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Abstract The utility of a dense subgraph in gaining a better understanding of a graph has

been formalised in numerous ways, each striking a different balance between approximating

actual interestingness and computational efficiency. A difficulty in making this trade-off is

that, while computational cost of an algorithm is relatively well-defined, a pattern’s interest-

ingness is fundamentally subjective. This means that this latter aspect is often treated only

informally or neglected, and instead some form of density is used as a proxy. We resolve

this difficulty by formalising what makes a dense subgraph pattern interesting to a given

user. Unsurprisingly, the resulting measure is dependent on the prior beliefs of the user about

the graph. For concreteness, in this paper we consider two cases: one case where the user

only has a belief about the overall density of the graph, and another case where the user

has prior beliefs about the degrees of the vertices. Furthermore, we illustrate how the result-

ing interestingness measure is different from previous proposals. We also propose effective

exact and approximate algorithms for mining the most interesting dense subgraph according

to the proposed measure. Usefully, the proposed interestingness measure and approach lend

themselves well to iterative dense subgraph discovery. Contrary to most existing approaches,
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our method naturally allows subsequently found patterns to be overlapping. The empirical

evaluation highlights the properties of the new interestingness measure given different prior

belief sets, and our approach’s ability to find interesting subgraphs that other methods are

unable to find.

Keywords Dense subgraph patterns · Community detection · Subjective interestingness ·

Maximum entropy

1 Introduction

Mining dense subgraph patterns in a given graph is a problem of growing importance, owing

to the increased availability and importance of social networks between people, computer

networks such as the internet, relations between information sources such as the world wide

web, similarity networks between consumer products, and so on. Graphs representing this

type of data often contain information in the form of specific subsets of vertices that are more

closely related than other randomly selected subsets of vertices would be.

For example: a dense subgraph pattern in a social network could represent a group of

people with similar interests or involved in joint activities; a dense subgraph pattern on

the world wide web could represent a set of documents about a common theme; and a

dense subgraph pattern in a product co-purchasing network (in which products are con-

nected by an edge if they are frequently bought together) could represent a coherent product

group.

A multitude of methods have been proposed for the purpose of discovering dense subgraph

patterns, most of which belong to one of three categories. The first category starts from the

full graph, and attempts to partition it (typically in a recursive way) such that each block in

the partition is in some sense densely connected while vertices coming from different blocks

tend to be less frequently connected. The second category generalizes the notion of a clique,

e.g. to sets of vertices between which only a small number of edges are absent. The third

category attempts to fit a probabilistic model to the graph. This model is typically such that

vertices belonging to the same ‘community’ (which forms a dense subgraph) are more likely

to be connected.

Despite these differences, all approaches for dense subgraph mining are similar in implic-

itly or explicitly assuming a measure of interestingness for dense subgraph patterns, to be

optimised by the dense subgraph mining algorithm. The interestingness measure used essen-

tially affects two aspects of the dense subgraph mining process: the computational cost of

finding the most interesting dense subgraphs, and the degree to which presenting this pattern

helps the user to increase their understanding about the graph.

As such, the design of a dense subgraph mining method has been approached very much as

an engineering problem, trading-off conflicting requirements. This approach has long seemed

acceptable (and even inevitable) given that true interestingness of a dense subgraph pattern

eludes objective formalisation anyway, as it is fundamentally subjective: interestingness can

only be defined against the background of prior beliefs the user already holds about the graph.

For example, it will be less of a surprise to a user to hear that a set of vertices believed to

all have a high degree form a dense subgraph, than that an equally large set of supposedly

low-degree vertices form a dense subgraph, and thus the latter is subjectively more interesting

to that user.

Because of this, the most basic question: “How interesting is a given dense subgraph

pattern to a given user?” has evaded rigorous scrutiny. Previous research does not shine
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Fig. 1 Example graph with the most interesting dense subgraph patterns for two different prior beliefs on

the graph’s structure: 1 knowing the graph density, i.e. the average degree of the vertices (orange, dashed

subgraph), and 2 knowing the degrees of the individual vertices (purple, dotted subgraph)

much light on what this interestingness looks like, on whether any of the engineered inter-

estingness measures approximate it well, and on whether it can be optimised efficiently. Yet,

recent results on the formalisation of subjective interestingness and its applications to other

exploratory data mining problems (De Bie 2011a, b) has made clear that this question is

actually well-posed.

The main goal of this paper is to answer this important question. We do this by formalising

subjective interestingness of dense subgraph patterns, defined in terms of a subset of vertices

from the graph, against a background of two important classes of prior beliefs on the graph’s

structure (Sect. 2). Figure 1 already provides a glimpse of this. That is, it depicts a toy

example graph consisting of 16 vertices in which the most interesting subgraph patterns

for two different prior beliefs are highlighted. If one only knows the average degree of the

vertices in the network, then the orange, dashed subgraph is the most interesting pattern

according to our framework. If, on the other hand, one knows the individual degrees of the

vertices, the orange subgraph is no longer the most interesting one: since its vertices have

high degrees, finding a dense subgraph consisting of these vertices is hardly surprising. The

purple, dotted subgraph, however, is relatively dense given its individual degrees, and is

therefore considered the most interesting subgraph.

After formalizing subjective interestingness, we make it clear how the resulting measures

are different from previous proposals, holding the middle between measures based on absolute

missing edge tolerance and measures based on relative missing edge tolerance (Sect. 4).

Furthermore we propose two effective algorithms for finding the most interesting (set of)

dense subgraph patterns (Sect. 3), one of which is a fast heuristic and the other exact and hence

necessarily slower.1 Our empirical results illustrate the effectiveness of the search strategies,

1 Note that we are interested in finding just the best pattern(s), rather than in enumerating them all as is

common in the frequent pattern mining literature. The reason is precisely our focus on formalising subjective

interestingness: if this is done adequately, by definition only the most interesting ones should be of interest to

the user.

123



44 Mach Learn (2016) 105:41–75

how the results are (usefully) different from those of a state-of-the-art algorithm for mining

dense subgraph patterns, how different prior beliefs matter in the determination of subjective

interestingness, and how the proposed algorithms perform computationally (Sect. 5).

2 Subjective interestingness of dense subgraph patterns

2.1 Notation

A graph is denoted G = (V, E), where V is a set of n vertices (usually indexed using a

symbol u or v) and E ⊆ V × V is the set of edges. The adjacency matrix for the graph

is denoted as A, with au,v equal to 1 if there is an edge connecting vertices u and v, and 0

otherwise.

For the sake of simplicity, we focus the exposition on undirected graphs without self-edges

in this paper, for which it holds that (u, v) ∈ E ⇔ (v, u) ∈ E and (u, v) ∈ E ⇒ u �= v.

However, most of our results immediately apply also to directed graphs or graphs that allow

self-edges. We will briefly outline how in Sect. 2.3.1.

The setup in this paper is that the user knows (or has direct access to) the list of vertices V

in the graph, and their interest is in improving their understanding of the edge set E . Thus,

the data to be mined is the edge set E , and the data domain is V × V (with the additional

constraints for undirected graphs without self-loops).

2.2 Formalising dense subgraph patterns

The term ‘pattern’ has been overloaded numerous times in the wider data mining litera-

ture, so it is important to make it clear exactly what is meant by this term in the current

paper. We adhere to the definition adopted in the general framework introduced by De Bie

(2011a). There, a pattern is any piece of information about the data that limits its set of

possible values to a subset of the data domain. In the present context, a pattern is any

piece of information about the graph that limits the possible values of the edge set E to

a subset of the data domain V × V . Note that this setup naturally accommodates itera-

tive data mining: in each iteration the domain is further reduced by the newly presented

pattern.

As the focus of the paper is on dense subgraph patterns, the kind of patterns we will use

informs the user that the density of a specified vertex-induced subgraph is equal to or larger

than a specified value. A pattern of this syntax can be uniquely specified by means of a pair

(W, kW ), where W ⊆ V is the set of vertices in the subgraph and kW is a lower bound on

the number of possible edges between these vertices that are actually present in the graph

G. By nW we will denote the number of possible edges between vertices from W , equal to
1
2
|W |(|W | − 1) for undirected graphs without self-edges.

Continuing our example in Fig. 1, the orange, dashed pattern can be specified as

({1, 2, 3, 4, 5}, 8), meaning that at least kW = 8 edges exist between the vertices from

W = {1, 2, 3, 4, 5}. The number of possible edges, nW , equals 10, since |W | = 5.

2.3 A subjective interestingness measure

Many authors have previously attempted to quantify the interestingness of dense subgraph

patterns in objective ways (see Sect. 4). Each of these attempts is based on the intuition that a

subgraph is more interesting if it covers more vertices, and if only few pairs of these vertices
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are not connected. However, they differ in how to quantify the number of missing edges (e.g.

in a relative or in an absolute manner), and in how to trade-off these two aspects.

A general framework for formalising subjective interestingness In this paper we make no

attempt at proposing an objective interestingness measure. Instead we use the framework

proposed by De Bie (2011a, b), which lays out general principles for how to quantify the

interestingness of data mining patterns in a subjective manner. This is done by formalising

the interestingness of a pattern with respect to a so-called background distribution P for

the data, which represents the belief state of the user about the data. More specifically, the

background distribution assigns a probability to each possible value of the data according to

how plausible the user deems it to be.

Given a background distribution, De Bie (2011a) argued that subjective interestingness

of a pattern can be quantified as a ratio of two quantities:

– The information content of the pattern, which is the negative log probability that the

pattern is present in the data, computed using the background distribution.

– The description length of the pattern, i.e. the length of the description needed to com-

municate the pattern to the user.

Roughly speaking, the reasoning behind this is the following. The uncertainty of the

data miner about the data can be formalised by the code length for the data under a

Shannon-optimal code with respect to that background distribution, which is the negative

log probability of the data under the background distribution. Any pattern will affect the

beliefs of the data miner, and hence the background distribution representing these beliefs.

A pattern is more efficient for this particular user if it reduces this measure of uncertainty

more strongly. Under reasonable assumptions, the effect of observing a pattern to the user’s

belief state can be modelled by conditioning the background distribution P onto the pattern’s

presence in the data. In that case, this reduction of the user’s uncertainty about the data can

be quantified as the negative log probability of the event that the pattern is present under the

background distribution. However, this uncertainty reduction should be considered relative

to the effort needed to achieve it, i.e. relative to the complexity or description length of the

pattern.

The centrality of the evolving background distribution in this framework ensures that it

naturally captures the iterative nature of the exploratory data mining process. Indeed, upon

observation of a pattern, the user’s beliefs will include the newfound knowledge of this pat-

tern, resulting in a change in the background distribution. This update to the background

distribution reflects the fact that the observation of a pattern may affect the subjective inter-

estingness of other patterns (indeed, some patterns make others more or less plausible). Then

the most interesting pattern with respect to the updated background distribution P ′ can be

found, and the process can be iterated.

To use this framework, we need to understand how to formalise prior beliefs at the start

of the mining process in an initial background distribution P , and how it evolves upon

presentation with a pattern. It was argued the maximum entropy distribution subject to the

prior beliefs as constraints is a good choice for the initial background distribution. For the

evolution upon presentation with a pattern, it was argued that the background distribution

should be conditioned on the presence of the pattern (De Bie 2011a).

Applying the framework to dense subgraph patterns While this abstract framework is

generally applicable at least in principle, how it is deployed for specific prior beliefs, data,

and pattern types, is often non-trivial. The first main contribution of this paper is to do this

for the important case of dense subgraph patterns in a graph.
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For dense subgraph patterns, the data consists of the edge set E ⊆ V × V , and the

patterns are of the form specified in Sect. 2.2. Thus in the present section we will discuss the

kinds of initial prior beliefs for such data that we will consider in this paper, and what the

resulting background distribution is (Sect. 2.3.1); how the background distribution evolves

upon presentation with a pattern (Sect. 2.3.2); how to compute the information content of

the patterns we consider (Sect. 2.3.3); how to compute their description lengths (Sect. 2.3.4);

and finally how the information content and description length are combined to yield the

subjective interestingness measure proposed in this paper (Sect. 2.3.5).

2.3.1 The initial background distribution

Although the framework is general in principle with respect to which prior beliefs are incor-

porated, for concreteness we develop the details for two cases of prior beliefs.

(1) Prior beliefs on individual vertex degrees In the more complex case, the user holds prior

beliefs about the degree of each of the vertices in the graph. De Bie (2011b) showed

that the maximum entropy distribution then becomes a product of independent Bernoulli

distributions, one for each of the random variables au,v , defined to be equal to 1 if

(u, v) ∈ E and 0 otherwise. More specifically, it is of the form:

P(E) =
1

Z

∏

u<v

exp((λu + λv) · au,v),

where Z is a normalisation constant (the ‘partition function’) equal to Z =
∏

u<v

(1 + exp((λu + λv)), so that:

P(E) =
∏

u<v

exp((λu + λv) · au,v)

1 + exp(λu + λv)
.

As a product of Bernoulli distributions, this distribution can conveniently be represented

by a matrix P ∈ [0, 1]n×n , where the rows and columns are indexed by the vertices,

and where pu,v =
exp(λu+λv)

1+exp(λu+λv)
denotes the probability that au,v = 1, i.e. that there is

an edge between vertices u and v (note that for undirected graphs without self-loops P

is symmetric and has zeros on the diagonal).2 The parameters λu and λv thus directly

determine the probability pu,v for the edge between vertices u and v: the larger λu and

λv , the larger this probability.

Given the assumed degrees for the vertices as specified by the prior beliefs, inferring

the value of these parameters λu is a convex optimisation problem, and the algorithm

presented by De Bie (2011b) for doing that easily scales to millions of vertices.

(2) Prior belief on the overall graph density In the more simple use case we consider here,

the user only has a prior belief about the overall density of the graph (or equivalently,

on the average vertex degree). It is easy to show that the maximum entropy distribution

subject to this prior belief is also a product of Bernoulli distributions, but now with all

entries pu,v from P equal to the assumed (relative) edge density. Thus, also in this use

2 This model can be adapted to deal with graphs with self-edges, quite simply by changing u < v into u ≤ v

below the product symbol. Additionally, it can be adapted to directed graphs. In that case, it is natural to assume

prior beliefs on the in-degrees as well as the out-degrees of the vertices. This would result in a distribution of

the form P(E) =
∏

u,v
exp((λu+µv)·au,v)

1+exp(λu+µv)
, where au,v = 1 indicates the presence of an arc from u to v in E ,

and the λ parameters affect the out-degree probabilities and the µ parameters the in-degree probabilities. We

refer to De Bie (2011b), for details.
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case the background distribution is a product distribution with a factor for each vertex

pair, fully parameterised by a matrix P.

Other types of prior beliefs The above two types of prior beliefs will be used and discussed

in detail throughout this paper. One can imagine plenty of alternatives though. Consider the

situation where each vertex has certain properties (e.g. affiliations to companies, sports clubs,

etc., of people in a social network). Then, the user could express an expectation regarding

the fraction of vertex pairs that share any given property that are connected (e.g. users could

express a belief that two people affiliated to the University of Bristol are connected in the social

network with probability p̂). Then, dense subgraphs would end up being more informative if

they can be less easily explained by shared property values (e.g. communities of people with

mostly different affiliations). Although this case is beyond the scope of the present paper, it

would also lead to a background distribution that is a product of Bernoulli distributions, and

hence to similarly tractable algorithms as the two prior belief types discussed above.

The number of prior belief types of possible interest is clearly unbounded, and the purpose

of the paper is by no means to be comprehensive in this regard. Let us just note that although

the computational cost of the algorithms will vary depending on the kinds of prior beliefs

considered, the general approach outlined below is not specific for any kind of prior belief

type.

2.3.2 Updating the background distribution throughout the mining process

Upon presentation of a pattern, the user’s belief state will evolve to become consistent with

this newly acquired knowledge, which should be reflected in an update to the background

distribution. More specifically, this updated background distribution P ′ should be such that

the probability that the data does not contain the pattern is zero. To see what this means

in the present context, let us introduce the function φW , which counts the number of edges

within the vertex-induced subgraph induced by W ⊆ V , i.e. φW (E) =
∑

u,v∈W,u<v au,v .

Then, following the presentation of a pattern (W, kW ) to the user, P ′ should be such that

φW (E) ≥ kW holds with probability one. Let us denote this set of consistent distributions as

P
′.

The question is though: which of those (typically many) distributions from P
′ best repre-

sents the updated background distribution of the user? De Bie (2011a) presented arguments

for choosing as updated background distribution the I-projection of the previous background

distribution onto the set of distributions consistent with the presented pattern, i.e.:

P ′ = arg min
Q∈P ′

KL (Q‖P)

= arg min
Q

∑

E

Q(E) log

(

Q(E)

P(E)

)

,

s.t. Q(φW (E) ≥ kW ) = 1,
∑

E Q(E) = 1.
(1)

Interestingly, the result of this optimisation problem is simply P conditioned onto the pres-

ence of the pattern (in De Bie 2011a this was shown in a more general setting). Unfortunately

though, for the kind of data and pattern considered in the present paper, this conditioning

leads to the introduction of a large number of dependencies, which would create significant

computational difficulties. We thus need to look for an alternative, novel solution.
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Fortunately, slightly relaxing the problem dramatically enhances tractability. Specifically,

we relax the requirement that the pattern (W, kW ) is present with probability one, to the

requirement that this inequality holds in expectation only. Mathematically, this amounts to

replacing the first constraint in Eq. (1) with:
∑

E

Q(E)φW (E) ≥ kW . (2)

Clearly, this is a relaxation: any Q satisfying the original constraint will satisfy the relaxed

one. Furthermore, for W sufficiently large this relaxation seems to be tight. Although we

have no formal proof for this, we have an argument based on the Asymptotic Equipartition

Principle (Cover and Thomas 2012), which states that any sequence of random variables

will in the limit become a so-called typical sequence. The principle suggests that if W is

sufficiently large then any random subgraph over W drawn from the background distribution

thus obtained, will be (close to) typical, meaning that it will have an actual number of edges

close to the expected number.

The relaxed optimisation problem is thus:

P ′ = arg min
Q

∑

E

Q(E) log

(

Q(E)

P(E)

)

,

s.t.
∑

E

Q(E)φW (E) ≥ k,

∑

E

Q(E) = 1. (3)

This is a strictly convex optimisation problem, with a continuously differentiable objective

and affine constraints in the problem variables Q(E).3 This allows us to explicitly characterise

the updated background distribution as follows:

Theorem 1 Let the background distribution P over V × V be a product of independent

Bernoulli distributions, defined by:

P(E) =
∏

u<v

pu,v
au,v ·

(

1 − pu,v

)1−au,v
,

where au,v is an indicator variable equal to 1 iff (u, v) ∈ E. Then, the maximiser P ′ of

optimisation problem (3) is again a product of Bernoulli distributions, defined by:

P ′(E) =
∏

u<v

p′
u,v

au,v ·
(

1 − p′
u,v

)1−au,v
,

where

p′
u,v =

{

pu,v if ¬(u, v ∈ W ),
pu,v ·exp(λW )

1−pu,v+pu,v ·exp(λW )
otherwise.

Here, λW is equal to 0 if
∑

E P(E)φW (E) ≥ k, and λW is equal to the unique positive

real number for which
∑

E P ′(E)φW (E) = k otherwise.

The proof is given in the “Appendix”.

3 Note that this optimisation problem will also always be feasible in our setting, as the value of k is found as

φ(E) on the actual data E , and hence a point distribution would always satisfy the constraint.
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Corollary 1 Using the same notation as in Theorem 1, and for u, v ∈ W , it holds that

log
(

p′
u,v

1−p′
u,v

)

= log
(

pu,v

1−pu,v

)

+ λW . I.e., the effect of updating the background distribution

is that the log-odds of an edge between any pair of vertices u, v ∈ W is increased by λW .

As the updated background distribution is again a product of independent Bernoulli dis-

tributions, the process of updating the background distribution can be iterated by repeatedly

invoking the theorem. In each iteration, upon presentation of a pattern (W, kW ) a new vari-

able λW would be introduced, which affects the probabilities of edges connecting vertices

within W in such a way that their log-odds are increased by λW . This is precisely how the

background distribution is updated in the experiments below.

Remark 1 It would be inefficient to store the updated edge probabilities at each iteration of

the mining process, as their number is quadratic in the number of vertices. Instead, it is much

more efficient in practice to only store the λW variables, and to compute the probabilities

from these as and when needed.

This can be done by exploiting Corollary 1, which implies that the log-odds of the proba-

bility of an edge between a pair of vertices u, v ∈ V is equal to the log-odds of this probability

under the initial background distribution, plus the sum of the λW variables corresponding to

all patterns (W, kW ) for which u, v ∈ W .

The log-odds under the initial background distribution with prior beliefs on individual

vertex degrees is equal to λu + λv for the vertex pair (u, v), and hence it can be computed

in constant time by storing only |V | parameters. For the initial background based on a prior

belief on overall density, the log-odds is a constant.

After showing the user a series of patterns (W, kW ), the odds for an edge between u and

v will have become λu + λv +
∑

W :u,v∈W λW under the updated background distribution.

This corresponds to an edge probability equal to
exp(λu+λv+

∑

W :u,v∈W λW )

1+exp(λu+λv+
∑

W :u,v∈W λW )
.

Remark 2 Note that after updating, the constraints on the expected degrees of the vertices

used in fitting the initial background distribution may no longer be satisfied. This should not

be surprising and is in fact desirable, as the initial constraints merely reflect initial beliefs

of the user. These beliefs can be incorrect or inaccurate, and will evolve after observing a

pattern.

On the other hand, any constraint imposed by the observation of a pattern will remain

satisfied throughout subsequent iterations in the mining process. This follows from the fact

that λW ≥ 0, such that p′
u,v ≥ pu,v : the individual edge presence probabilities can only

increase after updating a background distribution at any stage in the mining process. Thus, the

expected value of the functions φW (E) can only increase, such that if
∑

P ′(E)φW (E) ≥ k

following an iteration of the mining process, this inequality will continue to hold in later

iterations.

2.3.3 The information content

The information content is the negative log probability of the pattern being present under the

background distribution. Thus, to compute it we need to be able to compute the probability of a

pattern under the background distribution. Here we will show how this can be done, exploiting

the fact that from Sects. 2.3.1 and 2.3.2 we know that the initial as well as the updated

background distributions considered in this paper are products of Bernoulli distributions.

This means that the background distribution can always be represented by means of a matrix

P as detailed in Sect. 2.3.1.
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Given a pattern (W, kW ) and a background distribution defined by P, the probability of

the presence of the pattern is the probability that the number of successes in nW Bernoulli

trials with possibly different success probabilities pu,v is at least equal to kW . This can be

computed reasonably (though not very) efficiently using the Binomial distribution as long as

the background distribution is constant, i.e. pu,v = p for all (u, v) ∈ E (i.e. for all possible

edges). It is harder if the background distribution is not constant though.

Fortunately, we can tightly upper bound this probability by means of the general Cher-

noff/Hoeffding bound (Chernoff 1952; Hoeffding 1963):

Theorem 2 Let X1, X2, . . . , Xn be n independent random variables such that 0 ≤ Xk ≤ 1

and E [Xk] = pk . Furthermore, let X = 1
n

∑

k=1:n Xk , p = E [X ] = 1
n

∑

i=1:n pk . Then,

for p̂ > p:

Pr
[

X ≥ p̂
]

≤ exp
(

−nKL
(

p̂‖p
))

.

Here, KL
(

p̂‖p
)

is the Kullback-Leibler divergence between two Bernoulli distribu-

tions with success probabilities p̂ and p respectively, i.e. KL
(

p̂‖p
)

= p̂ log
(

p̂
p

)

+ (1 −

p̂) log
(

1− p̂
1−p

)

.

The general Chernoff/Hoeffding bound applies to our case where Xk ∈ {0, 1} indicates the

presence of an edge between some pair of vertices (u, v) ∈ E ,4 with probability of success

equal to pu,v . Then, for any given vertex set W ⊆ V , the value of p from the theorem is

equal to: pW = 1
nW

∑

u,v∈W,u<v pu,v , and p̂ from the theorem is equal to the ratio kW

nW
of the

number kW of the nW possible edges between pairs of vertices in W that are present. Thus,

the theorem statement translates into:

Pr [(W, kW )] ≤ exp

(

−nW KL

(

kW

nW

‖pW

))

,

so that

InformationContent[(W, kW )] = − log (Pr [(W, kW )])

≥ nW KL

(

kW

nW

‖pW

)

.

This bound is very tight, particularly for the relevant situation of large values of p̂.5 Thus

it seems warranted to take this bound as a proxy for the actual information content.

2.3.4 The description length

To present a pattern (W, kW ) to a user its set of vertices W needs to be described. To do

this, we assume that the cost of assimilating the fact that any vertex is part of W is log (1/q)

and log(1/(1 − q)) for the fact that any vertex is not part of W . This means that the total

description length is:

4 Note that the fact that 0 ≤ Xk ≤ 1 in the general theorem suggests that it can be used also in a possible

extension of our work for weighted graphs.

5 The bound only holds for p̂ > p, but of course we are only interested in this situation (subgraphs that are

denser than expected). The bound is tighter if the different values for pu,v are more similar to each other, and

thus in particular in the case where the user only holds a belief about the overall density, so that pu,v = p for

some constant p and pW = p.
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DescriptionLength[(W, kW )]

= |W | · log

(

1

q

)

+ (N − |W |) log

(

1

1 − q

)

,

= |W | · log

(

1 − q

q

)

+ N log

(

1

1 − q

)

,

Thus, the description length is an affine function of the cardinality |W |, namely

DescriptionLength[(W, kW )] = α|W | + β, with α = log
(

1−q
q

)

, β = log
(

1
1−q

)

, and

0 < q < 1.6

2.3.5 The subjective interestingness

In the general case, taking the ratio of the information content to the description length, the

subjective interestingness is thus (up to a constant factor):

Interestingness[(W, kW )] =
nW KL

(

kW

nW
‖pW

)

α|W | + β
.

This is relatively easy to compute for a given pattern (W, kW ). The most costly part is

the computation of pW , which requires the computation of the average of nW = O(|W |2)

numbers if pu,v is not constant. However, in an algorithm exploring subgraphs by recursively

expanding them by adding a vertex, computing pW can be done efficiently based on its value

for the subgraph of size |W | − 1 it is a direct expansion of, requiring only O(|W |) additions.

Also the number of edges kW can be computed recursively in a similar way.

2.3.6 A detailed example of subjective interestingness

The subjective interestingness that we just formalised, including the two cases of prior beliefs,

was also used to obtain the example shown in Fig. 1. In particular, the orange, dashed

subgraph is the pattern having the highest Interestingness when considering graph density as

prior belief, and the purple, dotted subgraph is the pattern having the highest Interestingness

when considering individual vertex degrees as prior belief. In both cases, q = 0.2 was

used; the effect of q is negligible for large networks, but a higher and more realistic value

for q is required to obtain reasonable results on smaller graphs. Here, q can be loosely

interpreted as the ‘expected probability’ for a random vertex to be part of a dense subgraph

pattern.

When comparing the two most interesting patterns, it is immediately obvious that they are

quite different. In fact, they are in different parts of the graph and their intersection is empty.

When one only knows the average degree of all vertices, any high density subgraph is deemed

interesting, as is common in most existing approaches to dense subgraph mining (although

our formalisation of ‘density’ is different, see Sect. 4.3.1). With our approach, however, it is

also possible to inject other prior knowledge and use this to make interestingness subjective.

This is the key to the iterative mining scheme presented in Sect. 2.3.2, but also other types

of prior beliefs can be considered. The case we consider in this paper is prior beliefs on the

individual vertex degrees, which generally results in the discovery of smaller and sparser

6 Strictly speaking a small extra description of length log(|W |) would be need to be added to account for

encoding kW . However, for N or |W | sufficiently large this would become negligible, so we ignore it here for

simplicity.
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Fig. 2 Edge probabilities given

the individual vertex degrees as

prior belief, for the graph given in

Fig. 1. The vertex numbers

correspond to the numbers given

in the toy example graph.

Probabilities on the diagonal are

zero since no self-edges are

considered; the use of undirected

graphs results in symmetric

matrices (Darker corresponds to

high edge probability)
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subgraphs that are nevertheless surprisingly dense considering the degrees of their individual

vertices.

To study the effect of this prior belief in more detail, consider the matrix P presented

in Fig. 2. Each cell in the heatmap represents an edge probability, i.e. the probability pu,v

that vertices u and v are connected by an edge given the individual degrees of the vertices.

Vertex 2, for example, has degree six and thus the highest degree of all vertices. Hence, its

edge probabilities are higher than those of other vertices. The most likely edge is the one

between vertices 1 and 2, with 76.8 % probability. Given this probability, finding that vertices

1 and 2 are indeed connected is not very interesting, which is reflected by a low information

content. Edges between vertices 5, 6, and 7 are not very probable though, and hence that

subgraph pattern gets high information content and subjective interestingness. This results in

a completely different pattern having the highest subjective interestingness compared to the

case where only the graph density is known, which results in a matrix P in which all edges

are equally likely.

3 Algorithms

In this paper, our focus is on the interestingness measure and, more specifically, on formal-

ising subjective interestingness. Because our interestingness measure is more complex than

measures based on density only, the search for the most interesting dense subgraph pattern

cannot be expected to be as efficient. The search is challenging indeed, but we nonetheless

develop two practically scalable algorithms to do this. The second main contribution of this

paper is the introduction of two algorithms for finding dense subgraph patterns in a graph.

One uses a heuristic search strategy for maximum scalability, the other uses an exact search

strategy for maximum accuracy.

3.1 Heuristic search

The first strategy we consider is local search by means of hill-climbing. The general approach

here is to start from a small subgraph (the ‘seed’), and to recursively expand or shrink

this subgraph in a greedy manner in order to improve its interestingness, until no further

improvement is possible. The algorithm implementing this strategy is shown in Algorithm 1
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Algorithm 1 HillClimber(graph G, subgraph W, interestingness s)

1: W∗ ← W , s∗ ← s

2: {Try if adding a vertex increases the interestingness}

3: for v ∈ V \W do

4: if W ∪ {v} is connected then

5: W ′ ← W ∪ {v}, s′ ← Interestingness(W ′, kW ′ )

6: if s′ > s∗ then

7: W∗ ← W ′, s∗ ← s′

8: if s∗ > s then

9: return HillClimber(G, W∗, s∗)

10: else

11: {Try if removing a vertex increases the interestingness}

12: for v ∈ W do

13: W ′ ← W\{v}, s′ ← Interestingness(W ′, kW ′ )

14: if s′ > s∗ then

15: W∗ ← W ′, s∗ ← s′

16: if s∗ > s then

17: return HillClimber(G, W∗, s∗)

18: else

19: return (W, s)

(both for-loops iterate over the vertices in order of decreasing degree, to optimise practical

efficiency and choose the vertex with highest degree in case of a tie).

The algorithm requires the recursive computation of the interestingness measure, and

thus of kW ′ and pW ′ for W ′ = W ∪ {v} or W ′ = W\{v}. Based on the values of kW

and pW this can be done efficiently in O(|W |) time. Using these two quantities, computing

Interestingness(W ′, kW ′) can then be done in constant time. For improved efficiency, we only

consider expansions that keep the subgraph connected.

To limit the effect of the choice of the seed, we independently run the hill-climber for a

number of seeds and finally pick the best result achieved. In an attempt to ensure promising

seeds as a starting point, we consider the following seeding strategies:

All Each of the separate vertices forms a seed, i.e. {v | v ∈ V }.

Uniform(k) A selection of k of the vertices separately, selected uniformly at random from

V but without duplicates.

TopK(k) The top-k vertices, separately, with respect to the interestingness of their cor-

responding neighbourhood-induced subgraphs (i.e. the vertex itself along with

all its direct neighbours in the graph).

3.2 Exact search

On moderately sized graphs, exact search may be feasible. Besides being useful in its own

right in such applications, comparing the results of the hill-climber with the results of an exact

search algorithm on smaller data will give insight into the effectiveness of the hill-climber.

Thus, we develop an exact best-first search strategy that is similar to the A* algorithm. This

algorithm is investigated only for the constant background distribution, as that allows us to

use discrete data structures that lead to a particularly efficient implementation.

Typically we are only interested in the most interesting pattern, possibly to be iterated

after updating the background distribution if more than one pattern is desired. Hence, we

could use an A*-type of algorithm if an optimistic estimate can be made, i.e. if an upper

bound on the interestingness that any supergraph of a given subgraph pattern can achieve can

be computed.
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Given such an optimistic estimate, the A*-type algorithm maintains a priority queue of

candidate subgraphs sorted in order of decreasing value of the optimistic estimate. Then,

the first pattern from the priority queue is iteratively selected and for each vertex not yet

part of it a new pattern is created by adding it to the pattern. The pattern is then removed

and the expanded candidate patterns are inserted in the priority queue. This iterative process

is repeated until the optimistic estimate of the first-ranked pattern is lower than the actual

interestingness of the best pattern found so far.

While this can be done in general, for simplicity and speed, we develop it only for the

case of a constant background distribution. This allows us to use discrete data structures and

hence greater efficiency. In this case, pW is independent of W and equal to the assumed edge

density of the graph. Consequently, the interestingness for any expanded subgraph W ′ ⊇ W

only depends on nW ′ and kW ′ .

Given a certain size of W ′, the value for nW ′ is fixed as nW ′ = |W ′|(|W ′|−1)
2

by definition.

Thus we can compute an upper bound on the interestingness of W ′ by computing an upper

bound on kW ′ , the number of edges in the vertex-induced subgraph induced by W ′. There

are three different kinds of vertices in this subgraph:

1. Edges connecting two vertices from W .

2. Edges connecting a vertex from W ′\W with a vertex from W .

3. Edges connecting two vertices from W ′\W .

The number of vertices of the first kind is fixed and independent of W ′\W . To compute

a bound on the number of vertices of the second kind, we need for each vertex in V \W

the number of edges it has to vertices in W . This set of numbers can be computed very

efficiently using fast set intersections on a sparse representation of E . Then the sum of the

largest |W ′\W | such values is a bound on the number of vertices of the second kind.

To compute a bound on the number of vertices of the third kind, we need for each vertex

in V \W the degree within the subgraph induced by the vertices V \W . Again, this set of

values can be computed very efficiently using fast set intersection operations. Then sum of

the largest |W ′\W | such values, each thresholded at |W ′\W |-1 (since this is the maximum

number of neighbours there can be within W ′\W ), is a bound on the number of vertices of the

third kind. Adding the (bounds on) the number of edges of each of these three kinds yields

an upper bound on kW ′ , and thus on the interestingness of W ′ given its size. The overall

upper bound can be found by computing the largest upper bound for all possible sizes of W ′.

This can be efficiently done in a for-loop from |W | to |V |, iteratively computing an upper

bound for each consecutive |W | < |W ′| ≤ |V | and taking the maximum as global optimistic

estimate. This loop can be broken as soon as there are no more edges of the second or third

kind left that can be added.

Although this bound could be further tightened and developed also for the prior belief

using individual degrees, this would come at the expense of additional computational cost.

We therefore leave a thorough investigation of this topic for future work. As the empirical

evaluation will demonstrate, the presented estimate is sufficiently tight to allow us to achieve

our main goal: providing a reasonably fast baseline to compare the quality of the hill-climber’s

results to, on a number of moderately sized graphs.

4 Discussion and related work

Our contributions are related to three different areas of research: the development of subjective

interestingness measures in data mining; the development of instant and interactive methods
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for pattern mining; and the wider literature on dense subgraph mining. Here we discuss some

insightful connections to each of these.

4.1 Subjective interestingness in data mining

The data mining literature, and the local pattern mining literature in particular, abounds with

papers on the formalisation of interestingness for various kinds of patterns (see e.g. McGarry

2005; Geng and Hamilton 2006 for two surveys on the topic). Part of that work is focused

on subjective interestingness measures, which are often conceived as measures that quantify

the amount of ‘novelty’ or ‘surprise’ a pattern presents to the user. A recent survey on this

topic (Kontonasios et al. 2012) distinguishes two main classes of approaches: the syntactic

approaches, which often work by encoding the prior knowledge about the data in a set of rules,

patterns, a taxonomy, or ontology; and the probabilistic approaches, which often represent

the user’s knowledge about the data using a probability distribution of the data (specified

explicitly or implicitly).

The generic approach from De Bie (2011a), on which the contributions in the present

paper are built, belongs to the category of probabilistic approaches, and is most similar in

spirit to the swap randomisation approach from Gionis et al. (2007), Hanhijarvi et al. (2009).

The swap randomisation approach aims to capture the prior beliefs of the user in the form

of a set of constraints, similar to De Bie (2011a). However, it does not attempt to represent

the belief state of the user in the form of an explicitly represented background distribution.

Instead, it is based on the ability to directly sample randomised versions of the data while

maintaining the prior belief constraints satisfied, bypassing the need for the background dis-

tribution. These randomised data samples then allow one to compute an empirical p value

for any given pattern, quantifying the amount of surprise it presents to the user, and hence

its subjective interestingness.

There are a number of important advantages to the approach advocated in De Bie (2011a)

though, related to the fact that having access to the explicit background distribution allows

one to compute the interestingness analytically. This is crucially important, as the most inter-

esting patterns will tend to have a very small p value, such that discerning between them using

a swap randomisation approach would require an unrealistically large number of randomised

data samples to be drawn. Second, it would be infeasible to mine the most interesting patterns

directly using a swap randomisation approach, as it would require running the costly ran-

domisation procedure at each step during the search process. With an analytically computable

interestingness measure, however, this is feasible as demonstrated in the present paper.

Finally, we note that a comment often heard about subjective measures of interestingness

is that they become objective measures as soon as the prior beliefs or background knowledge

is fixed. This is of course the case: once the user is fixed, the subjectiveness is factored out

and the interestingness is fully determined in principle. However, the particular aspect of an

interestingness measure that makes it subjective is that this dependency on the user is made

explicit by treating the user as a variable input to the interestingness function (see also Kon-

tonasios et al. 2012), such that, at least in principle, it is possible to quantify interestingness

for other users as well. It is to make this clear that in the present paper we considered two

kinds of prior beliefs, rather than just one.

4.2 Instant and interactive pattern mining

A recent trend in the literature is the development of instant and interactive pattern

mining techniques. van Leeuwen (2014) provides a recent overview, including open chal-
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lenges for future research. Contributions in this area can be roughly classified into three

categories.

The first category concerns pattern sampling algorithms, often also called output space

sampling to emphasize the difference from data sampling; the latter simply reduces the

size of the problem to reduce its complexity, whereas the former considers the complete

problem but only returns a sample from the full solution set. Hasan and Zaki (2009)

introduced a sampling framework based on the Metropolis–Hasting algorithm to sam-

ple from the output space of all frequent subgraphs, and showed that frequent patterns

can be sampled, e.g., uniformly or proportional to support. Boley et al. (2011) pre-

sented a direct, hence more efficient sampling procedure for itemsets. Although these

methods can be used to obtain small numbers of patterns, the patterns (1) can only

be sampled according to some objective interestingness measure and (2) iterative min-

ing, where each new result is interesting relative to all its predecessors, is currently not

possible.

The second category concerns interactive mining algorithms that aim to infer some

kind of subjective interestingness from user feedback. The first work in this direction, by

Bhuiyan et al. (2012), proposed to use user feedback to adapt the sampling distribution of

itemsets, and is therefore also closely related to the methods in the first category. More

precisely, it performs Markov Chain Monte Carlo (MCMC) sampling of frequent patterns

and the user is allowed to provide feedback by liking or disliking them. This feedback is

used to update the sampling distribution, so that new patterns are mined from the updated

distribution.

In similar spirit, Dzyuba and van Leeuwen (2013) proposed Interactive Diverse Subgroup

Discovery (IDSD), an interactive algorithm that allows a user to provide feedback with respect

to provisional results and steer the search away from regions that she finds uninteresting. Later,

Boley et al. (2013) and Dzyuba et al. (2014) simultaneously (and independently) developed

methods to learn pattern rankings using techniques from preference learning. Boley et al. also

presented a working system for what they called ‘one-click-mining’, in which the preferences

of the user for certain algorithms and patterns are learned. Nevertheless, only objective

interestingness measures are used to mine patterns, which are then presented to the user.

For each of these methods, prior beliefs and/or mined patterns can not be used to explicitly

adapt interestingness, and iterative mining of a non-redundant set of interesting patterns is

not possible.

The third and final category concerns working pattern mining systems / tools with a

graphical user interface, that have been developed with a focus on instant and interactive use.

A prime example is MIME (Goethals et al. 2011), for mining and browsing (frequent) itemsets

according to a number of objective interestingness measures. These systems, however, first

mine a (large) number of patterns and then give the user the opportunity to browse this

collection; subjective interestingness and interative mining are not supported.

4.3 Dense subgraph mining

We now survey the most prominent and most directly related work on the topic of dense

subgraph mining.

4.3.1 Structural measures

The number of possible ways in which interestingness or quality of a dense subgraph pattern

can be formalised is enormous, owing to the number of ways in which density (or lack
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thereof) can be quantified. A non-exhaustive list includes the ratio of the number of edges to

the number of possible edges in the subgraph (the relative edge density), which defines the

notion of a quasi-clique (Abello et al. 2002; Uno 2010); the minimum number of vertices in

the subgraph that each vertex in the subgraph is connected to, which defines the notion of a

k-core (Seidman 1983); the maximum number of vertices in the subgraph that a vertex is not

connected to, which defines the notion of a k-plex (Seidman and Foster 1978); and the average

degree within the subgraph (Goldberg 1984) (misleadingly called the subgraph’s ‘density’).

Most recently the edge surplus was proposed (Tsourakakis et al. 2013), which computes the

number of edges in excess of the expected number of edges within the subgraph, assuming

that each edge is present with the same probability. With γ > 0 a parameter, and the notation

of the current paper:7

EdgeSurplus[(W, kW )] =

{

0 W = ∅,

kW − γ nW otherwise.

The so-called Optimal Quasi-Clique (OQC) of a graph is then defined as the subgraph

maximising the edge surplus.

Unfortunately, in most applications each of these measures exhibits a bias that makes it

practically hard to use. For example, the relative edge density is easily maximised and made

equal to 1 simply by considering very small subgraphs (e.g. containing 2 vertices connected

by 1 edge). On the other hand, the average degree tends to be (trivially) large for large

subgraphs, simply because there are so many vertices any vertex can possibly be connected

to. Similarly, it is usually easy to find large k-cores, whereas it is trivially easy to find very

small k-plexes. The edge surplus, in being an absolute difference between two quantities that

grow with the size of the subgraph, tends to be larger for larger subgraphs simply by virtue

of being larger.

Yet, an advantage of all these measures of interestingness is their transparency: it is easy

to explain what they mean. However, although our proposed measure is relatively efficient

to compute, at first sight its relation with these objective structural interestingness measures

is less obvious.

Fortunately, we can make this relation more clear if we approximate the proposed measure

using a linear upper bound in the region p̂ > p (note that p̂ ≤ p would never lead to an

interesting pattern). The upper bound we will use, solely for the purpose of the discussion in

this section and thus not for the experiments, is based on the following simple upper bound

for the KL-divergence in the region p̂ > p (illustrated in Fig. 3):8

KL
(

p̂‖p
)

= p̂ log
(

p̂/p
)

+ (1 − p̂) log
(

(1 − p̂)/(1 − p)
)

≤
log (1/p)

1 − p
( p̂ − p)

= c(p)( p̂ − p),

where c(p) =
log (1/p)

1−p
. Thus we can bound the information content as follows:

InformationContent[(W, kW )] ≤ c(pW )(kW − pW nW ),

7 To be precise, Tsourakakis et al. (2013) actually define the edge density more generally, as a general

parametric form of a subgraph interestingness measure, before proposing the specific form we reproduce here.

Note however that our proposal is not a special case of that more general definition.

8 This bound could be tightened further without much loss of efficiency using a piece-wise linear upper bound.
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Fig. 3 The KL-divergence versus the linear upper bound for p̂ ≥ p, for p = 0.2

and we can bound the interestingness measure as follows:

Interestingness[(W, kW )] ≤ c(pW )
(kW − pW nW )

α|W | + β
.

The numerator in this approximating upper bound makes it clear that the proposed inter-

estingness measure is similar to the edge surplus when β is large relative to α (such that

the denominator is approximately constant). A key difference though is that the expected

number of edges in our measure is computed as pW nW , i.e. with respect to the background

distribution (rather than being determined by a parameter γ , the value of which is not related

to prior beliefs or any other relevant information). Thus, this probability itself varies with

the subgraph W considered. However, even ignoring this difference, the upper bound on the

proposed interestingness measure differs from the edge surplus by a factor equal to an affine

function of the number of vertices in the subgraph. This difference is desirable as further

supported by the arguments below in Sect. 4.3.3.

The denominator normalises the edge surplus, and for β small relative to α it makes this

bound very similar to what could be called the average degree surplus, which for vanishing

pW would become equal to the average degree.

Thus, (the upper bound on) our proposed interestingness measure combines elements from

a number of objective interestingness measures, in addition to providing a means of injecting

prior beliefs. This connection to previously proposed measures, resolving the issues they

individually suffer from, strongly corroborates the principles from De Bie (2011a) used to

derive this interestingness measure.

4.3.2 Newman’s modularity measure

A problem shared by the structural measures listed above is that the subgraph patterns they

reveal are often the result of common knowledge or statistically trivial information. Our

proposed measure solves this issue by taking prior beliefs into account, and by assigning a

high interestingness value only if the pattern is surprising against that background. To some

extent, this idea also underlies the measure of modularity, which was proposed to evaluate

the quality of a partition of a network into (non-overlapping) communities (Newman and

Girvan 2004). Modularity is equal to the difference between the number of edges within the

partitions and the expected number of edges based on the configuration model (random graph

model with specific degree sequence).
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However, our method is different to modularity as it quantifies interestingness of individual

overlapping subgraphs and is not bound to a specific background distribution. Additionally,

modularity is essentially an absolute measure (being equal to the difference between actual

number of edges and expected number of edges), and as a result it has been found to prefer

large subgraphs (sometimes even if these consist of two smaller subgraphs connected by just

a single edge) (Fortunato and Barthelemy 2007). And finally, it is not designed to handle

overlap between subgraph patterns as it is essentially evaluating the global partition of the

data rather than the quality of a single subgroup individually.

4.3.3 Hypothesis-testing based measures

Our chosen pattern syntax is such that the probability of the pattern being present is directly

equivalent to a p value. Here, the null hypothesis is represented by the background distribution

P , and the test statistic is equal to the number kW of edges connecting the vertices from the

set W for the pattern considered. With this null hypothesis and test statistic, the p value

would be equal to the probability to observe kW or more edges connecting vertices from

W in data sampled from P , which is precisely the probability of the pattern (W, kW ). That

means that the information content is logarithmically related to the weight of evidence (as

quantified by the p value) the pattern provides against the background distribution. This is

directly in line with approaches that advocate the use of (empirical) p values to rank patterns,

such as the approaches based on swap randomisation (Gionis et al. 2007; Hanhijarvi et al.

2009). An important advantage of our approach is however that the p values are computed

analytically, which means that they are more accurate, and more importantly, that we can

use them dynamically during search, and this without expensive computations. (Note that

it was already pointed out in De Bie (2011a) that p values are indeed a special case of the

information content for particular types of patterns.)

Additionally, our approach trades off this p value (i.e. information content) with the

description length of the pattern. This means that the most interesting pattern is not necessarily

the most surprising one in the sense of the p value. There are good reasons for this in addition

to the motivations in De Bie (2011a), related to the multiple hypothesis testing issue. Indeed,

the more hypothesis tests are being considered, the higher the probability that one of them

turns out to be significant by chance. Normalising with the description length is similar in spirit

to a multiple testing correction, demanding a more significant p value for larger patterns to

account for their higher complexity. As such the multiple testing effect is controlled, making

it less likely that the most ‘interesting’ pattern is actually a fluke.9

5 Experiments

In this section we will use the acronym SSG-c, for ‘Subjective SubGraph - constant’, to refer

to our approach with a prior belief on the overall number of edges, and SSG-i, for ‘Subjective

SubGraph - individual’, to refer to the background distribution incorporating prior beliefs

on the degree of each individual vertex. In all experiments, q is set to q = 0.01. While not

reported here, we observed that the results are very robust w.r.t. the choice of this parameter,

especially for larger datasets.

9 Note that we do not explicitly limit the set of tests to those for patterns with a short description. Instead, we

just use it to bias the choice of pattern towards simpler ones. This is similar in spirit to regularisation in machine

learning, where any bias is good to effectively limit the hypothesis space in order to enhance generalisation.
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Table 1 For each network, given are its data source, the number of vertices, the number of edges, and its edge

density

Source Dataset |V | |E | Density

Newman Karate 34 78 0.139

Newman Dolphins 62 159 0.084

Newman Lesmis 77 254 0.087

Newman Polbooks 105 441 0.081

Newman Adjnoun 112 425 0.068

Newman Football 115 615 0.084

Arenas Jazz 198 2742 0.141

Newman Celegans N. 297 2359 0.054

Arenas Celegans M. 500 2025 0.016

Arenas Email 1133 5451 0.009

Newman Polblogs 1224 19,087 0.026

Newman Netscience 1461 2742 0.003

HetRec Delicious 1861 7664 0.004

Reverbnation & Twitter Artists 2061 16916 0.008

Newman Power 4941 6594 0.001

MovieLens & Rotten Tomatoes IMDB-ratings 5350 2,027,990 0.142

Stanford Wiki-vote 7115 100762 0.004

IMDB IMDB-actors 133,365 2,296,224 2.63e−04

OQC DBLP 300,647 807,700 1.79e−05

The data sources and sizes of the datasets used for the empirical evaluation in this section

are listed in Table 1.10 Both variants of the algorithm, exact A* and heuristic hill-climber,

have been implemented in C++11.

5.1 Evaluation of the search methods

The main goals of this subsection are to evaluate (1) the hill-climber’s ability to find a pattern

with (near-)maximal interestingness, and (2) scalability of the algorithms, with a focus on

the exact A*-like algorithm.

Since the hill-climber depends on an initial seeding step, our first experiment investigates

the effectiveness of the three seeding strategies. Table 2 shows the interestingness of the

top-1 pattern and the time needed to compute it when using the hill-climber with any of the

10 Data sources are: Newman: http://www-personal.umich.edu/~mejn/netdata/; Arenas: http://deim.urv.cat/

~aarenas/data/welcome.htm; Stanford: http://snap.stanford.edu/data/; HetRec: http://ir.ii.uam.es/hetrec2011/;

OQC: kindly provided to us by the authors of Tsourakakis et al. (2013); IMDB-actors: co-actor graph directly

extracted from http://www.imdb.com, available upon request; IMDB-ratings: combines movie data from http://

grouplens.org/datasets/movielens/ with ratings from http://www.rottentomatoes.com/, two movies in the net-

work are connected if at least two users gave both movies the maximal rating (5 out of 5), available upon request;

Reverbnation Artists: constructed by using Twitter handles of music artists from http://www.reverbnation.com

and making a network of artists where two artists are connected iff more than 10 people have tweeted about

both of them.

11 Binaries and source code of SSG Miner are available for download at http://patternsthatmatter.org/software.

php#ssgminer.
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Table 2 Comparison of different seeding strategies for the hill-climber

k SSG-c SSG-i

TopK Uniform TopK Uniform

1 11.58 (3.3 s) 10.10 (2.2 s) 5.30 (22.4 s) 1.45 (0.5 s)

10 11.64 (15.5 s) 11.27 (21.3 s) 5.45 (27.9 s) 4.77 (4.8 s)

100 11.67 (139.9 s) 11.62 (188.4 s) 5.45 (156.9 s) 5.43 (29.4 s)

All 11.67 (11,120 s) 5.45 (2035 s)

The interestingness of the best pattern found using SSG-c and SSG-i is shown, for the ‘TopK’, ‘Uniform’, and

‘All’ (bottom row) seeding strategies. Running times between brackets

Table 3 Comparison of search methods for finding the top-1 subgraph, using SSG-c

Search #Cands Time (s) Int.

Exhaustive (|W | ≤ 6) 836,010,454 216.3 0.82

Exact (A*) 3,497,690 8.2 1.05

Hill-climber (k = 10) 1304 <1 1.04

Hill-climber (k = 100) 9130 <1 1.05

TopK seeding is used for the hill-climber. Given are the number of candidate subgraphs considered, the time

needed to find the pattern, and its interestingness

three seeding strategies, using k = 1, 10, or 100 seeds for ‘Uniform’ and ‘TopK’ seeding.

The numbers shown are averages over results obtained on all but the two largest datasets

(IMDB-actors and DBLP), which are too large to run with ‘All’ seeding within a reasonable

time.

From Table 2, we conclude that interestingness-based TopK seeding outperforms Uniform

seeding. Furthermore, with 100 seeds it achieves the same result as by seeding with all

vertices, while achieving a speed gain of about two orders of magnitude. Using only 10 seeds

results in another order of magnitude speed gain, while the most interesting pattern found is

almost always as good as the one found when using All seeding. In fact, for SSG-i it always

finds a solution that is as good as when using all vertices as seeds.

Thus, to evaluate the effectiveness of the hill-climber, we use TopK seeding with k = 10

and 100 and compare it to the results obtained with the globally optimal A* algorithm. As

an additional baseline, we also include results from naive exhaustive enumeration of all

subgraphs (implemented by skipping the pruning step in the A* algorithm), for computa-

tional reasons restricted to subgraphs containing up to six vertices. As exhaustive search

does not allow scaling further, we had to restrict this experiment to the six smallest graphs:

Karate, Dolphins, Lesmis, Polbooks, Football, and Adjnoun. Table 3 shows average results,

clearly demonstrating that the hill-climber succeeds in finding the near-best pattern (with

10 seeds) or the best pattern (with 100 seeds) at a dramatically reduced computational

cost.

It is unclear from Table 3 how the exact algorithm scales: from the limited average runtime

of only 8.2 s, it appears that it might be able to solve much larger problem instances. We

investigate this by running the exact algorithm on random Erdős–Rényi graphs of varying

size and density. The performance results are given in Table 4. From the results, it is evident

that the number of candidate patterns increases as the network size increases. No matter the

123



62 Mach Learn (2016) 105:41–75

Table 4 Scalability of the exact A* algorithm on random Erdős–Rényi graphs, parametrised by the number

of vertices n and edge probability p

n p = 0.1 p = 0.01 p = 0.001

#Cands t (s) #X #Cands t (s) #X #Cands t (s) #X

10 30 0 – 1 0 – 0 0 –

20 207 0 – 13 0 – 1 0 –

30 1501 0 – 27 0 – 1 0 –

40 8939 0 – 538 0 – 2 0 –

50 45,700 0 – 1412 0 – 15 0 –

60 385,620 0 – 799 0 – 26 0 -

70 2,009,217 2.5 – 3552 0 – 32 0 –

80 6,931,587 12.6 – 7181 0 – 38 0 –

90 22,126,867 46.9 – 11,035 0 – 40 0 –

100 113,402,482 373.1 2 106,637 0 – 941 0 –

125 – – 10 1,302,221 1.2 – 10,618 0 –

150 – – 10 59,018,496 87 – 24,682 0 –

175 – – 10 830,066,282 1699 – 1,337,039 1.3 –

200 – – 10 615,623,653 1226 4 939 0 –

225 – – 10 97,129,173 235 9 457 0 –

250 – – 10 – – 10 2102 0 –

300 – – 10 – – 10 7006 0 –

350 – – 10 – – 10 43,754 0 –

400 – – 10 – – 10 362,809 0.7 –

450 – – 10 – – 10 49,612,662 144 –

500 – – 10 – – 10 107,787,526 325 –

550 – – 10 – – 10 310,399,214 1067 4

600 – – 10 – – 10 – – 10

For each parameter setting, ten random graphs were generated and A* using SSG-c was run to find the best

pattern. Shown are the average number of candidates evaluated, the average time needed for this (in s), and

the total number of runs #X (out of ten) that crashed due to insufficient memory (each run was limited to at

most 2Gb)

density of the network, at some point the number of candidates becomes so large that the

memory limit of 2 Gb is exceeded. This is due to the fact that the priority queue containing

future candidates becomes very long; memory rather than runtime is the bottleneck. We could

postpone the breaking point by allowing more memory, but given the steep increase in the

number of candidates this would allow only slightly larger networks to be used.

Although exact search with the A*-based algorithm is only feasible on moderately sized

graphs, i.e. containing up to 100 s of vertices, the results in Table 3 show that pruning the

search space is essential in making this possible. Compared to exhaustive enumeration of

subgraphs containing up to six vertices, both the number of candidates and the computation

time is reduced by two orders of magnitude. In other words, for moderately sized graphs the

exact algorithm, including its pruning strategy, is an essential contribution as it enables the

discovery of optimal patterns. We have to resort to heuristics to be able to discover patterns

in larger networks though.
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5.2 Evaluation of the interestingness measure

For the remaining experiments we will use the hill-climber with TopK seeding (k = 10), as the

previous subsection showed this search strategy to be very fast while closely approximating

the optimal result. Moreover, it can also be used hassle-free on larger networks.

5.2.1 Effect of the prior beliefs

Here we investigate the effect of incorporating different kinds of prior beliefs by comparing

SSG-c and SSG-i on all datasets considered (see Tables 5, 7). From Table 5 we observe that

the average degree of the vertices in the most interesting subgraph according to SSG-c is

almost always higher than when using SSG-i. This is to be expected, since for SSG-i high

degrees may represent a partial explanation for high density and thus reduce the information

content. But also intuitively this makes perfect sense: different prior beliefs about the data

should lead to different results, and our subjective interestingness measure allows for this.

Second, we observe that interestingness under SSG-c is typically higher than under SSG-i.

This should be no surprise either, given the fact that the user knows less about the data

and hence has more to learn about it. This explanation is corroborated by the fact that the

difference in interestingness is larger if the difference in average degree is larger as well.

Focusing only on the columns for SSG-c and SSG-i in Table 7, we observe that different

prior beliefs also lead to different structural properties of the identified subgraphs. SSG-c

often finds larger subgraphs than SSG-i, but not always. On the smaller datasets SSG-i

tends to find small cliques, but both their average degrees in Table 5 and inspection of these

subgraphs shows that these do not contain any hub vertices with high degree; given the low

degrees of their individual vertices, SSG-i considers these cliques to be informative and hence

interesting.

5.2.2 Iterative pattern mining

As explained in Sect. 2.3.1, our approach is naturally suited for iterative application, as

patterns presented in previous iterations can be incorporated into the background distribution

for subsequent iterations. Table 6 shows some characteristics of the first 10 patterns found

in this way, using SSG-i (i.e. initially incorporating prior beliefs on the individual vertex

degrees). Besides total computation time, the table shows the proportion of the graph covered

by the union of the 10 subgraphs (‘coverage’), and the average Jaccard index over all pairs

of subgraphs. The average Jaccard shows that while overlap tends to be avoided, small

overlaps do take place. This illustrates how incorporating the presented patterns into the

background distribution helps to avoid redundancy in the resulting pattern set, while patterns

can still overlap when this is informative. Coverage varies strongly depending on the dataset,

suggesting that our measure adapts itself to the scale and the structure of the dataset. The

smaller datasets could be completely ‘explained’ with tens of patterns, whereas more patterns

would be required to cover the larger graphs.

The computation times presented in Tables 5 and 6 demonstrate that the hill-climber scales

very well. For example, iterative mining of 10 patterns on the two graphs containing 100,000+

vertices and up to millions of edges takes between 15 min and 1 h. This includes not only

the search for the subgraphs, but also the initial computation and the iterative updating of the

background distribution (which is generally very fast and therefore negligible in practice).
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Table 5 Comparison of the most

interesting patterns identified

using different prior beliefs,

SSG-c and SSG-i

For each pattern are given the

time needed to discover it, its

interestingness, and the average

degree of its vertices in the whole

network

Dataset Method Time (s) Int. AvgDeg.

Karate SSG-i <1 0.61 3.3

SSG-c <1 0.55 9.0

Dolphins SSG-i <1 0.67 3.7

SSG-c <1 0.76 8.2

Lesmis SSG-i <1 1.50 8.3

SSG-c <1 1.69 13.9

Polbooks SSG-i <1 1.28 6.6

SSG-c <1 0.98 18.1

Adjnoun SSG-i <1 0.61 7.0

SSG-c <1 0.85 24.7

Football SSG-i <1 1.99 10.8

SSG-c <1 1.42 11.3

Jazz SSG-i <1 3.13 42.1

SSG-c <1 3.95 46.1

Celeg. N SSG-i <1 1.64 15.0

SSG-c <1 1.88 44.4

Celeg. M SSG-i <1 1.75 4.0

SSG-c <1 3.39 58.1

Email SSG-i <1 3.28 20.2

SSG-c <1 4.04 20.2

Polblogs SSG-i 1 2.60 94.2

SSG-c 1 11.59 107.9

Netscience SSG-i <1 4.86 19.2

SSG-c <1 9.40 19.2

Delicious SSG-i <1 5.97 18.4

SSG-c <1 9.27 39.6

Artists SSG-i 1 7.60 56.4

SSG-c <1 18.53 123.8

Power SSG-i <1 1.37 6.4

SSG-c <1 1.74 7.6

IMDB-ratings SSG-i 438 49.46 632.0

SSG-c 231 105.00 1815.8

Wiki-vote SSG-i 35 4.35 57.9

SSG-c 32 22.80 219.8

IMDB-actors SSG-i 479 22.05 134.3

SSG-c 481 14.67 143.1

DBLP SSG-i 118 4.69 79.8

SSG-c 34 3.38 76.4

5.2.3 Comparison with alternative approaches

As is clear from Sect. 4, the approach that is most similar to ours, both in terms of interest-

ingness measure and algorithmically, is the one searching for optimal quasi-cliques (OQC)
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Table 6 Characteristics of the

first 10 patterns found by iterative

mining using SSG-i

Given are the total computation

time, the percentage of G covered

by the subgraphs, and the average

Jaccard index between all pairs of

vertex sets

Dataset Time (s) Coverage (%) AvgJaccard

Karate <1 50.0 0.959

Dolphins <1 48.4 0.980

Lesmis <1 59.7 0.995

Polbooks <1 50.5 0.998

Adjnoun <1 24.1 0.996

Football <1 70.4 1.000

Jazz <1 63.6 0.987

Celegans N. <1 21.2 0.998

Celegans M. <1 10.0 0.993

Email 1 10.2 1.000

Polblogs 5 16.4 0.995

Netscience <1 7.0 1.000

Delicious <1 8.1 1.000

Artists 3 12.0 0.999

Power <1 2.6 0.999

IMDB-ratings 6080 35.4 0.975

Wiki-vote 249 15.9 0.996

IMDB-actors 3428 1.7 0.999

DBLP 879 0.4 1.000

by maximising the edge surplus (Tsourakakis et al. 2013). This approach is arguably also the

current state-of-the-art in dense subgraph mining, and is thus the ideal comparison for our

work. We therefore compare SSG-c and SSG-i with two algorithms presented in that paper:

the Greedy (referred to as OQC-G) and the Local (OQC-L) search heuristic.

The results are summarised in Table 7. The leftmost columns contain SSG-i resp. SSG-c

interestingness values as computed on the best patterns found by the SSG-i resp. SSG-c

hill-climber and OQC-G. For OQC, we restrict our focus to the G variant because it is

deterministic and hence always produces the same results. The purpose of this comparison

is twofold: (1) to show that our interestingness formalisation is different from that of OQC,

and (2) to show that our hill-climber finds better patterns according to our interestingness

criteria. Both claims are clearly confirmed by the results, as we explain next.

OQC is conceptually closer to SSG-c than to SSG-i and on some datasets, such as Football,

Email, and DBLP, it finds results that are equally good to those found by the SSG-c hill-

climber. On average, however, our SSG-c hill-climber scores much better than OQC-G: 11.36

versus 7.53. With its more detailed prior belief, SSG-i aims at another range of patterns and

succeeds in finding patterns that score much higher than OQC-G. On IMDB-ratings, for

example, the pattern found by OQC-G gets a score of only 0.35, whereas our SSG-i hill-

climber finds a subgraph with score 49.46. This demonstrates the power of our subjective

interestingness measure, which can in principle be used in combination with a variety of

prior beliefs, each of which results in different patterns.

Next, we compare the sizes of the best patterns found by the different algorithms. The

size of the most interesting patterns according to SSG is sometimes smaller and sometimes

larger when compared to OQC. SSG does tend to find subgraphs with higher edge densities

though (with a few exceptions). The diameters for SSG are occasionally smaller but generally
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comparable. Most importantly, the triangle densities tend to be considerably higher for both

SSG methods than for the OQC methods (again, with a few exceptions).

To sum up, in Tsourakakis et al. (2013) it was shown that OQC finds subgraphs that are

denser than maximum density subgraphs (Goldberg 1984), but we here demonstrate that SSG

often finds even denser subgraphs. And most importantly, SSG can use different prior belief

sets, which leads to different results, as also indicated by the SSG interestingness results.

Concretely, when SSG-i is used the resulting dense subgraphs generally do not contain any

of the highest-degree vertices (hubs), because it is already known that they are located in

dense regions of the graph (see also the average degrees in Table 5).

5.2.4 External evaluation

Here we investigate to which extent the patterns found in the IMDB-ratings resp. Artists

datasets correspond to movie resp. music genres. Genre information was not used to generate

the networks and this investigation can therefore be regarded as an external, independent

evaluation. Of course, there is no guarantee that the most interesting patterns relate to movie

or music genres as defined by humans. It is possible that movie tastes relate to movie properties

other than genres as defined in the IMDB dataset, such as the actors playing, the director,

or perhaps something less obvious. Similarly, there could be different reasons why music

bands receive attention on Twitter than just the genre of their music. Thus, although the

presence of an association between the patterns found and genres would be a validation of

our approach, the absence of such an association could not be interpreted for the failure of the

method.

Nevertheless, we do find that almost all of the top-10 patterns on both datasets are highly

significantly related to one or several genres. For completeness we do not only present the

external evaluation using the two variants of our method but also using OQC-G. As before,

we restrict our focus to the OQC-G variant because it is deterministic.

Tables 8, 9 and 10 show which genres are significantly associated with each of the top-10

patterns of the IMDB-ratings dataset, for SSG-i, SSG-c, and OQC-G respectively. To deter-

Table 8 Significant genres, negatively or positively associated, for the top-10 patterns on IMDB-ratings using

SSG-i

Positively associated genres Negatively associated genres

1 Drama (9.1e−09), Romance (3.7e−10) Horror (1.1e−06)

2 – –

3 Sci-Fi (2.2e−08), Thriller (2.1e−11) –

4 Film-Noir (7.5e−06) Adventure (2.2e−05), Horror (8.0e−06)

5 Drama (1.4e−11) Action (2.8e−07), Horror (2.0e−05),

Thriller (2.3e−05)

6 Horror (6.1e−09) Romance (5.7e−05)

7 Drama (0), War (1.1e−10) Comedy (8.8e−12)

8 Crime (5.9e−06) Romance (8.8e−06)

9 Drama (9.4e−13), Romance (0), War (7.4e−07) Children (5.8e−05), Horror (3.6e−13),

Thriller (7.7e−05)

10 Musical (6.2e−07), Romance (4.2e−08) Drama (8.7e−05)

Bonferroni corrected p values <1e−4 shown between brackets
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Table 9 Significant genres, negatively or positively associated, for the top-10 patterns on IMDB-ratings using

SSG-c

Positively associated genres Negatively associated genres

1 Adventure (1.3e−09), Sci-Fi (1.0e−05) –

2 Action (3.3e−06), Adventure (4.7e−05), Sci-Fi

(1.2e−05), Thriller (1.5e−12)

–

3 Drama (1.8e−08), Film-Noir (3.5e−05), Romance

(3.4e−05)

Action (6.7e−06), Horror (8.2e−07)

4 Drama (2.2e−10), Romance (5.3e−15), War

(6.6e−06)

Horror (8.6e−08), Thriller (2.3e−05)

5 Drama (2.3e−12), War (6.1e−07) Comedy (2.7e−07)

6 Drama (4.6e−07) Action (5.7e−07), Horror (3.4e−06)

7 – –

8 Action (0), Adventure (2.4e−10), Animation

(3.7e−13), Fantasy (4.6e−06)

–

9 Horror (1.6e−07) –

10 Musical (3.1e−08), Romance (6.9e−08) –

Bonferroni corrected p values <1e−4 shown between brackets.)

Table 10 Significant genres, negatively or positively associated, for the top-10 patterns on IMDB-ratings

using OQC-G. Bonferroni corrected p values <1e−4 shown between brackets

Positively associated genres Negatively associated genres

1 Action (3.4e−05), Adventure (6.6e−13), Animation

(1.5e−05), Crime (6.0e−05), Drama (1.4e−08),

Fantasy (9.1e−08), Mystery (5.9e−06), Sci-Fi

(1.3e−05), Thriller (5.2e−11)

–

2 Drama (3.1e−06), Romance (4.5e−10) Horror (2.3e−05)

3 Drama (1.2e−05) Action (1.1e−07), Horror (9.9e−09),

Sci-Fi (3.4e−05), Thriller (6.6e−05)

4 – Romance (2.7e−05)

5 Horror (1.1e−06) –

6 Action (4.4e−07), Animation (2.0e−06), Musical

(5.5e−05)

–

7 – –

8 Action (1.0e−11), Fantasy (3.0e−06), Horror

(3.5e−08), Sci-Fi (4.7e−09)

Drama (2.8e−09)

9 – –

10 – –

mine significance, the p value is first computed using the hypergeometric test, after which it

is multiplied with the number of genres (19) as a Bonferroni correction for multiple testing,

and finally compared with a significance threshold of 1e−4. A very similar strategy is com-

monly used e.g. in bioinformatics, to determine which gene ontology terms are significantly

related to a given set of genes.

Looking at the patterns in detail, SSG-i appears to find more niche genres whereas SSG-c

and OQC-G tend to find sets of associated blockbusters seen (and liked) by many. For example,
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Table 11 Significant genres, negatively or positively associated, for the top-10 patterns on Artists using

SSG-i

Positively associated genres Negatively associated genres

1 Rock (0.0e + 00) –

2 Electronica (1.5e−05), trance (0.0e + 00) –

3 Indie (3.5e−07) –

4 Bhangra (2.0e−14), world (8.8e−03) –

5 Christian (3.0e−14), christian rap

(8.7e−06), gospel (0.0e + 00)

–

6 Country (0.0e + 00) –

7 Grime (8.6e−09), hip hop (1.1e−12), rap

(4.1e−11)

Rock (1.4e−03)

8 Afro pop (8.8e−05) –

9 UK garage (2.4e−03) –

10 Hip hop (1.4e−10) –

Bonferroni corrected p values <1e−2 shown between brackets.

although SSG-c and OQC-G do not find the same top pattern, the three highest degree vertices

in their respective top patterns are Pulp Fiction, The Matrix, and Fight Club. On the other

hand the three highest degree vertices in the top pattern of SSG-i are the relatively unknown

Orlando, Twelve O’Clock High, and Pieces of April. This is not surprising as SSG-c and

OQC-G do not take into account the degree distribution.

The “–”s in Tables 8, 9 and 10 mean that there are no genres significantly associated with

the respective patterns. However this does not mean that the movies in the pattern are not

related but just that the pattern cannot be explained based on significant associations with

genres. Upon closer inspection of these patterns, we noticed that pattern 7 in Table 9 contains

films with a male main character, whereas pattern 2 in Table 8 contains old films mainly from

the 60s, 70s and 80s. The full lists of movies in the top-10 patterns for SSG-i and SSG-c on

this dataset can be found in the supplementary material12.

Tables 11, 12 and 13 show which genres are significantly associated with the top-10

patterns found in the Artists dataset, for SSG-i, SSG-c and OQC-G respectively. The p value

is again computed using the hypergeometric test. As Bonferroni correction for multiple

testing the result is multiplied with 181, which is the number of music genres which appear

at least 3 times in this dataset. The significance threshold used now is 0.01 as the dataset is

smaller.

By taking a closer look at the results on Artists we see that SSG-i tends to pick up

patterns that correspond to rarer genres than SSG-c and OCQ-G, such as bhangra, world,

afro pop and to a lesser extend trance. A pattern related to afro-pop is not contained at all

in the top 10 patterns of SSG-c and OCQ-G. A pattern related to bhangra is also found

by OQC-G though at a lower rank (10) than SSG-i (4). Also, a pattern related to trance is

found by all methods though at rank 7 for SSG-c and OQC-G as compared to rank 2 for

SSG-i. At first sight, the top pattern found by SSG-i may seem surprising, as rock is a very

common genre. Turns out, however, that this subgraph is extremely dense (edge density

97 %), which is much denser than the second pattern (70 %). The complete list of artists

12 Available from http://patternsthatmatter.org/software.php#ssgminer.
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Table 12 Significant genres, negatively or positively associated, for the top-10 patterns on Artists using

SSG-c

Positively associated genres Negatively associated genres

1 Alternative (6.6e−03), indie (2.5e−05) –

2 Grime (1.1e−07), hip hop (1.2e−12), rap

(2.6e−11)

Rock (4.3e−03)

3 Rock (1.4e−13) –

4 Pop (6.2e−05) –

5 Indie (9.9e−06) –

6 UK garage (2.4e−03) –

7 Electronica (1.5e−05), trance (0.0e + 00) –

8 Christian (1.7e−11), christian rap (4.3e−06),

gospel (6.6e−11)

–

9 – –

10 Country (0.0e + 00) –

Bonferroni corrected p values <1e−2 shown between brackets

Table 13 Significant genres, negatively or positively associated, for the top-10 patterns on Artists using

OQC-G

Positively associated genres Negatively associated genres

1 Indie (8.0e−05) –

2 Grime (2.5e−09), hip hop (7.2e−13), rap

(7.5e−12), uk (4.0e−04)

Rock (2.9e−03)

3 Rock (4.4e−13) –

4 Indie (2.6e−06) –

5 – –

6 Christian (5.8e−05), christian rap (2.8e−03),

gospel (1.4e−04)

–

7 Electronica (4.0e−06), trance (1.2e−11) –

8 UK garage (2.8e−03) –

9 Country (0.0e + 00) –

10 Bhangra (2.0e−12) –

Bonferroni corrected p values <1e−2 shown between brackets

for the top-10 patterns obtained with SSG-i and SSG-c can be found in the supplementary

material13.

Finally, to illustrate the strengths of our approach, Fig. 4 visualises the top-10 patterns

of SSG-i on the Artists dataset14. The numbers of the patterns correspond to their ranks as

shown in Table 11. Although patterns 7 and 8 have a lot of connections between them, our

method was still able to distinguish afro-pop (8) as a distinct genre. Quite densely connected

are also patterns 7 and 10, which also include an overlapping vertex (indicated in red). This

makes sense as they are both significantly associated with hip hop.

13 Available from http://patternsthatmatter.org/software.php#ssgminer.

14 The respective results on the IMDB-ratings dataset could not be visualised due to the larger dataset and

patterns.
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Fig. 4 Visualisation of the 10 most interesting patterns obtained by running SSG-i on the Artists dataset.

Shown are all vertices that are part of one of the discovered patterns, and all edges connecting them. (Produced

using Gephi and the Yifan Hu proportional layout)

5.3 Practical guidance

The experiments suggest the following three possible usage scenarios for our subjective

subgraph mining framework.

The first scenario is the most obvious one, in which the user is actually able to express

certain prior beliefs about the data. The particular cases considered in this paper are prior

beliefs about the individual vertex degrees, or the overall edge density of the graph. This

may be rather demanding in practice, but often still possible. For example the overall edge

density is easy to specify and it is conceivable that the user genuinely has a prior belief about

it. Note that this scenario allows for the prior beliefs to be incorrect, and if that is the case

the most interesting patterns are likely to be patterns that provide evidence to rectify those

incorrect prior beliefs.

In a second scenario, the user starts by a ‘shallow’ exploration of the data, prior to searching

for the dense subgraph patterns. For example, they may compute the overall edge density (or

estimate it by random sampling), or they may compute and scrutinise the individual vertex

degrees. The result of this is that this information becomes part of their prior beliefs, after

which the first scenario applies.

The third scenario is best explained by means of an example. In the Artists graph used

in the experiments above, the user may not actually hold easily quantifiable beliefs about

the degree of each Artist in the network. Yet, they may consider the degrees as irrelevant,

i.e. they may want to see patterns that cannot easily be explained by individual degrees. The

rationale could be that this information is easily verified by means of a simple lookup, such

that for all practical purposes it can be consider prior information. In this scenario, it makes
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sense for the user to ask the system to find the most interesting patterns pretending that they

are aware of the individual vertex degrees. In this case, the prior beliefs used should be based

on the actual data (i.e. the actual vertex degrees), as in the second scenario.

6 Conclusions

Dense subgraph mining, as an exploratory data mining task, has long eluded the fact that the

interestingness of a dense subgraph pattern is inevitably a subjective notion. While previous

research has attempted to approach the problem by approximating interestingness in a number

of ‘objective’ ways, in this paper we explicitly recognise its subjective nature and formalise

interestingness by contrasting the dense subgraph patterns with a background distribution that

formalises the user’s prior beliefs about the data. For concreteness, we focus on two important

specific kinds of prior belief sets. Furthermore, we show how the resulting background

distributions can be updated efficiently to account for the knowledge of patterns already

found, thus allowing for an iterative data mining approach.

This subjective interestingness approach has considerable advantages, most notably the

fact that it automatically adapts itself to the user. While we pay a price in terms of computation

times as compared to important alternatives, we do present a performant exact, and a highly

scalable and accurate heuristic algorithm for mining the most interesting patterns according

to our measures.

For further work, we plan to explore increasing the number of prior belief types that can be

dealt with along the lines of the discussion in Sect. 2.3.1. Another interesting line of further

work is the generalisation of the dense subgraph pattern syntax to the multi-relational setting,

which would result in a generalisation of the pattern syntax from Spyropoulou et al. (2014).

More practically, we anticipate that the proposed approach may lead to innovative appli-

cations in social media analysis, bioinformatics, recommendation systems, and many more.

To highlight one possible application: in bioinformatics it has long been of interest to iden-

tify sets of co-expressed genes. This task is complicated by the fact that certain genes are

expressed more often than others (e.g. housekeeping genes), such that any co-expression

with these genes is less meaningful and potentially spurious. The strategy presented in the

current paper could provide an innovative and natural way of dealing with that, when applied

to a graph over the set of genes in which edges are an indication of co-expression. More

generally, using our approach for such exploratory data mining problems where confounding

factors (such as individual vertex degrees) are present, forms an exciting avenue for further

work.
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Appendix: Proof of Theorem 1

Proof This follows directly from the Karush–Kuhn–Tucker (KKT) optimality conditions,

which for a convex optimization problem with a continuously differentiable objective function

and affine constraint functions are both sufficient and necessary (Boyd and Vandenberghe

2004):

The KKT stationarity condition allows us to show that the updated background distribution

remains a product of independent Bernoulli distributions. Indeed, using the KKT multipliers

λW ≥ 0 for the inequality constraint and µ ∈ R for the equality constraint, the stationarity

condition is given by:

∂

(

∑

E Q(E) log
(

Q(E)
P(E)

))

∂ Q(E)
= λW

∂
(
∑

E Q(E)φW (E)
)

∂ Q(E)
+ µ

∂
(
∑

E Q(E)
)

∂ Q(E)
.

Thus, the following equalities must hold for the minimizer P ′:

log(P ′(E)) − log(P(E)) + 1 − λW φW (E) − µ = 0.

Slightly reorganising this and with Z ′ = exp(1 − µ) yields the form of the updated

background distribution P ′:

P ′(E) =
1

Z ′
exp (λW φW (E)) · P(E),

=
1

Z ′

∏

u,v∈W,u<v

exp(λW au,v) ·
∏

u<v

pu,v
au,v ·

(

1 − pu,v

)1−au,v
,

=
∏

u,v∈W,u<v

1

Z ′
u,v

(

pu,v exp(λW )
)au,v ·

(

1 − pu,v

)1−au,v

·
∏

¬(u,v∈W ),u<v

pu,v
au,v ·

(

1 − pu,v

)1−au,v
,

for constants Z ′
u,v with Z ′ =

∏

u,v∈W,u<v Z ′
u,v .

The other KKT conditions are:

– Primal feasibility:
∑

E P ′(E)φW (E) ≥ k and
∑

E P ′(E) = 1.

– Dual feasibility: λW ≥ 0.

– Complementary slackness: λW ·
(
∑

E P ′(E)φW (E) − k
)

= 0.

The first primal feasibility condition,
∑

E P ′(E) = 1, requires that the distribution P ′ is

normalized, which can be achieved by ensuring that all independent factors are normalized,

i.e.:

Z ′
u,v =

∑

au,v=0,1

(

pu,v exp(λW )
)au,v ·

(

1 − pu,v

)1−au,v
,

=
(

1 − pu,v + pu,v · exp(λW )
)

.
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Thus, it follows that:

P ′(E) =
∏

u,v∈W,u<v

(

pu,v exp(λW )

1 − pu,v + pu,v · exp(λW )

)au,v

·

(

1 − pu,v

1 − pu,v + pu,v· exp(λW )

)1−au,v

·
∏

¬(u,v∈W ),u<v

pu,v
au,v ·

(

1 − pu,v

)1−au,v
,

=
∏

u<v

p′
u,v

au,v ·
(

1 − p′
u,v

)1−au,v
,

where

p′
u,v =

{

pu,v if ¬(u, v ∈ W ),
pu,v ·exp(λW )

1−pu,v+pu,v ·exp(λW )
otherwise.

The other KKT conditions yield the value for λW :

– If
∑

E P(E)φW (E) ≥ k, λW = 0 trivially satisfies all KKT conditions as in that case

p′
u,v = pu,v for all u, v ∈ V and thus P ′ = P .

– Otherwise, for
∑

E P(E)φW (E) < k, the value of λW must be such that
∑

E P ′(E)φW

(E) = k in order to ensure primal feasibility as well as the complementary slackness

condition. From the strict convexity of the problem, it follows that this value for λW is

unique. To determine it, note that:

∑

E

P ′(E)φW (E) =
∑

u,v∈W,u<v

pu,v · exp(λW )

1 − pu,v + pu,v · exp(λW )
,

which is continuous and strictly increasing in λW . Thus, the unique value for λW ensuring

that
∑

E P ′(E)φW (E) = k can be found using any one-dimensional root-finding method

(such as the bisection method).

⊓⊔
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