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Abstract—HTTP Adaptive Streaming facilitates video stream-
ing to mobile devices connected through heterogeneous networks
without the need for a dedicated streaming infrastructure. By
splitting different encoded versions of the same video into small
segments, clients can continuously decide which segments to
download based on available network resources and device
characteristics. These encoded versions can, for example, dif-
fer in terms of bitrate and spatial or temporal resolution.
However, as a result of dynamically selecting video segments,
perceived video quality can fluctuate during playback which
will impact end-users’ Quality of Experience. Subjective studies
have already been conducted to assess the influence of video
delivery using HTTP Adaptive Streaming to mobile devices.
Nevertheless, existing studies are limited to the evaluation of short
video sequences in controlled environments. Research has already
shown that video duration and assessment environment influence
quality perception. Therefore, in this article, we go beyond the
traditional ways for subjective quality evaluation by conducting
novel experiments on tablet devices in more ecologically valid
testing environments using longer duration video sequences. As
such, we want to mimic realistic viewing behaviour as much
as possible. Our results show that both video content and the
range of quality switches significantly influence end-users’ rating
behaviour. In general, quality level switches are only perceived in
high motion sequences or in case switching occurs between high
and low quality video segments. Moreover, we also found that
video stallings should be avoided during playback at all times.

Index Terms—Quality of Experience (QoE), Subjective video
quality assessment, HTTP adaptive streaming, Mobile video,
Tablet devices.

I. INTRODUCTION

MOBILE video consumption is growing at fast pace.

According to a recent Internet traffic forecast report [1],

70% of the total mobile data traffic will be mobile video by

2016. At the same time, usage statistics [2] show that watching

longer duration online videos, such as live streamed news,

sports, and entertainment, is becoming more popular amongst

viewers.
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Mobile devices come in all different shapes and sizes, each

with their specific characteristics and capabilities. Provisioning

video to this wide variety of end devices connected through

heterogeneous networks poses a challenge for online video

service providers. Especially when these video services are

provided Over-The-Top (OTT), i.e. delivered over the tradi-

tional packet-based best-effort Internet, network impairments

and fluctuations in mobile bandwidth can deteriorate the

(audio)visual quality of the video. In turn, this impacts end-

users’ Quality of Experience (QoE) [3] and appreciation of the

offered video service. In this respect, ensuring and maintaining

adequate QoE towards the end-users is of primary importance

for video service providers [4].

HTTP Adaptive Streaming (HAS) [5] enables live and on-

demand video streaming under varying network conditions to

a wide range of end-devices, ranging from mobile phones

to High Definition (HD) television sets. HAS operates by

splitting the video into multiple smaller segments and encoding

them at different quality levels (bitrates). While streaming

video, HAS clients can continuously select which segments

to receive based on device and network characteristics. For

example, in case of bandwidth reduction, HAS clients can

request segments of a lower quality level in order to ensure

playback fluidity [6] and maintain QoE.

The advantages of HAS are that no special streaming

server infrastructure is needed and that it runs natively over

HTTP. The former implies a reduction of the deployment costs

whereas the latter enables reliable content delivery over hetero-

geneous networks and automatically avoids firewall issues1. As

HAS is delivered over reliable transport, network impairments

such as packet loss result in an automatic retransmission of

the lost data.

Nevertheless, due to the fact that HAS clients can dynami-

cally adapt the video quality by selecting different segments,

end-users’ perceived visual quality is impacted [7]. Further-

more, since playback of each segment only starts when the

segment has completely been received error-free, video freezes

or stallings can also appear while watching the video [8].

Some research has already been conducted to investigate

quality perception in the case of video delivery to mobile

devices over HAS. Until now, these studies have been limited

1HAS traffic is identified as regular HTTP traffic, e.g. web browsing, and
will therefore not be blocked by firewalls.
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to the evaluation of short duration video sequences (10 ∼

15 seconds) or to quality assessment in stringent controlled

environments, both as recommended by internationally stan-

dardized subjective quality assessment methodologies [9],

[10]. However, subjective studies have also shown that content

duration [11] and assessment environment [6] impact end-

users’ QoE.

In this article we are interested in assessing end-users’

reactions to quality fluctuations when delivering video to tablet

devices using HTTP Adaptive Streaming technologies. The

research presented in this article goes a step further compared

to the more traditional subjective video quality experiments by

analysing the influence of longer duration audiovisual content

and by conducting experiments in more ecologically valid

testing environments. In this case, we assess video quality

in subjects’ home environment in order to mimic realistic

viewing conditions as much as possible. The results obtained

during this research provide insights into quality perception

with respect to mobile video consumption under varying

network conditions.

The remainder of this article is structured as follows.

We start by providing an overview of the principles behind

HTTP Adaptive Streaming and current existing standards in

Section II. Then, in Section III, related work is presented with

respect to subjective experiments assessing the influence of

visual impairments during video delivery over HAS to mobile

devices. In Section IV, we describe the approach followed

to set up our new subjective video quality experiment in

order to assess the influence of delivering longer duration

video sequences using HAS to tablet devices. This includes

a description of the selected video sequences, the simulation

setup, and the real-life assessment environment. The results of

this subjective experiment are analysed in Section V. Finally,

the article is concluded in Section VI

II. HTTP ADAPTIVE STREAMING

Over the past decades, OTT video delivery has gained

a lot of popularity, with HTTP Adaptive Streaming (HAS)

becoming the de facto streaming technology. The general HAS

concept is shown in Fig. 1. In HAS, a video is segmented

into chunks with a typical length of 2s to 10s. Furthermore,

each of the segments are encoded at multiple quality levels.

Information about the segments and quality levels is contained

in a manifest file. At the client side, this manifest file can be

used to link the different segments into a single video stream.

Based on the information in the manifest file, a HAS client

requests the segments in a progressive manner, while a buffer

at the client side is used to take care of temporary anomalies

such as a late arrival of a segment. Finally, the video segments

are played back from the buffer as a continuous video stream.

Their OTT nature makes HAS techniques prone to band-

width fluctuations and network congestion. This can introduce

multiple types of visual impairments during video playout.

Next to startup delay and playout interruptions caused by

buffer starvations, bitrate switches also impact the end-users’

perception of the video quality. Therefore, the HAS clients’

intelligence in terms of quality selection is a crucial factor for

Quality
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Fig. 1. Schematic overview of the HTTP Adaptive Streaming (HAS) concept.

the success of HAS techniques. A quality selection heuristic

is applied to dynamically adapt the requested quality level in

order to optimize the QoE, based on the network conditions,

perceived while downloading previous segments.

Several large industrial players have commercial implemen-

tations of the HAS concept. These implementations include,

amongst others, Microsoft IIS Smooth Streaming (MSS)2,

Apple’s HTTP Live Streaming (HLS)3 and HTTP Dynamic

Streaming4 by Adobe. Next to the commercial implementa-

tions, multiple quality selection heuristics have been proposed

in academia. While most of these approaches are deter-

ministic [12], [13], [14], recently, self-learning HAS clients

have been proposed, claiming to outperform deterministic

approaches in variable network conditions [15], [16]. The per-

formance of these self-learning HAS clients heavily depends

on the accuracy of the underlying model of the end-users’

QoE.

In 2011, MPEG tried to find the common ground between

the variety of HAS implementations with Dynamic Adaptive

Streaming over HTTP (DASH) [5], [17]. In DASH, only

the interfaces and protocol data of the HAS concept are

standardized. The quality selection heuristics are, however, not

standardized and thus depend on the specific implementation.

III. OVERVIEW OF SUBJECTIVE VIDEO QUALITY

EXPERIMENTS ON MOBILE DEVICES

A number of studies have already been performed to assess

the influence of visual impairments during video delivery

over HTTP Adaptive Streaming technologies. This includes

studying the effects of startup delay, playout interruptions,

and bitrate switches on perceived video quality as well as

conducting subjective experiments on mobile devices (e.g.,

smartphones, tablets, . . . ).

In [18], the authors investigated how perceived quality is in-

fluenced by video encoding, video content, and display device.

Several video sequences were evaluated by a test panel on a

TV display, tablet device, and smartphone. Results show that

perceived quality is indeed impacted by the display device and

that subjects may have higher quality expectations for devices

with a larger screen. Catellier et al. [19] also assessed the

impact of different mobile devices, ranging from a smartphone

to a laptop, on perceived multimedia quality. They found that

the influence of the device and screen size has no significant

2http://www.iis.net/downloads/microsoft/smooth-streaming
3http://tools.ietf.org/html/draft-pantos-http-live-streaming-10
4http://www.adobe.com/products/hds-dynamic-streaming.html
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influence on quality perception in the case of watching high-

quality video sequences. In the case of medium and low-

quality sequences, differences can be observed between mobile

devices and devices with larger screens (e.g. television sets).

Moreover, depending on the experience with online and mobile

video, users are more tolerant towards the occurrence of visual

impairments during video playback [20].

As part of the LIVE Mobile Video Quality Assessment

database [7], subjective experiments were conducted to assess

the influence of temporally varying compression rates and

frame freezes on quality perception. Short video sequences

(15 seconds duration) with a resolution of 1280x720 pixels

were used for conducting the subjective experiments on a

smartphone and a tablet device. No differences were found

between the smartphone and the tablet users in terms of quality

perception and evaluation, and results indicate that

• longer frame freezes are preferred to multiple short

freezes,

• multiple rate switches are preferred over fewer if, as a

result, subjects can watch the high quality video for a

longer duration,

• switching to an intermediate rate before switching to a

higher rate is preferred over multiple large magnitude rate

switches similar to the results in [21],

• and that a continuous rate is preferred over switches if

the continuous rate is higher than the base rate over the

switches.

Avoiding large magnitude rate switches is supported by the

Weber-Fechner law [22] which states that the just noticeable

difference between the current and the previous stimuli is pro-

portional to the magnitude of the stimuli. For example, results

in [23] and [24] show that the impact of quality fluctuations

during quality assessment is relative to the current perceived

quality level. The fact that frequent bitrate switches should

be avoided was also concluded based on the experiments

conducted in [25]. Results show that a nearly constant quality

is preferred over an oscillating one and that content genre

impacts impairment visibility. In this case, two different video

sequences containing several visual artefacts typical for HTTP

adaptive streaming were displayed on a PC to a number of test

subjects.

Recently, Floris et al. [26] and Atzori et al. [27] performed

subjective quality evaluations on different tablet devices us-

ing low resolution (Common Intermediate Format; 352x288

pixels) video sequences. The authors consider the influence

of startup delay, buffer starvations, and bitrate switches on

perceived video quality. Interestingly, the perceived quality

depends on the type of tablet used (iPad 2 or Galaxy Tab). It

appears that test subjects have increased quality expectations

when watching video on iPad tablets. Similar to the research

findings in [7], [28], and [8], the authors also found that

buffer starvations (resulting in freezes or stallings) should

be avoided. As such, a higher startup delay is preferred

over buffer starvations during video playout. Furthermore,

depending on the specific type of application, users tolerate

different amounts of initial startup delays [8]. Research in [6]

shows that playback fluidity is especially important when

watching television. In the case of video stallings, the typical

lean backward TV viewing experience is hampered resulting

in a disruption of subjects’ immersive experience. Dobrian et

al. [29] also showed that the number of buffer starvations has

a direct negative impact on end-users’ engagement. In [30],

an analytical model is proposed to estimate the amount of

initial buffering needed in order to keep the probability of

playback interruptions below certain thresholds. Video playout

interruption probabilities can be estimated using the analytical

model proposed by Xu et al. [31].

All of the aforementioned subjective experiments have been

conducted using short duration video sequences, except for the

work from Robinson et al. [25]. This corresponds to the guide-

lines provided by internationally standardized subjective video

quality assessment methodologies [9], [10]. However, research

has shown that sequence duration impacts subjects’ rating

behaviour [6], [11], [32]. Also, as context of use influences

quality perception [6], [33], subjective quality assessment

experiments should be conducted in more ecologically valid

testing environments (i.e. field tests).

IV. ASSESSING VISUAL IMPAIRMENTS IN LONG DURATION

VIDEOS OVER HTTP ADAPTIVE STREAMING

In this section, we detail the approach we followed [34] for

setting up our subjective video quality assessment experiment.

This includes an overview of the selected video sequences, the

encoding parameters, and the toolchain for simulating video

delivery over HAS. More information is also provided on

the assessment methodology used for presenting the different

video sequences to the test subjects and gathering quality

rating.

A. Source video sequence selection

In order to conduct subjective video quality assessment

experiments, a number of source video sequences (SRCs)

must first be selected which are representative for the targeted

use case [35]. The latter is important as content desirability,

immersion, and content characteristics (such as amount of

motion and spatial details) influence quality perception [6],

[36], [37].

The amount of motion and spatial details in a video se-

quence can be quantified by means of the Spatial Information

(SI) and Temporal Information (TI) indices as described in

ITU-T Recommendation P.910 [9]. In this recommendation, SI

and TI are calculated for each video frame and the maximum

value over all frames is taken as overall value for the entire

video sequence. However, in order to avoid the influence of

peak values, Ostaszewska et al. [38] propose the use of the

upper quartile value as overall SI and TI measurement.

As reported in [2], sports and entertainment are amongst the

most watched content online. We selected six different SRCs

with accompanying audio, taken from Blu-ray discs, to be used

in this subjective experiment. These six sequences correspond

to different content classes spanning a wide range of different

content characteristics as shown in Table I. All sequences are

in full High Definition resolution (1920x1080 pixels) at 24

frames per second (fps).
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TABLE I
SPATIAL AND TEMPORAL INFORMATION [38] FOR CONTENT TYPES USED

IN THE SUBJECTIVE EXPERIMENT.

Sequence Q3.SI Q3.TI

Action 30,32 26,10
Cartoon 22,97 20,33
Drama 29,36 7,46
Music 27,04 14,05
Nature 44,86 10,42
Sports 81,18 32,52

In the previous section, it was mentioned that content

duration influences subjects’ rating behaviour. Furthermore,

the authors in [25] state that HAS protocols may receive

lower quality ratings in the case of using short duration video

sequences. Thus, similar to the experiment in [25], sequence

duration was selected to be around two minutes. This enables

us to assess the influence of multiple bitrate switches and

frame freezes, and allows subjects to evaluate multiple videos

within a single subjective experiment.

B. Encoding for HTTP Adaptive Streaming

For encoding different versions of the video sequences we

followed Apple’s Technical Note TN2224 specifications [39].

As such, we used realistic encoding settings for simulating

video deployment over HAS. However, instead of using seg-

ments of 10 seconds, we employ segments with a two seconds

duration. Smaller segments enable a faster startup time and

faster rate adaptations in case of bandwidth fluctuations which

is important for real-time video streaming [13], [40]. All

sequences were encoded in H.264/AVC using x264 based on

the parameters listed in Table II.

TABLE II
PARAMETERS USED FOR ENCODING THE SOURCE VIDEO SEQUENCES FOR

SIMULATING VIDEO DISTRIBUTION OVER HAS. THESE PARAMETERS ARE

PARTIALLY TAKEN FROM [39].

Quality Resolution Video Bitrate Profile
level (in pixels) (in kbps)

1 640x360 600 Baseline
2 640x360 1200 Baseline
3 960x540 1800 Main
4 960x540 2500 Main
5 1280x720 4500 Main
6 1280x720 6500 Main
7 1920x1080 8500 High

A keyframe interval of 48 was used in order to match the

segment duration of 2 seconds. As such, each new segment

starts with a keyframe. Advanced Audio Coding (AAC) was

used for encoding the accompanying stereo audio track at a

data rate of 64 kbit/s and a sampling rate of 44100 Hz.

C. Simulating video delivery over HTTP Adaptive Streaming

In this experiment, we are interested in assessing the influ-

ence of quality fluctuations on end-users’ QoE during video

delivery over HAS. More specifically, we want to investigate

end-users’ reactions to bitrate switches and video stallings

caused by buffer starvations during video playback. Further-

more, we also want to validate whether the results obtained

using short video sequences in controlled environments (cfr.

Section III) are still valid in the case of quality evaluation

using longer duration video content in real-life environments.

Accordingly, three different scenarios with a fixed duration

of 108 seconds were selected in order to evaluate

1) the impact of bitrate fluctuations on current quality per-

ception [23], [24] and the influence of buffer starva-

tions [26], [27],

2) the influence of frequent bitrate switches [25],

3) the difference between multi-ranges bitrate switches and

gradual bitrate switches [7], [21],

on quality perception. These scenarios are also graphically

represented in Fig. 2.

    1

3

5

7

0 30000 60000 90000

Time (in ms)

Q
u

a
li
ty

 l
e

v
e

l

(a) Scenario 1

    1

3

5

7

0 30000 60000 90000

Time (in ms)

Q
u

a
li
ty

 l
e

v
e

l

(b) Scenario 2

    1

3

5

7

0 30000 60000 90000

Time (in ms)

Q
u

a
li
ty

 l
e

v
e

l

(c) Scenario 3

Fig. 2. Graphical overview of the three selected adaptive streaming scenarios
to assess end-users’ reactions to bitrate switches and video stallings. Each
scenario has a fixed duration of 108 seconds. Gaps in graph (a) represent the
occurrence of video stallings.

More detailed information on the durations of each quality

switch, for each scenario, is provided in Table III. The duration

of each quality level is indicated using the following notation:

<quality level>-<duration (in s)>;.

In order to ensure that exactly the same impaired video

sequences can be evaluated by different test subjects during

our subjective video quality experiment, we opted to simulate

the above mentioned scenarios rather than having a real

streaming setup. The toolchain depicted Fig. 3 was used to

simulate video delivery over HAS.

Each SRC is first encoded into seven different quality levels

based on Apple’s TN2224 specifications as detailed in the

previous section. Each quality level corresponds to an encoded

version of the original sequence at a specific resolution and

bitrate (see Table II). Next, these quality levels and accompa-

nying audio track are decoded, upscaled, and segmented into

raw YUV 4:2:0 video segments of 2 seconds. Upscaling to
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TABLE III
DETAILED TIMING INFORMATION FOR EACH OF THE SCENARIOS. TUPLES

OF THE FORM <quality level>-<duration (in s)>; INDICATE THE TIME A

QUALITY LEVEL IS MAINTAINED AND THE TRANSITION FROM ONE

QUALITY LEVEL TO ANOTHER.

Scenario 1

7-2;1-2;7-2;1-2;
5-4;(freeze 0.5s);5-2;(freeze 0.5s);5-6;(freeze 1s);5-2;(freeze 1s);5-6;
6-2;7-10;6-2;5-2;4-10;5-2;6-2;
7-12;4-12;7-12;5-11;

Scenario 2

4-10;6-2;4-2;6-2;4-2;6-2;4-2;6-2;4-2;6-2;
4-10;6-6;4-6;6-6;
4-10;6-12;4-12;6-12;4-6;

Scenario 3

7-12;1-28;7-14;
6-4;5-4;4-4;3-4;2-4;1-8;2-4;3-4;4-4;5-4;6-4;7-6;

decode, upscale 
& segmentation

multi-layer
encode

...

L7
1920x1080 L1

640x360

SRC

join segments

...

...

...

7
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7
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Fig. 3. Toolchain for simulating video delivery over HAS in order to ensure
all subjects evaluate exactly the same impaired video sequences during our
subjective experiment.

the highest video resolution is performed as we assume the

video sequence is always played in fullscreen. As such, we

simulate the upscaling which would otherwise be done by

the device itself when playing each individual segment. For

this step, we used Lanczos resampling. Finally, using trace

files representing each of the three streaming scenarios listed

above, the different segments from the different quality levels

are concatenated to create one complete video sequence as it

would appear to the subjects when streaming it over HAS.

Video stallings are simulated by inserting frame freezes with

silent audio in the video sequence. As the resulting video

sequence is still in raw YUV 4:2:0 format, a final encoding

step is required to make the sequences playable on tablet

devices. The video part was again encoded using x264. During

this last encoding stage, a Constant Rate Factor (CRF) of 15

was used in order to ensure the absence of any additional

encoding artefacts5. This was also confirmed visually. As

explained in the previous section, the quality of the audio track

remained unchanged while processing the video.

The resulting video sequences where all locally stored on

the tablet device in order to ensure all subjects evaluated

exactly the same videos during the experiment.

5This resulted in an average encoding PSNR of 50dB.

D. Subjective quality assessment methodology and environ-

ment

Our subjective quality assessment is based on longer dura-

tion video sequences subject to time-varying quality fluctua-

tions. Since we are interested in capturing end-users’ reactions

to these changes in perceived video quality, receiving instan-

taneous feedback is preferred. This also enables us to track

the impact of previous quality levels on the current perceived

quality.

Therefore, we selected the Single Stimulus Continu-

ous Quality Evaluation (SSCQE) [10] subjective assessment

methodology as base for conducting our experiment. Using

this methodology, rapid changes in quality can be tracked [37],

[41] and subjects can continuously adjust their quality rating

during video playback. We have implemented this method-

ology to enable quality evaluation on tablet devices, more

specifically fourth generation iPads. As depicted in Fig. 4,

subjects were presented with a slider at the bottom of the

screen to adjust their quality rating.

Fig. 4. Screenshot of the implemented SSCQE subjective assessment method-
ology. Using the slider, subjects can instantaneously adjust their quality rating.

Before the start of the experiment, subjects were informed

on how to evaluate the different video sequences. Specific

instructions were provided to emphasize the importance of

continuously adjusting their quality rating using the slider

while watching the video. The slider ranged from 0 to 100,

where 100 stands for ‘perfect’ quality. Also, one training

sequence was used to get the subjects familiarized with the

experiment. During the experiment, all video sequences (18

in total) were randomly shown one-after-another. Before the

start of each sequence, we inserted a short pause of 5 seconds.

Also, at the start of each sequence, the slider position was

restored to the middle (50).

Traditionally, subjective quality assessment experiments are

conducted in controlled environments [9], [10] with stringent

requirements imposed on room lighting conditions, screen

calibration, viewing distance, and subjects’ seating position.

However, research has also shown that assessing quality in

more realistic environments can impact users’ quality percep-

tion and overall QoE [6], [33], [42]. Therefore, in order to

better understand QoE, Van den Broeck et al. [43] argue that
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the everyday-life context should be integrated in subjective

video quality experiments. In the study presented in this

article, the latter is achieved by actually going to the people’s

home and let them watch the video sequences on the tablet

device in their typical home environment. As such, subjects

are placed in a more ecologically valid testing environment.

E. Test subjects

A total number of 26 test subjects participated in our

experiment, ten of which were females. The age of the female

test subjects ranged from 24 to 31 years old with an average

age of 28. The male subjects were aged between 22 and 65

years old, with an average age of 32.

Subjects were allowed to select their own most comfortable

seating position and viewing distance as they would normally

use the tablet device. On average, the viewing distance be-

tween the subject’s eyes and the tablet’s screen was around

15.32 inches with a standard deviation of 3.69 inches. This

corresponds to a viewing distance close to three times the

actual iPad’s screen height (in landscape mode). Subjects did

not change this seating position and viewing distance during

the experiment.

V. RESULTS

As recommended by ITU-R Recommendation BT.500, the

continuous raw data from each of the test subjects was first

sampled every 500ms and averaged over all test subjects before

processing and analysing the data further.

In the case of continuous quality evaluation, users’ (in-

stantaneous) feedback can be slightly delayed due to the

variation in user response times [10]. In other words, when

a visual stimulus changes, subjects need some time to react

to these changes and adjust their quality rating. Therefore,

SSCQE scores are typically globally time-shifted in order

to compensate for this delay in response times [44], [45],

[46]. In our research, we are primarily interested in assessing

end-users’ reactions to quality fluctuations, not in estimating

perceived video quality. Therefore, we do not compensate for

shifts in response times.

In [47], the authors first convert the raw quality ratings to

standardized and normalized Z-scores in order to compensate

for differences in subjects’ quality scale usage. In our case,

converting the raw scores to Z-scores reduced the deviation

between test subjects without affecting the overall average

rating behaviour. As such, for our data analysis, converting

the data to Z-scores did not prove very useful.

In this work, we thus present the continuous quality ratings.

The work of Seufert et al. [48] shows that the overall QoE

of HTTP Adaptive video streams can be estimated with high

accuracy by simply taking the mean values of the different

quality levels.

A. Scenario 1: Influence of bitrate fluctuations and video

stallings

As depicted in the upper part of Fig. 5, the first scenario

contains a wide variety of bitrate switches, including multi-

range switches, gradual switches, and short and longer du-

ration switches. Also, four rebuffering events are simulated

resulting in two video stallings of 0.5 seconds in duration

followed by two stalling of 1 second. These video stallings

are represented by gaps in the scenario plot.
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Fig. 5. Overview of the quality switches during video playback in order to as-
sess the influence of bitrate fluctuations and video stallings; and corresponding
average quality ratings per video sequence.

The average quality ratings for each of the content types are

plotted in the lower part of Fig. 5. Using a Mann-Whitney U

Test, we found that there are significant differences between

the average quality ratings of the different sequences. Hence,

in correspondence to the results in [18], content influences

quality ratings and rating behaviour.

As shown in Table II, target bitrates were used to encode the

quality levels of the video streams. When targeting a certain

bitrate, the resulting encoding quality also depends on video

characteristics. As such, easy-to-code sequences will have a

higher visual quality compared to hard-to-code videos [49].

The results in Fig. 5 show that the test subjects are able to

track the quality fluctuations during video playback. We found

that the average delay in viewers’ response times is around two

seconds. The saturation effect [37], [50] causes subjects not to

use the extremes of the rating scale. Hence, the highest quality

level does not necessarily result in a quality rating of 100.

The multi-range bitrate switches in the beginning of the

sequence have a slightly higher impact on the quality ratings

for the action, nature and sports sequence. This corresponds

with the harder-to-code sequences which contain a lot of

spatial details and texture (see Table I). In case of the drama

sequence, which contains the least amount of motion, the

bitrate fluctuations are not visible resulting in a nearly constant

average quality rating.

From the graph it shows that the short multi-range bitrate

switches are rated worse quality compared to longer duration

mid-quality switches. No real difference can be observed

between switching to a mid-quality levels gradually or instan-

taneously. As such, there are limited noticeable differences be-

tween the high and mid-quality levels of the video stream [22]

which impact quality ratings [23], [24]. In the third scenario

(Section V-C), we will investigate whether this is also the

case when switching gradually or instantaneously between the

highest and the lowest quality levels of the video stream.
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It is clear that the occurrence of frame freezes (video

stallings) during playback have a high impact on the quality

ratings. In the case of video stallings, a significant drop can

be observed in the average quality ratings for all the video

sequences. Additionally, consecutive stallings result each time

in a lower appreciation of the video’s QoE. This corresponds to

our earlier research findings [6] that video stallings negatively

influence viewers’ immersive experience. As such, correspond-

ing to the results in [7], [8], [28], buffer starvations resulting

in video stallings should be avoided at all times during video

playback.

B. Scenario 2: Influence of frequent bitrate switches

In order to assess the influence of the frequency of bitrate

switches, we created a scenario with oscillating segment

quality. In this case, the mid-range level switches differ both

in frequency and duration as shown in Fig. 6.
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Fig. 6. Overview of the quality switches during video playback in order to
assess the influence of frequent bitrate switches on quality perception; and
corresponding average quality ratings per video sequence.

The average quality ratings in Fig. 6 indicate that the mid-

range quality level switches are in most cases not perceived

by our test subjects. This is in line with our findings from the

previous scenario that there are limited noticeable differences

between the mid-range quality oscillations of our video se-

quences. Especially in the case of video sequences with low

amounts of motion and spatial detail (drama and music), the

mid-range quality fluctuations are actually not perceived at all.

In case of the nature and cartoon sequence, the frequent

quality level switches at the beginning of the video playback

result in a lower average quality rating compared to maintain-

ing a lower quality level for a longer period in time as was

also found in [7] and [23]. Less frequent switches have again

no real impact on the perceived video quality.

With exception of the action sequence, the frequent mid-

range quality switches do not result in a decrease of the

average perceived quality but yield a stabilisation of the

ratings. In slight contrast, the frequent full-range quality

switches from the previous scenario do result in a decrease

of quality perception. Hence, not only the frequency of the

switches impacts end-users’ perceived quality but also the

range between the quality levels during the switches.

The average rating behaviour for the action sequence de-

viates the most from the other video sequences. This scene

is characterized by high motion, high spatial details and rapid

camera scene changes. In this case, the mid-range quality level

switches are perceivable to our test subjects. Inspecting the

graph shows that the occurrence of quality level switches now

has a negative effect on the average rating behaviour, indepen-

dent of the duration of the switch. Every time a switch is made

between high and mid-quality, the average quality rating drops.

This indicates that the number of switches throughout the

sequence has a bigger effect on quality perception compared

to the duration of these switches. This again shows that quality

perception is highly content dependent and complies with

the research findings from Robinson et al. [25]. In [32], the

authors also found that in case of a high action sequence,

users have different quality expectations and requirements over

extended periods of time which could be attributed to content

desirability [36].

C. Scenario 3: Influence of multi-range bitrate switches

In the first scenario (Section V-A), we found that switching

gradually or instantaneously between high and mid-quality

levels of the video has no influence on quality ratings. The

latter is also the case for most of the video sequences in

our second streaming scenario containing frequent bitrate

switches. In this scenario, we investigate the influence of

multi-range bitrate switches by considering instant and gradual

quality level switches covering the whole range of quality

levels as depicted in Fig. 7.
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Fig. 7. Overview of the quality switches during video playback in order to
assess the influence of multi-range bitrate switches; and corresponding average
quality ratings per video sequence.

From the lower part of Fig. 7, it can be seen that the

average ratings for all of the sequences exhibit a similar

behaviour. Overall, switching between the highest and lowest

quality levels instantaneously results in lower average quality

ratings compared to gradually downgrading segment quality.

On average, the lowest quality level (level 1) is rated 30%
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better quality in case of gradual quality level switches com-

pared to an instantaneous switch. This corresponds to the

research findings in [7] and [21]. As such, gradual bitrate

switches are indeed preferred over large multi-range switches

since they have a smaller impact on quality perception [23],

[24]. Remark, however, that this finding is in our case only

valid when switching between the highest and lowest quality

levels of the video. This behaviour was not observed when

switching between high and mid-quality levels as discussed in

the previous scenarios.

Likewise the other scenarios, quality ratings and rating

behaviour are impacted by content type. Gradual quality level

switches are less visible in low motion sequences.

VI. CONCLUSION

In this article, we assessed the influence of quality fluctu-

ations during HTTP Adaptive Streaming to mobile devices.

In this work, we went beyond existing state-of-the-art sub-

jective studies and recommended assessment methodologies

by conducting novel experiments in more ecologically valid

environments using long duration video content. As such,

we extended the scope of existing subjective studies. Our

experiments were conducted on iPad devices in subjects’ own

home environment. Furthermore, we also included different

video content types.

Based on different simulated HAS scenarios, we assessed

the influence of bitrate fluctuations and video stallings on

quality perception. In this respect, we also considered the

influence of switching frequency and switching range. Using

continuous quality evaluation we were able to track end-users’

behaviour in case of changing video quality.

We found that test subjects are able to track the simulated

quality fluctuations. Corresponding to earlier research findings,

our results show that, in general, video stallings should be

avoided at all times and that gradual quality changes have a

smaller influence on quality perception compared to instanta-

neous switches.

In this study, we found significant influences of video

content and the range of quality switches on the average

rating behaviour. In our case, quality level switches are only

perceived in high motion sequences or in case quality level

switches occur between highest and lowest quality of the

video. Limited noticeable differences were observed between

high and mid-quality switches during video playback.

The results of this study can be used to implement more

intelligent adaptation strategies in the HAS clients in order

to ensure and maintain QoE towards the end-users at all

times. In this respect, as part of the adaptation strategies, both

video stallings and high multi-range quality switches should

be avoided.

Concerning conducting our experiments in more ecologi-

cally valid testing environments, we found that our results

deviate less from experiments in controlled environments

compared to some of our earlier research on the influence of

assessment environment on quality perception. However, as we

relied on continuous quality evaluation, test subjects remain

concentrated on actively evaluating video quality throughout

the entire experiment which hampers an immersive experience.
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