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a b s t r a c t

Stereoscopic/3D image and video quality assessment (IQA/VQA) has become increasing

relevant in today’s world, owing to the amount of attention that has recently been

focused on 3D/stereoscopic cinema, television, gaming, and mobile video. Understanding

the quality of experience of human viewers as they watch 3D videos is a complex and

multi-disciplinary problem. Toward this end we offer a holistic assessment of the issues

that are encountered, survey the progress that has been made towards addressing these

issues, discuss ongoing efforts to resolve them, and point up the future challenges that

need to be focused on. Important tools in the study of the quality of 3D visual signals are

databases of 3D image and video sets, distorted versions of these signals and the results

of large-scale studies of human opinions of their quality. We explain the construction

of one such tool, the LIVE 3D IQA database, which is the first publicly available 3D

IQA database that incorporates ‘true’ depth information along with stereoscopic pairs

and human opinion scores. We describe the creation of the database and analyze the

performance of a variety of 2D and 3D quality models using the new database. The

database as well as the algorithms evaluated are available for researchers in the field to

use in order to enable objective comparisons of future algorithms. Finally, we broadly

summarize the field of 3D QA focusing on key unresolved problems including stereo-

scopic distortions, 3D masking, and algorithm development.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction, definitions and previous work

1.1. Introduction

The field of automatic quality assessment (QA) of 2D

images and videos has seen tremendous activity in the

past decade, with many successful algorithms being pro-

posed [1–5]. The topic of QA of 3D images however, remains

relatively un-explored. This is partially because until recently,

commercially available 3D presentations were difficult to

view (think red–green glasses) and were often synonymous

with headaches and nausea, making their acceptance diffi-

cult. However, greatly improved capture and display tech-

nologies, along with tremendously successful commercial

cinematic releases have put 3D back on the map. For

example, in 2010, the total number of 3D movies that

reached the silver screen was estimated to be thrice the

number released in 2007 [6]. Apart from movies on the

big screen, there is a glut of non-cinematic 3D content

that is making its way to the consumer, especially over

wireless networks such as 3D on mobile devices [7], 3D

TVs, IPTV and 3D broadcast (e.g., ESPN 3D, Sony, Imax,

Discovery, etc.). Further, given the expected future growth

of video on mobile devices (as much as 50� over the next

few years [8]), and mobile devices capable of producing

and displaying stereoscopic content (for example the

recently launched HTC EVO 3D [9]), non-cinematic 3D is

becoming increasingly relevant. As Intel CEO P. Otellini

stated at the 2010 Consumer Electronics Show (CES)—‘‘3D

. . . is the next thing that’s poised to explode in the home’’.

Commercially at least, 3D content has begun to perme-

ate everyday life. Unfortunately, 3D movies are not uni-

versally loved, indeed, many critics and artists have

labeled 3D as unwatchable, predicting its eventual death

[10,11]. The major reasons for this attitude include reports

of 3D movies inducing nausea and headaches, distortions
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[7], poor quality ‘post-production’ 3D, perceived ‘dimness’

[10,11] and so on.1 Thus, even though 3D images seem

to have a buzz around them today, our understanding of

the many aspects of the 3D quality of experience is still

lacking.

In the immersive 3D realm, the term ‘quality of experi-

ence’ is used to capture the wide gamut of factors

that contribute to the overall palatability of the 3D visual

signal. We will touch upon these factors, but our focus

will be on 3D image quality assessment (IQA), or automatic

measurement of the quality of distorted images relative to

human subjective opinions of visual quality. While quality

of experience is of interest, the growing non-cinematic

nature of stereoscopic presentations implies that humans

will view increasing amounts of compressed 3D streams

that are transmitted over lossy networks such as IP or

wireless [8]. The presence of distortions in stereoscopic

content, either owing to the compression employed, or the

transmission loss, will definitely degrade the viewing

experience, and it is of immediate importance to under-

stand how such degradations affect the palatability of the

presentation. In addition, as vision scientists, we subscribe

to the notion that when there are multiple complex factors

(in this case, stereography, 3D display, geometry, and

distortions) contributing to a perception problem (in this

case, 3D QoE), all very poorly understood, it is best to

attempt to isolate and study each factor before proceeding

towards formulating an explanatory theory of the overall

problem. In the study reported here, we focus on the

perception of quality as it is affected by the image distor-

tion, setting aside issues such as camera placement, and 3D

display considerations.

Historically, QA algorithms are generally classified as

(1) full-reference (FR), (2) reduced-reference (RR), and

(3) no-reference (NR) algorithms. FR algorithms predict

the quality of a distorted visual signal given the original

reference signal. RR algorithms perform quality assess-

ment on the distorted signal, given incomplete knowledge

of the original reference signal. Finally, NR algorithms

are required to gauge the quality of the distorted signal

without any additional information about the reference.

Although these terms can be used when discussing 3D

images, the definitions do not apply in quite the same

way. This is because it is not possible to obtain access to

either an original 3D signal as it is perceived or a distorted

3D signal as it is perceived! This follows since, while we

can only access the left and right views of the scene (and

possibly a depth/disparity map that has been indepen-

dently computed or measured), we cannot access the 3D

visuo-sensory experience – the cyclopean image – that the

human re-creates in his/her brain. This is true for both

‘original’ and impaired cyclopean images and hence the

problem is double blind.

Thus, the field of algorithmically assessing the 3D

quality of experience and/or 3D quality is an extremely

challenging one, making it a fertile ground for research.

The complexity of the problem, coupled with our yet nascent

understanding of 3D perception and of the increasing

commercial shift toward 3D entertainment makes the

area of 3D QA interesting, formidable and practically

relevant. In the recent past, researchers have attempted

to develop algorithms that are capable of predicting not

only 3D quality but also 3D quality of experience. In order

to develop successful 3D IQA algorithms, it is imperative

to understand the human perception of 3D quality [15].

Here, we describe our recent efforts in creating a large-

scale publicly available dataset of 3D reference and

distorted images along with human/subjective opinion

scores of the quality of these images.

The new LIVE 3D IQA database consists of left–right stereo

image pairs accompanied by co-registered precision depth

maps measured by a LIDAR-based range scanner, yielding

valuable ground truth depth information. Since true depth is

available, we envision that these images and range scans will

be uniquely useful for 3D quality assessment studies, as well

as for the development and benchmarking of 3D stereo vision

estimation algorithms; supplementing the limited and dated

Middlebury stereo database [16],2 and for a variety of 3D

vision science inquiries, such as studies of the statistics of

stereoscopic images and distances in the real world [17,18].

Previous approaches to 3D QA have involved simple exten-

sions of 2D QA along with some additional quality informa-

tion gleaned from computed depth maps. As these depth/

disparity maps are computed using an algorithm, their

contribution to 3D QA is suspect, since algorithmic computa-

tion of disparity is still an open area of research. In order to

ensure that 3D QA algorithms are not crippled by the

approach adopted for disparity computation, this dataset

provides the necessary tools for algorithm development, by

not only providing high precision human opinion scores, but

also true depth information from a range scanner.

Through the rest of this paper we summarize other

such 3D quality assessment databases which have been

used in the recent past to gauge the performance of 3D QA

algorithms. We then describe in detail the LIVE 3D IQA

database including capture, distortion simulation, subjec-

tive study and performance evaluation of 2D and 3D

quality assessment algorithms. In the final segment, we

attempt to foretell the future of visual quality assessment

of 3D signals. We describe our own efforts at creating

objective/algorithmic 3D quality assessment algorithms

and explain a sample framework for FR 3D QA using a

perceptual model. We describe research efforts that we

believe are important in understanding 3D quality and

hypothesize about possible future work in this area.

1.2. A primer on stereo creation and perception

Before we begin, however, it may be prudent to go

through a quick primer on stereoscopic content creation

and perception. Two calibrated cameras separated by a fixed

distance are mounted on a rig and the pair of signals so

acquired are referred to as a stereoscopic pair. As illustrated

1 Not to mention the 4–10% of people that exhibit some degree of

stereo deficiency, and hence do not fully appreciate stereo presentations

[12–14].

2 Too small to be statistically significant, and acquired using a much

less precise range acquisition technology.
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in Fig. 1, the camera arrangement could be parallel baseline,

i.e., the (lens) axes of the two cameras are parallel to each

other, or a toe-in configuration in which the (lens) axes

intersect.3 In the study to be described, we opted to utilize

a parallel optical axis camera geometry as the simples and

most practical nominal assumption. Going forward, a 3D

quality database that includes stereo pairs acquired under

vergent conditions would be of great interest (for a very

broad variety of vision studies, in fact), but this would require

a deep stereographic study to select fixation and would

probably preclude ground-truth acquisition. Such a database

would be invaluable for understanding the effects of

geometry on the physiology and psychology of stereoscopic

viewing—important considerations towards optimizing

viewer comfort.

Let us now turn to the display of 3D images. In order to

create the perception of a 3D experience, the left–right

pair is displayed such that the left image is seen only by

the left eye, and the right image is seen only by the right.

This is generally accomplished by using polarizing filters

for each of the two projections such that each polarizer

is orthogonal to the other.4 This, coupled with matched
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Fig. 1. Camera geometry to capture stereoscopic content: (a) parallel base-line configuration and (b) toe-in configuration.

3 Note that the choice of the baseline separation could be a function

of the scene being imaged and the associated comfort when projected

onto a 3D display. While an analysis of this is beyond the scope of this

article, the interested reader is directed to [19,20].

4 Recall that this was once done almost exclusively using two

different color (red–green) images overlaid (called an anaglyph) and

red–green glasses so that one image fell on each eye.
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polarized glasses creates a 3D perception. Since the

polarizers are not perfect, some amount of the left image

‘leaks’ into the right and vice versa, leading to ‘cross-talk’.

Recently, active stereoscopic rendering, which greatly

reduces crosstalk, has gained commercial acceptance.

With this technology, the left and right images are flashed

on the screen one after the other, and the appropriate eye

is ‘shut-off’ by the glasses. Another, still evolving category

called autostereoscopic displays, do not require any

glasses at all, and consist of lenticular lenses or parallax

barriers which redirect the image to different viewing

regions [21]. The types of polarization (linear vs. circular)

and the advantages and disadvantages of active vs.

passive displays and the problems with autostereoscopic

displays are discussed in detail in [21,22]. In our study, we

used a polarized display and the stereoscopic images were

captured using a parallel baseline setup. Our desire to

capture ground truth data associated with the acquired

stereo-pairs limited this work to studying the subjective

quality of static stereo images only (an unsolved problem,

in any case). While capturing ground truth temporal

stereo data is feasible, it is not possible to capture it at

high spatial resolutions as we have done here.

1.3. Previous work

There exist some databases that have previously been

used to evaluate 3D quality and below we summarize

them. We note that none of these databases include ‘‘true-

depth’’ information from range-scanners.

The authors of [23] conducted two experiments to

gauge visual quality on mobile stereoscopic devices. In

the first, a single stimulus study,5 the participants rated

the quality of experience on a discrete unlabeled scale

from 0 to 10 as well as the quality for viewing mobile 3D

TV on a binary (yes/no) scale. In the first experiment, each

evaluation was conducted in two different contexts, while

in the second there were three different contexts.6 The

signals were encoded using a variety of video bit-rate/

frame-rate/audio bit-rate combinations using the H.264

codec. Their results indicate that, even at high bit-rates,

preference for 3D signals is below the level of 2D signals.

The authors also analyzed verbal descriptions obtained from

those that participated; various factors, such as ghosting, the

need to focus, unpleasantness, and unease in viewing, were

used to describe the 3D experience.

Other researchers have used databases to evaluate

their algorithm performance and some of these databases

have been made available for public use. In Table 1, we

list these databases, the distortions considered and the

number of images in each as well as their availability. In

cases where the availability was unclear, we contacted

the authors, where no replies were forthcoming, we

categorized the database as unavailable for public use. A

database has limited value unless it is made publicly

available so that other researchers can make comparisons.

The LIVE 3D IQA database incorporates symmetric

distortions and spans a wider gamut of distortions as

compared to those listed in Table 1. Further, apart from

DMOS, the database also provides researchers access with

‘true’ depth information obtained from a range scanner,

which all of the above databases lack. Finally, the LIVE 3D

IQA database is available freely for research purposes, so

that objective comparison of algorithms can be undertaken.

2. LIVE 3D image quality assessment database

2.1. Database creation

Conducting a human study on the quality of displayed

visual signals is a complex, multi-faceted task—especially

when the signals represent 3D information. Recently,

we conducted such a study as a service to the 3D QA

community of researchers. It is always desirable to have

available a diverse set of databases across which algo-

rithmic performance may be analyzed. Here we describe

how we went about creating this first phase of the LIVE

3D IQA database (future studies are planned).

2.1.1. Data acquisition

The image and range data used in this study were

collected using an advanced terrestrial range scanner, the

RIEGL VZ-400, with a co-registered 12.1 megapixel Nikon

D700 digital camera mounted on top of it [27] (see Fig. 2).

The RIEGL VZ-400 allows for a maximum scan angle range

of 1001(þ601/�401), with a minimum angle step-width

of 0.00241. Scan speeds up to 120 lines/s can be achieved,

with an angle measurement resolution of better than

0.00051 and a maximum measurement range of up to

500 m. The ‘‘ground truth’’ precision range data that we

acquire in this way is a unique feature of the LIVE 3D IQA

database.

The range scanner and the camera assembly was

mounted on a specially designed stereoscopic plate that

we constructed, which allowed for lateral displacement

of the assembly. The stereoscopic plate is equipped with

Table 1

Databases used by various researchers and their properties.

Database Distortions # of ref. # of dist. # of subjects Public

Toyoma [24] Symmetric/Asymmetric JPEG compression 10 490 24 No

Ningbo [25] JPEG, JPEG2000, Gaussian Blur and white noise (right only, left pristine) 10 400 20 No

IRCCyN/IVC [26] JPEG/JPEG2000 compressed images, Blur 6 90 17 Yes

5 Meaning one image is shown to the subject at a time, as opposed

to when images are shown in relation to the reference, such as a side-by-

side pairwise; these are referred to as ‘‘double stimulus’’ comparisons.
6 Context of use comprises of user characteristics, tasks, as well as

technical, physical and social environments. Here they consisted of

different environments such as a laboratory, home viewing, on the

bus, and on a station.

A.K. Moorthy et al. / Signal Processing: Image Communication 28 (2013) 870–883 873
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a digital vernier scale in order to accurately measure

lateral displacement. To acquire each stereoscopic image

pair, an image-range map pair was first acquired at

vernier reading 0 mm; the assembly was then displaced

by � 65 mm (adult inter-ocular distance) and another

image-range map was then acquired. We note that while

parallel baseline configurations for 3D acquisitions are

acceptable, researchers are still trying to understand how

to optimally capture stereoscopic content given the scene

content, in order to minimize fatigue, discomfort, head-

ache and other negative factors induced by improper

geometry or stereography [19,20,28].

The two images form the stereoscopic pair, and the

two range maps yield precision depth information of

the scene being imaged. Having two range maps is quite

useful, since occlusions and measurement errors in the

range data may be corrected with the additional informa-

tion. Manual calibration was performed prior to acquisi-

tion using the RIEGL RiScan Pro software [29], and the 3D

point cloud and the 2D images were processed to obtain a

stereoscopic pair (left–right) of high quality JPEG images

at a resolution of 640�360, along with two range maps of

resolution 640� 360 for each scene. The procedure is

described below (Fig. 3).

The acquired range data was exported from the range

scanner as a point cloud with the three-dimensional

coordinate and the range value, while the image data

was stored in the digital camera as (high quality) JPEG

files. Finally, to obtain the aligned 2D range map with

the 2D image, the 3D point clouds were projected and

transformed into the 2D range map by applying the

pinhole camera model with lens distortion [30,31].

First, the three-dimensional coordinates of the point

clouds were converted into the undistorted two-dimensional

pixel coordinates
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where ½X Y Z�T is the three-dimensional coordinate of the

point cloud, A is the camera’s intrinsic matrix, RT is the joint

rotation-translationmatrix, and ½u v�T is the undistorted two-

dimensional pixel coordinate.

In the intrinsic matrix A, ½cx cy�
T is the coordinate of

the principal point, which is usually at the image center,

and ðf x,f yÞ are the focal lengths along the x- and y-axes, all

expressed in the unit of pixels.

The parameters in the joint rotation-translation matrix

RT were computed from the manual calibration after

mounting the digital camera onto the range scanner.

Since real lens usually have distortions, viz. radial and

tangential, the distorted two-dimensional pixel coordi-

nates were computed by transforming the undistorted

two-dimensional pixel coordinates as follows:

ud ¼ uþu0f xðk1r
2þk2r

4þk3r
6þk4r

8Þ

þ2f xu
0v0p1þp2f xðr

2þ2u02Þ ð5Þ

vd ¼ vþv0f yðk1r
2þk2r

4þk3r
6þk4r

8Þ

þ2f yu
0v0p2þp1f yðr

2þ2v02Þ ð6Þ

u0 ¼ ðu�cxÞ=f x ð7Þ

v0 ¼ ðv�cyÞ=f y ð8Þ

r ¼ u02þv02 ð9Þ

where ½ud vd�
T is the distorted two-dimensional pixel

coordinate, ðk1,k2,k3,k4Þ are the radial distortion coefficients,

and ðp1,p2Þ are the tangential distortion coefficients.

Fig. 2. The RIEGL VZ-400 terrestrial range scanner and co-registered

Nikon D7 00 DSLR camera used to collect stereoscopic signals.

Fig. 3. A diagram representing the data acquisition flow.
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After the distorted two-dimensional pixel coordinates

of each point cloud were computed, the aligned 2D range

map was obtained by filling the range value at each pixel

location with the one at the closest distorted two-

dimensional pixel coordinate. All scenes were imaged at

a resolution of 2823� 4256, and the range scanner set

with an angular precision of 0.04, since a higher scanning

resolution would lead to an increase in scanning time as

well as an increase in the probability of inconsistency

between the 3D point clouds and the corresponding 2D

image in natural scenes. In addition, since the digital

camera is mounted in portrait mode onto the range

scanner, the field of view for the 3D point clouds needs

to be adjusted to match the aspect ratio of the portrait

image, resulting in 601 and 1001 fields of views in the

horizontal and vertical direction respectively. As a result,

the resolution of the 3D point clouds from the range

scanner is 60
0:04 �

100
0:04 ¼ 1500� 2500 (points), which is

smaller than the image resolution captured by the digital

camera. The range in depth that the scanner can measure

depends on the operation mode, the sunlight, the weather,

the targets’ reflectivity (material), etc. During our data

acquisition, we used the long-range mode, where the min.

range is 1.5 m and the max. range is 280–600 m, depend-

ing on the reflectivity. The data type ‘‘double’’ was used to

represent the ranges in MATLAB.

To provide accurately aligned 2D range maps and images

while keeping their resolution as high as possible, the 3D

point clouds were projected and transformed into a 2D range

map with a resolution of 708� 1064, while the original 2D

image was also down-sampled to the same size. Inaccurate

range values at boundary pixels in the natural scene were

removed by cropping the aligned 2D range map and 2D

image to a resolution of 640� 360, which is appropriate for

display and viewing using our setup. Although higher resolu-

tion display was possible, we decided that an intermediate

display size would be preferable given the proliferation of

large-format displays and the expected large-scale deploy-

ment of small format display devices. Finally, slight differ-

ences in contrast between the two views were resolved using

a simple histogram matching approach. Note that since

the image pairs were not captured at the same time, small

variations (due to leaves, dust, birds, etc.) may have occurred

between the two views. While the binocular compensation

reduces many of these variations, one cannot guarantee that

the two views demonstrate no variation. We have further

tried to reduce these variations by collecting a large sample

of images and pruning out those images which demonstrated

large variations. Care was also taken during the capture

process to image scenes at times when such variations would

be minimized (for example, on a non-windy day).

Thus, for each scene imaged, a stereoscopic pair (left–

right) of high quality JPEG images at a resolution of

640�360, and two 2D range maps of resolution 640� 360

were obtained.

All of the stereoscopic data were collected from out-

door scenes. Fig. 4 shows some examples of the natural

scenes that were obtained with the aligned 2D range map

and 2D images. The natural scenes where the image and

range data were collected include different parts of the

Fig. 4. Examples of the natural scenes, 2D images on the left and aligned 2D range maps on the right. Black regions indicate locations were range was not

obtainable.

A.K. Moorthy et al. / Signal Processing: Image Communication 28 (2013) 870–883 875
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campus at The University of Texas at Austin, and the

Eastwoods Park nearby. In Fig. 5, we plot each of the 20

reference images (left view) that were acquired and used

in the subsequent study.

2.1.2. Distortion simulation

The distortions that we selected to use in this study

mirror those in the popular LIVE IQA database [32].

The distortions that were simulated include compression

using the JPEG and JPEG2000 compression standards,

additive white Gaussian noise, Gaussian blur and a fast-

fading model based on the Rayleigh fading channel.

Degradation in visual quality for each of these distortions

was achieved by varying a control parameter within a

particular range; all of which are tabulated in Table 2. As

an illustration, in Fig. 6, we show a stereoscopic pair of

images from the LIVE 3D IQA database that has been

distorted by fast-fading distortion; the reader is encour-

aged to free-fuse this pair in order to visualize how 2D

distortions can affect 3D percepts.7

JPEG compression was simulated using MATLAB’s JPEG

compression utility, while JPEG2000 (JP2K) compression

was simulated using the Kakadu encoder—the para-

meters varied were the ‘quality’ parameter and the bit-

rate, respectively. Additive white Gaussian noise (WN)

was simulated using the imnoise command in MATLAB,

where Gaussian noise was applied equally across the R, G

and B planes. Similarly, Gaussian blur was simulated by

applying a Gaussian low-pass filter to each of the color

planes. For both WN and Blur, the control parameter was

the variance of the Gaussian. Fast-fading (FF) distortion

consisted of a JP2K compressed image transmitted over a

Rayleigh fading channel, with the channel Signal-to-Noise

ratio (SNR) as the control parameter.

Since we are dealing with stereoscopic signals, distor-

tions may be applied asymmetrically or symmetrically.

Fig. 5. The 20 reference images used in the subjective study. Shown here are only the left-views.

Table 2

Range of parameter values for distortion simulation.

Distortion Control parameter Range

JP2K Bit-rate [0.05 3.15]

JPEG Quality parameter [10 50]

WN Variance of Gaussian [0.01 1]

Blur Variance of Gaussian [0.01 15]

FF Channel SNR [12 20]

7 For example, one of the subjects in our study (described in the

text) questioned the wisdom of adding noise ‘in-the-front’ while the

image was perfect ‘at-the-back’. This would imply that noise does not

destroy the depth-percept but still leads to some annoyance.

A.K. Moorthy et al. / Signal Processing: Image Communication 28 (2013) 870–883876
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The recent past has seen some research activity on

asymmetric compression of stereoscopic signals [33,34],

and asymmetric distortions and their effect on visual

quality remain an interesting avenue for research. How-

ever, in this study, all distortions are symmetric. Specifi-

cally, the left and right images from each stereoscopic pair

were distorted using the five different distortions above,

where the ‘amount’ of each distortion remains the same

for the left and right image.

A total of 20 reference images and 365 distorted

images (80 each for JP2K, JPEG, WN and FF; 45 for Blur)

were thus created and utilized for the subjective study.

2.2. Subjective study

A single-stimulus continuous quality evaluation

(SSCQE) with hidden reference study [2] was conducted

at the University of Texas at Austin (UT), over the course

of two weeks. The subject pool consisted of 32 (mostly

under-graduate) students from UT. The subjects were a

mix of males and females, with a male-majority and were

informally tested for stereo acuity. While a visual acuity

test was not performed, a verbal confirmation of the same

was obtained prior to the study. The study involved two

sessions of viewing, each lasting less than 30 min, in order

to minimize subject-fatigue [35]; the average testing time

was approximately 22 min. An informal after-study feed-

back conducted indicated that the subjects were able to

perceive stereoscopic signals well and that they did not

experience any uneasiness or fatigue during the course

of the study. Each image was displayed on the screen for

8 s. Each session began with a short training module in

which the subject saw six stereoscopic signals chosen to

span the range of distortions that the subject was about

to view. The signals used for training differed from those

in the actual study. The study consisted of the set of

images shown in random order. The order was rando-

mized for each subject as well as for each session. Care

was taken to ensure that two consecutive sequences did

not belong to the same reference, to minimize memory

effects [35]. Images were displayed on a 22 in. IZ3D

passive stereoscopic display with the screen resolution

set at 800�600.

The study design was such that each image received

ratings from 17 subjects, and the ratings that the subject

gave the distorted signal were subtracted from the rating

that the subject gave the corresponding reference signal to

form a differential opinion score (DOS). A subject rejection

procedure was then run as per recommendations [35] which

rejected two subjects. The remaining subjective scores were

then averaged across subjects to produce differential mean

opinion scores (DMOS).

At this juncture it may be prudent to discuss our study

design a bit further. Specifically, as independent vision

scientists working in academia, we find it to be scientifi-

cally judicious to depart from ‘‘standardized’’ procedures

at times such as those set forth by the ITU [35]. ITU

recommendations demand rigid screening and experi-

mental setups that are no longer relevant in this era

(e.g., they were designed to formalize studies of quality

assessment on CRT TVs, an environment where screen

sizes, expected viewing distances and overall environ-

ment varied much less than today’s variegated video

experiences). It is our opinion that standards should be

used to the extent for which they have been designed.

The topic of subject screening is a good example. While

psychometric studies ordinarily require great rigor in

subject screening (of acuity in 2D and 3D, of color sense,

and in this case, of stereo capability), unlike our non-QA

work, we are relaxing our subject screening, since image

display devices are being deployed in high diverse and

dynamic environments, and we think that subjects should

model the general populace as much as possible. In this

study, we only tested stereo blindness since we wished to

specifically explore the interplay between distortions and

perceived depths.

Another important consideration is the number of

participants in the study. There exist recommendations

on this as well, and some researchers have studied the

question of the maximum number of subjects to conduct

meaningful studies. While QA studies are typically large

(420 subjects), we believe that a more important metric

than subject count is the statistical confidence in the

study, even if fewer subjects are used. The scores from

the LIVE 3D IQA database, as we shall see, satisfy this

requirement.

The LIVE 3D IQA database consists of 20 reference

images, 5 distortion categories and a total of 365 distorted

images along with the associated DMOS. A histogram of

DMOS scores and a histogram of the standard errors is

shown in Fig. 7. We note that these standard deviations

are in line with previous studies of this nature for 2D

images and videos [2,36]. Further, the DMOS distribution

is uniform through a large portion of the scale indicating

that the distortions in the LIVE 3D IQA database span a

wide range of visual quality.

Fig. 6. Stereoscopic distorted pair from LIVE 3D IQA database. Free-fuse the left and right images to obtain a 3D percept.
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2.3. Algorithm performance evaluation

We evaluated the performance of a number of FR 3D

IQA algorithms on the LIVE 3D IQA dataset. These algo-

rithms were chosen based on their reported performance

and availability. Further, in order to provide a baseline

performance and to evaluate the efficacy of 2D algorithms

for predicting 3D visual quality, we also evaluated a set of

popular 2D FR IQA algorithms on the dataset. When using

a 2D IQA algorithm, the algorithm was applied on the left

and right images separately and the estimated quality

scores averaged to produce single measure of 3D quality.

In the case of 3D FR IQA algorithms, the algorithms were

applied as described in the cited references. The 2D IQA

algorithms used here are part of the MetrixMux toolbox,

available at [37]. For 3D QA algorithms, the respective

authors were contacted for code. We used the code

provided by the authors in [26] and coded all the other

algorithms ourselves in Matlab. The code for each of these

algorithms is available as part of the LIVE 3D IQA database,

which will be publicly accessible at the LIVE QA web site by

the time this article appears.

Tables 3 and 4 list the 2D and 3D IQA algorithms

evaluated in this study. To conserve space, we do not

describe the 2D algorithms here, so the reader is referred

to the cited literature.

The performance measures used are Spearman’s rank

ordered correlation coefficient (SROCC), the linear (Pear-

son’s) rank ordered correlation coefficient (LCC) and the

root-mean-squared error (RMSE) [32,3]. LCC and RMSE

were computed after logistic regression through a non-

linearity, as described in [32]. An SROCC and LCC value

close to 1 indicates good correlation with human percep-

tion, while lower values of RMSE indicate better perfor-

mance. Tables 5–7 list the performance of the various 2D

IQA algorithms. The results of 3D IQA algorithms are

listed in Tables 8–10.

We also performed a statistical significance analysis

using the t-test between the residuals in prediction

obtained from the non-linear regression process that

was used to compute the linear correlation coefficient

on the entire dataset [32,52]. The results are listed in

Table 12. The algorithms in [48,49,51,50] are statistically

worse than 2D PSNR, while that in [46] is statistically

equivalent to 2D PSNR. All the other algorithms are statisti-

cally superior to 2D PSNR. UQI [41], the best performing

algorithm on the dataset, is statistically superior to all

algorithms, except MS-SSIM and WSNR, which are statis-

tically equivalent to UQI.

The results in Table 5 differ from those for the same

algorithms when used for 2D quality assessment [36]. For

example, SSIM(MS) and VIF are top performers on the LIVE

IQA database, while the performance of UQI is far worse.

However, for 3D QA, UQI seems to outperform VIF and

SSIM(MS), although the latter have good performance.
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Fig. 7. Subjective study data from the LIVE 3D IQA database: (a) Histogram of DMOS scores and (b) Histogram of standard errors.

Table 3

List of FR 2D IQA algorithms evaluated in this study.

No. Algorithm

1. Peak Signal-to-Noise ratio (PSNR)

2. Structural Similarity Index (SSIM) [38]

3. Multi-scale Structural Similarity Index (SSIM (MS)) [39]

4. Visual Signal-to-Noise ratio (VSNR) [40]

5. Visual Information Fidelity (VIF) [36]

6. Universal Quality Index (UQI) [41]

7. Noise Quality Measure (NQM) [42]

8. Weighted Signal-to-Noise ratio (WSNR) [43]

9. C4 [44]

10. Blind Image Quality Index (BIQI) [45]

Table 4

List of 3D IQA algorithms evaluated in this study.

Italics indicates an NR (blind) algorithm.

No. Algorithm

1 Benoit [26]

2 Hewage [46]

3 You [47]

4 Gorley [33]

5 Shen [48]

6 Yang [49]

7 Zhu [50]

8 Akhter [51]
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Based on the results in Tables 5 and 8, it is clear that

for the set of distortions considered, the 2D IQA algo-

rithms perform well in terms of correlation with human

subjectivity, while the addition of disparity/depth in the

3D algorithms does not materially improve the perfor-

mance (in agreement with a previous study [26]). Yet, our

own experiences with distorted 3D images leads us

to believe that disparity activity (e.g., caused by rapid

changes in depth) may affect distortion visibility, viz., that

the experience of depths and depth variations may render

some distortions more or less visible [53]. Towards this

end, we designed a ‘‘laboratory-only’’ algorithm that

incorporates disparity activity computed from the ground

truth depth data in the LIVE 3D IQA database, whose

results we tabulate in Table 11. Of course, we could have

employed a stereo matching algorithm, but the necessary

characteristics and accuracy of such algorithms for this

problem remain open questions.

In the ‘‘laboratory-only’’ algorithm, the stereoscopic

pair is decomposed by a set of multi-scale oriented

complex Gabor filters (both the reference and distorted

image). The squared differences of left and right response

amplitudes are divisively normalized (similar to [54]). The

result is then also divisively normalized by ground-truth

disparity. In practice, of course, disparity could be esti-

mated from the stereo images. Table 8 shows these

results (labeled as Gabor energy – masking). The perfor-

mance of the model without any masking is also shown

(labeled as Gabor energy – no masking).

The result suggests that incorporating a luminance

masking model and a disparity masking model into the

Gabor energy algorithm improves the performance. Our

observations indicate that there is a definite interaction

between disparity and luminance and that disparity

activity may reduce luminance masking. This agrees with

a recent study on visual masking which suggests that

the presence of a target and a mask at different depths

activates two separate pools of neurons, thereby reducing

the masking ability of the target [55]. Our observations

are bolstered by the performance of the 2D UQI. UQI is a

preliminary version of the popular SSIM [41,38], and

while it does account for contrast masking using a divisive

normalization-based approach, SSIM incorporates a much

better model for contrast masking—thereby making SSIM

a better measure for 2D quality assessment. However,

such strong contrast masking may not reflect human

perception accurately when viewing 3D scenes [55].

Table 5

Performance of 2D IQA algorithms in predicting perceived 3D image

quality: Spearman’s Rank Ordered Correlation Coefficient (SROCC). Italics

indicates an NR (blind) algorithm.

Algorithm JP2K JPEG WN Blur FF All

PSNR 0.7967 0.1311 0.9318 0.9016 0.5957 0.8370

SSIM 0.8572 0.4346 0.9395 0.8822 0.5849 0.8772

SSIM (MS) 0.8975 0.6019 0.9439 0.9262 0.7316 0.9237

VSNR 0.8313 0.4062 0.9049 0.8306 0.7283 0.8817

VIF 0.9018 0.5828 0.9325 0.9312 0.8037 0.9204

UQI 0.9101 0.7371 0.9272 0.9238 0.8322 0.9381

NQM 0.8619 0.5399 0.9237 0.9058 0.7509 0.9103

WSNR 0.8997 0.6132 0.9369 0.9291 0.7604 0.9255

C4 0.9108 0.6365 0.9425 0.9361 0.8349 0.9144

BIQI 0.7727 0.4887 0.9277 0.8596 0.7067 0.8652

Table 6

Performance of 2D IQA algorithms in predicting perceived 3D image

quality: Linear Correlation Coefficient (LCC).

Algorithm JP2K JPEG WN Blur FF All

PSNR 0.7889 0.2311 0.9347 0.8937 0.7062 0.8251

SSIM 0.8650 0.4849 0.9374 0.9197 0.7212 0.8727

SSIM (MS) 0.9306 0.6712 0.9474 0.9461 0.8060 0.9302

VSNR 0.8898 0.4107 0.9111 0.8726 0.7867 0.8665

VIF 0.9361 0.6738 0.9273 0.9570 0.8542 0.9183

UQI 0.9512 0.7727 0.9273 0.9565 0.8788 0.9424

NQM 0.9159 0.5666 0.9252 0.9399 0.7878 0.9151

WSNR 0.9326 0.6763 0.9369 0.9443 0.8113 0.9260

C4 0.9378 0.6497 0.9359 0.9649 0.8754 0.9193

BIQI 0.8203 0.6136 0.9323 0.8995 0.7762 0.8792

Table 7

Performance of 2D IQA algorithms in predicting perceived 3D image

quality: Root Mean-Squared-Error (RMSE).

Algorithm JP2K JPEG WN Blur FF All

PSNR 7.9587 6.3624 5.9145 6.5271 8.7971 9.2678

SSIM 6.4984 5.7191 5.7947 5.6814 8.6069 8.0059

SSIM (MS) 4.7417 4.8473 5.3236 4.6887 7.3553 6.0187

VSNR 5.9097 5.9623 6.8588 7.0782 7.6714 8.1868

VIF 4.5570 4.8319 6.2291 4.1986 6.4615 6.4903

UQI 3.9983 4.1508 6.2261 4.2222 5.9297 5.4865

NQM 5.1974 5.3895 6.3124 4.9439 7.6530 6.6134

WSNR 4.6740 4.8167 5.8148 4.7651 7.2644 6.1902

C4 4.4951 4.9708 5.8615 3.8003 6.0067 6.4530

BIQI 7.4100 5.1636 6.0166 6.3238 7.8679 7.8119

Table 8

Performance of 3D IQA algorithms in predicting perceived 3D image quality: Spearman’s Rank Ordered Correlation Coefficient

(SROCC). Italics indicates an NR algorithm.

Algorithm JP2K JPEG WN Blur FF All

Benoit [26] 0.9103 0.6028 0.9292 0.9308 0.6989 0.8992

Hewage [46] 0.8558 0.5001 0.8963 0.6900 0.5447 0.8140

You [47] 0.8598 0.4388 0.9395 0.8822 0.5883 0.8789

Gorley [33] 0.4203 0.0152 0.7408 0.7498 0.3663 0.1419

Shen [48] 0.2133 0.2440 0.8917 0.6586 0.2665 0.0679

Yang [49] 0.1501 0.1328 0.8471 0.3266 0.1426 0.0785

Zhu [50] 0.7708 0.2929 0.4651 0.7935 0.4752 0.6388

Akhter [51] 0.8657 0.6754 0.9137 0.5549 0.6393 0.3827
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These and other such insights [56] are significant for

algorithm design and suggest that the simplistic approach

that most of the 3D algorithms take may not be sufficient

to predict perceptual quality.

3. Discussion and future work

Our analysis of algorithms in the area of 3D QA might

lead one to believe that 2D algorithms are sufficient to

gauge the perceptual quality of stereoscopic signals. It

may be prudent to discuss the implication of our findings

for research in 3D QA. The first thing to note is that almost

all of the 3D QA algorithms are simple extensions of 2D

QA algorithms with some additional ‘features’ extracted

from depth (generally disparity differences). The way in

which this disparity information is incorporated into

these 3D QA algorithms is not yet based on any perceptual

principles (such as disparity masking, which we do not

really understand yet). While these observations may

partially explain why the 3D QA algorithms are not

appreciably better than their 2D counterparts, it does

not explain why 2D algorithms do well on the LIVE 3D

IQA database.

Amongst the distortions that we consider in the

dataset, WN and Blur are global distortions and hence

are less likely to affect the perception of depth. Predic-

tably, 2D algorithms do extremely well in these two

categories. For those distortions that create localized

artifacts, however, 2D algorithm performance is below

par—especially for the local blocking/blurring types of

distortion caused by JPEG compression. This suggests a

possible answer to our question of 2D algorithm perfor-

mance. When assessing localized distortions that may

lead to depth irregularities, 2D algorithms do not do well.

Their performance is not bad however, and the reason for

this is that stereoscopic quality is a complex function of

monoscopic quality and irregularity in depth/disparity as

we have discussed before and demonstrated elsewhere

[53]. Since 2D algorithms account for the monoscopic

component, their performance is not abysmal. The poor

performance of 3D algorithms on these distortions is

likely explained by the simplistic design of these methods,

and our current poor understanding of how distortions affect

the 3D sensory experience, and in particular how disparity

and luminance perception interact. We are designing a series

of psychophysical experiments to better understand exactly

how luminance and disparity may mask one another (for an

example of one such study, the reader is referred to [53]).

Note that the distortions in the LIVE 3D IQA database are

not specifically stereoscopic. Some lead to stereoscopic errors

Table 9

Performance of 3D IQA algorithms in predicting perceived 3D image quality: Linear Correlation Coefficient (LCC). Italics indicates

an NR algorithm.

Algorithm JP2K JPEG WN Blur FF All

Benoit [26] 0.9398 0.6405 0.9253 0.9488 0.7472 0.9025

Hewage [46] 0.9043 0.5305 0.8955 0.7984 0.6698 0.8303

You [47] 0.8778 0.4874 0.9412 0.9198 0.7300 0.8814

Gorley [33] 0.4853 0.3124 0.7961 0.8527 0.3648 0.4511

Shen [48] 0.5039 0.3899 0.8988 0.6846 0.4830 0.5743

Yang [49] 0.2012 0.2738 0.8701 0.6261 0.2824 0.3909

Zhu [50] 0.8073 0.3790 0.5178 0.7770 0.5038 0.6263

Akhter [51] 0.9059 0.7294 0.9047 0.6177 0.6603 0.4270

Table 10

Performance of 3D IQA algorithms in predicting perceived 3D image quality: Root-mean-squared-error (RMSE). Italics indicates an

NR algorithm.

Algorithm JP2K JPEG WN Blur FF All

Benoit [26] 4.4266 5.0220 6.3076 4.5714 8.2578 7.0617

Hewage [46] 5.5300 5.5431 7.4056 8.7480 9.2263 9.1393

You [47] 6.2066 5.7097 5.6216 5.6798 8.4923 7.7463

Gorley [33] 11.3237 6.2119 10.1979 7.5622 11.5691 14.6350

Shen [48] 12.2754 6.0216 7.2939 10.5547 10.8820 13.5473

Yang [49] 12.6979 6.2894 8.2002 12.1291 11.9462 15.2481

Zhu [50] 7.6813 6.0684 14.7201 9.1270 10.7362 12.7828

Akhter [51] 5.4836 4.4736 7.0929 11.3872 9.3321 14.8274

Table 11

Performance of a ‘‘laboratory-only’’ algorithm in predicting perceived 3D image quality: Spearman’s Rank Ordered Correlation

Coefficient (SROCC).

Algorithm JP2K JPEG WN Blur FF All

Gabor energy—no disparity activity 0.8877 0.5102 0.9326 0.9352 0.6846 0.9163

Gabor energy—disparity masking 0.9013 0.6620 0.9445 0.9389 0.7389 0.9336
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Table 12

Results of a t-test for statistical significance between pairs of 2D and 3D algorithms considered here. A value of ‘1’ indicates that the row is superior to the column algorithm, while a ‘�1’ indicates that the row

is inferior statistically; a ‘0’ indicates that the row and column algorithms are statistically equal in the performance. Also listed in brackets is the associated p-value. A p-value of 0 is to be read as po0:001.

PSNR SSIM SSIM

(MS)

VNSR VIF UQI NQM WSNR C4 BIQI Benoit Hewage You Gorley Shen Yang Zhu Akhter

PSNR 0 (0.50) 1 (0.00) 1 (0.00) 1 (0.02) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 0 (0.17) 1 (0.00) �1 (1.00) �1 (1.00) �1 (1.00) �1 (1.00) �1 (1.00)

SSIM �1 (1.00) 0 (0.50) 1 (0.00) 0 (0.89) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 0 (0.21) 1 (0.00) 1 (0.04) �1 (0.98) 0 (0.25) �1 (1.00) �1 (1.00) �1 (1.00) �1 (1.00) �1 (1.00)

MS�SSIM �1 (1.00) �1 (1.00) 0 (0.50) �1 (1.00) 0 (0.88) 0 (0.15) 0 (0.90) 0 (0.71) �1 (1.00) �1 (0.96) �1 (1.00) �1 (1.00) �1 (1.00) �1 (1.00) �1 (1.00) �1 (1.00) �1 (1.00) �1 (1.00)

VSNR �1 (0.98) 0 (0.11) 1 (0.00) 0 (0.50) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.02) 1 (0.00) 1 (0.00) 0 (0.83) 1 (0.03) �1 (1.00) �1 (1.00) �1 (1.00) �1 (1.00) �1 (1.00)

VIF �1 (1.00) �1 (1.00) 0 (0.12) �1 (1.00) 0 (0.50) 1 (0.01) 0 (0.55) 0 (0.27) �1 (0.99) 0 (0.68) �1 (0.96) �1 (1.00) �1 (1.00) �1 (1.00) �1 (1.00) �1 (1.00) �1 (1.00) �1 (1.00)

UQI �1 (1.00) �1 (1.00) 0 (0.85) �1 (1.00) �1 (0.99) 0 (0.50) �1 (0.99) 0 (0.95) �1 (1.00) �1 (1.00) �1 (1.00) �1 (1.00) �1 (1.00) �1 (1.00) �1 (1.00) �1 (1.00) �1 (1.00) �1 (1.00)

NQM �1 (1.00) �1 (1.00) 0 (0.10) �1 (1.00) 0 (0.45) 1 (0.01) 0 (0.50) 0 (0.23) �1 (0.99) 0 (0.63) 0 (0.94) �1 (1.00) �1 (0.99) �1 (1.00) �1 (1.00) �1 (1.00) �1 (1.00) �1 (1.00)

WSNR �1 (1.00) �1 (1.00) 0 (0.29) �1 (1.00) 0 (0.73) 0 (0.05) 0 (0.77) 0 (0.50) �1 (1.00) 0 (0.87) �1 (0.99) �1 (1.00) �1 (1.00) �1 (1.00) �1 (1.00) �1 (1.00) �1 (1.00) �1 (1.00)

BIQI �1 (1.00) 0 (0.79) 1 (0.00) �1 (0.98) 1 (0.01) 1 (0.00) 1 (0.01) 1 (0.00) 0 (0.50) 1 (0.02) 0 (0.20) �1 (1.00) 0 (0.56) �1 (1.00) �1 (1.00) �1 (1.00) �1 (1.00) �1 (1.00)

C4 �1 (1.00) �1 (1.00) 1 (0.04) �1 (1.00) 0 (0.32) 1 (0.00) 0 (0.37) 0 (0.13) �1 (0.98) 0 (0.50) 0 (0.91) �1 (1.00) �1 (0.99) �1 (1.00) �1 (1.00) �1 (1.00) �1 (1.00) �1 (1.00)

Benoit �1 (1.00) �1 (0.96) 1 (0.00) �1 (1.00) 1 (0.04) 1 (0.00) 0 (0.06) 1 (0.01) 0 (0.80) 0 (0.09) 0 (0.50) �1 (1.00) 0 (0.85) �1 (1.00) �1 (1.00) �1 (1.00) �1 (1.00) �1 (1.00)

Hewage 0 (0.83) 1 (0.02) 1 (0.00) 0 (0.17) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 0 (0.50) 1 (0.00) �1 (1.00) �1 (1.00) �1 (1.00) �1 (1.00) �1 (1.00)

You �1 (1.00) 0 (0.75) 1 (0.00) �1 (0.97) 1 (0.00) 1 (0.00) 1 (0.01) 1 (0.00) 0 (0.44) 1 (0.01) 0 (0.15) �1 (1.00) 0 (0.50) �1 (1.00) �1 (1.00) �1 (1.00) �1 (1.00) �1 (1.00)

Gorley 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 0 (0.50) 1 (0.01) 0 (0.41) 1 (0.00) 0 (0.88)

Shen 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) �1 (0.99) 0 (0.50) �1 (0.98) 0 (0.14) �1 (1.00)

Yang 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 0 (0.59) 1 (0.02) 0 (0.50) 1 (0.00) 0 (0.91)

Zhu 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) �1 (1.00) 0 (0.86) �1 (1.00) 0 (0.50) �1 (1.00)

Akhter 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 0 (0.12) 1 (0.00) 0 (0.09) 1 (0.00) 0 (0.50)
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We have tried to cast this paper in the light of our own

evolving beliefs and incomplete understanding of the 3D QA

problem. We plan to continue studying the problem in

‘‘depth’’ and encourage the reader to join us in this venture.
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