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SUBJECTIVE EXPECTED UTILITY WITH
INCOMPLETE PREFERENCES

BY TSOGBADRAL GALAABAATAR AND EDI KARNI1

This paper extends the subjective expected utility model of decision making under
uncertainty to include incomplete beliefs and tastes. The main results are two axioma-
tizations of the multiprior expected multiutility representations of preference relations
under uncertainty. The paper also introduces new axiomatizations of Knightian uncer-
tainty and the expected multiutility model with complete beliefs.

KEYWORDS: Incomplete preferences, Knightian uncertainty, multiprior expected
multiutility representations, incomplete beliefs, incomplete tastes.

1. INTRODUCTION

FACING A CHOICE BETWEEN ALTERNATIVES that are not fully understood or
not readily comparable, decision makers may find themselves unable to ex-
press preferences for one alternative over another or to choose between alter-
natives in a coherent manner. This problem was recognized by von Neumann
and Morgenstern, who stated that “[i]t is conceivable—and may even in a way
be more realistic—to allow for cases where the individual is neither able to
state which of two alternatives he prefers nor that they are equally desirable”
(von Neumann and Morgenstern (1947, p. 19)).2 Aumann (1962, p. 446) went
further when he said “[o]f all the axioms of utility theory, the completeness
axiom is perhaps the most questionable. Like others of the axioms, it is inac-
curate as a description of real life; but unlike them, we find it hard to accept
even from a normative viewpoint.” In the same vein, when discussing the ax-
iomatic structure of what became known as the Choquet expected utility the-
ory, Schmeidler (1989, p. 576)3 said “[o]ut of the seven axioms listed here, the
completeness of the preferences seems to me the most restrictive and most
imposing assumption of the theory.” A natural way to accommodate such situ-
ations while maintaining the other aspects of the theory of rational choice is to
relax the assumption that the preference relations are complete.

1We are grateful to Juan Dubra, Robert Nau, Teddy Seidenfeld, Wolfgang Pesendorfer, and
three anonymous referees for their useful comments.

2Later von Neumann and Morgenstern (1947, pp. 28–29) added “[w]e have to concede that
one may doubt whether a person can always decide which of two alternatives . . . he prefers.” In a
letter to Wold dated October 28, 1946, von Neumann discussed the issue of complete preferences,
noting that “[t]he general comparability of utilities, i.e., the completeness of their ordering by
(one person’s) subjective preferences, is, of course, highly dubious in many important situations”
(Redei (2005)).

3Schmeidler (1989) went as far as to suggest that the main contributions of all other axioms
is to allow the weakening of the completeness assumption. Yet he maintained this assumption in
his theory.
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Presumably, preferences among uncertain prospects, or acts, reflect the de-
cision maker’s beliefs regarding the likelihoods of alternative events and his
tastes for their consequences contingent on these events. In this context, the
incompleteness of the preference relation may be due to the incompleteness
of the decision maker’s beliefs, the incompleteness of his tastes, or both.

Our objective of studying the representations of incomplete preferences un-
der uncertainty is to identify preference structures on the set of acts that admit
multiprior expected multiutility representation. In such a representation, the
set of priors represents the decision maker’s incomplete beliefs, and the set
of utility functions represents her incomplete tastes. More formally, according
to the multiprior expected multiutility representation, an act f is strictly pre-
ferred over another act g if and only if there is a nonempty set Φ of pairs (π�U)
consisting of a probability measure π on the set of states S and an affine, real-
valued function U on the set Δ(X) of probability measures on the set X of
outcomes such that∑

s∈S
π(s)U

(
f (s)

)
>

∑
s∈S

π(s)U
(
g(s)

)
for all (π�U) ∈ Φ�4(1)

Incomplete beliefs and their representation by a set of probabilities were first
explored in the context of statistical decision theory. Koopman (1940) showed
that, without completeness, the set of axioms for comparative probabilities en-
tails a representation of beliefs in terms of upper and lower probabilities. Up-
per and lower probabilities were also studied by Smith (1961), Williams (1976),
and Walley (1981, 1982, 1991).5 These studies are concerned with the structure
of binary relations on events, or propositions, interpreted as the intuitive (or
subjective) beliefs about likelihoods that these events, or propositions, are true.

A different approach to the definition of subjective probabilities, properly
described as choice-based or behavioral, was pioneered by Ramsey (1931) and
de Finetti (1937), and culminated in the seminal theories of Savage (1954) and
Anscombe and Aumann (1963). According to this approach, beliefs and tastes
govern choice behavior and may be inferred from the structure of preferences.
Bewley (1986) was the first to study the implications of incomplete beliefs in
the context of choice theory. Invoking the Anscombe–Aumann (1963) model
and departing from the assumption that the preference relation is complete,
Bewley axiomatized the multiprior expected utility representation, which he

4This representation may be interpreted as if the decision maker embodies multiple subjective
expected-utility-maximizing agents, each of which is characterized by a unique subjective proba-
bility and a unique von Neumann–Morgenstern utility function, and one alternative is preferred
over another if and only if they all agree.

5Bewley (1986) and Nau (2006) discussed these contributions and their relations to the mul-
tiprior expected utility representation. The study of multiprior expected utility representations
is motivated, in part, by the interest in robust Bayesian statistics (see Seidenfeld, Schervish, and
Kadane (1995)).
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dubbed Knightian uncertainty. Bewley’s model attributes the incompleteness
of the preference relations solely to the incompleteness of beliefs. This in-
completeness is represented by a closed convex set of probability measures on
the set of states. Accordingly, one act is preferred over another (or the status
quo) if its associated subjective expected utility exceeds that of the alterna-
tive (or the status quo) according to every probability measure in the set. In
terms of representation (1), Bewley’s work corresponds to the case in which
Φ = Π × {U}, where Π is a closed convex set of probability measures on the
set of states and U is a von Neumann–Morgenstern utility function.6 Ok, Ortol-
eva, and Riella (2012) axiomatized a preference structure in which the source
of incompleteness is either beliefs or tastes, but not both. In terms of repre-
sentation (1), Ok, Ortoleva, and Riella (2012) axiomatized the cases in which
Φ =Π × {U} or Φ = {π} × U .

Seidenfeld, Schervish, and Kadane (1995) and Nau (2006) studied the repre-
sentation of incomplete preferences that reflects indeterminacy of both proba-
bilities and utilities (that is, beliefs and tastes). We defer the discussion of their
works to Section 4.

This paper provides new axiomatizations of preference relations that exhibit
incompleteness in both beliefs and tastes. Invoking the analytical framework
of Anscombe and Aumann (1963), we analyze the structure of partial strict
preferences on a set of acts whose consequences are lotteries on a finite set
X of outcomes. Our main result provides necessary and sufficient conditions
characterizing the preference structures that admit multiprior expected mul-
tiutility representations (1).7 The first set of conditions includes the familiar
von Neumann–Morgenstern axioms without completeness. To these we add a
dominance axiom à la Savage’s postulate P7. Specifically, let g and f be any
two acts, and denote by f s the constant act whose payoff is f (s) in every state.
The axiom requires that if g is strictly preferred over f s for every s, then g is
strictly preferred over f . These axioms together with the existence of the best
and the worst acts yields the representation in (1). Since the sets of probability
measures that figure in the representation are “utility dependent,” the beliefs
and tastes are not entirely separated.

Building upon this result, we axiomatize three special cases. The first case
entails a complete separation of beliefs and tastes (that is, Φ is the Cartesian

6Aumann (1962) was the first to address this issue in the context of expected utility theory
under risk. Baucells and Shapley (2008) proved that a preference relation on a mixture space
satisfies the von Neumann–Morgenstern axioms without completeness if and only if it has affine
multiutility representation. Dubra, Maccheroni, and Ok (2004) studied the existence and unique-
ness properties of the representations of preference relations over lotteries whose domain is a
compact metric space.

7The set Φ is depicted as {(π�U) | U ∈ U�π ∈ΠU } (i.e., each utility in U is paired with its own
set of probability measures). Invoking the metaphor of a decision maker that embodies multiple
subjective expected-utility-maximizing agents, this case corresponds to the case in which each
agent is characterized by Knightian uncertainty preferences.
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product of a set of probability measures M and a set of utility functions U ).8

This case requires a definition of a set of distributions on S consistent with the
preferences and an additional axiom, dubbed belief consistency. Belief con-
sistency asserts that if an act g is strictly preferred over another act f , then
every constant act obtained by reduction of g under every compound lottery
involving a distribution on S that is consistent with the preference relation is
preferred over the corresponding reduction of f . The representation in this
case is as in (1), where the set Φ is a product set M × U , where M is a set of
probability measures on S and U is as above.

The second case is Knightian uncertainty. This case requires that the basic
model be amended by an axiom requiring that the restriction of the prefer-
ence relation to constant acts be negatively transitive. The third case is that of
expected multiutility representation with complete beliefs. This case requires
the formulation of a new behavioral postulate depicting the completeness of
beliefs.

The remainder of the paper is organized as follows: In the next section we
present our main result. In Section 3 we present the three special cases: the
multiprior expected multiutility product representation, a Knightian uncer-
tainty model, and its dual, the subjective expected multiutility model with com-
plete beliefs. Further discussion and concluding remarks appear in Section 4.
The proofs appear in Section 5.

2. THE MAIN RESULT

Our results extend the model of Anscombe–Aumann (1963) to include in-
complete preferences. As mentioned earlier, the incompleteness in this model
may stem from two distinct sources, namely, beliefs and tastes. The main result,
Theorem 1 below, is a general model in which these sources of incompleteness
are represented by sets of priors and utilities. In this model, beliefs and tastes
are not entirely separated, and the representation involves sets of priors that
are utility dependent.

2.1. The Analytical Framework and the Preference Structure

Let S be a finite set of states. Subsets of S are events. Let X be a finite set
of outcomes, or prizes, and denote by Δ(X) the set of all probability measures
on X . For each �� �′ ∈ Δ(X) and α ∈ [0�1], define α� + (1 − α)�′ ∈ Δ(X) by
(α�+ (1 − α)�′)(x)= α�(x)+ (1 − α)�′(x) for all x ∈X .

8Invoking the metaphor of the preceding footnote, in this case, there are two sets of agents.
One set of agents is responsible for assessing beliefs in terms of probability measures and the
second set is responsible for assessing tastes in terms of utility functions. The decision maker’s
preferences require agreement among all possible pairings of agents from the two sets.



SUBJECTIVE EXPECTED UTILITY 259

Let H := {h | h :S → Δ(X)} be the set of all functions from S to Δ(X). El-
ements of H are referred to as acts. For all h�h′ ∈ H and α ∈ [0�1], define
αh+ (1 −α)h′ ∈ H by (αh+ (1 −α)h′)(s)= αh(s)+ (1 −α)h′(s) for all s ∈ S,
where the convex mixture αh(s)+ (1 −α)h′(s) is defined as above. Under this
definition, H is a convex subset of the linear space R

|X|·|S|.
Let � be a binary relation on H. The set H is said to be �-bounded if there

exist hM and hm in H such that hM � h� hm for all h ∈H − {hM�hm}.
The following axioms depict the structure of the preference relation �. The

first three axioms are well known and require no elaboration.

A.1—Strict Partial Order: The preference relation � is transitive and irreflex-
ive.

A.2—Archimedean: For all f�g�h ∈ H, if f � g and g � h, then βf + (1 −
β)h � g and g � αf + (1 − α)h for some α�β ∈ (0�1).

A.3—Independence: For all f�g�h ∈ H and α ∈ (0�1], f � g if and only if
αf + (1 − α)h� αg + (1 − α)h.

The difference between the preference structure above and that of expected
utility theory is that the induced relation ¬(f � g) is reflexive but not neces-
sarily transitive (hence, it is not necessarily a preorder).

For every h ∈ H, denote by B(h) := {f ∈ H | f � h} and W (h) := {f ∈ H |
h� f } the (strict) upper and lower contour sets of h, respectively. The relation
� is said to be convex if the upper contour set is convex. Note that the �-
boundedness of H implies that for h �= hM�hm, B(h) and W (h) have nonempty
algebraic interior in the linear space generated by H. It can be shown that if
� satisfies A.1–A.3, then it is convex and, in addition, the lower contour set is
also convex.9

LEMMA 1: Let � be a binary relation on H. Then the following conditions are
equivalent:

(i) H is �-bounded and � satisfies A.1–A.3.
(ii) There exists a nonempty closed set W of real-valued functions w on X ×S,

such that ∑
s∈S

∑
x∈X

hM(x� s)w(x� s) >
∑
s∈S

∑
x∈X

h(x� s)w(x� s)

>
∑
s∈S

∑
x∈X

hm(x� s)w(x� s)

9The proof is by two applications of A.3.
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for all h ∈ H − {hM�hm} and w ∈ W , and for all h�h′ ∈H�

h� h′ ⇔
∑
s∈S

∑
x∈X

h(x� s)w(x� s)(2)

>
∑
s∈S

∑
x∈X

h′(x� s)w(x� s) ∀w ∈ W �

UNIQUENESS: To describe the uniqueness properties of the representation
in Lemma 1, we introduce the following notation: Let δs be the vector in R

|X|·|S|

such that δs(t�x) = 0 for all x ∈Xif t �= s and δs(t�x) = 1 for all x ∈ X if t = s.
Let D = {θδs | s ∈ S�θ ∈ R}. Let U be a set of real-valued functions on R

|X|·|S|.
Fix x0 ∈ X and for each u ∈ U , define a real-valued function û on R

|X|·|S| by
û(x� s) = u(x� s) − u(x0� s) for all x ∈ X and s ∈ S. Let Û be the normalized
set of functions corresponding to U (that is, Û = {û | u ∈ U }). We denote by
〈Û 〉 the closure of the convex cone in R

|X|·|S| generated by all the functions in Û
and D.

LEMMA 2: If W ′ is another set of real-valued functions on X × S, representing
� in the sense of (2), then 〈Ŵ ′〉 = 〈Ŵ 〉.

REMARK 1: Seidenfeld, Schervish, and Kadane (1995) showed that a strict
partial order, defined by strict first-order stochastic dominance, has an ex-
pected multi-utility representation, satisfies the independence axiom, and vio-
lates the Archimedean axiom.10 To bypass this problem, Seidenfeld, Schervish,
and Kadane (1995) and Nau (2006) invoked alternative continuity axioms that,
unlike the Archimedean axiom, require the imposition of a topological struc-
ture. We maintain the Archimedean axiom as our continuity postulate at the
cost of restricting the upper contour sets associated with the strict preference
relation B(p) := {q ∈ C | q � p} to be algebraically open. (In the example of
Seidenfeld, Schervish, and Kadane (1995), these sets are closed.)

Like Nau (2006), we assume that the choice set has best and worst ele-
ments.11 Doing so buys us two important properties. First, it implies that the
upper (and lower) contour sets have full dimensionality. Second, the intersec-
tion of the upper (and lower) contour sets corresponding to the different acts is
nonempty. Both properties are used in the proofs of our results. We recognize
that this assumption restricts the degree of incompleteness of the preference
relations under consideration.

10See Example 2.1 in their paper.
11Seidenfeld, Schervish, and Kadane (1995) proved the existence of such elements in their

model. For more details, see Section 4.
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2.2. Dominance and the Main Representation Theorem

For each f ∈ H and every s ∈ S, let f s denote the constant act whose pay-
off is f (s) in every state. Formally, f s(s′) = f (s) for all s′ ∈ S. The next axiom
is a weak version of Savage’s (1954) postulate P7. It asserts that if an act g is
strictly preferred over every constant act f s associated with the consequences
of another act f , then g is strictly preferred over f . To grasp the intuition un-
derlying this assertion, note that any possible consequence of f , taken as an act,
is an element of the lower contour set of g. Convexity of the lower contour sets
implies that any convex combination of the consequences of f is dominated
by g. Think of f as representing a set of such combinations whose elements
correspond to the implicit set of subjective probabilities of the states that the
decision maker may entertain. Since any such combination is dominated by g,
so is f .12 This concept is formally stated as follows.

A.4—Dominance: For all f�g ∈H, if g � f s for every s ∈ S, then g � f .

The dominance axiom (sometimes referred to as the sure thing principle) is
usually described as “technical,” to be applied when the set of states is infinite.
In our model, the state space is finite, but the dominance axiom has important
substantive implications. We show in Section 2.3 that, in conjunction with the
other axioms, dominance implies that the preference relation must satisfy state
independence and monotonicity. We also show, as part of the proof of Theo-
rem 1 below, that in conjunction with the other axioms, dominance implies
that if a decision maker prefers one act over another under all conceivable be-
liefs about the likelihoods of the states, then he prefers the former act over the
latter.

Theorem 1 shows that a preference relation satisfies the axioms A.1–A.4 if
and only if there is a nonempty set of utility functions on X and, corresponding
to each utility function, a set of probability measures on S such that, when
presented with a choice between two acts, the decision maker prefers the act
that yields higher expected utility according to every utility function and every
probability measure in the corresponding set. Let the set of probability–utility
pairs that figure in the representation be Φ := {(π�U) | U ∈ U , π ∈ ΠU}. Each
(π�U) ∈ Φ defines a hyperplane w := π · U . We denote by W the set of all
these hyperplanes and define 〈Φ̂〉 = 〈Ŵ 〉.

12A slight variation of this axiom, in which the implied preference is g � f rather than
g � f , appears in Fishburn’s (1970) axiomatization of the infinite-state version of the model of
Anscombe and Aumann (1963) (see Fishburn (1970, Theorem 13.3)). Fishburn’s formulation of
Savage’s expected utility theorem (Fishburn (1970, Theorem 14.1)), includes axiom P7, which ex-
pressed in our notation says g � (≺) f s given A ⊂ S, for every s ∈ A, implies g � (�) f given A.
Our version of dominance is weaker in the sense that it is required to hold only for A = S. It is
stronger in the sense that the implication holds with the strict rather than the weak preference.
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THEOREM 1: Let � be a binary relation on H. Then the following conditions
are equivalent:

(i) H is �-bounded and � satisfies A.1–A.4.
(ii) There exists a nonempty closed set U of real-valued functions on X and

nonempty closed sets ΠU , U ∈ U , of probability measures on S such that,∑
s∈S

π(s)
∑
x∈X

hM(x� s)U(x) >
∑
s∈S

π(s)
∑
x∈X

h(x� s)U(x)

>
∑
s∈S

π(s)
∑
x∈X

hm(x� s)U(x)

for all h ∈ H and (π�U) ∈Φ, and for all h�h′ ∈H, h� h′ if and only if∑
s∈S

π(s)
∑
x∈X

h(x� s)U(x) >
∑
s∈S

π(s)
∑
x∈X

h′(x� s)U(x) ∀(π�U) ∈ Φ�(3)

where Φ= {(π�U) |U ∈ U , π ∈ ΠU}.
Moreover, if Φ′ = {(π ′� V ) | V ∈ V , π ′ ∈ ΠV } represents � in the sense of (3),

then 〈Φ̂′〉 = 〈Φ̂〉, and for all U ∈ U and π ∈ΠU , π(s) > 0 for all s.

2.3. State Independence and Monotonicity

Consider the following additional notation and definitions. For each h ∈ H
and s ∈ S, denote by h−sp the act obtained by replacing the sth coordinate of h,
h(s), with p. Define the conditional preference relation �s on Δ(X) by p �s q
if there exists h−s such that h−sp� h−sq for all p�q ∈ Δ(X). A state s is said to
be nonnull if p�s q for some p�q ∈ Δ(X), and it is null otherwise.

A preference relation � on H is said to display state independence if for any
h�h′�p�q and for all nonnull s� s′ ∈ S, h−sp � h−sq if and only if h′

−s′p� h′
−s′q.

It is said to display monotonicity if for all f�g ∈ H, f s � gs for all s ∈ S implies
f � g.

If a preference relation is an Archimedean weak order satisfying indepen-
dence, then state independence and monotonicity are equivalent axioms. How-
ever, Ok, Ortoleva, and Riella (2012) demonstrated that if the preference re-
lation is incomplete, they are not. We show below that the dominance axiom
A.4 implies both state independence and monotonicity.

LEMMA 3: Let � be a nonempty binary relation on H and suppose that H is
�-bounded. If � satisfies A.1–A.4, then it displays state-independent preferences.
Moreover, all states are nonnull, and hM = (δx1� � � � � δx1) and hm = (δx2� � � � � δx2)
for some x1�x2 ∈X .

The proof is an immediate implication of Theorem 1 and is omitted.
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LEMMA 4: If � is a strict partial order on H satisfying independence A.3 and
dominance A.4, then it satisfies monotonicity.13

The proof is given in Section 5.

3. SPECIAL CASES

In this section, we examine three special cases, each of which involves tight-
ening the axiomatic structure by adding a different axiom to the basic pref-
erence structure depicted by A.1–A.4. The first is an axiomatic structure that
entails a complete separation of beliefs from tastes. The second, Knightian un-
certainty, is the case in which tastes are complete but beliefs are incomplete.
The third is the case of complete beliefs and incomplete tastes.

3.1. Belief Consistency and Multiprior Expected Multiutility
Product Representation

One of the features of the Anscombe and Aumann (1963) model is the pos-
sibility it affords for transforming uncertain prospects (subjective uncertainty)
into risky prospects (objective uncertainty) by comparing acts to their reduc-
tion under alternative measures on Δ(S). In particular, there is a measure
α∗ ∈ Δ(S) such that every act f is indifferent to the constant act f α∗ obtained
by the reduction of the compound lottery represented by (f�α∗).14 In fact, the
measure α∗ is the subjective probability measure on S that governs the decision
maker’s choice. It is, therefore, natural to think of an act as a tacit compound
lottery in which the probabilities that figure in the first stage are, implicitly, the
subjective probabilities that govern choice behavior. When, as in this paper, the
set of subjective probabilities that govern choice behavior is not a singleton, an
act f corresponds to a set of implicit compound lotteries, each of which is in-
duced by a (subjective) probability measure. The set of measures represents
the decision maker’s indeterminate beliefs. Add to this interpretation the re-
duction of compound lotteries assumption—that is, the assumption maintain-
ing that (f�α) is equivalent to its reduction f a—to conclude that g � f is suffi-
cient for the reduction of (g�α) to be preferred over the reduction of (f�α) for
all α in the aforementioned set of measures. This assertion is formalized by the
belief consistency axiom. To state the axiom, we use the following notation and
definition: Let hp denote the constant act whose payoff is hp(s) = p for every
s ∈ S, and let A := {α ∈ Δ(S) | ∀f ∈ H, ∀p ∈ Δ(X), f � hp ⇒ ¬(hp � f α)}.
The set A has the interpretation of “distributions consistent with the prefer-
ences.”

13We thank a referee for calling our attention to this lemma and providing its proof.
14For each act–probability pair (f�α) ∈H ×Δ(S), we denote by f α the constant act defined by

f α(s)= ∑
s′∈S αs′f (s

′) for all s ∈ S.
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A.5—Belief Consistency: For all f�g ∈ H, g � f implies gα � f α for all α ∈ A.

The necessity of this condition is implied by Theorem 1. Hence, taken to-
gether, axioms A.1–A.5 amount to the condition that to assess the merits of
the alternative acts, each of the measures in

⋃
U∈U ΠU combines with each of

the utility functions in U .
The next result is a representation theorem that totally separates beliefs

from tastes. Specifically, it shows that a preference relation satisfies A.1–A.5 if
and only if there is a nonempty set U of utility functions on X and a nonempty
set M of probability measures on S such that, when presented with a choice
between two acts, the decision maker prefers one act over another if and only
if the former act yields higher expected utility according to every combination
of a utility function and a probability measure in these sets.

For a set of functions U on X , we denote by 〈U 〉 the closure of the convex
cone in R

|X| generated by all the functions in U and all the constant functions
on X .

THEOREM 2: Let � be a binary relation on H. Then the following conditions
are equivalent:

(i) H is �-bounded and � satisfies A.1–A.5.
(ii) There exist nonempty closed sets U and M of real-valued functions on X

and probability measures on S� respectively, such that,∑
s∈S

π(s)
∑
x∈X

hM(x� s)U(x) >
∑
s∈S

π(s)
∑
x∈X

h(x� s)U(x)

>
∑
s∈S

π(s)
∑
x∈X

hm(x� s)U(x)

for all h ∈ H and (π�U) ∈ M × U , and for all h�h′ ∈ H, h� h′ if and only if∑
s∈S

π(s)
∑
x∈X

h(x� s)U(x)(4)

>
∑
s∈S

π(s)
∑
x∈X

h′(x� s)U(x) ∀(π�U) ∈ M × U �

Moreover, if V and M′ is another pair of sets of real-valued functions on X and
probability measures on S that represent � in the sense of (4), then 〈U 〉 = 〈V 〉 and
cl(conv(M)) = cl(conv(M′)), where cl(conv(M)) is the closure of the convex
hull of M. Also, π(s) > 0 for all s ∈ S and π ∈ M.

3.2. Knightian Uncertainty

Consider the extension of the Anscombe–Aumann (1963) model to include
incomplete preferences, and suppose that the incompleteness is entirely due
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to incomplete beliefs. Bewley (1986) dealt with this case, which is referred to
as Knightian uncertainty.

The model of Knightian uncertainty requires a formal definition of complete
tastes. To provide such a definition, we invoke the property of negative transi-
tivity.15 The next axiom requires that the restriction of the preference relation
to constant acts exhibits negative transitivity, thereby implying complete tastes.

A.6—Negative Transitivity on Constant Acts: The restriction of � to the set
of constant acts Hc is negatively transitive.

Let �c denote the restriction of � to the set of all constant acts Hc and
define �c on Hc as follows: for all hp�hq ∈ Hc , hp �c hq if ¬(hq � hp). Then
A.6 implies that the weak preference relation �c on Hc is complete, which is
the assumption of Bewley (1986).

The next theorem is our version of Knightian uncertainty.

THEOREM 3: Let � be a binary relation on H. Then the following conditions
are equivalent:

(i) H is �-bounded, and � satisfies A.1–A.4 and A.6.
(ii) There exists a nonempty closed set M of probability measures on S and a

real-valued, affine function U on Δ(X) such that∑
s∈S

U
(
hM(s)

)
π(s) >

∑
s∈S

U
(
h(s)

)
π(s) >

∑
s∈S

U
(
hm(s)

)
π(s)

for all h ∈H and π ∈ M, and for all h�h′ ∈H�

h� h′ ⇔
∑
s∈S

U
(
h(s)

)
π(s) �

∑
s∈S

U
(
h′(s)

)
π(s) ∀π ∈ M�(5)

Moreover, U is unique up to positive linear transformation, the closed convex hull
of M is unique, and for all π ∈ M, π(s) > 0 for any s.

3.3. Complete Beliefs and Subjective Expected Multiutility Representation

Consider next the dual case in which incompleteness of the decision maker’s
preferences is due solely to the incompleteness of his tastes. This situation
was modeled in Ok, Ortoleva, and Riella (2012) using an axiom they called
reduction.16 We propose here an alternative formulation based on the idea of
completeness of beliefs. First, we give a definition of coherent beliefs.

15A strict partial order � on a set D is said to exhibit negative transitivity if for all x� y� z ∈ D,
¬(x� y) and ¬(y � z) imply ¬(x� z).

16The reduction axiom of Ok, Ortoleva, and Riella (2012) requires that for every h ∈H� there
exists a probability measure μ on S such that hμ ∼ h.
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To define the notion of coherent beliefs, we use the following notation: For
each event E, denote by pEq the act whose payoff is p for all s ∈ E and q
for all s ∈ S − E. Denote by pαq the constant act whose payoff in every state
is αp + (1 − α)q. A bet on an event E is the act pEq, whose payoffs satisfy
hp � hq.

Suppose that the decision maker considers the constant act pαq preferable
to the bet pEq. This preference is taken to mean that he believes α exceeds
the likelihood of E. This belief is coherent if it holds for any other bet on E
and the corresponding constant acts (that is, if hp′ � hq′ , then the constant act
p′αq′ is preferable to the bet p′Eq′). The same logic applies when the bet pEq
is preferable to the constant act pαq.17 The formal definition follows.

DEFINITION 1: A preference relation � on H exhibits coherent beliefs if for
all events E and p�q�p′� q′ ∈ Δ(X) such that hp � hq and hp′ � hq′ , pαq �
pEq if and only if p′αq′ � p′Eq′, and pEq � pαq if and only if p′Eq′ � p′αq′.

It is noteworthy that the axiomatic structure of the preference relation de-
picted by A.1–A.4 implies that the decision maker’s beliefs are coherent.

LEMMA 5: Let � be a nonempty binary relation on H satisfying A.1–A.4. If H
is �-bounded, then � exhibits coherent beliefs.

The proof is an immediate implication of Theorem 1 and is omitted.
The idea of complete beliefs is captured by the following axiom.18

A.7—Complete Beliefs: For all events E and α ∈ [0�1], and constant acts hp

and hq such that hp � hq, either hpαhq � hpEhq or hpEhq � hpα′hq for every
α> α′.

A preference relation � displays complete beliefs if it satisfies A.7. If the
beliefs are complete, then the incompleteness of the preference relation on H
is due entirely to the incompleteness of tastes.

The next theorem is the subjective expected multiutility version of the
Anscombe–Aumann (1963) model corresponding to the situation in which the
decision maker’s beliefs are complete.19

17This idea, which we refer to as coherent beliefs, is a variation on an axiom, dubbed betting
neutrality, of Grant and Polak (2006).

18Unlike the weak reduction of Ok, Ortoleva, and Riella (2012), neither complete beliefs nor
complete tastes involve an existential clause.

19See Ok, Ortoleva, and Riella (2012, Theorem 4) for their version of this result.
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THEOREM 4: Let � be a binary relation on H. Then the following conditions
are equivalent:

(i) H is �-bounded, and � satisfies A.1–A.4 and A.7.
(ii) There exists a nonempty closed set U of real-valued functions on X and a

probability measure π on S such that∑
s∈S

π(s)
∑
x∈X

hM(x� s)U(x) >
∑
s∈S

π(s)
∑
x∈X

h(x� s)U(x)

>
∑
s∈S

π(s)
∑
x∈X

hm(x� s)U(x)

for all h ∈H and U ∈ U , and for all h�h′ ∈H�

h� h′ ⇔
∑
s∈S

π(s)
∑
x∈X

h(x� s)U(x)(6)

>
∑
s∈S

π(s)
∑
x∈X

h′(x� s)U(x) ∀U ∈ U �

The probability measure π is unique and π(s) > 0 for all s ∈ S. Moreover, if V
is another set of real-valued functions on X that represent � in the sense of (6),
then 〈V 〉 = 〈U 〉.

REMARK 2: For every event E, the upper probability of E is πu(E)= inf{α ∈
[0�1] | pMαpm � pMEpm} and the lower probability of E is πl(E) = sup{α ∈
[0�1] | pMEpm � pMαpm}. Lemma 5 asserts that the upper and lower probabil-
ities are well defined. Theorem 4 implies that a preference relation � satisfying
A.1–A.4 displays complete beliefs if and only if πu(E)= πl(E) for every E.

4. CONCLUDING REMARKS

4.1. Weak Preferences: Definition and Representation

Taking the strict preference relation � as a primitive, it is customary to de-
fine weak preference relations as the negation of �. Formally, given a binary
relation � on H, define a binary relation � on H by f � g if ¬(g � f ).20 If
the strict preference relation � is negatively transitive and irreflexive, then the
weak preference relation is complete. According to this approach, it is impos-
sible to distinguish noncomparability from indifference. We propose below a
new concept of induced weak preferences, denoted �GK, that makes it possible
to make such a distinction.

20See, for example, Chateauneuf (1987) and Kreps (1988).
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DEFINITION 2: For all f�g ∈H, f �GK g if h� f implies h� g for all h ∈H.

Note that � is not the asymmetric part of �GK. Moreover, if � satisfies A.1–
A.3, then the derived binary relation �GK on H is a weak order (that is, transi-
tive and reflexive) satisfying the Archimedean and independence axioms but is
not necessarily complete. The indifference relation ∼GK (that is, the symmetric
part of �GK) is an equivalence relation.21 Karni (2011) showed that the weak
preference relation in Definition 2 agrees with the customary definition if and
only if � is negatively transitive and �GK is complete.22

It can be shown that the representations in Theorems 1, 2, 3, and 4 extend
to the weak preference relation in Definition 2. Consider, for instance, the
representation in Theorem 1. It can be shown that H is �-bounded and � is
nonempty satisfying A.1–A.4 if and only if for all h�h′ ∈ H�

h�GK h′ ⇔
∑
s∈S

U
(
h(s)

)
π(s)

≥
∑
s∈S

U
(
h′(s)

)
π(s) for all (π�U) ∈Φ�

where Φ is the set of probability–utility pairs that figure in Theorem 1. Similar
extensions apply to Theorems 2, 3, and 4.

Ok, Ortoleva, and Riella (2012), introduced an axiom, dubbed weak reduc-
tion, asserting that for any act f , there exists α ∈ Δ(S) such that f α � f , where
f α = ∑

s∈S αsf
s. For �GK, weak reduction and independence imply dominance.

Suppose g � f s for every s ∈ S. By weak reduction there exists ᾱ ∈ Δ(S) such
that f ᾱ �GK f . Since g � f s for every s ∈ S, by the independence axiom, g � f ᾱ.
Thus, g � f ᾱ �GK f . Hence, by definition of �GK, g � f .

4.2. Related Literature

Seidenfeld, Schervish, and Kadane (1995), Nau (2006), and Ok, Ortoleva,
and Riella (2012) studied axiomatic theories of incomplete preferences involv-
ing the indeterminacy of both beliefs and tastes. All of these papers invoke

21Derived weak orders, close in spirit to Definition 2, based on a pseudo-transitive weak order
appear in Chateauneuf (1987).

22The standard practice in decision theory is to take the weak preference relation as primitive
and define the strict preference relation as its asymmetric part. Invoking the standard practice,
Dubra (2011) showed that if the weak preference relation on Δ(X) is nontrivial (that is, � �= ∅)
and satisfies the independence axiom, then any two of the following three axioms, completeness,
Archimedean, and mixture continuity, imply the third. Thus, a nontrivial, partial preorder satis-
fying independence must fail to satisfy one of the continuity axioms. Karni (2011) showed that a
nontrivial preference relation �GK may satisfy independence, Archimedean, and mixture conti-
nuity, and yet be incomplete.
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the analytical framework of Anscombe and Aumann (1963). As in this pa-
per, Nau (2006) assumed that the set of outcomes (that is, the union of the
supports of the roulette lotteries) is finite and there are best and worst acts.
Seidenfeld, Schervish, and Kadane (1995) considered a more general setting in
which the consequences are (roulette) lotteries with finite or countably infinite
supports, and rather than assuming the existence of best and worse elements
in the choice set, they proved that the set of acts and the preference relation
may be extended to include such elements. Ok, Ortoleva, and Riella (2012)
assumed that the support of the roulette lotteries is compact (metric) space.
They neither assumed nor proved the existence of best and worst acts.

With regard to the preference relation, as in this paper, Seidenfeld et al.
invoked the strict preference relation as primitive. However, they defined an
indifference relation and weak preference relation differently from the ap-
proach described in the preceding subsection. Nau (2006) and Ok, Ortoleva,
and Riella (2012) took the weak preference relation as a primitive.

Seidenfeld et al. and Nau assumed that the preference relation exhibits state
independence to obtain multiprior expected multiutility representations with
state-dependent utility functions.23 Since these studies sought a representation
that entails a set of probability–utility pairs, in which the utility functions are
state independent, they amended their models with additional conditions that
strengthen the state-independence axiom. With their additional conditions,
Seidenfeld, Schervish, and Kadane (1995) obtained a representation involving
almost state-independent utilities; Nau (2006) obtained a representation by a
set of probabilities and state-dependent utility function pairs that is the con-
vex hull of a set of probabilities and state-independent utility pairs. Like the
model in this paper, Nau’s (2006) model entails a finite set of consequences,
and a best and a worst act.24 The main difference is the underlying axiomatic
structure.

Neither Seidenfeld, Schervish, and Kadane (1995) nor Nau (2006) studied
any of the special cases considered in Section 3. Ok, Ortoleva, and Riella
(2012) introduced a new axiom, dubbed the “weak reduction axiom,” and
showed that a preference relation is continuous and satisfies independence
and weak reduction if and only if it admits either a multiprior expected util-
ity representation or a single prior expected multiutility representation. The
model of Ok, Ortoleva, and Riella (2012) does not allow for incompleteness of
both beliefs and tastes. Their result corresponds to the last two cases analyzed
in Section 3. However, unlike in our model in which these cases correspond to

23In the absence of completeness, state independence is not enough to ensure that the rep-
resentation involves only sets of probabilities and state-independent utilities. Indeed, Lemma 3
asserts that state independence is implied in our model by the presence of the dominance axiom.

24Nau (2006) provided an excellent discussion of Seidenfeld, Schervish, and Kadane (1995) and
an explanation of why their extended preference relation is representable by sets of probabilities
and almost state-independent utilities but not state-independent utilities.



270 T. GALAABAATAR AND E. KARNI

specific axioms depicting the completeness of either beliefs or tastes, in Ok, Or-
toleva, and Riella (2012) both cases are possible, as the weak reduction axiom
does not specify which aspect of the preferences—tastes or beliefs—is com-
plete and which is incomplete.

Replacing weak reduction with the dominance axiom in the setting of Ok,
Ortoleva, and Riella (2012) does not lead to a state-independent represen-
tation. In other words, the dominance axiom applied to the weak preference
relation � in the framework of Ok, Ortoleva, and Riella (2012), where � is
assumed to satisfy independence and (strong) continuity, does not necessar-
ily imply state independence. To see this, let S = {s� t}, and fix a constant act
hp = (p�p) and a nonconstant act f = (p�q). Let f �′ hp and suppose that
�′ is determined by the direction f − hp. Observe that �′ satisfies indepen-
dence, continuity, and dominance, but not state independence (by definition,
q �′

t p, but �′
s is empty). Hence, this relation does not satisfy state indepen-

dence. Notice that in this example, the interior of dominance cone is empty,
and there are no best and worst elements in H. It is worth emphasizing that
all existing axiomatizations of multiprior expected multiutility representations
rely on the existence of best and worst acts. Whether axioms A.1–A.4 and the
assumption that the dominance cone has a nonempty interior, without assum-
ing the existence of best and worst elements, imply state independence is an
open question.

5. PROOFS

Whenever suitable, we use the following convention. Although, in most of
our results, a function U (in representing set U ) is defined on X , we refer to
its natural extension to Δ(X) by U .

5.1. Proof of Lemma 1

(i) ⇒ (ii). Let B(�) := {λ(f − h) | f � h and f�h ∈ H and λ > 0}. Here, f −
h ∈ R|X|·|S| is defined by (f − h)(s) = f (s)− h(s) ∈ R

|X| for all s ∈ S.
Each f ∈ H is a point in R

|X|·|S|. Since for each state, the weights on conse-
quences add up to 1, f can also be seen as a point in R

(|X|−1)·|S|. (For example,
if X = {x1�x2�x3} and S = {s1� s2}, then f = ( 1

2 �
1
3 �

1
6 ; 1

4 �0� 3
4) ∈ R6 corresponds

to ( 1
2 �

1
3 ; 1

4 �0) in R4.) For any act f ∈ H, the corresponding act in R(|X|−1)·|S| is
denoted by φ(f). Thus, φ :R|X|·|S| → R

(|X|−1)·|S| is a one-to-one linear mapping.
Define φ(B(�)) := {λφ(f − h) | f � h and f�h ∈ H and λ > 0}.

CLAIM 1: The set φ(B(�)) is a convex and open cone in R(|X|−1)·|S|.

PROOF: By the independence axiom, φ(B(�)) is a convex cone. To see this,
pick any h1�h2 ∈ φ(B(�)) and α1�α2 > 0. We need to show that α1h1 + α2h2

belongs to φ(B(�)).
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By definition, h1�h2 ∈ φ(B(�)) implies that h1 = λ1φ(f1 − g1) and h2 =
λ2φ(f2 − g2) for λ1�λ2 > 0 and f1� g1� f2� g2 ∈H such that f1 � g1 and f2 � g2:

α1h1 + α2h2 = α1λ1φ(f1 − g1)+ α2λ2φ(f2 − g2)(7)

= (α1λ1 + α2λ2)

×
((

α1λ1

α1λ1 + α2λ2
φ(f1)+ α2λ2

α1λ1 + α2λ2
φ(f2)

)

−
(

α1λ1

α1λ1 + α2λ2
φ(g1)+ α2λ2

α1λ1 + α2λ2
φ(g2)

))
�

Define f := α1λ1
α1λ1+α2λ2

f1 + α2λ2
α1λ1+α2λ2

f2 and g := α1λ1
α1λ1+α2λ2

g1 + α2λ2
α1λ1+α2λ2

g2. Then
the independence axiom implies that f � g. Also, (7) implies α1h1 + α2h2 =
(α1λ1 + α2λ2)φ(f − g). Therefore, α1h1 + α2h2 ∈ φ(B(�)).

To show that φ(B(�)) is open in R(|X|−1)·|S|, let p̄ := ( 1
|X| �

1
|X| � � � � �

1
|X|) ∈ Δ(X)

and h̄ := (p̄� p̄� � � � � p̄) ∈H. Note that φ(B(�)) is open in R(|X|−1)·|S| if and only
if φ(h̄ + B(�)) is open in R(|X|−1)·|S|. We know that φ(h̄ + B(�)) = {φ(h̄) +
λφ(h − h̄) | λ > 0�h ∈ H and h � h̄}.25 Thus, to show φ(B(�)) is open, it is
enough to show that set {φ(h̄)+λφ(h− h̄) | λ > 0�h ∈ H and h� h̄} is open in
R(|X|−1)·|S|. Since, the set {φ(h̄)+λφ(h− h̄) | λ > 0�h ∈ H and h� h̄} is convex,
to show that this set is open, it is enough to show that each point of this set is an
algebraic interior point. Now pick any φ(g) ∈ {φ(h̄) + λφ(h − h̄) | λ > 0�h ∈
H and h � h̄} and any d ∈ R(|X|−1)·|S|. Then g = h̄ + λ(h − h̄) for some λ > 0
and h ∈ H such that h � h̄. Pick small μ > 0 so that h1 := (1 − μ)h̄ + μg ∈ H
and φ(f1) := (1 −μ)φ(h̄)+μ(φ(g)+ d) ∈ φ(H).

Since h1 � h̄, by the Archimedean axiom, there exists β′ > 0 such that (1 −
β′)h1 + β′hm � h̄. Specifically, (1 − β)h1 + βf1 � h̄ for all β such that β ∈
(0�β′). This implies that for all β ∈ (0�β′), φ(g)+βd ∈ {φ(h̄)+ λφ(h− h̄) |
λ > 0�h ∈ H and h � h̄}. Thus, φ(g) is an algebraic interior point of {φ(h̄) +
λφ(h− h̄) | λ > 0�h ∈ H and h� h̄}. Q.E.D.

It is easy to check that for any f�g ∈ H,

f − g ∈ B(�) if and only if φ(f)−φ(g) ∈ φ
(
B(�)

)
�(8)

25It is easy to show that {φ(h̄) + λφ(h − h̄) | λ > 0�h ∈ H and h � h̄} ⊂ φ(h̄ + B(�)). To
show the opposite direction, suppose φ(g) ∈ φ(h̄ + B(�)). Then g = h̄ + λ(f1 − f2) for λ > 0
and f1� f2 ∈ H such that f1 � f2. For small enough μ > 0, h̄ + μ(f1 − f2) ∈ H holds. Denote
this act by h. Then, by the independence axiom, h � h̄ and g = h̄ + λ

μ
(h − h̄). Hence φ(g) ∈

{φ(h̄)+ λφ(h− h̄) | λ > 0�h ∈H and h� h̄}.
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Since φ(B(�)) is an open and convex cone in R(|X|−1)·|S|� we can find a sup-
porting hyperplane at each boundary point of φ(B(�)). Each such hyper-
plane has its normal vector, u ∈ R(|X|−1)·|S|. Define wu :H → R by wu(h) =
u(φ(h)) for all h ∈ H (that is, wu(h)= ∑

s∈S wu(h(s)� s), where for each s ∈ S,
wu(h(s)� s) = ∑

x∈X−{x′} u(x� s)h(x� s), and x′ ∈ X is not used in the domain of
φ). The collection of the functions wu that correspond to all these hyperplanes
is denoted by W . Then each element of W is affine in its first argument. Using
(8), it is easy to verify that W represents �. If B(�) is smooth, then each of the
supporting hyperplanes is unique, and the closedness of W is easy to verify.
If B(�) is not smooth, then there may be boundary points that have multiple
supporting hyperplanes. In this case, include all the functions that correspond
to the vectors defining these hyperplanes in W to show that it is closed.

(ii) ⇒ (i). Axioms A.1 and A.3 are easy to show. We show that representation
(2) implies the Archimedean axiom A.2. For all f ∈ H and w ∈ W , denote
f ·w := ∑

s∈S
∑

x∈X f (x� s)w(x� s).
Let f � g � h, then, by the representation f · w > g · w > h · w for all

w ∈ W . For each w, define αw := inf{α ∈ (0�1) | αf · w + (1 − α)h · w >
g · w}. To show that the Archimedean axiom holds, it is enough to show that
sup{αw |w ∈ W }< 1. Suppose not. Then there is a sequence {wn} ⊂ W such
that αwn → 1. But W ⊂ R

|X|×|S| is closed and can be normalized to be bounded.
Hence, without loss of generality, W is a compact set. Therefore, there is a
convergent subsequence of {wn}. Suppose that wn → w∗, w∗ ∈ W . Since, αw is
a continuous function of w, we have αw∗ = 1. This contradicts αw∗ < 1. Q.E.D.

5.2. Proof of Lemma 2

Suppose W and W ′ are two sets of real-valued functions that represent � in
the sense of (2). Note that D ⊂ 〈Ŵ ′〉 ∩ 〈Ŵ 〉.

Suppose that 〈Ŵ ′〉 �= 〈Ŵ 〉. Without loss of generality, assume that there ex-
ists w ∈ 〈Ŵ 〉 − 〈Ŵ ′〉. Since 〈Ŵ ′〉 is a closed and convex cone, there exists a
hyperplane that strictly separates {w} from 〈Ŵ ′〉. Let h̄ ∈ R

|X|·|S| be the normal
of the hyperplane. Then h̄ · w > h̄ · w′ for all w′ ∈ 〈Ŵ ′〉. But 〈Ŵ ′〉 is a cone,
hence h̄ ·w> 0. If h̄ ·w′ > 0 for some w′ ∈ 〈Ŵ ′〉, then λw′ ∈ 〈Ŵ ′〉 for all λ ∈ R+
and λh̄ ·w′ > h̄ ·w for some λ ∈ R+, a contradiction. Hence,

h̄ ·w> 0 ≥ h̄ ·w′ for all w′ ∈ 〈
Ŵ ′〉�(9)

CLAIM 2: For all s ∈ S,
∑

x∈X h̄(x� s)= 0.

PROOF: Suppose not. Then θh̄ · δs > 0 for some θ ∈ R and s ∈ S. But θδs ∈
〈Ŵ ′〉, which contradicts (9). Q.E.D.
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Let h̄(·� s) = h̄+(·� s) − h̄−(·� s), where h̄+(x� s) = h̄(x� s) if h̄(x� s) > 0 and
h̄+(x� s)= 0 otherwise, and h̄−(x� s)= −h̄(x� s) if h̄(x� s) < 0 and h̄−(x� s)= 0
otherwise. Then

∑
x∈X h̄+(x� s)= ∑

x∈X h̄−(x� s)= cs ≥ 0.

CLAIM 3: For some s ∈ S, cs > 0.

PROOF: Suppose that cs = 0 for all s ∈ S. Then h̄(·� s)= 0 for all s ∈ S, hence
h̄ ·w = 0. This contradicts (9). Q.E.D.

Let ct = max{cs | s ∈ S}. Define pt(x) = h̄+(x� t)/ct and qt(x) = h̄−(x� t)/ct
for all x ∈ X . For all s ∈ S − {t} such that cs > 0, let ps(x) = h̄+(x� s)/cs and
qs(x) = h̄−(x� s)/cs for all x ∈ X − {x0}, and let ps(x

0) = 1 − ∑
x∈X−{x0} ps(x)

and qs(x
0)= 1−∑

x∈X−{x0} qs(x). For s such that cs = 0� let ps(x
0)= qs(x

0)= 1
and ps(x)= qs(x) = 0 for all x ∈X − {x0}.

Define hp�hq ∈ H by hp(x� s) = ps(x) and hq(x� s) = qs(x) for all (x� s) ∈
X × S.

CLAIM 4: There exists w ∈ Ŵ that satisfies equation (9).

PROOF: Since w ∈ 〈Ŵ 〉, there is sequence {αnwn + (1 − αn)dn} such that
limn→∞(αnwn + (1 −αn)dn)= w, where wn is in the cone spanned by Ŵ and dn

is in the cone spanned by D. Since h̄ · (αnwn + (1 − αn)dn) = αnh̄ · wn, by the
left inequality of (9), for large enough n, we have h̄ ·wn > 0. We regard this wn

as w. Q.E.D.

For the hpand hq above, we have hp ·w > hq ·w and hp ·w′ ≤ hq ·w′ for all
w′ ∈ W ′. The second inequality implies that for any f ∈ H,

f � hq implies f � hp;(10)

hp ·w> hq ·w implies that there exists β ∈ (0�1) such that hp ·w> ((1−β)hq+
βhM) ·w> hq ·w. This yields a contradiction to (10) since (1 −β)hq +βhM �
hq. Q.E.D.

5.3. Proof of Theorem 1

(i) ⇒ (ii). Define an auxiliary binary relation � on H as follows: For all
f�g ∈ H, f � g if h � f implies h � g for all h ∈ H. Let B := {λ(h′ − h) |
h′ � h�h′�h ∈ H�λ ≥ 0}. Then φ(B) is a closed convex cone with nonempty
interior in R(|X|−1)·|S|. By Theorem V.9.8 in Dunford and Schwartz (1957), there
is a dense set T in its boundary such that each point of T has a unique tangent.
Let W o be the set of linear functions on R(|X|−1)·|S| defined by the collection
of all the supporting hyperplanes corresponding to dense set T . Without loss



274 T. GALAABAATAR AND E. KARNI

of generality, we assume that each function in W o has unit normal vector. It is
easy to see that W o represents �. For the rest of the proof, we use the notation
w(f) to express w(φ(f )) for functions w ∈ W o. With this convention, for all
h�f ∈H,

h� f if and only if(11) ∑
s∈S

w
(
h(s)� s

) ≥
∑
s∈S

w
(
f (s)� s

)
for all w ∈ W o�

For every f ∈ H, let Hc(f ) be the convex hull of {f s | s ∈ S}. For all α ∈ Δ(S),
let f α ∈ Hc(f ) be the constant act defined by f α = ∑

s∈S αsf
s. Now A.3 implies

that g � f s for every s ∈ S if and only if g � f α for every α ∈ Δ(S). Hence, an
equivalent statement of A.4 is as follows:

A.4′—Reduction Consistency: For all f�g ∈ H, g � f α for every α ∈ Δ(S)
implies g � f .

Before presenting the main argument of the proof, we provide some useful
facts.

CLAIM 5: For all f�g ∈H, if g � f α for all α ∈ Δ(S), then g � f .

The proof is immediate application of A.4, the preceding argument, and the
definition of �. Henceforth, when we invoke axiom A.4, we use it in either the
equivalent strict preference form A.4′ or the weak form given in Claim 5, as
the need arises.

To state the next result, we invoke the following notation. For each h ∈ H
and s ∈ S, let h−sp be the act that is obtained by replacing the sth coordinate
of h, h(s), with p. Let hp denote the constant act whose payoff is hp(s) = p
for every s ∈ S.

CLAIM 6: If hp � hq, then hp � h
p
−sq for all s ∈ S.

PROOF: For any α ∈ Δ(S), (hp
−sq)

α is a convex combination of hp and hq.
To be exact, (hp

−sq)
α = (1 − αs)h

p + αsh
q. By A.3 applied to �� we have hp �

αsh
p + (1 − αs)h

q � hq (that is, hp � (h
p
−sq)

α for all α ∈ Δ(S)).26 Hence, by
Claim 5, hp � h

p
−sq. Q.E.D.

We now turn to the main argument. In particular, we show that the compo-
nent functions {w(·� s)}s∈S of each function w ∈ W o are positive linear trans-
formations of one another.

26For a proof that � satisfies independence, see Galaabaatar and Karni (2011).
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LEMMA 6: If ŵ ∈ W o, then for all nonnull s� t ∈ S, ŵ(·� s) and ŵ(·� t) are
positive linear transformations of one another.

PROOF: By way of negation, suppose that there exist s� t such that ŵ(·� s)
and ŵ(·� t) are not positive linear transformations of one another. Then
there are p�q ∈ Δ(X) such that ŵ(p� s) > ŵ(q� s) and ŵ(q� t) > ŵ(p� t).
Without loss of generality, let p be a lottery such that ŵ(hp) > ŵ(hq) and
p(x) > 0 for all x ∈ X . Define q(λ) = λp + (1 − λ)q for λ ∈ (0�1). Then
ŵ(p� s) > ŵ(q(λ)� s) and ŵ(q(λ)� t) > ŵ(p� t). Following Ok, Ortoleva, and
Riella (2012), we use the following construction. Let fλ ∈ H be defined as fol-
lows: fλ(s′) = p if s′ = s, fλ(s′) = q(λ) if s′ = t, and, for s′ �= s� t, fλ(s′) = p if
ŵ(p� s′)≥ ŵ(q(λ)� s′) and fλ(s

′)= q(λ) otherwise.
Clearly,

∑
s∈S ŵ(fλ(s)� s) >

∑
s∈S ŵ((fλ)

α(s)� s) for all α ∈ Δ(S). Since fλ in-
volves only p and q(λ), {(fλ)α | α ∈ Δ(S)} = {αhp + (1 − α)hq(λ) | α ∈ [0�1]}.

Since ŵ ∈ W o, there exists g ∈ H such that g � hp� ŵ(g) = ŵ(hp), and ŵ is
the unique supporting hyperplane at g.

The cone B = {α(f − g) | f�g ∈ H�f � g, α ≥ 0} defines an extension of the
auxiliary relation � to the linear space generated by H. With slight abuse of
notation we denote the extended relation by �. The extended relation satisfies
all the properties of the original auxiliary relation.

CLAIM 7: There exists β∗(λ) > 0 such that hp +β∗(λ)(g − hp)� hq(λ).

PROOF: Suppose not. Then, for any n ∈ {1�2� � � �}, there exists wn ∈ W o such
that wn(h

p + n(g − hp)) < wn(h
q(λ)). Since wn is linear, we can regard wn as a

vector and wn(f ) as the inner product wn ·φ(f). Hence, we have

nwn ·φ(
(g)− hp

)
<wn ·φ(

hq(λ) − hp
)

for all n�(12)

Since ‖wn‖ = 1, we can find convergent subsequence {wnk}. Without loss of
generality we assume that {wn} itself is convergent and wn → w∗ ∈ cl(W o).
The right-hand side of inequality (12) converges to w∗ · φ(hq(λ) − hp). If
w∗ · φ(g − hp) > 0, then the left-hand side of inequality (12) tends to
+∞ as n → ∞—a contradiction. Hence, w∗(g) = w∗(hp) since g � hp.
Also, wn(h

p) ≤ wn(h
p + n(g − hp)) < wn(h

q(λ)) implies w∗(hp) ≤ w∗(hq(λ)).
Since ŵ(hp) > ŵ(hq(λ)), ŵ �= w∗. This contradicts the uniqueness of the
supporting hyperplane at φ(g) ∈ φ(H). This completes the proof of the
claim. Q.E.D.

Let gλ = hp + β∗(λ)(g − hp). Then gλ � hp and gλ � hq(λ). By choos-
ing λ close to 1 and applying the independence axiom to the extended re-
lation, we can find β(λ) ∈ (0�1) so that for such λ, gλ is feasible (i.e.,
gλ(s) ∈ Δ(X) for all s ∈ S). By virtue of being on the hyperplane defined
by ŵ,

∑
s∈S ŵ(gλ(s)� s) = ŵ(hp). Since gλ � hp�hq(λ), we have gλ � (fλ)

α for
all α ∈ Δ(S). Hence, by Claim 5, gλ � fλ. But

∑
s∈S ŵ(fλ(s)� s) > ŵ(hp) =
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FIGURE 1.—The separating hyperplane.

∑
s∈S ŵ(gλ(s)� s), which is a contradiction (see Figure 1). This completes the

proof of Lemma 6. Q.E.D.

The representation (3) is implied by the following arguments. First, by the
standard argument: For each w ∈ W o, define Uw(·) = w(·�1) and for all s ∈ S,
let w(·� s) = bw

s U
w(·) + aw

s , bw
s > 0. Define πw(s) = bw

s /
∑

s′∈S b
w
s′ for all s ∈ S.

Let U be the collection of distinct Uw and for each U ∈ U , let ΠU = {πw | ∀w
such that Uw = U}. Second, if there are kinks in B so that there is more than
one supporting hyperplanes, then there is at least one w that can be expressed
as a limit point of sequence {wn} from W o. Since any wn has the property that
each of its components is a positive linear transformation of the others, w has
the same property. If we add all those w’s to W o, then the new set of functions
will represent �.

(ii) ⇒ (i). Axioms A.1–A.3 are implied by Lemma 1. The �-boundedness of
H and A.4 are immediate implications of the representation. The uniqueness
result is implied by Lemma 1. Q.E.D.

5.4. Proof of Lemma 4

Suppose that f�g ∈ H are such that f (s) � g(s) for all s ∈ S. Define h ∈ H by
h(s) = 1

|S|−1

∑
s′ �=s f (s

′) for all s ∈ S. Observe that 1
|S|f + (1 − 1

|S|)h is a constant
act. By A.3, for each s�

1
| S |f +

(
1 − 1

| S |
)
h = 1

| S |f (s)+
(

1 − 1
| S |

)
h(s)

� 1
| S |g(s)+

(
1 − 1

| S |
)
h(s)�
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By A.4,

1
| S |f +

(
1 − 1

| S |
)
h� 1

| S |g +
(

1 − 1
| S |

)
h�

Hence, by A.3, f � g. Q.E.D.

5.5. Proof of Theorem 2

(i) ⇒ (ii). Suppose that � on H satisfies A.1–A.5. Let M := {α ∈ Δ(S) | f �
hp implies ¬(hp � f α) for any p ∈ Δ(X)� f ∈ H}.

By A.5, g � f implies that gα � f α for all α ∈ M. By Theorem 1, gα � f α

for all α ∈ M if and only if U(gα) > U(f α) for all U ∈ U and α ∈ M. By
the affinity of U ∈ U , U(gα) > U(f α) for all U ∈ U and α ∈ M if and only
if

∑
s∈S U(g(s))α(s) >

∑
s∈S U(f (s))α(s) for all (α�U) ∈ M × U . Hence, g � f

implies
∑

s∈S U(g(s))α(s) >
∑

s∈S U(f (s))α(s) for all (α�U) ∈ M × U .
To prove the inverse implication, suppose∑

s∈S
U

(
g(s)

)
α(s) >

∑
s∈S

U
(
f (s)

)
α(s)

for all (α�U) ∈ M × U . Theorem 1 implies that g � f if and only if∑
s∈S U(g(s))α(s) >

∑
s∈S U(f (s))α(s) for all (α�U) ∈ {(α�U) | U ∈ U�α ∈

ΠU}. Since A.5 implies
⋃

U∈U ΠU ⊂ M, we have g � f .
(ii) ⇒ (i). This part is easy to check. To prove the uniqueness of the set of

utility functions, we restrict attention to constant acts. Then we have U(hp) >
U(hq) for all U ∈ U if and only if V (hp) > V (hq) for all V ∈ V . By the proof of
uniqueness result of Dubra, Maccheroni, and Ok (2004), we obtain 〈U 〉 = 〈V 〉.

To prove the uniqueness of beliefs, suppose that each one of the pairs (U�
M) and (V� M′) represents �. Assume cl(conv(M)) �= cl(conv(M′)). Then,
without loss of generality, there exists π ∈ M such that π /∈ cl(conv(M′)).
But π /∈ cl(conv(M′)) implies π /∈ cl(cone(M′)), where cl(cone(M′)) is the
closure of the convex cone generated by M′.

Thus, there exists a hyperplane that strictly separates π and cl(cone(M′)).
In other words, there is a nonzero vector a ∈ R

|S| such that

π · a > π ′ · a for all π ′ ∈ cl
(
cone

(
M′))�(13)

Invoking the fact that cl(cone(M′)) is a cone,

π · a > 0 ≥ π ′ · a for all π ′ ∈ cl
(
cone

(
M′))�(14)

By equation (14), we have π ·a > 0 ≥ π ′ ·a for all π ′ ∈ M′. Normalize U and
V so that for any U ∈ U ∪ V , U(pM)−U(pm)= max{ai | i = 1�2� � � � � |S|}. Then
for any i = 1� � � � � |S|, there exists p̂i� q̂i ∈ Δ(X) such that ai = U(p̂i)−U(q̂i).
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Define acts f := (p̂1� p̂2� � � � � p̂|S|) and g := (q̂1� q̂2� � � � � q̂|S|). Then 0 ≥ π ′ ·a for
all π ′ ∈ M′ implies

∑
s∈S π

′(s)V (g(s)) ≥ ∑
s∈S π

′(s)V (f (s)) for all V ∈ V and
π ′ ∈ M′. Therefore, for any h ∈ H,

h� g then h� f�(15)

But π ·a > 0 implies
∑

s∈S π(s)U(f (s)) >
∑

s∈S π(s)U(g(s)) for all U ∈ U . Pick
any U∗ ∈ U . Then there exists λ ∈ (0�1) such that

∑
s∈S π(s)U

∗(f (s)) > (1 −
λ)

∑
s∈S π(s)U

∗(g(s)) + λ
∑

s∈S π(s)U
∗(pM) >

∑
s∈S π(s)U

∗(g(s)). Since (1 −
λ)g + λhM � g, the last inequality is a contradiction to (15). Q.E.D.

5.6. Proof of Theorem 3

(i) ⇒ (ii). Recall that �c is the restriction of � to the set of all constant acts
Hc and that �c on Hc is defined as follows: for all hp�hq ∈ Hc , hp �c hq if
¬(hq � hp). By A.6, �c is complete.

By Theorem 1, for all hp�hq ∈ Hc , hp �c hq if and only if
∑

s∈X p(x)U(x) >∑
s∈X q(x)U(x) for all (π�U) ∈ Φ. By Kreps (1988, Theorem (5.4)), all U

in the above representation are positive affine transformations of one an-
other. Pick one of them and denote it by Ū . Define M := {π | (π�U) ∈
Φ for some U}. Then, for all h�g ∈H, h� g if and only if

∑
s∈S π(s)(

∑
x∈X h(x�

s)Ū(x)) >
∑

s∈S π(s)(
∑

x∈X g(x� s)Ū(x)) for all π ∈ M.
The proof that (ii) ⇒ (i) is straightforward. The uniqueness result is implied

by the uniqueness of Theorem 2. Q.E.D.

5.7. Proof of Theorem 4

(i) ⇒ (ii). First, we show that A.1–A.3 and A.7 assure a unique probability
measure over S. Let πu(E) = inf{α ∈ [0�1] | pMαpm � pMEpm} and πl(E) =
sup{α ∈ [0�1] | pMEpm � pMαpm}.

CLAIM 8: For any E ⊂ S, πu(E)= πl(E).

PROOF: Axiom A.3 implies that πu(E) ≥ πl(E). Suppose that πu(E) >
πl(E).27 Then there exist α1�α2 such that πu(E) > α1 > α2 > πl(E). Since
πu(E) > α1 implies pMα1p

m � pMEpm does not hold, A.7 implies pMEpm �
pMα2p

m, which is a contradiction to α2 > πl(E). Therefore, πu(E) = πl(E).
Q.E.D.

Define π(E) := πu(E) = πl(E). Next, we show that π is a probability mea-
sure.

27To be exact, A.3 implies mixture monotonicity – that is, for all f�g ∈ H and 0 ≤ α < β ≤
1, f � g implies that βf + (1 − β)g � αf + (1 − α)g (see Kreps (1988, Lemma 5.6)). Mixture
monotonicity implies that πu(E) ≥ πl(E).
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CLAIM 9: The set function π : 2S → [0�1] is a probability measure.

PROOF: By definition, π(S) = 1. Since S is a finite set, it is enough to show
that π(E ∪ {s})= π(E)+π(s) for all E ⊆ S and for all s /∈ E.

First, we show that π(E ∪ {s}) ≤ π(E) + π(s). Without loss of generality,
assume that π(E)+ π(s) < 1. Pick any ε > 0 such that π(E)+ π(s)+ 2ε < 1.
Then there exist α1�α2�β1�β2 ∈ [0�1] such that π(E) < β1 < α1 < π(E) + ε
and π(s) < β2 <α2 <π(s)+ ε.

If we can show that pM(α1 + α2)p
m � pM(E ∪ {s})pm, then we have π(E ∪

{s}) < α1 + α2 <π(E)+π(s)+ 2ε, which implies π(E ∪ {s})≤ π(E)+π(s).28

Suppose that pM(α1 + α2)p
m � pM(E ∪ {s})pm does not hold. Then, by A.7,

pM(β1 +β2)p
m ≺ pM(E ∪ {s})pm.

We know that pMβ1p
m � pMEpm and pMβ2p

m � pM{s}pm imply that for all
w ∈ W ,

β1

∑
s∈S

w
(
pM� s

) + (1 −β1)
∑
s∈S

w
(
pm� s

)
>

∑
t∈E

w
(
pM� t

) +
∑
t /∈E

w
(
pm� t

)
and

β2

∑
s∈S

w
(
pM� s

) + (1 −β2)
∑
s∈S

w
(
pm� s

)
>w

(
pM� s

) +
∑
t �=s

w
(
pm� t

)
�

Adding these two inequalities, we obtain that for all w ∈ W ,

(β1 +β2)
∑
s∈S

w
(
pM� s

) + (1 −β1 −β2)
∑
s∈S

w
(
pm� s

) +
∑
s∈S

w
(
pm� s

)
>w

(
pM

(
E ∪ {s})pm

) +
∑
s∈S

w
(
pm� s

)
�

Hence, for all w ∈ W ,

(β1 +β2)
∑
s∈S

w
(
pM� s

) + (1 −β1 −β2)
∑
s∈S

w
(
pm� s

)
>

∑
s∈S

w
(
pM

(
E ∪ {s})pm� s

)
�

But this is obviously a contradiction of pM(β1 +β2)p
m ≺ pM(E∪{s})pm. Thus,

π(E ∪ {s})≤ π(E)+π(s).

28Recall that, by Lemma 3, hM = (pM� � � � �pM) and hm = (pm� � � � �pm).
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Suppose π(E ∪ {s}) < π(E) + π(s). Then there exists α such that π(E ∪
{s}) < α < π(E) + π(s). Since 0 ≤ α − π(E) < π(s), we can find α1 < α such
that α − π(E) < α1 < π(s). Thus, we have α − α1 ∈ (0�π(E)) and α1 < π(s).
Therefore, by using the same argument above, we can have

pM{s}pm � pMα1p
m and pMEpm � pM(α− α1)p

m

⇒ pM
(
E ∪ {s})pm � pMαpm�

This is a contradiction to π(E ∪ {s}) < α. Q.E.D.

Now we enter the proof of Theorem 4. Suppose α > π(E). Then, by
Lemma 1,

pMαpm � pMEpm if and only if(16) ∑
s∈S

w
(
pMαpm� s

)
>

∑
s∈S

w
(
pMEpm� s

) ∀w ∈ W �

Equation (16) implies that for all w ∈ W ,

α
∑
s∈S

w
(
pM� s

) + (1 − α)
∑
s∈S

w
(
pm� s

)
>

∑
s∈E

w
(
pM� s

) +
∑
s /∈E

w
(
pm� s

)
�

which, in turn, implies that for all w ∈ W ,

α
∑
s /∈E

w
(
pM� s

) + (1 − α)
∑
s∈E

w
(
pm� s

)
(17)

> (1 − α)
∑
s∈E

w
(
pM� s

) + α
∑
s /∈E

w
(
pm� s

)
�

Equation (17) implies that for all w ∈ W ,

α

1 − α
>

∑
s∈E

w(pM� s)−
∑
s∈E

w(pm� s)

∑
s /∈E

w(pM� s)−
∑
s /∈E

w(pm� s)
∀α> π(E)�

Hence,

π(E)

1 −π(E)
≥

∑
s∈E

w(pM� s)−
∑
s∈E

w(pm� s)

∑
s /∈E

w(pM� s)−
∑
s /∈E

w(pm� s)
∀w ∈ W �
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For all α < π(E), we can repeat the same argument. Therefore, we get for all
w ∈ W ,

α

1 − α
<

∑
s∈E

w(pM� s)−
∑
s∈E

w(pm� s)

∑
s /∈E

w(pM� s)−
∑
s /∈E

w(pm� s)
∀α< π(E)�

Hence,

π(E)

1 −π(E)
≤

∑
s∈E

w(pM� s)−
∑
s∈E

w(pm� s)

∑
s /∈E

w(pM� s)−
∑
s /∈E

w(pm� s)
∀w ∈ W �

Thus, we conclude that

π(E)

1 −π(E)
=

∑
s∈E

w(pM� s)−
∑
s∈E

w(pm� s)

∑
s /∈E

w(pM� s)−
∑
s /∈E

w(pm� s)
∀w ∈ W �

Lemma 5 implies that whenever hx � hm, pMαpm � pMEpm if and only if
δxαp

m � δxEp
m. Thus, for all w ∈ W ,

π(E)

1 −π(E)
=

∑
s∈E

w(pM� s)−
∑
s∈E

w(pm� s)

∑
s /∈E

w(pM� s)−
∑
s /∈E

w(pm� s)
(18)

=

∑
s∈E

w(δx� s)−
∑
s∈E

w(pm� s)

∑
s /∈E

w(δx� s)−
∑
s /∈E

w(pm� s)
�

Let S = {s1� s2� � � � � sn} and E = {si}. By equation (18), we have for all w ∈ W ,

1 −π(si)

π(si)
=

∑
s∈S−{si}

w(δx� s)−
∑

s∈S−{si}
w(pm� s)

w(δx� si)−w(pm� si)
�(19)

Hence,

1
π(si)

=

∑
s∈S

w(δx� s)−
∑
s∈S

w(pm� s)

w(δx� si)−w(pm� si)
�(20)
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Thus,

π(si)

π(sj)
= w(δx� si)−w(pm� si)

w(δx� sj)−w(pm� sj)
∀i� j ∈ {1� � � � � n}�(21)

By taking j = 1, we get

w(δx� si)= π(si)

π(s1)

(
w(δx� s1)−w

(
pm� s1

)) +w
(
pm� si

)
�(22)

which implies

w(p� si)= π(si)

π(s1)
w(p� s1)− π(si)

π(s1)
w

(
pm� s1

) +w
(
pm� si

)
�(23)

Suppose that h�g ∈H. Then

h� g if and only if∑
s

w
(
h(s)� s

)
>

∑
s

w
(
g(s)� s

)
for all w ∈ W �

By using equations (19)–(23), we can easily show that∑
s

w
(
h(s)� s

)
>

∑
s

w
(
g(s)� s

)
for all w ∈ W if and only if

∑
i

π(si)w
(
h(si)� s1

)
>

∑
i

π(si)w
(
g(si)� s1

)
for all w ∈ W �

Define U = {w(·� s1) |w ∈ W }. Then the last two equations imply

h� g if and only if∑
s∈S

π(s)U
(
h(s)

)
>

∑
s∈S

π(s)U
(
g(s)

)
for all U ∈ U �

The proof of (ii) ⇒ (i) is straightforward. The uniqueness follows from the
uniqueness result in Dubra, Maccheroni, and Ok (2004) (by restricting � to
constant acts).
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