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Abstract—Most full-reference fidelity/quality metrics compare
the original image to a distorted image at the same resolu-
tion assuming a fixed viewing condition. However, in many
applications, such as video streaming, due to the diversity of
channel capacities and display devices, the viewing distance
and the spatiotemporal resolution of the displayed signal may
be adapted in order to optimize the perceived signal quality.
For example, at low bitrate coding applications an observer
may prefer to reduce the resolution or increase the viewing
distance to reduce the visibility of the compression artifacts. The
tradeoff between resolution/viewing conditions and visibility of
compression artifacts, requires new approaches for the evaluation
of image quality that account for both image distortions and
image size. In order to better understand such tradeoffs, we
conducted subjective tests using two representative still image
coders, JPEG and JPEG 2000. Our results indicate that an
observer would indeed prefer a lower spatial resolution (at a
fixed viewing distance) in order to reduce the visibility of the
compression artifacts, but not all the way to the point where
the artifacts are completely invisible. Moreover, the observer is
willing to accept more artifacts as the image size decreases. The
subjective test results we report can be used to select viewing
conditions for coding applications. They also set the stage for
the development of novel fidelity metrics. The focus of this paper
is on still images, but it is expected that similar tradeoffs apply
to video.

Index Terms—Scalability, image quality, image fidelity, noise
visibility, just noticeable distortion, JND, human visual percep-
tion.

I. INTRODUCTION

R
ECENT advances in video capture and display tech-

nologies and digital communications have led to the

development of a wide variety of video services. The spa-

tiotemporal resolution of the video signals that these services

provide depends on the video capture device, the transmission

bandwidth, and the display system. In many scenarios, a video

sequence may be transmitted to a variety of users with different

bandwidths and different display devices. This gives rise to

the need of a scalable scheme for maximal results. A scalable

scheme may be implemented at the source, where a scalable

coder is employed, or embedded in the transmission proto-

col, which requires that the source bit-stream be transcoded
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somewhere along the transmission path to support the service

needs in quality while minimizing the throughput demand on

the network. In any event, the transmitted video streams need

to be adjusted according to the channel bandwidth and the

display device of the user.

The adaptive scaling scheme also involves the user’s view-

ing conditions. As an example, in low bitrate coding appli-

cations, the compressed image or video may be too distorted

and the viewer may prefer to reduce the resolution (or size)

or increase the viewing distance to reduce the visibility

of the compression artifacts. Such kind of situation has at

least two implications that warrant investigation. First, exist-

ing subjective evaluations or objective image fidelity/quality

metrics based on a fixed set of viewing conditions may

not be reasonably extrapolated for measuring the perceived

image quality under such potentially mismatched viewing

conditions. Second, since most fidelity metrics (and coding

schemes that are guided by them) were designed under the

assumption of fixed viewing conditions, they only measure

the noise/distortion visibility for a given image, and do not

account for changes in the signal visibility when the viewing

conditions (e.g., resolution or viewing distance), and hence, the

signal itself, changes. For example, when the viewing distance

is infinite, the noise becomes invisible, but so does the signal!

In order to cope with the new application scenarios, there

is a need for a fundamental change in our understanding of

image fidelity assessment, both subjective and objective. The

goal of this paper is to highlight this need and to explore some

of the tradeoffs that must be addressed by those who design

subjective experiments or develop fidelity metrics.

We present a subjective study that measures the effects of

viewing conditions on perceived image quality. In particular,

our goal is to explore tradeoffs between spatial resolution and

image compression artifacts in order to obtain the optimal

display conditions for an image that has been compressed

by a given algorithm at a given bitrate. As we will discuss

below, there are similar tradeoffs between viewing distance

and compression artifacts. The focus of this paper is on still

images, but we expect that similar tradeoffs apply to video.

Of course, formal experiments would be necessary to quantify

such tradeoffs, as well as tradeoffs that arise from varying the

temporal resolution of the video sequence.

First we clarify two terms: image fidelity and image quality

since these two have been interchangeably referred to in the

literature. In this paper, our use of these two terms carries the

following somewhat unconventional notions. Image fidelity is

a measure that always involves a reference; it can be either
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objective under a prescribed set of conditions or subjective

for same or different conditions. In the case that an objective

image fidelity metric employs a perceptual model, it is referred

to as a perceptual image fidelity metric. On the other hand,

image quality denotes the perceived characteristics of an

image. Such an assessment may or may not involve a reference

signal; its measurement is primarily based on the viewers’

long-term psychophysical experience. In this paper, when there

is an explicit comparison with a reference image, we will use

the term image fidelity. When the comparison is indirect or

implicit, we will use the term image quality.

The paper is organized as follows. In the remainder of

this introduction, we discuss the motivation, methodology, and

prior work. Section II reviews objective image fidelity metrics.

The setup for the subjective tests is presented in Section III.

Section IV presents and analyzes the experimental results. The

concluding remarks are provided in Section V.

A. Motivation and Methodology

The primary goal of this paper is to test the hypothesis

that there exist unconventional tradeoffs between the spatial

resolution of a given image and its perceived quality, and to

provide guidelines for determining the most efficient spatial

resolution at a given level of noise. This is in contrast to other

psychophysical experiments that try to quantify parameters

of an algorithm, e.g., visual thresholds. Our main interest

here is noise that arises from compression artifacts, but while

rigorous studies are necessary, we expect to see similar types

of tradeoffs in other distortions and applications.

Before introducing the methodology of perceptual analysis,

let us first state three fundamental assumptions of the human

psychophysical behavior as related to visual perception.

1) Relatively, a human observer perceives an image of

higher spatial resolution as having higher quality, pro-

vided that the image is a natural one without obvious

known artifacts.

2) Relatively, a human observer rates an image as of lower

quality if it contains more compression artifacts.

3) There exist varying threshold levels of noise visibility

below which an observer cannot perceive the noise.

These are commonly referred to as just-noticeable dis-

tortion (JND) levels.

With these axiomatic assumptions, one key hypothesis to be

verified and an objective to be accomplished in our current

study can be stated as follows.

1) The visibility of compression artifacts (or noise vis-

ibility) decreases as the spatial resolution decreases.

At the same time, the signal visibility (or presence in

a more general sense) also decreases with decreasing

spatial resolution, albeit at a different rate from the noise

visibility. Consequently, there exist some unconventional

tradeoffs between the spatial resolution of a given image

and its perceived quality.

2) Quantification of the thresholds for noise visibility may

provide a guideline for determining the most efficient

spatial resolution at a given noise level.

In order to to verify the above hypothesis and to gain

a better understanding of different tradeoffs and the related

quantification of perceptual parameters, we conducted two

subjective experiments.

The goal of the first experiment is to find the just-noticeable

level of distortion (JND) for a given image at a given resolution

and viewing distance, that is, to find the lowest bitrate at which

no compression artifacts are visible. We refer to this as the just-

noticeable noise perception assessment (JNNP). Conversely,

for a fixed bitrate and viewing distance, this experiment can

be used to find the highest resolution at which the compression

artifacts are not visible. In principle, the JND levels can

be predicted using existing perceptual fidelity metrics [1].

The goal of this experiment is then to verify the predictive

capability of the metrics.

The goal of the second experiment is to explore the tradeoffs

between noise and signal visibility. For a given encoding

rate and viewing distance, the goal of this experiment is to

determine the spatial resolution that gives the best overall

subjective quality. We refer to this as the relative perceived

quality assessment (RPQ). In this experiment, each subject

was presented with a set of images at various spatial res-

olutions while the resolution of the display (in pixels per

degree) was fixed. This setup allows easy administration of

the assessment procedure, as the only thing that changes is

the size of the displayed image. The subjects were asked to

select one displayed image that is of the highest subjective

quality. The subjects were instructed to base their decisions

on the overall image quality, i.e., including both distortion

artifacts and signal visibility. The images were obtained by

downsampling (i.e., anti-alias filtering and decimation) from

the same image, which was encoded and reconstructed using

two still image coders (JPEG and JPEG 2000) at several

encoding rates. In other words, the encoding was all done at

the highest resolution. An alternative would be to downsample

the original image first, and then encode it at different bit rates.

Both alternatives are reasonable, but they address different

applications. Our primary interest here is in applications in

which the receiver has no control over the transmitter or

encoder, and is simply trying to optimize the displayed image

quality.

We also made an attempt to relate the results of our

subjective tests to existing objective image fidelity metrics.

As we saw above, the existing fidelity metrics assume that

the original and distorted image are at the same resolution

and viewing conditions, and hence, cannot provide quantita-

tive estimates of image quality across resolutions or viewing

distances. Moreover, most of the existing metrics have been

calibrated for CRT displays, and a direct comparison with our

experiments, which were conducted with flat panel displays,

is difficult.

Based on the test results, we experimentally verified that

there exist sensible tradeoffs as hypothesized. Furthermore, we

found that the acceptable noise visibility level under varying

signal visibility conditions (spatial resolution) is in general sig-

nificantly higher than the conventional JND thresholds under

fixed viewing conditions. This can be understood as a human

observer tends to be willing to accept more compression arti-
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facts than what may be predicted by existing fidelity measures

as long as the operating resolution does not unduly increase

the visibility of the artifacts. These findings suggest that a new

measure of visual fidelity must take into account the spatial

resolution discrepancy between the original image and the

viewed image, and that many image coding applications can

achieve higher coding performance by exploiting the human

psychophysical behavior in a variety of viewing conditions.

The ultimate goal, of course, is to develop novel fidelity

metrics for a wide range of applications that involve variable

bitrates and display devices. Indeed, the subjective evaluations

we present in this paper set the stage for the development of

such metrics.

B. Prior Work

The study of image quality as a function of viewing

distance, resolution, and picture size was the topic of early

work by Westerink and Roufs [2], who found that angular

resolution (in cycles per degree) and picture angle each influ-

ence image quality independently. They found that subjective

quality increases with resolution but saturates at approximately

25 cycles per degree. Their results also indicate a linear rela-

tionship between subjective quality and the logarithm of the

picture angle. Their experiments, which used slide projections

of complex scenes as stimuli, set the foundations of modern

image quality analysis and had a major impact on the design

of the high-definition TV standard. The effect of the display

resolution, image size, and other display parameters on the

perception of image quality was considered by Barten [3]–[5],

who proposed a metric, the square root integral (SQRI), that

given the modulation transfer function of a particular display

device, can be used to estimate the optimal viewing distance

for a given spatial resolution. However, neither Westerink and

Roufs nor Barten took the effects of compression artifacts into

consideration. Since then the topic has received little attention

in the literature. In the mean time, new communications appli-

cations have evolved that require a new look at the parameters

that influence image quality, and especially tradeoffs between

them, e.g., angular (or spatial) resolution versus picture angle

(or image size). Kuhmünch et al. [6] considered the tradeoff

between temporal and spatial resolution in the context of

scalable video coding. They proposed a video fidelity metric

that is based on the concepts introduced by Webster et al. in

[7] and used it to find the ratio between spatial and temporal

scaling that maximizes perceived quality as measured by the

metric. The proposed metric obtains separate estimates of

static and dynamic image quality, and then combines them

additively or multiplicatively. Although their work provides a

valuable approach for video scalability, they do not address the

noise versus signal visibility tradeoff considered in this paper.

Feghali et al. in [8] considered tradeoffs between temporal

resolution and quantization, and proposed a new, empirically-

derived, metric that takes into account quantization errors,

frame rate, and motion speed. The viewing conditions were

fixed, however. Koumaras et al. [9], [10] considered subjective

and objective estimates of upper and lower bounds in the

perceived quality of video clips with different resolutions and

spatio-temporal activity levels. Finally, Schilling and Cosman

[11] evaluated a number of progressive coders based on

the assumption that the time it takes a human observer to

recognize a given image relates to image fidelity.

II. OBJECTIVE IMAGE FIDELITY METRICS

The study of multimedia communication applications

(speech, image, and video), which inevitably involve some

types of signal distortion, requires the evaluation of signal

fidelity in its reconstructed form. This can be done with

objective criteria, but since the ultimate user is usually a

human, any such evaluation or assessment should consistently

reflect human perceptual preference. In this section, we review

objective measures for still image fidelity that have been

proposed with varying degrees of success in predicting the

subjective preference.

The most commonly used objective fidelity measure is the

mean squared error (MSE), most commonly expressed as peak

signal-to-noise ratio (PSNR), which is known to be inadequate

as a measure of perceptual distortion. A number of perceptual

measures have also been proposed. These measures have relied

on certain explicit low-level models of human perception that

account for sensitivity to subband noise as a function of the

spatial frequency, the local luminance, and the contrast or

texture masking [1], [12]. Another recently proposed class

of fidelity measures, known as Structural SIMilarity (SSIM)

[13], uses implicit perceptual models to account for high-

level characteristics of the human visual system (HVS). Such

measures take into account point-by-point distortions that

may not be relevant to perception of quality, such as spatial

translation and intensity shifts, as well as contrast and scale

changes. We review all these measures in this section.

A. Perceptual Metrics with Explicit Visual Model

Most of the existing perceptually based image fidelity

measures incorporate explicit models of human perception

[1], [12]. As mentioned earlier, these measures assume that

the reference and the processed (reconstructed) images have

the same resolution, and are viewed at a prescribed distance,

i.e., under identical viewing conditions. Most measures are

based on a multi-scale spatial frequency decomposition using

methods such as discrete wavelet transform (DWT), filterbank

(i.e., the subband method), or discrete cosine transform (DCT).

Perceptual sensitivity usually can be better addressed in the

transform domain than with the original pixel array.

Our focus here is on measures that have been developed

specifically for image compression applications. We assume

that a proper transformation that is commensurate with the

adopted perceptual model has been performed, resulting in

the set of coefficients {bi,k}, where k denotes the index in the
transform domain and i is the location index of the transformed
image block. For each coefficient of the decomposed signal,

such measures employ a noise visibility threshold ti,k, referred

to as the just noticeable distortion level or JND, to quantify

the perceived distortion. This threshold accounts for human

visual sensitivity to spatial frequency, local luminance, and

contrast/texture masking. The distortion for the overall image
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is then computed as:

Dp =
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where b̂i,k is the coefficient of the processed (or distorted)

image corresponding to bi,k, and N is the total number of

coefficients (equivalently, pixels). The value of Qs is em-

pirically determined from psychophysical experiments. (For

a discussion, see [1].) Note that when the difference of the

two coefficients is below the visibility threshold, the noise is

essentially invisible and the actual value of the difference does

not matter. When the difference is higher than the threshold,

it is normalized by the JND level. Thus, Dp represents the

average distortion expressed in JNDs.

In order to be consistent with traditional error metrics, we

express the perceptual metric in terms of “visual decibels

(dB).” We define the “masked peak signal-to-noise ratio (MP-

SNR)” as

MPSNR = 10 log
10

2552

D2
p

. (2)

Note that the maximum value of MPSNR is 48.13 dB, which
corresponds to the perceptually transparent condition. For

this paper, we considered several measures, one developed

by Safranek and Johnston for subband coders [14], one by

Watson for DCT coders [15][6], and another by Watson et

al. for wavelet-based coders [16]. A detailed description of

the measures can also be found in [1]. Even though these

measures were developed for near-threshold applications, they

have also been used in supra-threshold applications [17], [18].

More systematic studies of the supra-threshold case can be

found in [19]–[22].

B. Structural Similarity Metrics

In contrast to the perceptual metrics we described above,

the Structural SIMilarity (SSIM) metrics, proposed by Wang

et al. [13], [23], are not based on measurements of noise

sensitivities; instead, they attempt to take into account higher-

level functionalities of the HVS, and in particular, they attempt

to make explicit use of the “structural” information in the

viewing field. An important property of the SSIM measures

is that they are only supposed to respond to significant

structural changes, while perceptually insignificant point-by-

point distortions, such as contrast and intensity changes, are

not substantially penalized. These measures assume that the

structural information is available or can be extracted from

the image. Thus, they are expected to be more effective

in measuring supra-threshold compression distortions, which

affect the structure of an image.

There are several SSIM implementations, both in the im-

age/pixel space and in the wavelet domain. The basic SSIM

index proposed in [13] is a real number in the range [−1, 1]
and is computed based on the second order statistics of the

reference and the distorted image as follows:

S(x, y) =
(2µxµy + K1) (2σxy + K2)

(µ2
x + µ2

y + K1) (σ2
x + σ2

y + K2)
, (3)

where x and y are two nonnegative image signals (or image

patches), µx and µy are the mean intensities, σ
2

x and σ2

y are the

variances, σxy is the covariance of x and y, andK1 andK2 are

small real constants relative to µx or µy . A more general form

of this metric can be found in [13]. The spatial domain SSIM

has been shown to provide good quality prediction across a

variety of artifacts, but is highly sensitive to spatial translation.

The complex wavelet domain implementation (CWSSIM)

[24] allows imperceptible spatial translations, and also small

rotations and scaling changes. The CWSSIM of a given

subband is given by
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where cx and cy are the wavelet coefficients corresponding

to two images or image patches, c∗ denotes the complex

conjugate of c, and K is a small positive constant.
Note that the mean of the wavelet coefficients (except the

baseband) is zero due to the bandpass property of the wavelet

transform. The overall metric value is computed as the mean

of the CWSSIM subband indices. Brooks et al. [25], [26]

proposed a variation of this metric, whereby the subband

indexes are weighted based on human sensitivity to subband

noise. The weighted CWSSIM incorporates an explicit model

of subband sensitivity to noise, and thus, provides a link to

the perceptual metrics described above.

Overall, even though SSIM metrics have introduced a new

way of looking at image fidelity, they are also limited by

the fact that the reference and test images are at the same

resolution and viewing conditions.

C. Signal and noise visibility

As will be discussed in the next section, the aim of our

subjective experiments is to measure the effect of viewing

conditions (viewing distance or spatial resolution) on the

perceived image quality. As the amount of distortion increases,

say due to reduced bandwidth or bitrate, it is conjectured

that the perceived quality may benefit from a reduction in the

spatial resolution, or similarly, from an increase in the viewing

distance. Of course, changing the viewing distance is not

equivalent to changing the spatial resolution, as one has to take

into account the specifics of the sampling rate conversion and

characteristics of the display device [27]. However, to a first

order approximation, we can safely assume that reducing the

resolution is equivalent to increasing the viewing distance by

the same factor. The fidelity measures that have been proposed

so far cannot provide a quantitative estimate of the image

quality when the image resolution or the viewing distance has

been altered. One obvious approach to evaluating the visual

fidelity across spatial resolution is to evaluate the images at

the highest resolution using one of the available measures. A

problem with this approach is that it requires image interpo-

lation, and it is not clear what interpolation techniques should

be used since they may introduce unexpected artifacts. More

importantly, this approach is essentially inconsistent with the

way the reconstructed images are viewed or used by a viewer.
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Fig. 1. The Mannos-Sakrison and Daly eye contrast sensitivity functions.

Fig. 2. The Mannos-Sakrison frequency response with frequency expressed
in cycles/inch at several viewing distances.

In order to explain in simple terms the issues involved, we

consider the contrast sensitivity function (CSF) of the eye.

However, we should point out that the CSF is too simple

of a model of the eye for the purpose of evaluating the

perceived image fidelity. An estimate of the CSF by Mannos

and Sakrison [28] is shown in Fig. 1 in solid red line.

According to the estimate, the eye is a bandpass filter, showing

increasing sensitivity as the spatial frequency rises, peaking at

about 8 cycles per degree, and then decaying exponentially

towards higher frequencies. Also shown in dashed blue line is

the frequency response used by Daly [29]; it models the eye

as a lowpass filter instead of a bandpass one. As illustrated

in Fig. 2, the frequency response changes substantially with

the viewing distance. For example, as the viewing distance

increases, the peak of the response shifts to lower frequencies,

making high frequency details less visible (for more details,

see [30]).

The key parameters for the CSF are the viewing distance

(in inches) and the resolution of the display device (in pixels

per inch). Alternatively, one can specify the viewing distance

in image heights and the image height in pixels (assuming

identical horizontal and vertical display resolution). In either

case, one must derive the “display visual resolution” in pixels

per degree [16]. Note that, since the CSF demonstrates a band-

pass characteristic, it is possible that (low-frequency) image

degradations become more visible as the viewing distance in-

creases [12], [31]. In order to compensate for this undesirable

effect, several researchers have proposed “flattening” of the

eye response [29], [32]–[35] as shown in Fig. 1.

Based on the above discussion, it is clear that increasing

the viewing distance reduces the visibility of compression arti-

facts. However, increasing the viewing distance also decreases

the visibility of the signal itself. In the extreme case of an

infinite viewing distance, no artifacts are visible, but neither

is the signal. Thus, there is a need to find a viewing distance

that achieves the best balance between the signal and the noise

visibility so as to achieve the best overall image quality.

III. SUBJECTIVE EXPERIMENTS

To obtain a better understanding of how the spatial reso-

lution affects the perceived signal quality in the context of

compression artifacts, we conducted subjective image quality

evaluation experiments. Early psychophysical experiments for

analyzing the effect of spatial resolution on image quality

assessment were conducted by Westerink and Roufs [2]. Such

experiments have formed the basis of modern image quality

analysis and had a major impact on the design of the high-

definition TV standard. The goal of this paper is to consider

specific tradeoffs that were not in that early study, and that are

encountered in current communications applications, which

encompass a wide variety of display devices and channel ca-

pacities. In particular, our goal is to explore tradeoffs between

spatial resolution and image compression artifacts in order to

obtain the optimal display conditions for an image that has

been compressed by a given algorithm at a given bitrate.

We conducted two experiments. In both cases, the viewing

distance was fixed. We used a series of compressed images at

different bitrates that were carefully chosen to cover a wide

range of perceptual quality. These images were then down-

sampled using near-optimal sinc-function anti-aliasing filters.

As we noted in the introduction, all the encoding was done

at the highest resolution. The goal of the just-noticeable noise

perception assessment experiment was, at each resolution, to

find the highest compression level at which the artifacts are not

visible, or conversely, for a fixed bitrate and viewing distance,

to find the highest resolution at which the compression artifacts

are not visible. The goal of the relative perceived quality

assessment experiment was to determine the resolution that

gives the best overall subjective quality for a given encoding

rate.

A. Image generation and experimental setup

In our experiments we used a number of test images and

compression techniques. Figure 3 shows thumbnails of the four

test images, “Bank,” “Lena,” “Bike,” and “Woman,” all with

spatial resolution 512×512 pixels and 256 quantization levels.
The “Bike” and “Woman” images were cropped from the ISO

400 image set. Note that the “Bank” image has the highest

amount of detail, followed by “Bike,” “Lena,” and “Woman.”

Note also that in “Lena” the background is blurred, while in

both “Lena” and “Bike” there is some visible noise, most likely

scanning artifacts.

The test images were first encoded using two different

coding algorithms, JPEG [36], [37] and JPEG 2000 [38],

[39]. JPEG is the most widely used method for perceptually

lossless or lossy image compression. It is based on a DCT

decomposition. The JPEG quantization table was based on the

baseline contrast sensitivity thresholds determined by Watson

[1], [15], computed at six image heights. JPEG 2000 is the

most recent standard for image compression, and is based on

a DWT decomposition. The number of decomposition levels
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Fig. 3. Images for subjective tests, “Bank”, “Lena”, “Bike”, and “Woman”
(in raster scan order).

was set at 5 and the codeblock size was set at 32. Since these
compression methods have different coding efficiencies, the

bitrates for each image and technique were carefully selected

to obtain reasonable differences in perceived quality between

images at consecutive bitrates. The selected bitrates for the two

compression methods and four images are shown in Table I.

In all cases, the highest bitrate was 1.0, at which there are no
distortions visible to human observers.

For each coder and bitrate, the reconstructed images were

then downsampled by factors of 4/3, 2, 8/3, 4, 16/3, and 8

to obtain seven different resolutions, using integer upsam-

pling and downsampling combinations with near-optimal sinc-

function anti-aliasing filters. The viewing distance was fixed at

six image heights of the highest resolution (512×512) image,
which is equal to 35.4 inches. The stimuli were displayed
in a blue background and viewed in a darkened room on a

Dell 1905FP flat panel liquid-crystal display (LCD) screen

with contrast ratio 800:1 and a resolution of 86.78 pixels/inch.
The maximum luminance of this display is 250 cd/m2 and

the average luminance is 125 cd/m2. The resulting spatial

resolutions, viewing angles to the image stimuli, and the

maximum spatial frequencies are listed in Table II.

Six observers (hereafter, sbj1 to sbj6) took part in the

experiments. All were binocular with normal color vision and

normal (two) or corrected (four) visual acuity. Five were male

and one female. Their age was between 20 and 30 years old.

The subject group included a balanced mixture of critical and

casual viewers; their familiarity with image processing did not

seen to have any significant effect on the test results. All six

subjects participated in both experiments. Prior to the test,

each observer was presented with the original images and

typical examples of compressed images, in order to become

familiarized with the test environment. During the test, the

observers were given enough time to make their decisions. In

the relative test, they were also allowed to view the original

test images (at the highest resolution) at any time during the

test. The ordering of images and encoders was randomized to

avoid any biases, but as we will see below, the bitrates were

not.

For a review of the general methodology of designing a

psychophysical test, the reader is referred to [40]–[42].

B. Just-Noticeable Noise Perception Assessment

The goal of the just-noticeable noise perception assessment

is to find the distortion level at which the compression artifacts

become invisible. In theory, the JND can be predicted using

existing perceptual fidelity measures. However, this is not

always true in practice, thus making this experiment necessary.

This experiment is in contrast to the relative perceived quality

test, where we test the expectation that the subjects are willing

to accept some compression artifacts in order to obtain a larger

image, in which case they should select a higher resolution

than the one that corresponds to the JND level.

This experiment consists of a series of two-alternative

forced choice (2AFC) tests. Each observer was presented with

two images, the original and the encoded image, in random

order, and was asked to select the one without compression

artifacts. Both images were downsampled to a given resolution

using the same algorithm. An example of the stimulus is shown

in Figure 4. The test was repeated ten times at each resolution

and distortion level (bitrate). If all the answers are correct, this

indicates that the noise is visible. If the noise is not visible,

then the observer’s selection should be random, i.e., 50% of

the answers should be correct. In a 2AFC experiment like

this, the threshold value for the correct answer is typically

taken as the midpoint between the ideal percentages, which

corresponds to 75% correct [43]. Therefore, if an observer

gives the correct answer eight times or more, then we conclude

that the noise is visible; otherwise it is invisible. The lowest

level of distortion at which the noise is invisible is the JND.

A similar experimental setup was used in [14], [44].

In principle, there should be ten trials for each bitrate,

image, and spatial resolution, which adds up to over a thou-

sand trials for each observer. However, since our goal is to

determine the threshold of perception, the length of the test

can be significantly reduced through the use of a dynamic

threshold determination method. Rather than carrying out an

exhaustive test, each observer was presented with a limited

range of bitrates. The initial bitrate was chosen in the middle of

the range of bitrates. If the compression artifacts at this bitrate

were determined to be visible, then the bitrate was increased

by one step. This procedure was repeated until the artifacts

became invisible. Similarly, if the compression artifacts at the

initial bitrate were determined to be invisible, then the bitrate

was decreased one step at a time until they became visible. In

both cases, once the critical coding bitrate was determined,

an additional test at the next higher or lower bitrate was

conducted, in order to validate the results.
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TABLE I

CODING BITRATES FOR THE TEST IMAGES

Image Coder Bitrates (bits/pixel)

JPEG 1.0, 0.8, 0.7, 0.6, 0.5, 0.45, 0.4, 0.3, 0.25, 0.2
Bank

JPEG 2000 1.0, 0.75, 0.6, 0.5, 0.3, 0.2, 0.18, 0.15, 0.12, 0.1, 0.05

JPEG 1.0, 0.8, 0.6, 0.5, 0.4, 0.3, 0.27, 0.23
Bike

JPEG 2000 1.0, 0.75, 0.5, 0.4, 0.3, 0.2, 0.1, 0.08, 0.05, 0.04, 0.03

JPEG 1.0, 0.5, 0.4, 0.35, 0.3, 0.27, 0.25, 0.23, 0.2
Lena

JPEG 2000 1.0, 0.5, 0.4, 0.35, 0.3, 0.2, 0.1, 0.08, 0.05, 0.03

JPEG 1.0, 0.6, 0.5, 0.4, 0.35, 0.3, 0.25, 0.2, 0.15, 0.14
Woman

JPEG 2000 1.0, 0.5, 0.3, 0.2, 0.1, 0.08, 0.06, 0.04

TABLE II

SPATIAL RESOLUTIONS AND VIEWING CONDITIONS

Spatial resolution 512 384 256 192 128 96 64

Viewing angle (degree) 9.53 7.15 4.77 3.58 2.39 1.79 1.19

Maximum spatial frequency (cycles/degree) 53.74 40.31 26.87 20.15 13.44 10.08 6.72

Fig. 4. Test images for the just noticeable noise perception assessment test
(“Bank” coded by JPEG at 0.2 bits/pixel).

C. Relative Perceived Quality Assessment

The goal of the relative perceived quality assessment test

is to study the effect of spatial resolution on the perceived

quality of the displayed images. When the spatial resolution

decreases, the visibility of the compression artifacts is reduced

and so is the visibility of the signal. One key question to be

answered is how the visibility reductions for the signal and

the noise relate to each other perceptually. This subjective

experiment was designed to answer the question by asking

an observer to take both effects into consideration as she/he

selects the resolution that maximizes the perceived quality. In

the subjective experiment, each subject was presented with

a set of images at different spatial resolutions and asked to

select the one of highest subjective quality. All the images

in the set were downsampled from the same decoded image.

Figure 5 illustrates the setup, a seven-alternative forced choice

(7AFC) stimulus array. The images are ordered clockwise

in increasing resolution in order to facilitate pair-wise com-

parisons between adjacent resolutions. While the images and

compression techniques were randomized, the bitrates were

presented in descending order. This is because the observers

may be confused if the quality jumps around too much, and

also, by moving from higher to lower quality, the observers

have a better sense of what they are looking for.

Fig. 5. Test images for the relative perceived quality assessment test (“Lena”
coded by JPEG 2000 at 0.1 bits/pixel).

IV. EXPERIMENTAL RESULTS

We now examine the results of the subjective experiments.

Due to a variety of factors, it is reasonable to expect that the

results of such subjective evaluations will include a number

of outliers. Thus, as is typical in subjective evaluations, in

each test we excluded the most extreme (high or low) vote.

That is, in the just noticeable noise perception assessment,

for each image and resolution, we excluded the observer

with the most extreme bitrate, while in the relative perceived

quality assessment, for each image and bitrate, we excluded

the observer with the most extreme resolution. When there

were two extreme votes, we excluded the one with the lower

numerical value. We then used both the median and the mean

of the remaining votes as the final outcome of the assessment.

A. Just Noticeable Noise Perception Assessment

Figure 6 plots the noise visibility thresholds that were ob-

tained from the Just Noticeable Noise Perception Assessment.

Note that the axes of these plots have been interchanged in
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Fig. 6. Noise visibility thresholds for all the subjects. Their votes are indicated by the dotted lines and their median value is by the solid line.

order to provide consistency with the figures that follow. In

general, we expect the noise visibility threshold to decrease as

the spatial resolution increases, and thus, the selected bitrate

to increase with increasing resolution. Observe that this is not

true for all of the results. Several violations of this expectation

can be seen in Fig. 6 (a), (b), (d), (f), and (h). For example,

note the graph for sbj5 in the “Bike” image of Fig. 6 (b)

and (f). This may be explained by the fact that the inherent

noise in the original uncompressed image could influence

the observer’s choice. Image compression algorithms typically

drop high frequencies, and this results in image smoothing.

When the original image is noisy (or even textured, e.g.,

in a face), the observers may then consider the smoother

compressed image as superior to the noisy original and, thus,

label it as original.

The overall JND level (median) is shown in solid line in

the figure. At a given resolution, this represents the bitrates at

which the compression artifacts become invisible. Note that

at low resolutions, the JND levels for images generated by

JPEG 2000 correspond to lower bitrates than those for JPEG

images, while at higher resolutions, the results are mixed.

This should be expected because at lower rates JPEG 2000

provides superior rate-distortion performance, while at higher

rates JPEG outperforms JPEG 2000 for highly detailed images

(like “Bank”, “Bike”) but is less efficient for images with low

detail, whose quality is not affected by a certain amount of

blurring (like Lena and “Woman”).

B. Relative Perceived Quality Assessment

Figure 7 depicts the most preferred spatial resolution from

the results of the relative perceived quality assessment. As

in Fig. 6, the x-axis and the y-axis correspond to the coding

bitrate and the spatial resolution, respectively. Note that in

Fig. 7 (c), (e), and (g) one can see several measurement

inconsistencies. As we saw above, the final result (solid lines)

was obtained as the median values of the subjects’ votes after

excluding one extreme measurement for each test. Note that

as the bitrate decreases, the subjective quality decreases, and

that the observers prefer to reduce the spatial resolution in

order to reduce the visibility of the compression artifacts.

The question is whether they always prefer the resolution

at which no compression artifacts are visible, or they are

willing to accept some artifacts instead of a further decrease

in image resolution (and size). To answer this question, we

now compare the results of the two subjective experiments.

C. Comprehensive Analysis and Statistical Validation of Ex-

perimental results

Figures 8 and 9 plot the results of the two tests (from

Figs. 6 and 7, respectively) on one graph for each image

and compression technique. Black solid lines with triangle

markers correspond to the median of the measured JND levels.

The error bars show the standard deviation and are centered

on the mean values, which are marked with blue triangles.

The red dashed lines connect the error bars to outline the

area within a standard deviation of the measured JND values.

The medians of the observer votes for the relative perceived

quality test are shown in black solid lines with circle markers.

The corresponding error bars are centered on the mean values,

which are marked with blue circles. Note that since the tests

included a discrete set of bit rates and spatial resolutions, the

medians may be more meaningful than the means, but the

means and error bars are also included as an indication of the

most likely range of values of the respective quantities. Note

that for the most part, the most preferred noise-level/resolution

points of the relative perceived quality test are well outside

the JND range. This is true for both JPEG and JPEG 2000

encoding. Table III shows the ratio of the observer votes in
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Fig. 7. Most preferred resolution for all the subjects. Their votes are indicated by the dotted lines and their median value is by the solid line.

TABLE III

RATIO OF OBSERVERS’ VOTES IN THE RELATIVE PERCEIVED QUALITY

TEST THAT FALL WITHIN A STANDARD DEVIATION OF THE JND (%)

JPEG JPEG 2000

Bank 1.67 9.09

Bike 14.58 10.06

Lena 18.52 28.33

Woman 26.67 12.50

Average 15.32 15.00

the relative perceived quality test that fall within a standard

deviation of the JND level for each image and coding method.

Based on these observations, we conclude that the difference

between the noise visibility levels that correspond to the most

preferred resolution and the JND levels is significant.

A couple of additional observations are in order. At the

maximum spatial resolution of 512×512, the relative perceived
quality levels saturate before the maximum coding bitrate of

1.0 bpp is reached. For “Lena” coded by JPEG 2000 in Fig. 9
(c), the JND level is lower than the relative perceived quality

level at the highest resolution (512× 512). Our interpretation
of this somewhat unexpected result is that the original “Lena”

image has visible noise artifacts that get wiped out by JPEG

2000 compression. Thus, in the JNP test, the observers prefer

the lower rate images. On the other hand, in the relative

perceived quality test, the observers simply pick the largest

image in spite of the noise artifacts. A similar observation

holds for the “Woman” image. In this case, there is no noise;

it is just that smoother faces look better than textured faces.

For comparison, we also include the predictions of the

Safranek-Johnston fidelity metric [14], shown as image in-

tensities using the heated object color map [45]. As we

discussed, existing metrics assume that the original and dis-

torted image are at the same resolution, and cannot provide

quantitative estimates of image quality across resolutions.

Thus, the metric values were computed on the downsampled

original and compressed images, and are shown as independent

horizontal stripes for each resolution. Note that the predictions

of the Safranek-Johnston fidelity metric are mostly consistent

with the results of our JNNP test, i.e., the JNNP test line

is close to the points where the distortion map reaches its

maximum (becomes white). However, there are also significant

deviations, e.g., in Figures 7(c) and 8(c). We also compared

the results of the other objective measures we discussed in

Section II, such as the SSIM and its variations, Watson’s DCT

metric, as well as wavelet based metrics. We found that their

JND predictions do not correspond well with our subjective

tests.

For a given spatial resolution, we can say that the difference

between the perceptually noise-transparent level and the level

that corresponds to the most preferred resolution represents the

perceptual tolerance of the observer. This perceptual tolerance

can be expressed in visual dBs as the difference of the

corresponding MPSNRs, or can be converted to JNDs by

inverting (2). Thus, for the JPEG encoded “Bank” image, at

256×256, the perceptual tolerance is 0.64 visual dB or 1.076
JNDs. Figures 10(a) and 11(a) show the perceptual tolerances

for each image and coding technique as a function of spatial

resolution, averaged over the observers. The error bars show

the standard deviations. Observe that the perceptual tolerance

increases as the spatial resolution decreases. This is true for

all images and both compression schemes. Figures 10(b) and

11(b) show the averages over all the images; the standard

deviations account for variations both in observer preferences

and image content. Note again, that there is a significant

difference from the JND level, but the standard deviations

are perhaps too high to reliably predict the most preferred

resolution for each image.
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Fig. 8. Most preferred resolution configurations on distortion map. Fidelity metric is Safranek-Johnston Metric. Image coder is JPEG.

Fig. 9. Most preferred resolution configurations on distortion map. Fidelity metric is Safranek-Johnston Metric. Image coder is JPEG 2000.
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Fig. 10. Perceptual tolerance expressed in JNDs for JPEG compression.

Fig. 11. Perceptual tolerance expressed in JNDs for JPEG 2000 compression.

Another illustration of the results of the two subjective tests

is provided in Tables IV and V, which list the Safranek-

Johnston metric predictions for each resolution and bitrate,

with JND levels shown as shaded cells and the most preferred

resolutions shown in boldface numbers. For all the tables,

the highest quality is at the lowest spatial resolution and

highest bitrate (bottom-right), and the lowest quality is at the

highest spatial resolution and lowest bitrate (top-left). Note

that because of the way the two experiments were designed,

each row contains one shaded box (the lowest bitrate for that

resolution at which artifacts are not visible), and each column

contains one boldface number (the most preferred resolution).

Overall, based on the results of the two experiments, we can

conclude that in most cases the most preferred resolution is

higher than the perceptually transparent resolution (JND). In

other words, human observers are willing to accept some vis-

ible distortion in order to obtain higher resolution. Moreover,

the amount of acceptable distortion, what we called perceptual

tolerance, increases as the spatial resolution decreases.

V. CONCLUSIONS

We considered tradeoffs between spatial resolution and

the visibility of compression artifacts. Such tradeoffs are

not reflected in existing fidelity measures, which ignore the

signal visibility and only measure the visibility of compression

distortions, which decrease with image size. The analysis of

such tradeoffs is of importance in applications that involve a

wide variety of bitrates and display devices, including scalable

image compression applications.

Based on three fundamental assumptions of human psy-

chophysical behavior, we designed two subjective tests to

experimentally verify the hypothesis that there are unconven-

tional tradeoffs between spatial resolution and the visibility of

compression artifacts. The goal of the just noticeable noise

perception assessment test was to obtain the resolution at

which no compression artifacts are visible. The goal of the

relative perceived quality assessment test was to find, for each

image and bitrate, the most preferred resolution on the basis

of both image size and visibility of compression artifacts.

We used two standard image coders (JPEG and JPEG 2000)

and a set of representative images. Our results indicate that

the tradeoffs that we hypothesized exist and that the most

preferred resolution is higher than the resolution at which there

are no visible distortion artifacts. Conversely, the distortion

levels at the most preferred resolution are significantly higher

than the JND thresholds. In other words, human observers

are willing to accept some visible distortion in order to

obtain higher resolution. Moreover, the amount of acceptable

distortion, which we call perceptual tolerance, increases as the

spatial resolution decreases. We also attempted to quantify this

perceptual tolerance in terms of the masked peak signal-to-

noise ratio. However, our results indicate that the variance of

the measurements is too high to reliably predict the perceptual

tolerance across different images and observers. The focus of

this paper was on still images, but similar tradeoffs also apply

to video. Of course, in the video case there are additional

tradeoffs to be explored as the temporal resolution can also be

varied.



506 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 18, NO. 3, MARCH 2009

TABLE IV

MPSNR VALUES (DB) OBTAINED BY THE SAFRANEK-JOHNSTON METRIC OVER DIFFERENT CODING RATES AND SPATIAL RESOLUTIONS FOR JPEG

CODED IMAGES (JUST-NOTICEABLE LEVELS IN SHADED CELLS, MOST PREFERRED RESOLUTIONS IN BOLD NUMBERS)

Resolution/bpp 0.2 0.25 0.3 0.4 0.45 0.5 0.6 0.7 0.8 1.0

512 37.19 40.13 42.00 44.28 44.99 45.67 46.44 46.99 47.36 47.96

384 38.07 41.11 43.05 45.26 45.87 46.50 47.11 47.50 47.73 47.98

256 39.93 43.02 44.74 46.55 46.94 47.35 47.69 47.89 47.99 48.09

192 41.05 44.07 45.70 47.18 47.44 47.70 47.93 48.02 48.08 48.13

128 42.05 45.18 46.50 47.61 47.76 47.91 48.03 48.08 48.11 48.13

96 43.10 46.12 47.20 47.86 47.95 48.04 48.10 48.12 48.13 48.13

64 44.92 47.37 47.79 48.06 48.07 48.11 48.12 48.13 48.13 48.13

(a) “Bank” JPEG

Resolution/bpp 0.23 0.27 0.3 0.4 0.5 0.6 0.8 1.0

512 39.22 40.87 41.70 43.75 45.04 46.02 47.11 47.91

384 40.27 42.00 42.84 44.83 46.01 46.81 47.61 47.90

256 42.45 44.10 44.90 46.45 47.20 47.64 47.99 48.08

192 44.59 45.08 45.83 47.04 47.56 47.85 48.06 48.11

128 44.81 46.10 46.70 47.54 47.84 48.01 48.11 48.13

96 45.83 46.78 47.24 47.83 47.98 48.08 48.12 48.13

64 47.12 47.60 47.78 48.04 48.10 48.12 48.13 48.13

(b) “Bike” JPEG

Resolution/bpp 0.2 0.23 0.25 0.27 0.3 0.35 0.4 0.5 1.0

512 39.53 41.22 42.12 42.80 43.74 44.96 45.67 46.69 48.09

384 40.36 42.10 43.02 43.71 44.55 45.70 46.36 47.22 48.11

256 42.35 43.97 44.82 45.45 46.07 46.92 47.33 47.81 48.13

192 43.50 44.97 45.75 46.24 46.76 47.40 47.69 47.97 48.13

128 44.61 45.90 46.67 46.95 47.33 47.76 47.92 48.07 48.13

96 45.69 46.66 47.20 47.46 47.69 47.95 48.04 48.11 48.13

64 46.69 47.45 47.82 47.92 48.02 48.08 48.11 48.13 48.13

(c) “Lena” JPEG

Resolution/bpp 0.14 0.15 0.2 0.25 0.3 0.35 0.4 0.5 0.6 1.0

512 38.92 40.16 43.70 45.08 45.94 46.46 46.86 47.35 47.63 48.09

384 39.39 40.72 44.35 45.72 46.53 46.99 47.31 47.69 47.89 48.11

256 40.90 42.36 45.83 46.90 47.45 47.70 47.86 48.03 48.09 48.13

192 41.72 43.22 46.54 47.33 47.75 47.90 48.00 48.08 48.11 48.13

128 42.66 44.27 47.24 47.71 47.96 48.04 48.09 48.12 48.13 48.13

96 43.72 45.32 47.63 47.94 48.06 48.09 48.11 48.13 48.13 48.13

64 45.47 46.84 47.98 48.09 48.12 48.13 48.13 48.13 48.13 48.13

(d) “Woman” JPEG

This paper has highlighted the need for a fundamental

change in our understanding of image quality assessment, both

subjective and objective. The results of our subjective tests

are expected to be applicable in the development of image

fidelity measures that predict image quality over multiple

resolutions and viewing conditions, and take into account

both the visibility of the compression artifacts and the image

size, i.e., the visibility of the signal itself. Such measures

will be invaluable for scalable image and video compression

applications.
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