his extremely interesting paper. I find myself in a slight difficulty here. By Society tradition
the proposer of the vote of thanks is expected to be kind to the speaker: I thus find myself,
a non-Bayesian, having to be kind to a Bayesian! Perhaps we should have a film of this
rare and interesting event!

As I have said, I am not myself a convinced "Bayesian"-or, at least, not a convinced
practitioner of Bayesian methods. I agree, of course, that prior beliefs cannot safely be
ignored in the interpretation of experimental or survey results-no "thoughtful classical
practitioner", to borrow a happy phrase from our speaker, can reasonably think otherwise.
Further, I accept that the use of Bayes's theorem provides an apparently less arbitrary
method of taking account of such beliefs than the classical "method" of viewing with
extreme suspicion, and in sufficiently desperate situations repeating, any experiment whose
results conflict too violently with one's prior notions. However, I remain unconvinced
of the practical value of the Bayesian argument-at least, in the field of biological and
agricultural statistics that I know best.

My reasons for remaining unconvinced about Bayesian methods in survey analysis are
rather different from my reasons relating to experimentation. It is arguable that
experimentation is a private activity (I am well aware that this is an oversimplification!),
so that if the experimenter wishes to interpret his results subjectively, he has every right to
do so, and no one should be able to quarrel with his interpretation. The difficulty here, in my
experience, is that most biological experiments involve so much extraneous, uncontrollable
variation that an honest prior must be so diffuse as to be of little value (and even then
one must be prepared for results in a particular experiment to be so anomalous as to suggest
that the experimental conditions achieved were quite different from those envisaged, so


