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SUBJECTIVE PROBABILITY AND EXPECTED UTILITY 
WITHOUT ADDITIVITY 

BY DAVID SCHMEIDLEIS 

An act maps states of nature to outcomes; deterministic outcomes as well as random 
outcomes are included. Two acts f and g are comonotonic, by definition, if it never 
happens that f(s) >- f(t) and g(t) >- g(s) for some states of nature s and t. An axiom of 
comonotonic independence is introduced here. It weakens the von Neumann-Morgenstern 
axiom of independence as follows: If f >- g and if f, g, and h are comonotonic, then 
cff +(l-a)h>-ag+(1 -ac)h. 

If a nondegenerate, continuous, and monotonic (state independent) weak order over acts 
satisfies comonotonic independence, then it induces a unique non-(necessarily-)additive 
probability and a von Neumann-Morgenstern utility. Furthermore, one can compute the 
expected utility of an act with respect to the nonadditive probability, using the Choquet 
integral. 

This extension of the expected utility theory covers situations, as the Ellsberg paradox, 
which are inconsistent with additive expected utility. The concept of uncertainty aversion 
and interpretation of comonotonic independence in the context of social welfare functions 
are included. 

KEYwoRDs: Comonotonic independence, uncertainty aversion, expected utility, subjec- 
tive probability. 

1. INTRODUCTION 

BAYESIAN STATISTICAL TECHNIQUES are applicable when the information and 
uncertainty with respect to the parameters or hypotheses in question can be 
expressed by a probability distribution. This prior probability is also the focus of 
most of the criticism against the Bayesian school. My starting point is to join the 
critics in attacking a certain aspect of the prior probability: The probability 
attached to an uncertain event does not reflect the heuristic amount of informa- 
tion that led to the assignment of that probability. For example, when the 
information on the occurrence of two events is symmetric they are assigned equal 
prior probabilities. If the events are complementary the probabilities will be 1/2, 
independently of whether the symmetric information is meager or abundant. 

There are two (unwritten?) rules for assigning prior probabilities to events in 
case of uncertainty. The first says that symmetric information with respect to 
the occurrence of events results in equal probabilities. The second says that if the 
space is partitioned into k symmetric (i.e., equiprobable) events, then the 
probability of each event is l/k. I agree with the first rule and object to 
the second. In the example above, if each of the symmetric and complementary 

1I am thankful to Roy Radner for comments on the previous version presented at Oberwolfach, 
1982. Thanks are due also to Benyamin Shitovitz, and anonymous referees for pointing out numerous 
typos in previous versions. Partial financial support from the Foerder Institute and NSF Grant No. 
SES 8026086, is gratefully acknowledged. Parts of this research have been done at the University of 
Pennsylvania, and at the Institute for Mathematics and its Applications at the University of 
Minnesota. 
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uncertain events is assigned the index 3/7, the number 1/7, 1/7 = 1 - (3/7 + 
3/7), would indicate the decision maker's confidence in the probability assess- 
ment. Thus, allowing nonadditive (not necessarily additive) probabilities enables 
transmission or recording of information that additive probabilities cannot 
represent. 

The idea of nonadditive probabilities is not new. Nonadditive (objective) 
probabilities have been in use in physics for a long time (Feynman (1963)). The 
nonadditivity describes the deviation of elementary particles from mechanical 
behavior toward wave-like behavior. Daniel Ellsberg (1961) presented his argu- 
ments against necessarily additive (subjective) probabilities with the help of the 
following "mind experiments": There are two urns each containing one hundred 
balls. Each ball is either red or black. In urn I there are fifty balls of each color 
and there is no additional information about urn II. One ball is chosen at 
random from each urn. There are four events, denoted IR, IB, IIR, IIB, where 
IR denotes the event that the ball chosen from urn I is red, etc. On each of the 
events a bet is offered: $100 if the event occurs and zero if it does not. According 
to Ellsberg most decision makers are indifferent between betting on IR and 
betting on IB and are similarly indifferent between bets on IIR and IIB. It may 
be that the majority are indifferent among all four bets. However, there is a 
nonnegligible proportion of decision makers who prefer every bet from urn I (IB 
or IR) to every bet from urn II (IIB or IIR). These decision makers cannot 
represent their beliefs with respect to the occurrence of uncertain events through 
an additive probability. 

The most compelling justification for representation of beliefs about uncertain 
events through additive prior probability has been suggested by Savage. Building 
on previous work by Ramsey, de Finetti, and von Neumann-Morgenstern, Savage 
suggested axioms for decision theory that lead to the criterion of maximization of 
expected utility. The expectation operation is carried out with respect to a prior 
probability derived uniquely from the decision maker's preferences over acts. The 
axiom violated by the preference of the select minority in the example above is 
the " sure thing principle", i.e., Savage's P2. 

In this paper a simplified version of Savage's model is used. The simplification 
consists of the introduction of objective or physical probabilities. An act in this 
model assigns to each state an objective lottery over deterministic outcomes. The 
uncertainty concerns which state will occur. Such a model containing objective 
and subjective probabilities has been suggested by Anscombe and Aumann 
(1963). They speak about roulette lotteries (objective) and horse lotteries (sub- 
jective). In the presentation here the version in Fishburn (1970) is used. The 
von Neumann-Morgenstern, (N-M), utility theorem used here can also be found 
in Fishburn (1970). 

The concept of objective probability is considered here as a physical concept 
like acceleration, momentum, or temperature; to construct a lottery with given 
objective probabilities (a roulette lottery) is a technical problem conceptually not 
different from building a thermometer. When a person has constructed a " per- 
fect" die, he assigns a probability of 1/6 to each outcome. This probability is 
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objective in the same sense as the temperature measured by the thermometer. 
Another person can check and verify the calibration of the thermometer. Simi- 
larly, he can verify the perfection of the die by measuring its dimensions, 
scanning it to verify uniform density, etc.... Rolling the die many times is not 
necessarily the exclusive test for verification of objective probability. 

On the other hand, the subjective or personal probability of an event is 
interpreted here as the number used in calculating the expectation (integral) of a 
random variable. This definition includes objective or physical probabilities as a 
special case where there is no doubt as to which number is to be used. This 
interpretation does not impose any restriction of additivity on probabilities, as 
long as it is possible to perform the expectation operation which is the subject of 
this work. 

Subjective probability is derived from a person's preferences over acts. In the 
Anscombe-Aumann type model usually five assumptions are imposed on prefer- 
ences to define unique additive subjective probability and von Neumann- 
Morgenstern utility over outcomes. The first three assumptions are essentially 
von Neumann-Morgenstern's-weak order, independence, and continuity- and 
the fourth assumption is equivalent to Savage's P3, i.e., state-independence of 
preferences. The additional assumption is nondegeneracy; without it uniqueness 
is not guaranteed. 

The example quoted earlier can be embedded in such a model. There are four 
states: (IB, IIB), (IB, IIR), (IR, IIB), (IR, IIR). The deterministic outcomes 
are sums of dollars. For concreteness of the example, assume that there are 101 
deterministic outcomes: $0, $1, $2,... ,$100. An act assigns to each state a proba- 
bility distribution over the outcomes. The bet "$100 if IIB" is an act which 
assigns the (degenerate objective) lottery of receiving "$100 with probability one" 
to each state in the event IIB and "zero dollars with probability one" to each 
state in the event IIR. The bet on IIR is similarly interpreted. Indifference 
between these two acts (bets), the independence condition, continuity, and weak 
order imply indifference between either of them and the constant act which 
assigns to each state the objective lottery of receiving $100 with probability 1/2 
and receiving zero dollars with probability 1/2. The same considerations imply 
that the constant act above is indifferent to either of the two acts (bets): "$100 
if IB" and "$100 if IR". Hence the indifference between IB and IR and 
the indifference between IIB and IIR in Ellsberg's example, together with the 
von Neumann-Morgenstern conditions, imply indifference between all four bets. 
The nonnegligible minority of Ellsberg's example does not share this indifference: 
they are indifferent between the constant act (as above) and each bet from urn I, 
and prefer the constant act to each bet from urn II. 

Our first objective consists of restatement, or more specifically of weakening, of 
the independence condition such that the new assumption together with the other 
three assumptions can be consistently imposed on the preference relation over 
acts. In particular the special preferences of the example become admissible. It is 
obvious that the example's preferences between bets (acts) do not admit additive 
subjective probability. Do they define in some consistent way a unique nonaddi- 
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tive subjective probability, and if so, is there a way to define the expected utility 
maximization criterion for the nonadditive case? 

An affirmative answer to this problem is presented in the third section. Thus 
the new model rationalizes nonadditive (personal) probabilities and admits the 
computation of expected utility with respect to these probabilities. It formally 
extends the additive model and it makes the expected utility criterion applicable 
to cases where additive expected utility is not applicable. 

Before turning to a precise and detailed presentation of the model, another 
heuristic observation is made. The nomenclature used in economics distinguishes 
between risk and uncertainty. Decisions in a risk situation are precisely the 
choices among roulette lotteries. The probabilities are objectively given; they are 
part of the data. For this case the economic theory went beyond von Neumann- 
Morgenstern utility and defined concepts of risk aversion, risk premium, and 
certainty equivalence. Translating these concepts to the case of decisions under 
uncertainty we can speak about uncertainty aversion, uncertainty premium, and 
risk equivalence. Returning to the example, suppose that betting $100 on IIR is 
indifferent to betting $100 on a risky event with an (objective) probability of 3/7. 
Thus, the subjective probability of an event is its risk equivalent (P(IIR) = 3/7). 
In this example the number 1/7 computed earlier expresses the uncertainty 
premium in terms of risk. Note that nonadditive probability may not exhibit 
consistently either uncertainty aversion or uncertainty attraction. This is similar 
to the case of decisions in risk situations where von Neumann-Morgenstern 
utility (of money) may be neither concave nor convex. 

2. AXIOMS AND BACKGROUND 

Let X be a set and Y be the set of distributions over X with finite supports 

Y = {y: X-+ [0, 1ly(x) * 0 for finitely many x 's in X 

and E y(x) = 1 
xeX 

For notational simplicity we identify X with the subset { y E Yly(x) = 1 for 
some x in X} of Y. 

Let S be a set and let 2 be an algebra of subsets of S. Both sets, X and S are 
assumed to be nonempty. Denote by Lo the set of all 2-measurable finite valued 
functions from S to Y and denote by LC the constant functions in Lo, Let L be a 
convex subset of yS which includes Lc. Note that Y can be considered a subset 
of some linear space, and yS, in turn, can then be considered as a subspace of the 
linear space of all functions from S to the first linear space. Whereas it is obvious 
how to perform convex combinations in Y it should be stressed that convex 
combinations in yS are performed pointwise. I.e., for f and g in yS and a in 
[0, 11, af + (1 - a)g = h where h(s) = af(s) + (1 - a)g(s) on S. 

In the neo-Bayesian nomenclature, elements of X are (deterministic) outcomes, 
elements of Y are random outcomes or (roulette) lotteries, and elements of L are 
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acts (or horse lotteries). Elements of S are states (of nature) and elements of 2 
are events. 

The primitive of a neo-Bayesian decision model is a binary (preference) 
relation over L to be denoted by > . Next are stated several properties (axioms) 
of the preference relation, which will be used in the sequel. 

(i) WEAK ORDER: (a) For all f and g in L: f > g or g f. (b) For allf, g, and h 
in L: Iff g and g h, then f h. 

The relation > on L induces a relation also denoted by > on Y: y _ z iff 
yS >- zs where yS denotes the constant function y on S (i.e., y }s). As usual, >- 
and - denote the asymmetric and symmetric parts, respectively, of > . 

DEFINITION: Two acts f and g in yS are said to be comonotonic if for no s 
and t in S, f(s) >f(t) and g(t) > g(s). 

A constant act f, i.e., f =y for some y in Y, and any act g are comonotonic. 
An act f whose statewise lotteries { f(s)} are mutually indifferent, i.e., f(s) y 
for all s in S, and any act g are comonotonic. If X is a set of numbers and 
preferences respect the usual order on numbers, then any two X-valued functions 
f and g are comonotonic iff (f(s) -f(t))(g(s) - g(t)) > 0 for all s and t in S. 

Clearly, IIR and IIB of the Introduction are not comonotonic. (Comonotonic- 
ity stands for common monotonicity.) 

Next our new axiom for neo-Bayesian decision theory is introduced. 

(ii) COMONOTONIC INDEPENDENCE: For all pairwise comonotonic acts f, g and h 
in L and for all a in ]O,1[: f > g implies af + (1 - a)h >- ag + (1 - a)h. (0,1[ is 
the open unit interval.) 

Elaboration of this condition is delayed until after condition (vii). 
Comonotonic independence is clearly a less restrictive condition than the 

independence condition stated below. 

(iii) INDEPENDENCE: For allf, g and h in L and for all a in ]0, 1[: f > g implies 
af + (1 - a)h >- ag + (1 - a)h. 

(iv) CONTINUITY: For all f, g and h in L: If f > g and g > h, then there are a 
and f in ]0,1[ such that af+ (1 - a)h > g and g >- fi+ (1 - f)h. 

Next, two versions of state-independence are introduced. The intuitive mean- 
ing of each of these conditions is that the preferences over random outcomes do 
not depend on the state that occurred. The first version is the one to be used here. 
The second version is stated for comparisons since it is the common one in the 
literature. 

575 
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(v) MONOTONICITY: For allf and g in L: If f(s) > g(s) on S then f g. 

(vi) STRICT MONOTONICITY: For all f and g in L, y and z in Y and E in 2: If 
f > g, f(s) =y on E and g(s) = z on E, andf(s) = g(s) on Ec, then y > z. 

OBSERVATION: If L = L0, then (vi) and (i) imply (v). 

PROOF: Let f and g be finite step functions such that f(s)  g(s) on s. There 
is a finite chain f= h0, h1,..., hk = g where each pair of consecutive functions 
hi_l, hi are constant on the set on which they differ. For this pair (vi) and (i) 
imply (v). Transitivity (i)(b) of , concludes the proof. 

Clearly (i) and (v) imply (vi). 
For the sake of completeness we list as axiom: 

(vii) NONDEGENERACY: Not for all f and g in L, f > g. 

Out of the seven axioms listed here the completeness of the preferences, (i)(a), 
seems to me the most restrictive and most imposing assumption of the theory. 
One can view the weakening of the completeness assumption as a main contribu- 
tion of all other axioms. Imagine a decision maker who initially has a partial 
preference relation over acts. After an additional introspection she accepts the 
validity of several of the axioms. She can then extend her preferences using these 
axioms. For example, if she ranks f > g and g > h, and if she accepts transitivity, 
then she concludes that f > h. From this point of view, the independence axiom, 
(iii), seems the most powerful axiom for extending partial preferences. Given 
f>- g and independence we get for all h in L and a in ]0,1[: f' af + (1 - a)h 
>- ag + (1 - a)h -g'. However after additional retrospection this implication 
may be too powerful to be acceptable. For example, consider the case where 
outcomes are real numbers and S = [0,27r]. Let f and g be two acts defined: 
f(s) = sin (s) and g(s) = sin(s + 7r/2) = cos (s). The preferences f > g may be 
induced by the rough evaluation that the event [?r/3,4sr/3] is more probable 
than its complement. Define the act h by h(s)= sin(77s). In this case the 
structure of the acts f' = if + h and g' = 'g + !h is far from transparent and 
the automatic implication of independence, f' > g', may seem doubtful to the 
decision maker. More generally: the ranking f > g implies some rough estimation 
by the decision maker of the probabilities of events (in the algebra) defined by 
the acts f and g. If mixture with an arbitrary act h is allowed, the resulting acts 
f' and g' may define a much finer (larger) algebra (especially when the algebra 
defined by h is qualitatively independent of the algebras of f and g). Careful 
retrospection and comparison of the acts f' and g' may lead them to the ranking 
g' >- f' (as in the case of the Ellsberg paradox) contradictory to the implication of 
the independence axiom. Qualifying the comparisons and the application of 
independence to comonotonic acts rules out the possibility of contradiction. If f, 
g, and h are pairwise comonotonic, then the comparison of f to g is not very 
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different from the comparison of f' to g'. Hence the decision maker can accept 
the validity of the implication: f >- g f' >- g', without fear of running into a 
contradiction. Note that accepting the validity of comonotonic independence, (ii), 
means accepting the validity of the above implication without knowing the 
specific acts f, g, h, f', g', but knowing that all five are pairwise comonotonic. 

Before presenting the von Neumann-Morgenstern theorem we point out that 
stating the axioms of (i) weak order, (iii) independence, and (iv) continuity do not 
require that the preference relation : be defined on a set L containing Lc. Only 
the convexity of L is required for (ii) and (iii). 

VON NEUMANN-MORGENSTERN THEOREM: Let M be a convex subset of some 
linear space, with a binary relation >j defined on it. A necessary and sufficient 
condition for the relation , to satisfy (i) weak order, (iii) independence, and (iv) 
continuity is the existence of an affine real valued function, say w, on M such 
that for all f and g in M: f > g iff w(f ) > w(g). (Affinity of w means that w(af + 
(1- a)g) = aw(f) + (1-a)w(g) for O < a < 1.) Furthermore, an affine real 
valued function w' on M can replace w in the above statement iff there exist a 
positive number a and a real number ,B such that w'(f ) = aw(f ) + /3 on M. 

As mentioned earlier, for proof of this theorem and the statement and proof of 
Anscombe-Aumann Theorem below, the reader is referred to Fishburn (1970). 

IMPLICATION: Suppose that a binary relation >- on some convex subset L of 
Ys with Lc C L satisfies (i) weak order, (ii) comonotonic independence, and 
(iv) continuity. Suppose also that there is a convex subset M of L with Lc c M 
such that any two acts in M are comonotonic. Then by the von Neumann- 
Morgenstem Theorem there is an affine function on M, to be denoted by J, 
which represents the binary relation - on M. I.e., for all f and g in M: f >- g if 
J(f ) > J(g). Clearly, if M = LC _ {y e Y) any two acts in M are comono- 
tonic. Hence, if a function u is defined on Y by u(y) = J(ys), then u is affine 
and represents the induced preferences on Y. The affinity of u implies u(y)= 

Ex e xy (x) u(x). 

When subjective probability enters into the calculation of expected utility of an 
act, an integral with respect to a finitely additive set function has to be defined. 
Denote by P a finitely additive probability measure on 2 and let a be a real 
valued 2-measurable function on S. For the special case where a is a finite step 
function, a can be uniquely represented by EYk laiEi* where a, > a2> ... > ak 

are the values that a attains and Ei* is the indicator function on S of Ei 
{s E SIa(s) = ai} for i= 1,..., k. Then 

k 

jadP= P(Ei)ai. 
Si=l 
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The more general case where a is not finitely valued is treated as a special case of 
nonadditive probability. 

ANSCOMBE-AUMANN THEOREM: Suppose that a preference relation L on L = Lo 
satisfies (i) weak order, (iii) independence, (iv) continuity, (vi) strict monotonicity, 
and (vii) nondegeneracy. Then there exist a unique finitely additive probability 
measure P on 2 and an affine real valued function u on Y such that for all f and g 
in Lo: 

f g if fu(f())dP 
>s(g(.))dP. 

Furthermore, if there exist P and u as above, then the preference relation they 
induce on Lo satisfied conditions (i), (iii), (iv), (vi), and (vii). Finally, the function u 
is unique up to a positive linear transformation. 

There are three apparent differences between the statement of the main result 
in the next section and the Anscombe-Aumann Theorem above: (i) Instead of 
strict monotonicity, monotonicity is used. It has been shown in the Observation 
that it does not make a difference. However, for the forthcoming extension, 
monotonicity is the natural condition. (ii) Independence is replaced with 
comonotonic independence. (iii) The finitely additive probability measure P is 
replaced with a nonadditive probability v. 

3. THEOREM 

A real valued set function v on 2 is termed nonadditive probability if it satisfies 
the normalization conditions v(+) = 0 and v(S) = 1, and monotonicity, i.e., for 
all E and G in 2: E c G implies v(E) < v(G). We now introduce the definition 
of fsadv for v nonadditive probability and a = £Ek_aiEi* a finite step function 
with a1 > at > . > a/k and (Ei)k 1 a partition of S. Let ak + = 0 and define 

k 

fsadv= E ( - ai+) 1) U E 
i=l j=l / 

For the special case of v additive the definition above coincides with the usual 
one mentioned in the previous section. 

THEOREM: Suppose that the preference relation L on L = Lo satisfies (i) weak 
order, (ii) comonotonic independence, (iv) continuity, (v) monotonicity, and (vii) 
nondegeneracy. Then there exist a unique nonadditive probability v on 2 and an 
affine real valued function u on Y such that for all f and g in L0: 

fCg iff ft(f(a))dv> u(g(.))dv. 

Conversely, if there exist v and u as above, u nonconstant, then the preference 
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relation they induce on Lo satisfies (i), (ii), (iv), (v), and (vii). Finally, the function 
u is unique up to positive linear transformations. 

PROOF: From the Implication of the N-M Theorem we get a N-M utility u 
representing the preference relation L induces on Y. By nondegeneracy there are 
f * and f* in Lo with f* > f*. Monotonicity, (v), implies existence of a state s in 
S such that f*(s) =y* >-f*(s) y*. Since u is given up to a positive linear 
transformation, suppose from now on u(y*) = 1 and u(y*) = -1. Denote K = 

u(Y). Hence K is a convex subset of the real line including the interval [1, - 1]. 
For an arbitrary f in Lo denote 

Mf= {af+ (1- a)ySlye Yand as [0,1]). 

Thus Mf is the convex hull of the union of f and Lc. It is easy to see that any 
two acts in Mf are comonotonic. Hence, there is an affine real-valued function on 
Mf, which represents the preference relation t restricted to Mf. After rescaling, 
this function, Jf satisfies Jf (y*S) = 1 and Jf (ys) = - 1. Clearly, if h E Mf n Mg, 
then Jf (h) = Jg(h). So, defining J(f ) = Jf (f ) for f in Lo. we get a real valued 
function on Lo which represents the preferences - on Lo and satisfies for all y 
in Y: J(yS) = u(y). Let BO(K) denote the i-measurable, K-valued finite step 
function on S. Let U: Lo -- BO(K) be defined by U(f )(s) = u(f(s)) for s in S 
and f in Lo, The function U is onto, and if U(f) = U(g), then by monotonicity 
f - g, which in turn implies J(f ) = J(g). 

We now define a real valued function I on BO(K). Given a in BO(K), let f in 
Lo be such that U(f ) = a. Then define I(a) = J(f ). I is well defined since as 
mentioned earlier J is constant on U- (a): 

Lo u- Bo 

R 

We now have a real valued function I on BO(K) which satisfies the following 
three conditions: (i) For all a in K: I(aS*) = a. (ii) For all pairwise comonotonic 
functions a, b, and c in BO(K) and a in [0,1]: if I(a) > I(b) then I(aa + (1 - 

a)c) > I(ab + (1 - a)c). (iii) If a(s) > b(s) on S for a and b in BO(K), then 
I(a) > I(b). 

To see that (i) is satisfied, let y in Y be such that u(y) = a. Then J(yS) = a 
and U(yS) = aS*. Hence I(aS*) = a. Similarly (ii) is satisfied because comono- 
tonicity is preserved by U and J represents >- which satisfies comonotonic 
independence. Finally (iii) holds because U preserves monotonicity. 

The Corollary of Section 3 and the Remark following it in Schmeidler (1986) 
say that if a real valued function I on BO(K) satisfies conditions (i), (ii), and (iii), 
then the nonadditive probability v on I defined by v(E) = I(E*) satisfies for all 
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a and b inB0(K): 

(*) I(a)>I(b) iff fadv >fbdv. 

Hence, for all f and g in L0: 

f g iff fU(f)dv> s U(g)dv, 

and the proof of the main part of the theorem is completed. 
To prove the opposite direction note first that in Schmeidler (1986) it is shown 

and referenced that if I on Bo(K) is defined by (*), then it satisfies conditions 
(i), (ii), and (iii). (Only (ii) requires some proof.) Secondly, the assumptions of 
the opposite direction say that J is defined as a combination of U and I in the 
diagram. Hence the preference relation on Lo induced by J satisfies all the 
required conditions. (U preserves monotonicity and comonotonicity and Jsadv is 
a (sup) norm continuous function of a.) 

Finally, uniqueness properties of the expected utility representation will be 
proved. Suppose that there exist an affine real valued function u' on Y and a 
nonadditive probability v' on 2 such that for all f and g in L0: 

(**) f> g iff su'(f(s)) dv' > su'(g(s)) dv'. 
s s 

Note that monotonicity of v' can be derived instead of assumed. When 
considering (**) for all f and g in Lc we immediately obtain, from the 
uniqueness part of the N-M Theorem, that u' is a positive linear transformation 
of u. On the other hand it is obvious that the inequality in (**) is preserved under 
positive linear transformations of the utility. Hence, in order to prove that v' = v 
we may assume without loss of generality that u' = u. For an arbitrary E in 2 let 
f in Lo be such that U(f) = E*. (For example, f(s) =y* on E and f(s) =y*/2 
+ y,/2 on EC. Then fsU(f) dv = v(E) and fsU(f) dv' = v'(E).) Let y in Y be 
such that u(y) = v(E). (For example, y = v(E)y* + (1 - v(E))(y*/2 +y,/2).) 
Then f-yS which in turn implies u(y) = u'(y) = fsu'(ys) dv' = v'(E). The last 
equality is implied by (**). Q.E.D. 

In order to extend the Theorem to more general acts, we have to specify 
precisely the set of acts L on which the extension holds and we have to extend 
correspondingly the definition of the integral with respect to nonadditive proba- 
bility. We start with the latter. 

Denote by B the set of real valued, bounded 2-measurable functions on S. 
Given a in B and a nonadditive probability v on 2 we define 

ladv= f (v(a>a) -1)da±+ | v(a>a)da. 
s -00 

Each of the integrands above is monotonic, bounded and identically zero where 
a l >X for some number X. This definition of integration for nonnegative 
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functions in B has been suggested by Choquet (1955). A more detailed exposi- 
tion appears in Schmeidler (1986). It should be mentioned here that this defini- 
tion coincides, of course, with the one at the beginning of this section when a 
obtains finitely many values. 

For the next definition, existence of weak order >- over Lc is presupposed. An 
act f: S -- Y is said to be 2-measurable if for all y in Y the sets { s lf(s) >- y } 
and { s f(s) y } belong to 2. It is said to be bounded if there are y and z in Y 
such that y f (s) L z on S. The set of all 2-measurable bounded acts in yS is 
denoted by L(>:). Clearly, it contains Lo, 

COROLLARY: (a) Suppose that a preference relation L over Lo satisfies (i) weak 
order, (ii) comonotonic independence, (iv) continuity, and (v) monotonicity. Then it 
has a unique extension to all of L(>-) which satisfies the same conditions (over 
L(>:)). (b) If the extended relation, also to be denoted by >-, is nondegenerate, 
then there exist a unique nonadditive probability v on 2 and an affine real valued 
function u (unique up to positive linear transformations) such that for all f and g in 
L(>-): f s:g iff fsu(f(-)) dv) > su(g( )) dv. 

PROOF: The case of degeneracy is obvious, so assume nondegenerate prefer- 
ences. Consider the following diagram: 

L(>) u, B(K) 

J'| Lo uBo (Kf) | 

J I 

R 

The inner triangle is that of the proof of the Theorem. B(K) is the set of 
K-valued, 2-measurable, bounded functions on S, and i denotes identity. U' is 
the natural extension of U and is also onto. Because BO(K) is (sup) norm dense 
in B(K) and I satisfies condition (iii), I' is the unique extension of I that 
satisfies on B(K) the three conditions that I satisfies on BO(K). 

The functional J', defined on L(>,) by: J'(f ) = I'(U'(f )), extends J. Hence, 
the relation L on L( ) defined by f L g iff J'( f ) > J'(g) extends the relation 
> on Lo, and satisfies the desired properties. 

By the Corollary of Section 3 in Schmeidler (1986) there exists a nonadditive 
probability v on 2 such that for all f and g in L(>-): I'(f) > I'(g) iff 

JsU'(f) dv> fsU'(g) dv. 
Hence, the expected utility representation of the preference relation has been 

shown. To complete the proof of (b), uniqueness of v and uniqueness up to a 
positive linear transformation of u have to be established. However, it follows 
from the corresponding part of the Theorem. The uniqueness properties also 
imply that the extension of >- from Lo to L(>,) is unique. Q.E.D. 
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REMARK 1: Instead of first stating the Theorem for Lo and then extending it to 
L(>), one can state directly the extended theorem. More precisely a preference 
relation on L, Lo c L c yS is defined such that in addition to the conditions (i), 
(ii), (iv), and (vii) it satisfies L = L( >). It can then be represented by expected 
utility with respect to nonadditive probability. However, the first part of the 
Corollary shows that in this case the preference relation of L( >) is overspecified: 
The preferences of Lo dictate those over L( >). 

REMARK 2: If 2 does not contain all subsets of S, and #X> 3 then L(>) 
contains finite step functions that do not belong to L0. Let y and z in Y be such 
that y-z but y#z, and let EcS but E 2. Define f(s)=y on E and 
f(s) = z on EC. Clearly f L0. The condition #X> 3 is required to guarantee 
existence of y and z as above. 

REMARK 3: It is an elementary exercise to show that under the conditions of 
the Theorem, v is additive iff > satisfies (iii) independence (instead of or in 
addition to (ii) comonotonic independence). Also an extension of an independent 
relation, as in Corollary (a), is independent. Hence our results formally extend 
the additive theory. 

We now introduce formally the concept of uncertainty aversion alluded to in 
the Introduction. A binary relation > on L is said to reveal uncertainty aversion 
if for any three acts f, g, and h in L and any a in [0,1]: If f > h and g > h, then 
af+ (1 - a)g L h. Equivalently we may state: If fL g, then af+ (1 - a)g > g. 
For definition of strict uncertainty aversion the conclusion should be a strict 
preference >-. However, some restrictions then have to be imposed on f and g. 
One such obvious restriction is that f and g are not comonotonic. We will return 
to this question in a subsequent remark. 

Intuitively, uncertainty aversion means that "smoothing" or averaging utility 
distributions makes the decision maker better off. Another way is to say that 
substituting objective mixing for subjective mixing makes the decision maker 
better off. The definition of uncertainty aversion may become more transparent 
when its full mathematical characterization is presented. 

PROPOSITION: Suppose that > on L= L( ) is the extension of L on Lo 
according to the Corollary. Let v be the derived nonadditive subjective probability 
and I (the I' of the Corollary) be the functional on B, I(a)= fsadv. Then the 
following conditions are equivalent: (i) _ reveals uncertainty aversion. (ii) For all a 
and b in B: I(a + b) > I(a) + I(b). (iii) For all a and b in B andfor all a in [0,1]: 

I(aa + (1 - a)b) > aI(a) + (1 - a)b. 

(iv) For all a and b in B and for all a in [0,1]: 

I(aa + (1 - a)b) > min (a), I(b)}. 

(v) For all a in R the sets {a E BII(a) > a) are convex. (vi) There exists an a in 
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R s.t. the set { a E blI(a) > a} is convex. (vii) For all a and b in B and for all a in 
[0,1]: If I(a) = I(b), then I(aa + (1 - a)b) > I(a). (viii) For all a and b in B: If 
I(a)=I(b), then 

I(a + b) > I(a) + I(b). 

(ix) v is convex. I.e., for all E and F in 2: 

v(E) + v(F) v(EF) + (E+ F). 

(x) For all a in B: I(a) = min { fsadplp E core(v)), where core(v) = p: 2 -* RI 
p is additive, p(s) = v(S) andfor all E in 2, p(E) > v(E)}. 

PROOF: For any functional on B: (iii) implies (iv), (iv) implies (vii), (iv) is 
equivalent to (v), and (v) implies (vi). The positive homogeneity of degree one of 
I results in: (ii) equivalent to (iii) and (vii) equivalent to (viii). (vi) implies (v) 
because for all ,f in R, (,B = a - a), I(a + 1S*) = I(a) + /3, and because adding 
PS* preserves convexity. 

(viii) implies (ix). Suppose, without loss of generality, that v(E) > v(F). Then 
there is y > 1 such that v(E) = yv(F). Since I(E*) = v(E) = yv(F) = I(yF*), 
we have by (viii), v(E)+ yv(F)< I(E* + yF*). But E* + yF* = (EF)* + 
(y- 1)F* + (E + F)*, which implies I(E* + yF*) = v(EF) + (y - 1)v(F) + 
v(E + F). Inserting the last equality in the inequality above leads to the inequal- 
ity in (ix). The equivalence of (ix), (x), and (ii) is stated as Proposition 3 in 
Schmeidler (1986). 

Last but not least, (i) is equivalent to (iv). This becomes obvious after 
considering the mapping U' from the diagram in the proof of the Corollary. 

Q.E.D. 

The basic result of the proposition is the equivalence of (i), (iii), (iv), (ix), and 
(x). (iv) is quasiconcavity of I and it is the translation of (i) by U' from L to B. 
(iii) is concavity, which usually is a stronger assumption. Here I is concave iff it is 
quasiconcave. Concavity captures best the heuristic meaning of uncertainty 
aversion. 

REMARK 4: The Proposition holds if all the inequalities are strict and in (i) it is 
strict uncertainty aversion. To show it precisely, null or dummy events in 2 have 
to be defined. An event E in 2 is termed dummy if for all F in 2: v(F+ E) = 

v(F). In (ii)-(vii), in order to state strict inequality one has to assume that a and 
b' are not comonotonic for any b' which differs from b on a dummy set. To have 
a strict inequality in (ix) one has to assume that (E - F)*, (EF)*, and (F- E)* 
are not dummies. In (x) a geometric condition on the core of v has to be 
assumed. 

REMARK 5: The point of view of this work is that if the information is too 
vague to be represented by an additive prior, it still may be represented by a 
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nonadditive prior. Another possibility is to represent vague information by a set 
of priors. Condition (x) and its equivalence to other conditions of the Proposition 
point out when the two approaches coincide. 

REMARK 6: The concept of uncertainty appeal can be defined by: f > g 
implies f > af + (1 - a)g. In the Proposition then all the inequalities have to be 
reversed and maxima have to replace minima. Obviously, additive probability or 
the independence axiom reveal uncertainty neutrality. 

4. CONCLUDING REMARKS 

4.1. In the introduction a point of view distinguishing between objective and 
subjective probabilities has been articulated. It is not necessary for the results of 
this work. What matters is that the lotteries in Y be constructed of additive 
probabilities. These probabilities can be subjectively arrived upon. This is the 
point of view of Anscombe and Aumann (1963). They describe their result as a 
way to assess complicated probabilities, "horse lotteries", assuming that the 
probabilities used in the simpler "roulette lotteries" are already known. The 
Theorem here can also be interpreted in this way, and one can consider the 
lotteries in Y as derived within the behavioristic framework as follows: 

Let Q be a set (a roulette). An additive probability P on all subsets of Q is 
derived via Savage's Theorem. More specifically, let Z be a set of outcomes with 
two or more elements. (Suppose that the sets Z and X are disjoint.) Let F denote 
the set of Savage's acts, i.e., all functions from Q to Z. Postulating existence of a 
preference relation on F satisfying Savage's axioms leads to an additive probabil- 
ity P on Q. Next we identify a lottery, say y, in Y with all the acts from Q to X 
which induce the probability distribution y. Thus we have a two step model 
within the framework of a behavioristic (or personal or subjective) theory of 
probability. Since the motivation of our Theorem is behavioristic (i.e., derivation 
of utility and probability from preference), the conceptual consistency of the 
work requires that the probabilities in Y could also be derived from preferences. 
We will return to the question of conceptual consistency in the next remark. 

Instead of the two step model of the previous paragraph one can think of 
omitting the roulette lotteries from the model. One natural way to do this is to try 
to extend Savage's Theorem to nonadditive probability. This has been done by 
Gilboa (1987). Another approach has been followed by Wakker (1986), wherein 
he substituted a connected topological space for the linear structure of Y. 

4.2. In recent years many articles have been written which challenged the 
expected utility hypothesis in the von Neumann-Morgenstern model and in the 
model with state-dependent acts. We restrict our attention to models that (i) 
introduce functional representation of a preference relation derived from axioms, 
and (ii) separate "utilities" from "probabilities" (in the representation). Further- 
more (iii) we consider functional representations which are sums of products of 
two numbers; one number has a "probability" interpretation and the other 
number has a "utility" interpretation. (For recent works disregarding restriction 
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(iii) the reader may consult Fishburn (1985) and the reference there.) Restriction 
(iii) is tantamount to the functional representation used in the Theorem (the 
Choquet integral). An article that preceded the present work in this kind of 
representation using nonadditive probability is Quiggin (1982). (Thanks for this 
reference are due to a referee.) His result will be introduced here somewhat 
indirectly. 

4.2.1. Consider a preference relation over acts satisfying the assumptions, and 
hence the conclusions, of the theorem. Does there exist an additive probability P 
on 2 and a nondecreasing function f from the unit interval onto itself such that 
v(E) = f (P(E)) on T? (Such a function f is referred to as a distortion function.) 
Conditions leading to a positive answer when the function f is increasing are 
well known. (They are stated as a step in the proof in Savage (1954); see also 
Fishburn (1970).) In this case v represents qualitative (or ordinal) probability, 
and the question we deal with can be restated as follows: Under what conditions 
does a qualitative probability have an additive representation? The problem is 
much more difficult when f is just nondecreasing but not necessarily increasing. 
A solution has been provided by Gilboa (1985). 

4.2.2. The set of nonadditive probabilities which can be represented as a 
composition of a distortion function f and an additive probability P is "small" 
relative to all nonadditive probabilities. For example, consider the following 
version of the Ellsberg paradox. There are 90 balls in an urn, 30 black, B, balls 
and all the other balls are either white, W, or red, R. Bets on the color of a ball 
drawn at random from the urn are offered. A correct guess is awarded by $100. 
There are six bets: "B", "R", "W",, "B or W", "R or W", and "B or R". The 
following preferences constitute an Ellsberg paradox: B >- R - W, R or W >- B 
or R - B or W. It is impossible to define an additive probability on the events B, 
R, and W such that this probability's (nondecreasing) distortion will be compati- 
ble with the above preferences. 

4.2.3. In Quiggin's model X is the set of real numbers. An act is a lottery of 
the form y = (xi, pi)k 1 where k > ,x>x2> > , pi>O and p1=l1. 
Quiggin postulates a weak order over all such acts which satisfies several axioms. 
As a result he gets a unique distortion function f and a monotonic, unique up to 
a positive linear transformation, utility function u on X such that the mapping 
y k= 1(xi - xi,1)f(,= pj) represents the preferences. However, f(1/2) = 

1/2. Quiggin's axioms are not immediate analogues of the assumptions in Section 
2. For example he postulates the existence of certainty equivalence for each act, 
i.e., for every y there is x in X such that y - x. 

Yaari (1987) simplified Quiggin's axioms and got rid of the restriction f(1/2) 
= (1/2) on the distortion function. However Yaari's main interest was the 
uncertainty aversion properties of the distortion function f. Hence his simplified 
axioms result in linear utility over the set of incomes, X. He explored the duality 
between concavity of the utility functions in the theory of risk aversion and the 
convexity of the distortion function in the theory of uncertainty aversion. 
Quiggin extended his results from distributions over the real numbers with finite 
support to distributions over the real line having density functions. Yaari dealt 
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with arbitrary distribution functions over the real line. Finally, Segal (1984) and 
Chew (1984) got the most general representation for Quiggin's model. 

I conclude my remark on the works of Quiggin, Yaari, and Segal with a 
criticism from a normative, behavioristic point of view: It may seem conceptually 
inconsistent to postulate a decision maker who, while computing anticipated 
utility, assigns weight f(p) to an event known to him to be of probability 
p, p of (p). His knowledge of p is derived, within the behavioristic model, from 
preferences over acts (as in 4.1 above). The use of the terms "anticipation" and 
"weight", instead of "expectation" and "probability" does not resolve, in my 
opinion, the inconsistencies. One way out would be to follow paragraph 4.2.1 
above and to try to derive simultaneously distorted and additive probabilities of 
events. 

4.3. The first version of this work (Schmeidler (1982)) includes a slightly 
extended version of the present Theorem. First recall that Savage termed an 
event E null if for all f and g in L: f = g on EC implies f - g. Clearly, if the 
conditions of the theorem are satisfied then an event is null if it is dummy. The 
extended version of the Theorem includes the following addition: 

The nonadditive probability v of the Theorem satisfies the following condition: 
v(E) = 0 implies E is dummy, if and only if the preference relation also satisfies: 
E is not null, f = g on E C and f(s) >- g(s) on E imply f >- g. 

4.4. The expected utility model has in economic theory two other interpreta- 
tions in addition to decisions under uncertainty. One interpretation is decisions 
over time: s in S represents time or period. The other interpretation of S is the 
set of persons or agents in the society, and the model is applied to the analysis of 
social welfare functions. Our extension of the expected utility model may have 
the same uses. 

Consider the special case where f(s) is s person's income. Two income 
allocations f and g are comonotonic if the social rank (according to income) of 
any two persons is not reversed between f and g. Comonotonic f, g, and h 
induce the same social rank on individuals and then f >- g implies yf + (1 - y)h 
>- yg + (1 - -y) h. This restriction on independence is, of course, consistent with 
strict uncertainty aversion which can here be interpreted as inequality (or 
inequity) aversion. In other words we have here an "Expected Utility" represen- 
tation of a concave Bergson-Samuelson social welfare function. 

4.5. One of the puzzling phenomena of decisions under uncertainty is people 
buying life insurance and gambling at the same time.2 This behavior is compati- 
ble with the model of this paper. Let SI = S1 X S2 X S3, where s1 in S1 describes 
a possible state of health of the decision maker, 52 in S2 describes a possible 
resolution of the gamble, and s3 in S3 describes a possible resolution of all other 
relevant uncertainties. Let v' be a nonadditive probability on Si, i = 0,1,2,3. 
Suppose that vl is strictly convex (i.e., satisfying strict uncertainty aversion), v2 is 
strictly concave (i.e., v2(E) + v2(F) > v(E U F) + v(E n F) if E\F and F\E 

2 It is not puzzling, as a referee pointed out, if one accepts the Friedman-Savage (1948) explanation 
of this phenomenon. 
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are nonnull). Furthermore, if E° = E1 X E2 X E3, and Ei c S', then v°(E°) = 

vl(El)v2(E2)v3(E3). To simplify matters suppose that X is a bounded interval 
of real numbers (representing an income in dollars), and the utility u is linear on 
X. Let the preference relation over acts on SO be represented by f - Ju(f ) dv. 
In this case buying insurance and gambling (betting) simultaneously is preferred 
to buying insurance only or gambling only, ceteris parabus. Also either of these 
last two acts is preferred to "no insurance no gambling." 
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