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Subjective Evaluation of
High Dynamic Range Imaging

for Face Matching
Rossella Suma, Kurt Debattista, Derrick Watson, Elisabeth Blagrove, and Alan Chalmers

Abstract—Human facial recognition in the context of surveil-
lance, forensics and photo-ID verification is a task for which
accuracy is critical. Quite often limitations in the overall quality
of facial images reduces individuals’ ability in taking decisions
regarding a person’s identity. To verify the suitability of advanced
imaging techniques to improve individuals’ performance in face
matching we investigate how High Dynamic Range (HDR) imag-
ing compares with traditional low (or standard) dynamic range
(LDR) imaging in a facial recognition task. An HDR face dataset
with five different lighting conditions is created. Subsequently,
this dataset is used in a controlled experiment (N=40) to
measure performance and accuracy of human participants when
identifying faces in HDR vs LDR. Results demonstrate that face
matching accuracy and reaction time are improved significantly
by HDR imaging. This work demonstrates scope for realistic
image reproduction and delivery in face matching tasks and
suggests that security systems could benefit from the adoption of
HDR imaging techniques.

Index Terms—imaging, High Dynamic Range, subjective face
matching, face dataset.

I. INTRODUCTION

FACIAL recognition is an activity routinely carried out
by billions of people on a daily basis. Police officers

checking a passport, witnesses observing mug-shots or bank
cashiers assessing identity, are all required to perform a face
comparison task [1] with significant security implications.
Although increasing technological support is provided, the
ultimate decision making relies on the human observer [2].
Further detail and information in the stimuli presented can
increase accuracy in the process.

As emphasised by the detailed review on the topic of foren-
sic face matching by Fysh and Bindemann [3], possible impos-
tors or mismatches constitute an increasing security concern.
A consistent amount of research on perceptual psychology
[4], [5] has shown that unfamiliar face recognition is very
error-prone, and even experienced professionals are subject
to false identification. This is further compounded when the
quality of the stimuli is poor [5], [6]. The only exception is
represented by the so-called super-recognisers: a very small
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group of untrained individuals whose face recognition abilities
are far superior to the norm [7].

The goal of the present research is to develop and assess
an advancement in the technology adopted for such a highly
error-prone task. Jenkins et al. [8] have underlined the impact
of lighting, camera, and lens characteristics. The work of
Bindemann et al. [9] on the effect of resolution/pixelation,
the analysis written by Norrel et al. [6] on the impact of
image quality and the work of Liu et al. [10] on the impact of
several post-processing algorithms to weaken shading effects
have tried to tackle the impact that specific image attributes
have on recognition. However, no study has yet, to the best
of our knowledge, explored the impact of dynamic range. In
particular, the lack or presence of illumination across both
images in a face pair is one of the key elements affecting
performance [8], [11] and it is a characteristic strongly related
to the dynamic range of a scene.

Traditional low (or standard) dynamic range (LDR) imaging
does not preserve reliably the totality of real-world lighting
resulting in images which lack the contrast and luminance
present in the real world. In the current work, we investigate
whether an alternative, High Dynamic Range (HDR) imaging,
is capable of increasing facial matching performance when
faces are portrayed under different lighting conditions. HDR’s
potential lies in its capability of capturing, storing and visualis-
ing all the colours and brightness levels visible to the human
eye [12]. In this work, the potential of HDR to outperform
LDR in facial matching is investigated.

The main contributions are:

• The creation of the Warwick HDR Face Dataset: a
collection of calibrated HDR images of faces with five
controlled lighting conditions;

• The evaluation of performance (reaction time) and ac-
curacy in the context of facial image comparison when
using HDR vs LDR stimuli;

• The demonstration of the intrinsic advantage of HDR for
face matching tasks, when using digital images only.

The remainder of the paper provides a brief description
of HDR imaging technology and an overview of the face
recognition problem in general and within the context of
surveillance and person identification in Section II. Section III
frames the problem in more detail and highlights the existing
gaps in the literature. Section IV presents the procedures
for the creation of the Warwick HDR Face Dataset. Section
V describes the HDR vs LDR perception experiment and a
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detailed review of the results is given in Section VI, followed
by Discussion and Conclusion.

II. BACKGROUND AND RELATED WORK

This section discusses the background and related work in
HDR imaging and face recognition.

A. HDR technology

The dynamic range (DR) of an image is the difference
between its brightest and darkest part. This is commonly mea-
sured as the logarithm (base 10) of the difference in luminance
(cd/m2). The human visual system is capable of adapting to
a wide range of lighting (over four orders of magnitude in a
single scene without adaptation and significantly more with
adaptation [13]), yet existing display technology or cameras
commonly in use are able to cope with just two or three orders
of magnitude at once. HDR imaging technology provides a
way to capture real-world content with higher accuracy than
LDR imaging both in terms of luminance levels and colour
rendition [12].

a) HDR image capture: The most commonly adopted
method to create HDR image content using standard cameras
is to apply a bracketing technique [13]. This method consists
of having several pictures captured in a temporal sequence
with different exposure times. Normally this is conducted
using a tripod to stabilise the camera position. The sequential
capture allows the camera sensor on each shot to collect,
per pixel, a different number of photons each time. The end
result is a sequence of images of the same scene ranging
from under to overexposed. For each pixel, all the information
regarding light and colour coming from each exposure is
then merged it into a single HDR image. When merging the
different exposures several weighting functions are available
from the literature [13]. The majority of them favour the
middle exposures as they contain more reliable information.
This helps to minimise artefacts (e.g. saturated pixels, thermal
noise). The resulting image is a function of the irradiance at
each pixel.

b) HDR vs LDR image and tone-mapping: HDR imaging
provides a more accurate representation of each colour channel
using floating-point values as opposed to the traditional eight
bits integers per channel per pixel in the LDR imaging
case. It also offers a representation where values are a good
approximation of photometric quantities [14] unlike the non-
linear relation used in LDR imaging (i.e. gamma-offset-gain).

Tone-mapping operators (TMOs) are functions which re-
duce the information contained in an HDR image to something
that is representable on LDR media (screen or paper). This
operation clearly involves a loss when the dynamic range
in the HDR image exceeds that which can be directly dis-
played. Depending on the TMO, often particular attention to
preserving specific image features or characteristics will be
given, while discarding others. There is a significant number
of TMOs described in the literature [13], but no unanimous
agreement on which operator is the best for all circumstances.

c) HDR display: The most desirable feature when visual-
ising images, especially for scientific purposes, is to reproduce
reality as accurately as possible. Some aspects in modern
display technology exceed visual acuity, for example, in terms
of refresh rate and spatial resolution [15], but reaching levels
of brightness comparable to what is experienced in our daily
life still remains a challenge.

Some of the most recent models of HDR screen prototypes
can reach a peak luminance of 10,000 cd/m2 as opposed to
the 400 cd/m2 maximum luminance of standard screens and
also offer 12 bit resolution to drive the back panel intensity.
At the time of writing some companies have begun producing
consumer displays which are labelled as HDR and can reach
a peak luminance of about 1,000 cd/m2.

d) Applications of HDR imaging: Increasingly more at-
tention has been directed towards HDR technology in recent
years. Examples of applications exploiting it can be found
in several fields. For example, HDR photography has been
applied to smart-phones when dealing with unfavourable light-
ing conditions [16]. Medical imaging has seen an increased
interest in HDR for applications such as MRI or ultrasound
visualisation where it helps professionals to be more confident
in their medical report due to the added image details [17],
[18]. Further applications of HDR include feature detection
and people tracking [19], as well as capturing rocket launches
[20].

B. Face recognition
Although the common assumption is that adults are “face-

experts”, this is generally true only in the case of familiar
faces [5]. Humans show good expertise with faces that fall
into categories to which the individual is constantly exposed -
for example, people’s own racial group (i.e. own race effects)
[21] and they become progressively less accurate as the degree
of other-race contact in their daily experience decreases.

When encountering an unfamiliar face this task might be
challenging and often a source of misidentification errors [5].
The difficulty is partially related to the capability of coping
with a person’s changes in appearance over a range of photos
[22]. Besides the obvious interference due to changes in
external features (e.g. hair, hats, glasses), in many situations,
the stimuli characteristics have a significant impact.

a) Factors affecting face recognition: Unfamiliar and
familiar face recognition task have been studied with a variety
of experiments trying to identify the most perceptually influ-
ential information for the purpose of recognition. Within this
corpus of literature, a subset of experiments has emerged: face-
matching, as opposed to face recognition (i.e. from memory)
tasks [4].

This class of experiments allows evaluating the image prop-
erties of the proposed stimulus and their impact on the task.
While familiar viewers show high performance, unfamiliar
viewers are greatly affected by factors not just related to
the basic characteristics of the stimuli (e.g. pigmentation,
distortion [23] or configuration [4]), but also to the properties
of the technology adopted to conduct the experiment.

As Young and Burton [5] have pointed out, sometimes the
extent to which image variability influences performance, for
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example, due to lighting, camera and lens characteristics, is
overlooked. Bindemann et al. [9] have shown that resolution
has an effect on face matching bringing performance almost to
chance when just a few pixels are available for the representa-
tion. Although it can be shown that applying a Gaussian blur
on the image can help performance, this still raises questions
about the reliability of certain CCTV footage.

Other factors impacting recognition are described by Noyes
and Jenkins [24] in a study focusing on camera-to-subject dis-
tance and how it can hinder perceptual matching of unfamiliar
faces and pointing out how actually governmental rules are
diverse and seem to regard this element only marginally.

b) Facial stimuli datasets: A typical aspect of studying
face matching depends on subject appropriate stimuli used
to draw conclusions that could be generalised. Several facial
stimuli datasets are available in the literature for unfamiliar
face matching experiments; amongst the most popular is the
Glasgow Face Matching Test [25] and the recently released
Kent Face Matching Test [26]. Unfortunately, frequently these
stimuli set present technical limitations especially in terms
of image resolution, lack of information regarding camera
calibration, and colour accuracy. The literature also offers
other datasets, but they are aimed at emotion recognition and
therefore do not typically include several representations of
the same face in the same pose - an essential feature for side
by side comparison which avoids mere picture comparison [5],
[27].

Other attempts involve computer graphics generated stimuli,
but this might raise the objection of drifting even further
away from ecologically valid stimuli [28]. There is also
a large availability of faces datasets oriented at computer
vision applications, but these are rarely used in perceptual
psychology experiments, often due to intrinsic differences in
the construction of the stimuli although there have been a few
attempts [4], [29].

c) Facial identification: The need for standards and
reliability in the face forensic context is clear as international
(e.g. Facial Identification Scientific Working Group [30]) and
national organisations (e.g. South Africa [31]) try to coordinate
and deliberate on this. When forensic facial examiners are
called to make a judgement, although superimposition and
photo-anthropometry have been used in the past, their low reli-
ability has been now clearly demonstrated [32]. Morphological
analysis is the only methodology that is considered reliable
as it is less susceptible to the camera’s optical properties
and viewpoint. Nevertheless, operators need to be aware of
its limitations (see Valentine and Davis [32] for a detailed
analysis). Usually, the only manipulation possible on the
picture is related to luminance adjustments [31], showing
clearly how a more accurate lighting reproduction could bring
an advantage to the forensic practice.

Forensic facial reviewers are a category of experts often
enrolled in the law enforcement [33] whose task is to perform
quick and less rigorous identification. In these scenarios the
risk of misidentification is higher because of the time con-
straints, therefore technological support can be advantageous
especially for tackling data limits (e.g. illumination, viewpoint,
image degradation, within-target variation) [3].

When non-experts are called to judge the representation of
a face (e.g. a bank cashier checking a document-ID or a juror
watching surveillance footage) their accuracy is on average
lower than experts [6] and especially affected by poor image
quality (i.e. more false positive and more false negative). False
positives, in case of a crime witness, could determine the
prosecution of an innocent person [6], therefore, the impact
brought by advanced imaging could be valuable.

III. MOTIVATION

The likelihood of determining whether distinct instances
of images correspond to the same person remains a crucial
issue in surveillance and identity verification. Although face
recognition algorithms are becoming more efficient, their
effective adoption in real-life scenarios still remains controver-
sial [34], and the demand for human examiners to perform face
identification especially in the legal system is still extremely
high [2].

This work aims at tackling one of the main problems often
pointed out by the facial recognition literature: the accuracy
in reproducing reality, in terms of image and display quality,
for colour rendition and luminance [3], [6]. Furthermore, it
evaluates whether this improved accuracy equates to better
performance in unfamiliar face matching tasks, which could
result in more secure and dependable data, and decision
making with greater precision.

HDR imaging is perceptually closer to how humans perceive
the world [12] and this work investigates whether HDR can
outperform traditional imaging in face matching tasks. In order
to conduct such an evaluation, the need for the creation of an
HDR facial database was identified. Until now, the only two
possible candidates for HDR facial databases were presented
by Ige et al. [35] and Korshunov et al. [36]. They were not
considered suitable for use in a controlled experiment. Ige et
al. [35] due to the lack of data regarding camera calibration
and Korshunov et al. [36] due to the uncontrolled environment
and unspecified lighting conditions.

The first part of this paper (Section IV) introduces the
creation of an HDR face stimuli dataset, the Warwick HDR
Face Dataset, for use in digital forensics, psychological or
visual perception studies. While not fully comprehensive, due
to its size, it is prepared in a fully controlled environment both
in terms of lighting and image capture.

In the second part of this work (Section V and VI), the War-
wick HDR Face Dataset is used to conduct the HDR vs LDR
experiment. This consists of the evaluation of performance
(reaction time and accuracy) in a face matching task when
HDR and/or LDR face stimuli are provided. Within the same
experiment, the availability of faces stimuli portraits under
different lighting conditions allows addressing the question
related to variation in performance due to change in the
illumination. [37]

IV. WARWICK HDR FACE DATASET

This section describes the creation and criteria adopted for
the HDR imaging face stimuli dataset and the methodology
used for its creation.
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Fig. 1. Example of the five different exposures used for image bracketing. It is not possible to show the actual images used in the experiment in order to
protect the participants’ privacy.

A. Design

The Warwick HDR Face Dataset serves as a basis for
conducting the face matching experiment in Section V. The
aim of the dataset is to have a number of faces captured in
HDR under diverse lighting conditions. In order to be able to
assess human perceptual performance at matching faces under
challenging lighting conditions a number of distinct lighting
positions were chosen.

The five different illumination patterns chosen are schemat-
ically represented in Figure 2(a). The data collection has
been performed so that light sources distances and intensity
were standardised. Lighting during the capturing has been
arranged in order to obtain harsh lighting conditions. This
has a dual purpose: exploiting the intrinsic characteristics of
HDR imaging when capturing a wide range of light; as well
as disrupting, in certain cases, normal illumination patterns,
making the stimuli more challenging from a perceptual point
of view. The lighting conditions 2 and 5 only differ in terms
of direction to account for the fact that complete symmetry is
very rare in human faces

In total 170 facial HDR images of seventeen males pho-
tographed in neutral pose over five lighting conditions were
captured. For each lighting condition, two HDR images were
captured. When performing a face matching task, the availabil-
ity of two different images with the same lighting will allow to
elicit face-related cognitive processing in the observer, rather
than apply low-level image comparison techniques [4].

In future, the dataset will be expanded, in order to have an
equal number of female participants to make it generalizable.

B. Participants

The participants were recruited on a voluntary basis through
advertising on the Department’s notice-boards at the Univer-
sity of Warwick. Seventeen participants consisting of employ-
ees and students were recruited. The participants were aged
between 20 and 52, eleven White (British and other White
background), six Asian (Indian and Pakistani).

C. Procedure

The data capture was performed in a dedicated room within
the International Digital Laboratory at the University of War-
wick. This room has completely black walls, so as to avoid
any unwanted light interference. Five different photographic
stations were arranged, each one with a seat and specific

lighting. After explaining the procedure and collecting the
participants’ consent, they were asked to sit comfortably
in turn in each of the station’s chair, assuming a neutral
expression. Using a tripod an operator performed two captures
of the sequence of five images at different exposures.

D. Materials

a) Lighting: For the five lighting conditions in the dataset
all the distances between the participant and the light were
carefully chosen in order to respect international safety stan-
dards and good practice so that there were absolutely no short
or long term negative effects for the participants.

The lamps adopted for the lighting conditions 2 and 5
are ARRI Lite plus 2000W (the minimum suggested safety
distance is 2m). For the light position 4 and 1 the standard
studio illumination image, a light with smaller power has been
employed, in order to minimise distress to the participants.
Specifically, an Interfit INT184 Stellar X Tungsten 500 Watt
was used. This is a lamp normally used in photographic
studios, set on a tripod and raised at 2.20m, the maximum
height allowed by the ceiling. For light position 3, considering
the closer distance to the participant’s face, a halogen desk
lamp (50W) was used. The diagram in Figure 2(b) shows the
details on all the specific distances.

b) Camera Setup: Obtaining an HDR image through a
sequence of pictures with exposure bracketing (see Section II)
requires the subject being photographed to remain still for a
few seconds (max 6 sec.). Therefore it was decided to record
only a neutral pose, as it is quite challenging to maintain any
other facial expression for a very long time. The parameters
selected for each lighting setup are specified in Figure 2 (b).

The standardisation of distances and camera-subject relative
positions were selected in order to minimise deformations and
lens flare as well as maximising the sensor area where useful
information (i.e the face) was located. The camera adopted
for the shooting is a Canon EOS 5D Mark III with Canon EF
24-105mm f/4L IS USM Lens fixed at 50mm with a HOYA
PRO1D UV Filter. The images were recorded in RAW format
(14 bits).

c) Camera Calibration: The camera was fully calibrated
in order to be able to use the camera sensor as a light-
meter and therefore correlate real-world lighting to each HDR
image pixel value. This calibration was conducted following a
procedure similar to the one proposed by Kim and Kautz [38].
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(a)

(b)

Fig. 2. Warwick HDR Face dataset. (a) Schematic representation of the
different lighting conditions created for the Warwick HDR Face Dataset. 1.
Full lit face - passport like shot; 2. Light source located on the left side;
3. Light source located underneath the participant’s face; 4. Light source
located on top of the participant’s head; 5. Light source located on the right
side. (b) Diagram with details of distances and camera settings adopted for
the Warwick HDR Face Dataset capture. Left to right, top to bottom: Light
source on the left/right of the participant; Light source on the top of the head
of the participant; Light source underneath the participant’s face; Light source
in front of the participant - full lit face.

The difference, in this case, is that we have only focused on
the luminance channel. The procedure was:

• Capture a sequence of seven exposures of a Xyla Dy-
namic Range Test Chart. This is a 21 stepped xylophone
shaped back illuminated chart offering a DR of 20 fstops
(i.e. the brightest bar is 220 times brighter than the darkest
bar);

• For each of the single exposure bars collect accurate
measurements of the luminance values using a Minolta
LS-150;

• Reconstruct the camera response function of this image
using the pfstools 2.10 software library [39];

• Reconstruct an HDR image of the Xyla chart with the
Robertson method [13] using pfstools 2.10;

• The luminance in the generated HDR images corresponds
to real-world values in cd/m2. The camera response
function calculated in this way is then applied to the
processing of the entire stimuli set.

Lighting Dynamic Range F-stops

(1) 150 7.09

(2) 1224 10.14

(3) 482 8.70

(4) 213 7.39

(5) 1838 10.78

TABLE I
AVERAGE DYNAMIC RANGE FOR THE WARWICK HDR FACE DATASET

d) Image processing: After the image capturing phase,
the participants’ portraits were processed using pfstools 2.10.
The bracketing sequence merging was implemented so as to
minimise alteration of the raw data. Linear merging of the
RAW 14 bits images using the previously mentioned camera
response function was performed to produce HDR images. The
resulting images were then filtered to remove singularities with
the CleanWell function from the MATLAB HDR Toolbox [13]
and then cropped in a passport-style fashion to 4,320 × 3,370
pixels - height × width ratio: 0.78.

E. Dataset properties

The uniqueness of this dataset resides in:
• Camera calibration;
• Representation of absolute luminance values within the

HDR files;
• Controlled lighting positions;
• Availability of two different images of each person for

five lighting positions.
The average Dynamic Range in the images depends on the
lighting position. The average values are provided in Table I.
The light intensity has been adjusted to meet limitations in the
geometry of the laboratory and to be within the recommended
intervals to avoid any harm to the participants’ eyesight.

V. HDR VS LDR EXPERIMENT

This section presents the HDR vs LDR face matching
methodology.

The main objective of this work is to form an understanding
of perceptual sensitivity to differences in luminance while per-
forming a same/different identity judgment. More specifically
it aims to:

• Evaluate face matching performance and accuracy when
the dynamic range reflects reality more accurately like in
the case of HDR;

• Evaluate performance and accuracy with faces exposed
to same/different lighting.
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Results will show whether HDR can help improve the accuracy
and speed when performing unfamiliar face matching tasks
where high precision is required.

A. Design

The goal of this experiment is to verify and quantify the
benefits brought by the adoption of HDR face stimuli for facial
image comparison. In order to achieve this, a forced choice
experiment was designed. Participants were presented with two
concurrent faces and had to decide if it was the same person
or not by pressing a button.

The test aimed at verifying performance or reaction time
(termed time) and accuracy (termed as accuracy) while varying
the dynamic range (labelled DR) of the stimuli and the lighting
condition represented in the stimuli (position). time, measured
in seconds, and accuracy, measured by the percentage of
correct answers, are the dependent variables (DV) while DR
and position are the independent variables (IV).

For the independent variable of the dynamic range (DR),
three scenarios were tested:

• LDR vs HDR (mix): one of the two faces is an LDR
while the other is an HDR stimulus

• HDR vs HDR (HDR): both faces are encoded as HDR
stimuli

• LDR vs LDR (LDR): both faces are encoded as LDR
stimuli.

DR is a within-participants variable. In order to appreciate the
impact of the lighting on the matching task a second within
participants independent variable (position) was evaluated:

• Same lighting (same): both faces are lit by the same light
source both in terms of intensity and direction

• Different lighting (different): the two faces are lit by
different light sources in terms of intensity and direction.

Each block contained twenty images presenting two con-
current faces under same or different lighting equally split
between same-person pairs and different-person pairs.

Each participant was presented with a total of 60 trials, each
trial contained a permutation of the three DR scenarios.

To avoid the familiarity effect, particular care was taken so
that a specific face was not shown more than 10 times [40]
throughout the trials. Also, to avoid picture comparison, even
when the same lighting same-person pair was presented the
two different images available in the dataset were used (see
section IV).

There were two general hypotheses:
• H1

1 : HDR will outperform other modalities (i.e. LDR and
mix) as it provides an intrinsic advantage due to the higher
fidelity in which real-world lighting is reproduced;

• H2
1 : performance (time) and accuracy (accuracy) are less

affected by variation of light position when stimuli are in
HDR.

B. Participants

The study involved 40 participants (15 males and 25 fe-
males) aged between 18 and 38 (mean age = 22.7, SD = 4.8)

Fig. 3. Example of the stimuli proposed in the HDR vs LDR experiment.
Stimulus: different lighting, LDR vs HDR (mix). The HDR (right) has been
tone-mapped in order to be visualised on this paper.

recruited among the University of Warwick students and em-
ployees through the University of Warwick Sona System. The
participants’ ethnicity varied: nine Other-White background,
eight British-White, seven Indian, six Chinese, five Other-
Asian background, two Pakistani. All had normal or corrected-
to-normal vision and no colour deficiency or colour blindness.
They were selected so that the people portrayed in the stimuli
set were unknown to the participants.

C. Procedure

Each participant was tested individually. They were brought
into a dedicated room within the International Digital Labo-
ratory at the University of Warwick. The room has dark walls
to exclude any interference from external light sources. After
being briefed on the nature and procedure of the experiment,
the participants were asked to sign a consent form and fill in
a demographic questionnaire.

During the experiment, the lights were switched off, so that
the participant could focus on the screen. The participants
were asked to indicate whether the two images side-by-side
portrayed the same person or not by pressing one of two
available keys on a keyboard (see Figure 3). The participants
were invited to perform the task as accurately as possible and
to be as quick as they could. The stimulus was visible until
the participant made a choice. A black screen with a central
white fixation cross was alternated to the stimulus for 1500ms.

The participants were given a few trial images - the faces
shown were not included in the stimuli test. This allowed them
to experience the stimuli before their timing was recorded and
ensured that their eyes were properly adapted to the room
luminance levels. No feedback was provided to the participants
regarding their accuracy while performing the task. Halfway
through the test participants were allowed to take a short break.

D. Materials

The HDR face dataset described in Section IV was used
as stimuli for this experiment. The faces depicted were cut
out with an elliptic shape similarly to the approach taken
by Megreya, Bindemann and Havard [41], so that only the
internal features were visible. Previous research has shown
that external features (hair, head outline, neck and shoulders)
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disrupt face recognition ability [42]. Internal features, on the
other hand, are less susceptible to changing throughout time
and they constitute a high number features used by experts to
perform an identification task [30] (e.g. Scars/Blemish, Eyes,
Nose, Mouth, Mouth Area, Forehead, Cheek Area).

Following the literature [25], [41], only the luminance
channel was used for the images, although the images, in this
case, were HDR grayscale (i.e. they have a far higher number
of shades of grey than 256). This was done in order to limit
additional variables given by the chroma component and also
considering that colour components seem to be less relevant
in the recognition process [40]. From the HDR stimuli only
the luminance channel was used. No further manipulation was
necessary due to the nature of the Warwick HDR Face Dataset.

To obtain LDR stimuli1 from the HDR images, a tone-
mapping algorithm was needed. For further information on
tone-mapping see Banterle et al. [13]. The optimal exposure
algorithm proposed by Debattista et al. [43] was selected. This
algorithm operates in a similar fashion to what most camera’s
embedded software would do when taking a shot: adjusting
the exposure to maximise the information contained in the
image histogram. The target display for the LDR images was
characterised by luminance in the range between 0 and 300
cd/m2. This is the typical range provided by most off-the-
shelf LED screens.

All images were displayed at a full-HD resolution (1080 x
1920 pixels) on an HDR SIM2 47 inch display. This device
has a peak luminance of 4000 cd/m2, a black level of 0.005
cd/m2 and 12-bit colour depth. The screen output luminance
was calibrated so the output luminance was linearly related
to luminance values recorded in the HDR files and therefore
reflected the actual luminance perceivable at the moment of
the data capture.

The visualisation of the images and recording of the re-
sponse was done through an ad hoc win32 application. The
program was written in C++ using the OpenGL library in order
to display the images in the native format required by the SIM2
display. The input was recorded through a keyboard connected
to a USB3 port acquiring high-resolution timestamps using the
native Windows API QueryPerformanceCounter. The choice of
this type of input device is considered acceptable according
to Damian [44]. The machine used for the experiment was
equipped with an Intel Xeon E5-2620 @ 2.00GHz CPU and
an Nvidia GeForce GTX 750 graphics card.

The participants were seated at 185 cm distance from
the screen. This is the best viewing distance given the size
of the screen (Recommendation ITU-R BT.2022). The faces
portrayed on the screen occupied 7 degrees of vertical visual
angle, which is within the intervals adopted in the literature
for experiments on face perception (see [45]). See Figure 4
for an illustration of the setup.

VI. RESULTS FOR THE HDR VS LDR EXPERIMENT

Descriptive statistics corresponding to IVs DR and position
for the two DVs of time and accuracy are reported as the time

1As previously illustrated in Section II, LDR images are characterised by
an 8 bit per colour channel encoding with screen referred luminance.

Fig. 4. Schematic representation of the HDR vs LDR experiment setup.

accuracy (%)
Lighting HDR LDR mix position

µ σ µ σ µ σ µ σ
same 95.28 9.34 88.32 14.14 83.36 20.71 88.99 9.38
different 84.88 9.03 78.44 12.88 80.95 14.12 81.42 8.72
average 90.08 6.17 83.38 9.52 82.16 12.95

time (s)
Lighting HDR LDR mix position

µ σ µ σ µ σ µ σ
same 2.76 0.63 3.10 1.06 2.91 0.87 2.93 0.74
different 3.35 1.19 3.52 1.10 3.47 1.06 3.45 0.17
average 3.06 0.85 3.31 1.02 3.19 0.90

TABLE II
CORRECT ANSWERS AND REACTION TIME DESCRIPTIVE STATISTICS

in seconds taken for a correct answer, and the percentage of
correct choices. Table II illustrates mean (µ) and SD (σ) of
accuracy and time. Each of the first three column shows the
results for a specific level of DR (respectively HDR, LDR,
mix). The first and second row contain the results of each
level of position: same and different, and the third row shows
the average across position. The fourth column of the table,
named position, reports values of accuracy and time for same
and different lighting averaged across DR.

As can be seen in Table II for each case HDR has more
correct answers and is faster than the other two conditions of
LDR and mix. In general, it is faster and more accurate when
judging same rather than different. In the following, we report
the results of statistical tests on the data.

A. Multivariate Analysis

A repeated measures 3 (DR) × 2 (position) MANOVA was
conducted for the DVs of both time and accuracy. In the
overall using Pillai’s trace there was a significant effect of
position on time and accuracy V = 0.60, F(2, 37) = 28.19,
P < 0.01. Furthermore, there was a significant effect of DR
on time and accuracy using Pillai’s trace, V = 0.47, F(4, 35)
= 7.82, P < 0.01. No interaction effect of position × DR
was observed, V = 0.125, F(4, 35) = 1.25, P = 0.308. Results
indicated that position and DR have an independent effect on
the timing and hence we can accept H1

1 .
Due to the overall significance of the analysis, in order to

further analyse the results univariate ANOVAs of 3 (DR) × 2
(position) were run for both time and accuracy.
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B. Univariate Analysis: accuracy

Univariate analysis on the DV of accuracy was significant
for the main effect of DR with Greenhouse-Geiser correc-
tions (Mauchly’s Test of Sphericity was violated, P < 0.05)
F(1.63, 61.87) = 8.52, P < 0.01. Pairwise comparisons with
Bonferroni corrections for DR showed a significant difference
between HDR (µ = 90.08) and both LDR (µ = 83.38) and
mix (µ = 82.16), while no significant difference was found
between LDR and mix. These results demonstrate that DR has
a significant effect on the accuracy of perceptual matching of
unfamiliar faces with HDR images improving matching rates
significantly.

The main effect of position was also significant for accu-
racy, F(1, 38) = 14.41, P < 0.05. Pairwise comparisons showed
a significant difference between same (µ = 88.99) and different
(µ = 81.42). These results show that facial matching is affected
by the position of the lighting with participants lit with the
same lighting on different occasions more easily recognisable
than under different lighting conditions.

The interaction of DR × position was not found to be
significant for accuracy with Greenhouse-Geiser corrections.
(Mauchly’s test of Sphericity violated, P < 0.05) F(1.67,
74.80) = 2.31, P = 0.11.

C. Univariate Analysis: time

The main effect of DR was found to be significant F(2, 76)
= 3.71, P < 0.05, when analysing the DV of time. Pairwise
comparisons, with Bonferroni corrections for DR (αadjusted =
0.05/2), showed a significant difference between HDR (µ =
3.06) and LDR (µ = 3.31) but not significantly different to
mix. LDR and mix were not found to be significantly different.
This indicates that dynamic range of the content significantly
affects how quickly a face is matched.

The main effect of position on time was also found to be
significant F(1, 38) = 33.31, P < 0.01. Pairwise comparisons
also showed a significant difference of same (µ = 2.91) with
different (µ = 3.47). Again these results show it is quicker
to recognise faces when the lighting is similar than under
different lighting conditions.

The interaction of DR × position was not found to be
significant for time, F(2, 76) = 0.86, P = 0.43. Due to the
results presented in this subsection and in subsection VI-B we
can also accept H2

1 .

D. Multivariate Analysis: position: same

Due to the significance of the univariate ANOVAs for both
accuracy and time, a further in-depth analysis was conducted
for both DVs for the IV of position for same in this sub-section
and for difference in the following sub-section.

A repeated measures MANOVA for position:same using
Pillai’s trace showed a significant effect of DR on time and
accuracy V = 0.34, F(4, 35) = 4.49, P < 0.01.

The univariate results for accuracy show a main effect
of DR with Greenhouse-Geiser corrections (Mauchly’s test
of Sphericity significant, P < 0.05) F(1.69, 64.24) = 6.18,
P < 0.01. Pairwise comparisons with Bonferroni corrections

(αadjusted = 0.05/2) show a significant difference between
HDR (µ = 95.28) and LDR (µ = 88.32) and also between HDR
and mix (µ = 83.36). No significant difference was observed
between LDR and mix.

For time univariate results showed a main effect of DR F(2,
76) = 3.56, P < 0.05. Pairwise comparisons, with Bonferroni
corrections (αadjusted = 0.05/2), showed significant differ-
ences between HDR (µ = 2.76) and LDR (µ = 3.1) but no
further significant differences with these two conditions and
mix (µ = 2.91).

These results show that HDR images elicit quicker and more
correct responses for unfamiliar face matching for faces lit
under the same lighting positions.

E. Multivariate Analysis: position: different

A repeated measures MANOVA for position:different using
Pillai’s trace showed a significant effect of DR on time and
accuracy V = 0.32, F(4, 35) = 4.17, P < 0.01.

Univariate results for accuracy showed a main effect of DR
using Greenhouse-Geiser corrections (Mauchly’s test signifi-
cant P < 0.05), F(1.65, 62.54) = 3.75, P < 0.05. Pairwise com-
parisons, with Bonferroni corrections (αadjusted = 0.05/2),
for accuracy showed a significant difference between HDR (µ
= 84.88) and LDR (µ = 78.44) but no significant difference
with mix (µ = 80.95).

For time univariate results showed no main effect for DR
F(2, 76) = 1.19. Pairwise comparisons were not conducted
due to lack of significance in the main effect but these results
appear to indicate that HDR (µ = 3.35) may be marginally
faster than both LDR (µ = 3.52) and mix (µ = 3.47).

Results indicate a higher accuracy for HDR images over the
other modalities for differing lighting conditions, however, no
significant difference in response time was found.

VII. DISCUSSION

The work presented here aimed to establish whether HDR
imaging is an effective and reliable technology in the context
of surveillance and identity verification and forensic imaging.

The HDR imaging pipeline, due to image representation and
visualisation closer to what humans perceive in reality, poses
itself as a valid alternative to the current technology employed
in every context where accuracy is essential in the decision
making process. Applications can range from passport checks
to witness testimony.

The first part (Section IV) was related to the creation of an
HDR faces stimuli dataset. A thorough search of the relevant
literature revealed this to be the first available dataset in
its genre. Its creation was in response to one of the main
issues with HDR imaging at the moment: apart from CGI
generated, very little content is currently available. Although
exposure bracketing is used by photographers, a limitation
is presented by the end devices (print, standard screens),
so the content is tone-mapped in most cases, rather than
stored and displayed in HDR format. The process of camera
calibration and the accuracy towards technical aspects of the
image capture phase makes this dataset ideal when studies
require accurate luminance reproduction. Although the dataset
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presents a limited size and only one sex is represented, further
effort is currently being made to expand it.

The second part (Section V) demonstrated the perceptually
added value of HDR compared to LDR imaging. The analysis
of performance and accuracy of the three different blocks
showed a clear advantage in using HDR technology, because
of its intrinsic nature of light reproduction, leading us to
accept both H1

1 and H2
1 . This indicates that the dynamic range

of the presented content significantly affects how accurately
and quickly a face is matched. These results align with the
literature which examines how lighting interferes with the
facial recognition process, especially for unfamiliar faces.
The results show also the advantage offered by HDR even
when performing a face matching task with different lighting
conditions.

HDR was compared side-by-side with LDR face represen-
tation for symmetry reasons (labelled as mix). The results
show that the recognition in most cases is not significantly
quicker than with LDR. One possible explanation is that the
lack of perceptually relevant information in the LDR image
slows down or hinders the recognition process. This does not
happen when HDR images are compared side-by-side; they
result in superior performance.

A. Limitations

The limitations of this work are related to the small size of
the stimuli dataset, although every precaution has been taken
to avoid image memory and repetition of the same face so as
to impede the observers from learning them. Questions about
the ecological validity and generalizability of the experimental
results, due to the nature of the stimuli can arise.

If these preliminary results are to be confirmed a more
varied face stimuli set in necessary. This should include both
genders, more ethnicities and also challenging pairs such as
lookalikes, or the same faces with different features such
as cosmetics or facial hair. In addition, to fully explore the
impact of lighting, uncontrolled lighting (e.g. outdoor, harsh
shadows, night/dim lighting) should be considered. The merit
of this work lies in showing scope for the applicability of HDR
imaging in face matching tasks.

VIII. CONCLUSION

The research presented in this paper shows that HDR is a
technology that deserves further attention from digital surveil-
lance and forensic communities. This study has demonstrated
its potential applicability for improved performance in face
matching tasks. Its accuracy in light reproduction makes HDR
the ideal candidate for advancement in applications where
reliability and high confidence is required.

Further research is needed if this technology has to be
employed in critical situations. Nevertheless, this type of
research could pave the way for novel imaging methods in face
matching such as CCTV camera systems pipelines that better
reproduce lighting in a more perceptually accurate fashion.
This work will see future investigations exploiting the fullness
of the stimuli including colour components. Additionally, it
could be very interesting to explore the potential of HDR

imaging in a live face matching context involving both experts
and non experts.
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