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Subjective Quantification of Perceptual Interactions among some

2D Scientific Visualization Methods
Daniel Acevedo and David H. Laidlaw

Abstract— We present an evaluation of a parameterized set of 2D icon-based visualization methods where we quantified how
perceptual interactions among visual elements affect effective data exploration. During the experiment, subjects quantified three
different design factors for each method: the spatial resolution it could represent, the number of data values it could display at
each point, and the degree to which it is visually linear. The class of visualization methods includes Poisson-disk distributed icons
where icon size, icon spacing, and icon brightness can be set to a constant or coupled to data values from a 2D scalar field.
By only coupling one of those visual components to data, we measured filtering interference for all three design factors. Filtering
interference characterizes how different levels of the constant visual elements affect the evaluation of the data-coupled element.
Our novel experimental methodology allowed us to generalize this perceptual information, gathered using ad-hoc artificial datasets,
onto quantitative rules for visualizing real scientific datasets. This work also provides a framework for evaluating visualizations of

multi-valued data that incorporate additional visual cues, such as icon orientation or color.

Index Terms—Perception models, 2D visualization methods, visualization evaluation, perceptual interactions, visual design.

1 INTRODUCTION

Modeling the space of possible visualization methods for a given sci-
entific problem has challenged computer scientists, statisticians, ge-
ographers, and cognitive scientists for many years; it is still an open
challenge. The goal of such models is to describe a searchable space
where scientists can find visualization methods that optimally convey
the information they require. Our approach to achieving this is to op-
timize the design of the images by studying how the components of a
visualization method affect each other to facilitate, or complicate, data
perception and comprehension.

The basic scientific visualization process involves symbolization,
the translation of verbal and numerical information into graphic
form [28], and comprehension, the analysis and understanding of
the data presented. Our research is oriented towards developing ex-
ploratory data visualization methods, with the goal of prompting vi-
sual thinking and knowledge construction by presenting unknown and
often raw data [26]. Understanding and insight are the main goals of
scientific data visualization methods, but methods to represent known
phenomena (e.g. turbulence in air flow or stress points in a structure)
or geared towards performing specific tasks (e.g. finding extrema or
identifying a type of turbulent flow) are qualitatively different from
visualization methods designed for exploration of the data. Scientists
usually utilize the latter during the early stages of their research, when
they require visuals that provide a broad understanding of the data be-
ing presented. They begin posing hypotheses and asking questions
about the data, which lead them towards task-oriented visualization
methods for further analysis. Exploratory visualization methods allow
them also, in a first approximation, to qualitatively assess the valid-
ity of their experimental and data gathering methods. At this stage,
visualization is merely a tool to help scientists think about their prob-
lem [18].

We focus on visualization methods for multi-valued scientific
datasets in 2D. These datasets are widely used in disciplines such as
meteorology, geology, cartography, physics, and engineering. Even
when scientists are studying three (or higher) dimensional phenom-
ena, they often rely on 2D slices, such as cutting planes or isosurfaces,
to explore and study the datasets.
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Fig. 1. An example of interference between icon spacing (representing a
linear variable) and icon brightness (representing a more general scalar
field). Areas of high brightness create false lower-spacing regions.

Common practice in scientific visualization is the mapping of scalar
quantities to the visual qualities of surfaces containing the data, with
color being the predominant example. Other visual qualities that can
be used to represent a scalar field on a 2D surface belong not to the
surface itself, but to glyphs or icons that can be placed on the sur-
face. Color is again the initial choice for most applications, but size,
distribution, and orientation of these icons can also be used to visu-
ally represent a scalar field. We call those visual characteristics our
visual elements, since they will be the basic components of our study.
Icons also have the advantage that they can be layered, increasing the
number of variables being simultaneously shown.

A key issue here is how that layering property is used. Each of
the visual elements can be mapped to represent a scalar variable but
combining them in a single display will create visual artifacts. These
perceptual conflicts can distract from correctly reading the information
presented. See Figure 1 for an example of this.

The main novelty of our approach is the quantification and model-
ing of how the different visual elements interact with each other. This
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interaction can be explored at many levels [8] but the present study is
limited to filtering interference among the various elements. This type
of interaction is based on the visual elements being mapped to data
one at a time, while the rest remain constant across the visualization.
We chose to limit our experiment to three visual elements: icon bright-
ness, icon size and icon spacing. This decision was made to decrease
issues due to subject fatigue during the experiment. Size and density
are elements that received a highly varied set of reactions during our
previous experiments [1]. Also, very few studies have been published
exploring these two elements together [36]. Icon brightness was cho-
sen because it is an element that has been studied in depth, allowing
us to compare our results with previous experiments. We realize that
these choices greatly constrain our otherwise exponentially large ex-
ploration space but, with just three elements involved, we are able to
generate an extensive set of examples for our experimental subjects to
evaluate. We will explain in detail our experimental methodology in
Section 4.

For our experiment we established a set of design factors that char-
acterize the capabilities of a visualization method in displaying sci-
entific data for exploration. These factors include constraints implied
by the dataset, such as the number of levels of a data variable present
and its minimum spatial feature size. A third factor indicates how vi-
sually linear the mapping between data and visual element is across
the image. We will describe these in more detail in Section 3. To ob-
tain numerical characterizations of our factors we created a framework
for evaluating visualization methods through indirect perceptual tasks,
making the experiment easier on the subjects but still powerful and
generalizable from our perspective.

Evaluating the effectiveness of visualization methods is difficult be-
cause tests to evaluate them meaningfully are hard to design and ex-
ecute [22]. We have researched this issue previously in several user
studies comparing 2D vector visualization methods. The first one [24]
used scientists to evaluate 6 visualization methods, and the second
one [19] studied the validity of subjective measures to evaluate the
same methods using designers as subjects. Results indicated that the
designers rated the visualization methods in a pattern similar to the
results of the scientists.

Following these examples we conducted an initial experiment to
characterize the effectiveness of 2D scientific visualization methods
using visual design experts as our subjects [1]. In that study we uti-
lized a superset of the design factors we used in the current experi-
ment, trying to engage our expert subjects into the evaluation of sci-
entific datasets. The difficulty of the tasks required, the high vari-
ance of the responses obtained, and the small subset of visual element
combinations tested made our results difficult to generalize. The cur-
rent experiment improves the tasks by making them more accessible
to non-expert subjects, lowering the variance between subjects.

In the following sections we will first put our research effort in con-
text with the state of the art in visualization synthesis. Section 3 will
provide a detailed description of the different elements we have de-
veloped to generate and evaluate visualization methods. In that same
section we will introduce the notation we will use in the remainder of
the paper.

In Section 4 we will describe the components of the current study,
followed by a description of its results in Section 5 and a discussion
on how they compare to established visual design criteria. Finally we
will conclude by introducing our ideas for follow-up studies and future
research, along with the main lessons learned from the current study.

2 PREVIOUS WORK

Visual designers and artists are trained on how to communicate mes-
sages visually. In our case the message is a scientific dataset. We have
previously researched, and continue to pursue, the idea of using artis-
tic techniques for scientific visualization [23], [21]. Our experience in
this area, and our ongoing collaboration with the Rhode Island School
of Design, helped us select the set of visual elements that form the
means by which we communicate our message.

Wallschlaeger and Busic-Snyder [34] provide a very comprehensive
classification of the different elements involved in the communication
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process. Although they provide a very clear description of each ele-
ment (color, shape, texture, etc.), they fail to formalize the interaction
among them and the issues arising from their simultaneous use, a key
component in our research.

Outside of the academic literature for art and design, one of the first
and most cited works in the classification and analysis of visual ele-
ments for data representation is Bertin’s Semiology of Graphics [3].
Our approach is very similar to his in that we are trying to characterize
the capabilities of each of our visual elements individually, and then
build up a model of how they perform in combination. He acknowl-
edges that any combination of visual elements is possible but he dedi-
cates very few pages to formalizing the use of their combinations. Our
studies are designed to gather knowledge and provide a basis for a for-
mal model for the effective combination of visual elements. Our work
also presents an opportunity to address a main criticism of Bertin’s
work, that he lacks experimental results for his factual presentation of
visual properties, by providing quantifiable evidence of his theories.

Many researchers have followed and applied Bertin’s work: Cleve-
land and McGill [11], Mackinlay [27], Casner [9], Robertson [31],
Lange et al. [25], Card and Mackinlay [7], Nowell [30], Chi [10],
Nagappan [29], Bokinsky [4] and Tory and Moller [33] are the most
extensive works trying to create a model for visualization synthesis.
Most of them, however, deal with what is known as information vi-
sualization methods. Hanrahan [14] recognizes the artificial nature
of the separation between information and scientific visualization, but
acknowledges that most of the research aimed at the definition and
characterization of a space of visualization methods has been done in
the information visualization field. Our work is very much inspired
and guided by the classification models developed for information vi-
sualization.

For spatially referenced data, MacEachren [26] presents an excel-
lent summary of previous research in cartographic visualization. He
expanded Bertin’s visual variables to include crispness, resolution,
transparency and arrangement. He also divided Bertin’s color into
hue and saturation for a total of 12 visual variables. Although his
classification is better supported by experimental references from map
makers and perceptual scientists, we miss some discussion about the
specific use of each variable, both individually and in combination
(combinations of hue, lightness and saturation are briefly presented).
He provides clues towards the generation of rules for map-making but
does not go as far as presenting such rules.

We have also studied the visual perception literature to support our
investigations, and the Gestalt laws of perception [13] are one of the
earliest attempts to qualify how the human visual system recognizes
relationships among visual elements.

Ware [35] provides an excellent reference towards the understand-
ing of all perceptual processes involved in information comprehension.
Color, texture, form, and motion are the main elements discussed in
his work, beginning from the physiological elements involved in per-
ceiving each of those, up to a series of recommendations for their use
in displaying abstract information. Ware takes a broad approach at
information visualization and, although continuous data is discussed
in the book, it is not its main focus. He provides a very good intro-
duction to the theory of integral and separable dimensions for visual
attributes, but provides little quantifiable evidence for his classifica-
tion. Our study provides such evidence for the displaying of continu-
ous scalar data.

We have found little experimental evidence about the perception of
visual element combinations. Callaghan studied how hue and lightness
interact in a texture segregation task [5]. She also compared, in pairs,
hue with form and line orientation [6]. Although she reached valid
conclusions about which variables dominate and when they interfere,
her stimulae were limited to two levels of the visual variable being
analyzed (e.g. horizontal and vertical for the oriented lines), while the
potentially interfering variable was randomized or kept constant.

Our experiment is very much inspired by Carswell and Wickens’s
work [8] in which they classify different graphical attributes into inte-
gral, separable or configurable dimensions depending upon how each
attribute’s reading is affected by the others, taken pairwise. They
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found that visual elements can help each other when displaying the
same information (redundancy or performance facilitation), or inhibit
each other when only one element is changing (filtering interference).
They also describe a third type called condensation in which opposite
variation of each variable occurs simultaneously. Their experimen-
tal displays are based on single icons, looked at in isolation. We are
extending their experiments to more complex displays and, for now,
limiting our analysis to filtering interference analysis.

Our goal is to find the visual characteristics of different visual ele-
ments when displaying quantitative information, where visual contrast
is the property that makes one data value different from the next. The
measurement of texture contrast thresholds is common in texture seg-
regation studies [2]. Those studies utilize stimulae with regions where
the particular visual element differs in some amount with respect to
the surrounding region. Many stimulae are required to explore the full
range of a visual element, and even more to include interference anal-
ysis with secondary elements. Our displays are designed to evaluate,
with less iterations, a larger portion of the range for each element.

Most of the literature about perceptually effective data representa-
tion is based on experience. Authors define sets of guidelines that, in
the absence of visual perception theories [32], follow common practice
and established knowledge [12]. In general, these approaches rely on
a clear definition of the task a visualization must fulfill, making them
difficult to apply in our research. Our exploratory visualization meth-
ods are geared towards presenting the data as clearly and unbiased as
possible for scientists to explore.

Healey has studied extensively the application of preattentive pro-
cessing to visualization [16]. Preattentive processing allows detection
of visual elements in a display without focusing attention on them. Ini-
tially, he focused on experiments comparing hue and orientation [17].
Subjects in his experiments were asked to perform numerical estima-
tion tasks with varying hue and orientation differences, as well as vary-
ing display time. He also proposed ViA, a visualization system based
on perceptual knowledge [15]. The goals of this system are very sim-
ilar to the ones in our research. He builds, by hand, the perceptual
knowledge-base used to suggest a visualization method, while we are
gathering that knowledge through subjective evaluations. In general,
Healey’s experiments come the closest to our evaluation approach.

Finally, Johnson [20], in his list of top scientific visualization prob-
lems, recognizes the quantification of the effectiveness of visualiza-
tion methods as one of the major research areas in this field. He also
included perceptual issues, multifield visualization and theory of visu-
alization, all areas that we are addressing in our project.

3 DEFINITIONS

In this section, we will define the two main components of our study:
our set of visualization methods and the design factors we defined to
characterize them.

3.1 A Space of Visualization Methods V

For the current study we will only work with icon brightness, icon
size, and icon spacing, denoted as v, v, and v, respectively in the
remainder of the paper. We utilize circular icons for all visualization
methods shown in this experiment. Expert visual designers [1] form
our first experiment suggested a circle as our test icon shape because
if its neutrality. It avoids having preferred linear cues in a per-icon ba-
sis, leaving all cues to be obtained from the dataset and icon locations
alone. A visualization method, v € V, takes a scientific dataset and
produces a visualization display. The method corresponds to a layered
combination of our visual elements where the different data variables
being represented are mapped to one or more of the available elements.
For the current experiment only one layer is created per visualization
display and we are only looking for interactions among the three ele-
ments we chose. A visualization method is then expressed as follows:

V= {(m07m17m2)7(r07r1>r2)}

Each component of v refers to one of the three visual elements v;:
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values
0.00 0.33 0.66 1.00
Vg brightness 0.00 0.33 0.66 1.00
V.1 size (pixels) 2 5 £ 10
VZ spacing (pixels) 0 3 6 10

Table 1. Values used for each of our visual elements.

0
nm; = di
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v; is not mapped
v; is mapped
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where d; is the index of the data variable mapped into v;. (b;,e;) indi-
cates the range of linear mapping between v; and d;.

3.2 Design Factors

W(v) = (wo(v),w1(v),wz(v)) provides an evaluation of a visualiza-
tion method, v € V. It produces a vector of values, each of which
quantitatively characterizes the visualization method with respect to a
specific design criterion.

The goal of our visualizations is exploratory: scientists need an ac-
curate representation of their data but have no simple specific tasks in
mind, other than exploring how the different variables interact. In this
sense, the factors we define here provide information about the quality
of the data presented and the capability of a visualization method to
work in combination with other methods. Said factors are:

e data resolution (wg): the number of different levels of a data
variable that can be distinguished by a viewer;

e spatial feature resolution (w1 ): the minimum spatial feature size
that can be reliably represented with the method, expressed as a
percentage of the image width;

e visual linearity (wy): the degree to which subjects perceive the
mapping from data value to visual property as linear; this factor
is measured by asking subjects to indicate the locations where
they see the values of 0, 0.25, 0.5, 0.75, and 1.0 along the image
for a linear dataset visualization;

We derived these factors from our experience creating scientific visu-
alizations for our collaborators in many disciplines and from our pilot
study on designer-critiqued visualization methods [19]. Bertin [3] de-
veloped a similar classification of his retinal properties according to
their level of organization (whether they could be used to represent
quantitative, qualitative, or ordered information) and the number of
steps they could take (our data resolution factor). Our factors intro-
duce a new measure: visual linearity. Our data resolution and spatial
feature resolution factors capture the fact that we are targeting quanti-
tative datasets.

4 METHODOLOGY

Building on these visualization methods and design factors, we have
developed an experimental approach for acquiring knowledge about
our space of visualization methods.

4.1 Visualization Methods

Table 1 shows the values we chose for each of the three visual ele-
ments involved. Icon size and spacing are both measured in pixels.
Size indicates the diameter of the circular icons, while spacing indi-
cates the distance between two icons. As mentioned before, we utilize
a Poisson-disk distribution to randomly place icons across the image.
This distribution, as opposed to a regular grid, allows us to represent a
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Fig. 2. Process for creating the stimuli for the data resolution identifica-
tion task. (a) Shows a vertical sine-wave dataset. (b) Shows the same
dataset with amplitude values « linearly decreasing from left to right. (c)
Shows the final appearance of the datasets used for this task, where we
also linearly move the zero value of the sine-wave from a/2 at the top of
the image to 1 —a/2 at the bottom. (d) Shows how subjects would mark
the area where they perceive the sine-wave pattern.

c) d)

continuous scalar dataset with icon spacing by mapping the data vari-
able to the distribution’s disk size at each point sampled. We experi-
mentally chose the upper limits for size and spacing so we could ex-
plore methods with reasonable spatial feature capabilities.

With these parameters we can define six possible value ranges, pairs
(bj, e;),for each visual element: (0.00,0.33), (0.00,0.66), (0.00, 1.00),
(0.33,0.66), (0.33,1.00), and (0.66,1.00). For icon brightness meth-
ods we combine these six ranges with all possible combinations for
the other two elements, creating a total of 72 visualization methods
that we will evaluate. For icon size and spacing methods we keep icon
brightness constant at 1.00, so 24 combinations (6x4) can be defined
for each of those two elements. Note that even constraining our ex-
periment to a small number of elements, and only four possible values
per element, the number of combinations is quite large: 120 different
visualization methods.

The experiment consists of three different tasks, one per design fac-
tor. For each task subjects are shown a set of images using different
visualization methods to represent simple scalar datasets.

4.2 Data Resolution Identification Task

For this task we are asking subjects to evaluate how many different
levels of the data variable a method is able to represent. We asked
this question directly during a previous pilot study [1], but subjects
had a high variance in their responses, prompting us to design a new
approach to ask this question. We created the new stimuli as follows.

Using a vertical sine-wave pattern with constant wavelength A
across the image (Figure 2 (a)), we linearly decrease the amplitude
a from left to right (Figure 2 (b)). While the amplitude values remain
constant vertically across the image, we linearly move the zero value
of the sine-wave from a/2 at the top to 1 —a/2 at the bottom. Figure 2
(c) shows the final appearance of such a dataset using grayscale.

The question subjects must answer in this task is: in what region of
the image do you see the sine-wave pattern? Since they are told the
pattern will be more pronounced at the top left corner of the image,
they just need to place 3 marks to approximately bound the region
where they perceive the pattern. Figure 2 (d) shows an example of
this.
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a) “'“ll‘ b)

Fig. 3. (a) Shows an example stimulae for the spatial feature resolution
identification task dataset, with wavelength A linearly decreasing from
right to left. (b) Shows the stimulae for the visual linearity perception
task.

To create these datasets we have two extra variables to fix, the initial
amplitude a and the wavelength 1. We tested several values for these
variables and decided to evaluate eight different combinations using
two amplitude values (a = {0.2,0.6}) and four wavelength values (A =
{0.625,1.25,2.5,5} measured in percentage of the image width). To
avoid multiplying by 8 the full set of 120 methods, we decided to use
only combinations that utilize the full range of the data-mapped visual
element, i.e. b; = 0.00 and ¢; = 1.00. During the analysis of the results
we can still describe the data resolution capabilities for any subrange.
Figure 4 (a), (b) and (c) show examples of images used for this task
for each of the three visual elements.

Finally, to obtain actual data resolution values we developed the fol-
lowing process. The marks placed by a subject delimit a region on the
image where the pattern is visible. The right and bottom boundaries
indicate lines where the difference between the extremes values of the
sine-wave are last perceived by the subject, i.e. the just noticeable
differences (jnd) boundary. The basic idea to obtain data resolution
values is to follow these boundary lines, starting from the top mark,
jumping from one level to the next a distance equal to the amplitude at
each point. With this process we will also obtain actual values, in the
range (0.00, 1.00), for each level identified.

Since there are two different initial amplitude values used, the re-
sults will overlap after a certain distance. The total data resolution
of a visualization method will be given by the number of levels ob-
tained for the a = 0.2 dataset, plus the number of levels for the a = 0.6
datasets with values greater than the maximum level obtained from the
a = 0.2 dataset.

4.3 Spatial Feature Resolution Identification Task

For this task we are asking subjects to evaluate the size of the smallest
spatial feature a method can represent. Again, during a previous pilot
study [1] we asked this question directly. We used expert designers
as subjects and we hoped their expertise would allow them to judge
the capabilities of each method. Due to insufficient training for this
task and inconsistent understanding of the concept of spatial features
across subjects, our results suffered the high variance problems.

Our approach to fix this task was to indirectly ask the question by
exploring the limits of each subject’s visual perception. In this case our
datasets are vertical sine-wave patterns that maintain constant ampli-
tude a but linearly change their wavelength A from left to right across
the image. Figure 3 (a) shows an example of this dataset using bright-
ness values from 0.0 to 1.0 (a = 1.0).

By asking subjects to place a mark when they stop perceiving the
sine-wave pattern, we are obtaining our minimum feature size mea-
surement. A /2 at that point will be the minimum spatial feature a
method can represent. For this task we use all 120 visualization meth-
ods mentioned before. The amplitude for each display is indicated by
the range (b;,e;). Figure 4 (d), (e) and (f) show examples of images
used for this task for each of the three visual elements.



ACEVEDO ET AL.: SUBJECTIVE QUANTIFICATION OF PERCEPTUAL INTERACTIONS AMONG SOME 2D SCIENTIFIC VISUALIZATION METHODS

a B
v =((1,0,0),((0.33,1.00),0.66,0.33))

e)

v=((0,1,0), (1.0, (0.00,1.00),0.66))
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f)

b= ((0,0,1),(1.00,0.66, (0.00,0.66)))

Fig. 4. Examples of various stimuli used for the experiment. (a), (b) and (c) show data resolution identification stimuli for icon brightness, size and
spacing respectively. All of them with A =5% and a = 0.6. (d), (e) and (f) show spatial feature resolution identification stimuli for the same three
visual elements. The actual method parameterizations are indicated below each image.

4.4 Visual Linearity Perception Task

In this task subjects are shown visualizations of a linear dataset that
progresses from a value of 0 on the left of the image to a value of 1
on the right edge (see Figure 3 (b)). They are told that O and 1 are
at the very edge of image and are asked to place five marks for the
values 0.0,0.25,0.50,0.75,1.0. The two extremes would indicate re-
gions where they do not perceive a change in the visualization’s border
regions. A visually linear method would maintain a constant ratio be-
tween data changes and visualization changes.

4.5 Experimental Setup

We ran a full within-subjects pilot study where 6 computer science
graduate students performed all three tasks. We randomized the or-
der of the three tasks, the order of the visual elements being evaluated
within each task and the order of the combinations for each element.
The full study consisted of nine separate sections (3 tasks x 3 elements)
with a training subsection and a real trial subsection within each one.
Response time was recorded for the real trials. There was no time
limit during any part of the study, although subjects were instructed
to proceed as quickly and accurately as they could. Subjects took an
average of an hour and forty minutes to complete the whole study and
were paid for their participation. Subjects were given written instruc-
tions before each task. Stimuli for all tasks consisted of images of size
900x900 pixels displayed one by one on an LCD display.

During training, subjects were shown datasets where we artificially
controlled the areas where patterns were present. For example, for
the spatial feature resolution task, we reached A = 2 pixels after only
half the image width. Since our minimum icon size corresponds to
2 pixels, no visible pattern is possible for features of 1 pixel (4/2).
This allowed us to screen for subjects not understanding the task. All
subjects performed correctly during training after only a few examples.

For all tasks subjects had the option of selecting a “No Pattern”

button when they could not detect the sine-wave pattern at all or, in
the case of the visual linearity task, when they could not see anything
changing in the image.

After each section of real trials, subjects were asked to indicate their
confidence level for the responses they gave and write down any com-
ments they had about the task, the interface, or the visualization meth-
ods.

5 RESULTS AND DISCUSSION

Data resolution results were plotted for each of the four A values used
for the data resolution task. Following the process indicated before,
we calculated data resolution values for all 120 visualization methods.
Spatial feature resolution and visual linearity results were also plotted
for all visualization methods. These results successfully characterize
the capabilities of each visual element using a variety of value ranges
in combination with potentially interfering visual elements. We will
discuss each design factor separately.

5.1 Spatial Feature Resolution

Figure 5 shows how spatial feature resolution values increase (the ac-
tual spatial feature size is measured in percentage of the image width)
when icon size and icon spacing values grow larger for the same icon
brightness range. The growth is faster with spacing than size. We
also observed that, as expected, different ranges of brightness have
different capabilities. All six brightness ranges show the same trend
with respect to size and spacing as shown in Figure 5. The range
vo = (0.66,1.0) showed the largest (poorest) feature size capabilities.
In fact, most of our subjects declared not seeing a pattern at all in the
displays corresponding to these particular methods.

The best results, with spatial feature resolutions of around 0.3% of
the image width, were obtained for methods that used the smallest icon
size (2 pixels) and the smallest spacing (0 pixels). This is reasonable
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spatial feature resolution
(% of image width)

spacing

Fig. 5. Plot of the spatial feature resolution results for icon brightness
methods (v = ((1,0,0),((0.00,1.00), x,*))). Note how spacing growth af-
fects spatial feature resolution more than size growth.

since these methods produce displays that are the closest to simple
grayscale displays. Still, reasonable spatial feature resolution values,
around 2.5% of the image width (around 22 pixels for the 900x900
images used in our experiment), were obtained for the extreme cases
where maximum size and spacing were used. The 95% confidence
intervals are very small across the board for all methods.

Interesting to note is the fact that ranges that included brightness
values of zero showed, in general, smaller spatial feature resolution
than the rest, despite the fact that the background for all images was
also black, diminishing the contrast. The range of 0.3% to 2.5% is
common for all brightness ranges that include black. After that, the
more the lower end of the brightness range moves from black, the
worse subjects performed.

More surprising are the spatial feature resolution values for size and
spacing methods. Figure 6 shows the results for size. The overall trend
is that they have symmetric interaction: larger icon size affects the
reading of spacing values in the same way spacing affects the reading
of icon size values. The unexpected result is that actual spatial feature
resolution values are comparable to icon brightness methods, with the
best results being around 0.3% of the image width for small spacing
and small size of icons. The explanation for this unexpected good
performance of size and spacing comes from the design of our exper-
imental stimuli. Our sine-wave patterns for this task do not change
vertically across the image. This produces very strong linear cues that
induce subjects to continue perceiving the sine-wave pattern when, lo-
cally, there is no clear evidence of it. Real datasets do not usually ex-
hibit this kind of linear structure, so our results would not be applicable
in practice. A solution to this effect would be to run the experiment
again using only narrow horizontal bands of our square displays.

5.2 Data Resolution

Figure 7 shows results for data resolution for the same full-range icon
brightness visualization methods shown before. The trends are con-
sistent with the results from spatial feature resolution. Maximum data
resolution levels are around 21 levels in average, with 95% confidence
intervals being £5. This result was obtained when size and spacing
are at minimum values and A = 5%.

As mentioned before, for this task we presented subjects four dif-
ferent wavelength datasets. As expected, the number of recognizable
levels of data grows larger as the wavelength increases. For exam-
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Fig. 6. Results for all 6 ranges of icon size with respect to the 4 differ-
ent values of spacing for the spatial feature resolution task. The vertical
axis shows the distance from the left border of the display where sub-
jects placed the mark, the closer to zero the lower the spatial feature
resolution is (see Figure 4(e)). All plots show 95% confidence intervals.
Observe how, for the size range (0.66,1.00), almost all subjects reported
a “No Pattern” result (plotted as 1 in the graph.) It can be observed that
the larger the range the better resolution. For same size ranges, like
(0.00,0.33), (0.33,0.66), and (0.66,1.00), the smaller the size the better
results. Equivalent plots for spacing versus size show symmetric effects.

ple, for the same method mentioned before but with A = 2.5%, the
data resolution is around 15 levels, whereas going all the way down
to A = 0.625% yields only around 9 recognizable levels. Note that in
this particular case we are not yet at the spatial feature resolution limit
for this particular method, which was around 0.3%.

The results for size and spacing are particularly interesting since,
although they still follow the same trend as expected from the spatial
feature resolution data, they are very different in absolute values (see
Figure 8). Maximum data resolution values for icon size visualization
methods are around 5 data levels, while maximum values for spacing
methods get up to 9 levels. Given the problems with the stimuli for
the spatial feature resolution task, we believe the better performance
of spacing for this task reflects its real relationship with respect to
size methods. Same as before, the resulting data resolution values
clearly increase when the range of the visual element being used grows
larger.x

5.3 Visual Linearity

All subjects reported difficulty completing this task. They easily
placed the marks for the extreme values but they could not judge,
in general, the 25% intermediate differences we were asking them to
indicate, especially for icon brightness methods. Subjects also com-
plained about possible inaccurate gamma calibration of the monitors
used. We need to further explore this task and reimplement this portion
of the experiment. It is still worth noting that practically all methods,
for all three visual elements, exhibited clear constant-value areas for
the extreme values, sometimes as large as 30% of the image width.
This is consistent with our data resolution values where subjects indi-
cate no jnd’s for those ranges.

Collecting accurate data about perceived visual linearity is impor-
tant because our experimental tasks compound the effects of percep-
tual non-linearity with interference from the distractor visual parame-
ters, which are constant in our case. To solve this, our visual linearity
perception task is designed to provide us with the information to “fix”
the parameterization. Given reliable perceived linearity solutions we
could adjust the datasets for the other tasks to compensate for linearity,
isolating the interference from the distractors.
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data resolution {# of levels)
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Fig. 7. Plot of the data resolution results for icon brightness methods
(v=1((1,0,0),((0.00,1.00),*,%))). Consistent with the results for spatial
feature resolution (the direction of the size and spacing axes is reversed
with respect to Figure 5), spacing growth affects data resolution more
than size growth. This plot corresponds to A = 5%, which gives the
highest data resolution values.

5.4 Comparison with Previous Results

Bertin [3] provides one of the few examples of quantitative results for
data resolution values. Although he does not explicitly measure them
for icon brightness, he recognizes that the smaller the icons, the fewer
levels our perception should be able to differentiate. Our results con-
tradict that for all spacing levels (see Figure 7). For size, he proposes
an average of 20 distinguishable levels when the ratio between the
extremes of the range is 1 to 10. Our range is only 2 to 10 so our re-
sults should be expected to be smaller, but 5 levels is the maximum our
subjects could differentiate. The more surprising result is that, for icon
spacing, our subjects can differentiate a maximum of 9 levels, while
Bertin does not expect more than 5.

Our spatial feature resolution results are hard to compare with ex-
isting psychophysical experiments, given our lack of control for val-
ues like distance from the screen or gamma correction. The values
obtained, on the other hand, seem to follow our expectations. Our per-
ceptual system contains specialized cells to detect brightness changes,
whereas size and spacing changes seem to get processed differently.
Our results validate this trend of better results for icon brightness.
They also generate some surprising evidence for the perceptual or-
dering of icon size and spacing.

5.5 About the Experiment

Even though we dramatically reduced the number of combinations of
visual elements we explore, the experiment posed a big design chal-
lenge. Subjects commented on its apparently extraordinary length due
to the similarity of all the images. As we saw from the results, the
actual values obtained establish clear differences. With these 6 sub-
jects we were able to fully randomize the order of the three tasks to
eliminate any possible learning effects. Nevertheless, fatigue was a
big factor that, although it did not explicitly show up in the data col-
lected, will require moving to shorter between-subjects design, or even
multiple sessions.

With this experiment we solved the high variance issue we had dur-
ing our pilot study with expert visual designers. The cost for this is
two-fold. First, subjects evaluated methods one at a time, avoiding di-
rect comparisons among displays that were possible in the first study.
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Fig. 8. Results of the data resolution task for size and spacing. Both
plots correspond to A = 5%. 95% confidence intervals are around +2.
Observe how increased values for the distractor variable decrease the
data resolution results consistently across different ranges.

Comparative critique is a very useful tool design educators utilize con-
stantly, but one that we had to sacrifice to improve the quality and
quantity of data obtained. Secondly, we did not use expert visual de-
signers as subjects, so we could not expect feedback on why a method
performs as it does for a given task. Our tasks now are more perceptual
than conceptual and the low variance of the data, along with consistent
trends, validates our choice of non-expert subjects.

During the study, all wave-like patterns utilized a sine-wave func-
tion. Since we are looking for jnd values, a triangular function with
more marked ridge and valley lines or even a step function could yield
different results. A step function, for example, would allow us to gen-
eralize our results to discrete-valued datasets.

Our first priority after obtaining these encouraging results will be
to increase the number of visual elements involved, including color
and orientation. This will require moving to a between-subject design
to avoid fatigue when running the experiment. Once we have more
data about how the different elements interact, we will begin defining
a model for higher order combinations that we would also need to
evaluate on real datasets. We will use expert visual designers again
at that point, since exhaustive exploration of such a high dimensional
space would be impractical.

This experiment is an important first step in our very complex mod-
eling project. The tasks chosen here measure characteristics that we
will use to evaluate the effectiveness of a visualization method. This
effectiveness will be measured by quantifying how well a method ful-
fills a set of given design goals such as how much data resolution is
required or what minimum spatial feature resolution a visualization
method should guarantee. These results begin to describe how our
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space of visualization methods is structured, so we can, ultimately,
efficiently search within it for effective methods for exploratory scien-
tific visualization.

6 CONCLUSION

In this experiment we characterized the capabilities of a total of 120
different visualization methods to represent 2D scalar fields effec-
tively. Our results successfully reproduce what other perceptual ex-
periments have obtained when describing the individual performance
of visual elements: icon brightness easily outperforms icon spacing
and size while being subject to their interferences. Icon spacing also
outperforms icon size, contradicting some previous results. Our main
contribution is the successful application of a new methodology ca-
pable of evaluating perceptual interactions among multiple visual el-
ements, making numerically explicit how a change in one of the ele-
ments affects how a user reads the data in the visualization.
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