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Counting craters in remotely sensed images is the only tool that provides relative dating of remote planetary
surfaces. Surveying craters requires counting a large amount of small subkilometer craters, which calls
for highly efficient automatic crater detection. In this article, we present an integrated framework on au-
todetection of subkilometer craters with boosting and transfer learning. The framework contains three key
components. First, we utilize mathematical morphology to efficiently identify crater candidates, the regions
of an image that can potentially contain craters. Only those regions occupying relatively small portions of the
original image are the subjects of further processing. Second, we extract and select image texture features,
in combination with supervised boosting ensemble learning algorithms, to accurately classify crater candi-
dates into craters and noncraters. Third, we integrate transfer learning into boosting, to enhance detection
performance in the regions where surface morphology differs from what is characterized by the training set.
Our framework is evaluated on a large test image of 37, 500 × 56, 250 m2 on Mars, which exhibits a heavily
cratered Martian terrain characterized by nonuniform surface morphology. Empirical studies demonstrate
that the proposed crater detection framework can achieve an F1 score above 0.85, a significant improvement
over the other crater detection algorithms.

Categories and Subject Descriptors: I.5.2 [Pattern Recognition]: Design Methodology—Classifier design

and evaluation; feature evaluation and selection; pattern analysis; I.5.4 [Pattern Recognition]: Applications

General Terms: Algorithms

Additional Key Words and Phrases: Classification, feature selection, transfer learning, spatial data mining,
planetary and space science
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1. INTRODUCTION

Impact craters, the structures formed by collisions of meteoroids with planetary sur-
faces, are among the most studied geomorphic features in the solar system because
they yield information about the past and present geological processes and provide the
only tool for measuring relative ages of observed geologic formations [Crater Analysis
Techniques Working Group 1979; Tanaka 1986]. However, advances in surveying
craters present in images gathered by planetary probes have not kept up with the
advances in collection of images at ever-higher spatial resolutions. Today, as in the
past, efficient crater detection in planetary images remains as a daunting task due to
the following challenges [Kim et al. 2005].

(1) Challenge 1: Lack of distinguishing features. Craters, as a landform formation,
lack strong common features distinguishing them from other landform formations.
Their sizes differ by orders of magnitude. Their rims have often been eroded since
their formation millions of years ago, resulting in shapes that depart significantly
from circles. They frequently overlap, complicating the task of their separation
from background.

(2) Challenge 2: Heterogeneous morphology in images. Planetary surfaces are not homo-
geneous where nonuniform surface morphology frequently exhibits. Furthermore,
planetary images may be taken at different lighting conditions, at different resolu-
tions, and their quality varies so that even morphologically identical craters may
have different appearances in different images.

(3) Challenge 3: Huge amount of subkilometer craters in high-resolution planetary
images. The size distribution of craters follows power-law [Tanaka 1986]; large
craters that can be easily identified manually are rare and small subkilometer
craters are abundant.

As a result, comprehensive catalogs of craters are restricted to only large craters
using manual inspection of images, for example, 42, 283 Martian craters with diameters
larger than 5 km [Barlow 1988], and 8, 497 named lunar craters with diameters larger
than a few kilometers [Andersson and Whitaker 1982]. There are millions of smaller
craters waiting to be identified in a deluge of high-resolution planetary images but no
means for their efficient identification and comprehensive analysis. If left to manual
surveys, the fraction of cataloged craters to the craters actually present in the available
and forthcoming imagery data will continue to drop precipitously. Crater autodetection
techniques are needed, especially to catalog small subkilometer craters that are most
abundant. Surveying such craters is ill-suited for visual detection, due to their shear
numbers, but well-suited for an automated technique. In summary, automating the
process of small crater detection is the only practical solution to a comprehensive
surveying of such craters.

This article partially addresses Challenges 1–3 by designing an innovative frame-
work that uses feature extraction, feature selection, and supervised boosting ensemble
learning. The three key components of proposed method are as follows.

—Utilizing mathematical morphology on shape detection for efficient identification of
regions indicative for craters. Due to the shear number of small sub-km craters
discussed in Challenge 3, a practical crater detection tool must use computational
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time wisely. We adapt the concept of crater candidates introduced by Urbach and
Stepinski [2009]. Crater candidates are the regions of an image that can potentially
contain craters. The benefits of identifying crater candidates at an early stage are
two-fold: (i) Significant computational time is reduced at later stages of complicated
calculations on feature extraction and classification, where crater candidates are
used instead of pixel-based image blocks that are calculated from exhaustive search
of the entire image. (ii) The number of false positive detections is reduced at the
stage of classification, because a large portion of the image, including background, is
removed from being classified.

—Using a combination of image texture features and a family of supervised boosting
ensemble learning algorithms to yield a highly accurate classifier. Targeting at Chal-
lenge 1, we are the first research team that contruct image gradient texture features
from crater candidates for rapid feature extraction. Those gradient texture features
can efficiently capture the underlying image gradient structure without requiring
prior domain knowledge. A set of base learners are built from those texture features
and combined to build a strong classifier using boosting ensemble learning.

—Applying transfer learning to feature selection and classifier induction, in order to
minimize training for the application of a crater detection tool to a heterogeneous
planetary surface. As discussed in Challenge 2, an unseen test site may contain
craters that are different from those in the training site. A set of transfer learning
algorithms are newly designed to transfer knowledge from an old training site to a
new unseen test site. We propose TL-Random, TL-Max, TL-Min, and TL-MaxMin
algorithms to sample new test instances and add them into the existing training set,
using random sampling, sampling of maximum, minimum, and combined maximum
and minimum distributions, respectively.

The entire framework is evaluated on a large, high-resolution image of Martian sur-
face (37,500 × 56,250 m2), featuring high density of small sub-km craters and spatial
variability of crater morphology. The proposed boosting ensemble learning algorithms
with transfer learning achieve an F1 score above 0.85 on crater detection, a significant
improvement over the other crater detection algorithms. The transfer learning algo-
rithms have proved powerful on regions where surface morphology differs as charac-
terized by the training set. The experimental results demonstrate robustness and good
accuracy that validate our approach and make it feasible to construct a robust and reli-
able crater autodetection framework that can be widely adopted for planetary research.

The rest of the article is organized as follows. Section 2 discusses the proposed crater
detection framework: Sections 2.1 and 2.2 explain how to construct crater candidates
and image texture features from those candidates. Section 2.3 provides a brief review
on unsupervised versus supervised crater detection methods. Section 3 introduces our
ensemble boosting algorithms used for crater detection with and without using trans-
fer learning. Section 4 presents our empirical study on finding craters in a large,
high-resolution planetary image. Section 5 summarizes our work and discusses future
directions.

2. A FRAMEWORK FOR AUTOMATIC CRATER DETECTION

The flow chart indicating components of our method is shown in Figure 1. A key in-
sight behind our method is that a crater can be recognized as a pair of crescent-like
highlight and shadow regions in an image (see Figure 2). Pairwise crescent-like shapes
are identified from images using a shape detection method based on mathematical
morphology [Urbach et al. 2007], and those that can be matched are used to construct
crater candidates [Urbach and Stepinski 2009], the locations where craters likely re-
side. The input objects of supervised learning are derived from image blocks containing
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Fig. 1. Diagram illustrating the crater detection framework. (1) Crescent-like shadow and highlight regions
are identified using shape filters. (2) Shadow and highlight regions that can be matched are used to construct
crater candidates. (3) Image texture features are extracted from crater candidates using square kernels.
(4) Craters are identified using supervised learning algorithms.

Fig. 2. (A) Diagram explaining why an image of a crater consists of crescent-like highlight and shadow
regions. (B) An image of an actual 1 km crater showing the highlight and shadow regions.

crater candidates and the classification is performed on feature vectors based on image
texture features.

2.1. Finding Regions That Are Indicative For Craters

In order to reduce the load on the classification module, we first identify crater can-
didates: parts of an image that contain crescent-like pairs of shadows and highlights.
Identification of crater candidates is achieved using an image processing method based
on mathematical morphology proposed by Urbach et al. on object detection in Urbach
and Stepinski [2009] and Urbach et al. [2007]. Figure 3 shows a flow diagram of the
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Fig. 3. Diagram illustrating individual steps in constructing crater candidates.

method used for identification of crater candidates. The highlight and shadow shapes
are processed in parallel using inverted image to process the shadow shapes. The goal
is to eliminate all the shapes that are not indicative of craters while keeping the high-
light and shadow shapes. The step of Background Removal deletes shapes, such as
mountains, that are too large to be part of the craters; the Power Filter removes shapes
that lack sufficient contrast; the Area Filter removes shapes that are too small for
reliable crater detection; the Shape Filter uses shape attributes that are invariant to
translation, rotation, and scaling to preserve or remove regions of an image exclusively
on the basis of their shapes. Utilization of the Shape Filter, that requires only a single
parsing of an image, improves performance by a factor of 5 to 9 in comparison with
other shape detection methods [Urbach et al. 2007]. In the final step, highlight and
shadow regions are matched so that each pair corresponds to a single crater candidate.
This method does not have high enough accuracy to constitute a stand-alone crater de-
tection technique, but is ideal for identification of crater candidates. More calculations
must be performed to discriminate craters from noncraters in those crater candidates.
Compared to the shape features used in Urbach and Stepinski [2009] that results less
satisifying results on crater detection (experimental results will be given in Section 4.6),
in this article, we construct image texture features from the crater candidates to be
used by the classification algorithms.

2.2. Image Texture Feature Construction

We use image texture features reminiscent of Haar basis functions which were first
proposed in Papageorgiou et al. [1998] for detection of objects and later popularized by
Viola and Jones [2004] in the context of face detection. These features can be thought
of as image masks consisting of black and white sectors. Different from vertical and
horizontal rectangle features used in face detection [Viola and Jones 2004], we specially
design nine square mask-features shown in Figure 4. A symmetric square mask is used
because a crater to be identified is in a symmetric shape. A mask in different scales is
scanned through the region of a crater candidate. Each position of the mask produces
a single feature value. The value of a feature is the difference between the sum of
gray scale values in pixels located within the white sectors and the black sectors. The
number of features is equal to the number of masks used multiplied by the number of
positions overlaid by those masks. All features can be calculated very efficiently in one
image scan, using an integral image data structure [Viola and Jones 2004].

To represent a crater candidate in terms of Haar-like features, we first extract square
image blocks around each crater candidate. In our experiments, we use the size twice
that of the candidate in order to include regions surrounding crater rims. The un-
derlying texture information of each crater candidate is encoded in the set of nine
mask-features in different scales, having various granularities and positioned at finely
sampled locations. Thus an image containing a crater candidate and its immediate
surroundings is described by thousands of texture features. Those features are not
independent from each other and those over-complete features compensate the limited
texture information a single square mask-feature can capture. Underlying gradient
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Fig. 4. 9 types of square masks: (A) 2 two-rectangle masks to capture horizontal and vertical gradient
texture, (B) 2 three-rectangle masks to capture horizontal and vertical edge gradient texture, (C) 5 four-
rectangle masks to capture diagonal gradient texture. Far-right: An example of a two-rectangle mask overlay
on a crater. A crater is a depression in the surface and appears in the image as a pair of shadow and highlight
semicircular shapes. The illumination is from north-east.

texture information is encoded by those features without the requirement of prior do-
main knowledge. If a single simple feature can be viewed as a weak learner, that is,
only using this feature to classify crater candidates by constructing a single-node de-
cision tree, it is a natural choice to build a strong ensemble classifier out of thousands
of weak learners, using the boosting approach.

2.3. Unsupervised vs. Supervised Crater Detection

Salamuniccar and Loncaric [2007] provided an extensive review of all previous research
on crater detection algorithms. Existing efforts on detecting craters in planetary images
can be divided into two general categories: unsupervised approaches and supervised
approaches.

The unsupervised methods identify crater rims in an image as circular or elliptical
features [Leroy et al. 2001; Honda et al. 2002; Cheng et al. 2002; Bandeira et al. 2007;
Kim et al. 2005]. In particular, the original image is preprocessed [Leroy et al. 2001;
Bandeira et al. 2007; Kim et al. 2005] to enhance the edges of rims, and the actual
detection is achieved by means of the Hough transform [Hough V 1962] or genetic
algorithms [Honda et al. 2002]. Unsupervised methods have the advantage of being
fully autonomous but the performance is usually at least one magnitude less accurate
than supervised methods.

The supervised methods [Burl et al. 2001; Vinogradova et al. 2002; Wetzler et al.
2005] take advantage of domain knowledge in the form of labeled training sets that
guide classification algorithms. In Burl et al. [2001] and Vinogradova et al. [2002],
a continuously scalable template model technique was used to achieve detection. In
Wetzler et al. [2005], a number of algorithms were tested and the Support Vector
Machine algorithm was shown to achieve the best rate of crater detection. More recent
methods [Kim et al. 2005; Martins et al. 2009] incorporated techniques originally
developed [Viola and Jones 2004] for the purpose of face detection. These methods
concentrated on the classification component of crater detection and did not incorporate
identification of crater candidates or transfer learning, as what has been extensively
studied in this article.

Notice that previous research on crater detection algorithms—supervised and
unsupervised methods—focused predominantly on partially addressing Challenge 2,
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Table I. Summary of the Three Learning Algorithms

Sampling in
Algorithm Test Set Difference

Boost No Iterative Weight Updating
Naive No Greedy Weight Updating

TL

TL-MinMax

Iterative Weight Updating in Same & Different Distributions
TL-Min
TL-Max

TL-Random

in which morphologically identical craters exhibiting different appearances in different
images [Leroy et al. 2001; Honda et al. 2002; Cheng et al. 2002; Bandeira et al. 2007;
Kim et al. 2005; Vinogradova et al. 2002; Wetzler et al. 2005; Burl et al. 2001; Martins
et al. 2009]. In addition, the bulk of previous work relies on inefficient exhaustive
search of the entire image using pixel-based approaches. This may work for finding
a small number of large craters in low-resolution images, but not for finding a
very large number of small craters in high resolution-images. Billions of pixels in a
high-resolution planetary image inevitably become a bottleneck of scalability of those
crater detection methods.

The problem of finding crater candidates has only recently been raised in Urbach
and Stepinski [2009], but the relatively low crater detection rates using a decision
tree J48 are reported due to the use of less discriminative geometric shape features.
Urbach and Stepinski’s method uses a small set of features (16 features used in their
experiments) to describe the shapes of the shadow and high regions of crater candidates.
However, other noncrater landforms in similar shapes makes using shape features an
unideal choice on crater detection. It is well known that the classification performance
is primarily controlled by the quality of features. In this article, we use a large set of
texture features (1089 features used in our experiments) in combination of boosting
ensemble learning algorithms to achieve better accuracy on crater detection. Detailed
comparison will be presented in Section 4.6.

To the best of our knowledge, the problem of transfer learning in the context of
autodetection of craters has not been previously addressed. This omission renders most
existing approaches impractical for planetary research as the benefit of automation
decreases significantly if new training sets need to be established for every new image
or even for various segments of the same image. In the next section, we will design
several supervised algorithms, some of which integrate transfer learning.

3. BOOSTING WITH AND WITHOUT TRANSFER LEARNING

To classify crater candidates into craters and noncraters on the basis of texture fea-
tures, we have designed and implemented three supervised learning algorithms. These
algorithms simultaneously select subset features necessarily for accurate classification
and train the final ensemble classifier based on the supplied training set. The first is
the Boost algorithm, a variant of the AdaBoost algorithm inspired by the methodology
of face detection [Viola and Jones 2004]. The second is the Naive algorithm, a drastic
simplification of the Boost algorithm using a greedy approach instead of the boosting
method. The third is the TL algoritm, a transfer learning algorithm using four different
sampling methods. Table I gives a brief summary of the three algorithms.

3.1. Boosting without Transfer Learning

A crater candidate at this stage is represented as a feature vector x̂ = 〈 f1, . . . , fN〉.
Each feature fi, i = 1 . . . N, is produced by a square mask-feature in a particular
position overlaying the cater candidate.
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ALGORITHM 1: Boost: A boosting algorithm for feature selection and classification

Require: .

(1) Given crater candidates (x̂1, y1), . . . , (x̂n, yn) where yi = 0, 1, i = 1, . . . , n for non-crater
and crater examples respectively.
(2) Initialize weights wi = 1

2m
if yi = 0, wi = 1

2l
if yi = 1, where m and l are the number of

non-crater and crater examples respectively.
1: for t = 1 . . . T do
2: Normalize the weight, wt,i = wt,i∑n

j=1 wt, j
, i = 1, . . . , n

so that wt is a probability distribution.
3: Select the best weak classifier with respect to the weighted error

ǫt = argmin f,p,θ

∑
i wi|h(x̂i, f, p, θ ) − yi|,

For each feature, f , train a classifier h, which is restricted to using a single feature.
4: Define ht (̂x) = h(̂x, ft, pt, θt), where x̂, ft, pt, θt are the minimizers of ǫt.
5: Update the weights:

wt+1,i = wt,iβ
1−ei
t , i = 1, . . . , n

where ei = 0 if a crater candidate xi is classified correctly, ei = 1 otherwise, and βt = ǫt

1−ǫt
.

6: end for
7: The final strong classifier is:

h(̂x) =
{

1
∑T

t=1 αtht (̂x) ≥ μ
∑T

t=1 αt

0 otherwise

where αt = ln 1
βt

and μ is a user-defined threshold.

The Boost algorithm (see Algorithm 1) generates a sequence of weak classifiers ht( f )
and combines them through a weighted boosting approach to build a strong ensemble
classifier H (̂x):

H (̂x) =
T∑

t=1

αtht( f ), (1)

where T is the number of iterations, t = 1, . . . , T ; f , f ∈ { f1, . . . , fN}, is the single
feature selected at each boosting iteration to construct a weak classifier ht( f ) , and αt is
the learned weight of hypothesis ht( f ) when adding the newly selected weak classifier
into the ensemble. The Boost algorithm (Algorithm 1) iteratively selects one feature
at a time and stops when reaching T iterations; note that T ≪ N. Different from the
traditional AdaBoost algorithm that usually uses the entire feature set, Boost at each
iteration selects only one best feature at one time. Thus feature selection is integrated
into the boosting iteration. Three core steps are required to complete one boosting
iteration.

(1) Weak Classifier Learning. The construction of a weak classifier ht( f ) on a
single feature f at iteration t is straightforward. Given n crater candidates,
(x̂1, y1), . . . , (x̂n, yn) where class label yi = 0, 1 (i = 1, . . . , n) is for noncrater and
crater examples respectively, a weak classifier ht( f ), consists of a feature f , a
threshold θ , and a polarity p indicating the direction of the inequality.

ht( f ) =
{

1 i f f (̂x) < pθ

0 otherwise
(2)

A weak leaner ht( f ) can be essentially viewed as a decision stump, a single-node
decision tree. Exhaustive search is conducted in order to find best values of p and
θ . For a feature f , f ∈ { f1, . . . , fN}, 2 × n single-node decision tress are built, where
2 represents positive and negative signs of p, and the value of every candidate x̂i,
i = 1 . . . n, on feature f is used as possible values for θ .
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(2) Feature Selection. Calculate the weighted error sum of each weak classifier and
select the best learner (a.k.a. the best feature) that produces the minimum error.

(3) Weight Updating. Update weights using the same method proposed in AdaBoost
[Freund and Schapire 1995]: increase the weights of incorrectly classified examples
and decrease the weights of correctly classified examples. The incorrectly classified
examples will have more chances of being chosen in the next iteration when calcu-
lating the weighted error sum in step 2. Hence, the next selected feature concen-
trates more on the mistakes made by the earlier features. The key advantage of the
Boost algorithm is that the weights encode the classification results of the previous
features and this information is used to select the next best feature.

ALGORITHM 2: Naive: A naive greedy algorithm for feature selection and classification

Require: .

(1) Given crater candidates (x̂1, y1), . . . , (x̂n, yn) where yi = 0, 1, i = 1, . . . , n for non-crater
and crater examples respectively.
(2) Initialize weights wi = 1

2m
if yi = 0, wi = 1

2l
if yi = 1, where m and l are the number of

non-crater and crater examples respectively.
1: Normalize the weight, wt,i = wt,i∑n

j=1 wt, j
, i = 1, . . . , n

so that wt is a probability distribution.
2: Select the best t (t = 1, . . . , T ) weak classifiers with respect to the weighted error

ǫt =
∑

i wi|h(x̂i, f, p, θ ) − yi|,
For each feature, f , train a classifier h, which is restricted to using a single feature.

3: Define ht (̂x) = h(̂x, ft, pt, θt) where x̂, ft, pt, θt are the minimizers of ǫt, and t = 1, . . . , T .

4: βt = ǫt

1−ǫt
.

5: The final strong classifier is:

h(̂x) =
{

1
∑T

t=1 αtht (̂x) ≥ μ
∑T

t=1 αt

0 otherwise

where αt = ln 1
βt

and μ is a user-defined threshold.

As depicted in Algorithm 1, steps 2–4 are used for Weak Classifier Learning and
Feature Selection, and step 5 is for Weight Update. The number of craters is usually
less than the number of noncraters. The initial weight of each training instances is
designed to cope with imbalance data by using different group average weights in the
positive and negative classes, respectively. The weights of positive examples are not
necessarily the same as those of negative examples, whereas every positive example
(a true crater) in the training set has the same weight and every negative example (a
noncrater) shares the same weight.

In order to reduce the computational cost of the Boost algorithm, we design a simpli-
fied greedy version of the algorithm and call it the Naive algorithm (see Algorithm 2).
The Naive classifier uses the same Weak Classifier Learning step and selects the top
T best features using the weighted error sum in the step of Feature Selection as a
criterion without any further iterations on the step of Weight Updating.

Time Complexity Analysis. The time complexity of the Boost algorithm is O(TNn), where
n is the number of training examples, N is the number of total features, and T is the
number of boosting iterations. In particular, each feature produces n weak classifiers,
based on each feature value for every training example according to the threshold θ ;
N features produce Nn classifiers; it takes O(Nn) time to find the weak classifier that
produces the minimum error; and it takes O(TNn) time to select the top T features
after T boosting iterations.
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The time complexity of the Naive algorithm is O(Nn) as no boosting iterations are
performed. Interestingly, the Naive classifier performs decently well in some circum-
stances during our real-world case study (see Section 4).

3.2. Boosting with Transfer Learning

Boost and Naive assume that both training and testing instances are drawn indepen-
dently and identically from the same underlying distribution. What if training and test
instances are from different distributions? We have designed a transfer learning based
algorithm, inspired by the TrAdaBoost algorithm [Dai et al. 2007], which is capable of
transferring knowledge from the old training data to the new test data. We refer to it
as the TL algorithm. In principle, transfer learning algorithms are often used when the
training set and test set are not in the same feature space or have the same distribution
[Pan and Yang 2010]. The TL algorithm (Algorithm 3) has the same three steps as the
Boost algorithm, but the Weight Updating step is different as it attempts to transfer
knowledge from the original training set to the new test data. As the Boost algorithm
is not expected to perform well if the test data has a different distribution from the
training data, because the critical set of features that best serves to distinguish craters
in the training set may not be the same as that in the test set.

ALGORITHM 3: TL: A boosting algorithm using transfer learning for feature selection and
classification

Require: .

(1) Given a training set that includes crater candidates
(x̂1, y1), . . . , (x̂nd

, ynd
), (x̂nd+1, ynd+1), . . . , (x̂nd+ns , ynd+ns ), where

yi = 0, 1, i = 1, . . . , nd, nd + 1, . . . , nd + ns for non-crater and crater examples respectively.
This training set has nd diff-distribution examples (1, . . . , nd) and ns same-distribution
examples (nd + 1, . . . , nd + ns), and n = nd + ns.

(2) Initialize weights wi = 1
2m

if yi = 0, wi = 1
2l

if yi = 1, where m and l are the number of
non-crater and crater examples respectively.

1: for t = 1 . . . T do
2: Normalize the weight, wt,i = wt,i∑n

j=1 wt, j
, i = 1, . . . , n

so that wt is a probability distribution.
3: Select the best weak classifier with respect to the weighted error

ǫt = argmin f,p,θ

∑
i wi|h(x̂i, f, p, θ ) − yi|, i = nd + 1, . . . , nd + ns

For each feature, f , train a classifier h in same-distribution data, which is restricted to
using a single feature.

4: Define ht (̂x) = h(̂x, ft, pt, θt) where x̂, ft, pt, θt are the minimizers of ǫt.
5: Update the weights:

wt+1,i = wt,iβ
−ei
t , if nd + 1 ≤ i ≤ nd + ns (increase the weights for the same-distribution)

wt+1,i = wt,iβ
ei , if 1 ≤ i ≤ nd (decrease the weights for the diff-distribution)

where ei = 0 if example xi is classified correctly, ei = 1 otherwise, and βt = ǫt

1−ǫt
,

β = 1

1+
√

2ln n
T

6: end for
7: The final strong classifier is:

h(̂x) =

{
1

∑T

t=⌈ T
2 ⌉ αtht (̂x) ≥ μ

∑T

t=⌈ T
2 ⌉ αt

0 otherwise
where αt = ln 1

βt
and μ is a user-defined threshold.

We denote the previous original training data as the diff-distribution training data;
and here we are uncertain about the similarity and usefulness of this data for the new
task. We denote the additional small portion of labeled test data, which is a repre-
sentative of the new set of crater candidates, as the same-distribution training data.
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During the training process, we apply the Boost algorithm to the same-distribution
training data to build a model; the weights of misclassified examples are increased
during the next iteration while the weights of correctly classified examples are de-
creased. The key component is that we transfer knowledge from the old training data
to the new test data by modifying the weights of misclassified examples from the diff-
distribution training data. Those misclassified examples are considered as the ones that
are dissimilar to the same-distribution examples and should be deemphasized. Accord-
ingly, we decrease (not increase) the weights of those examples in order to weaken
their impact. The weight-changing mechanism selects good examples (similar to the
labeled test data) from the old training data to compensate the insufficient training
examples in the same-distribution data. The change of weight factor β = 1

1+
√

2ln n
T

for

misclassified examples from diff-distribution and the threshold voting
∑T

t=⌈ T
2 ⌉ αtht (̂x) ≥

μ
∑T

t=⌈ T
2 ⌉ αt in the final strong classifier are to assure that the average training loss on

the diff-distribution converges to zero [Dai et al. 2007; Freund and Schapire 1995].

ALGORITHM 4: Sampling methods to construct the same-distribution set from a test set

Require: .

(1) Given a training set as diff-distribution set which includes examples (x̂1, y1), . . . , (x̂nd
, ynd),

where yi = 0, 1, i = 1, . . . , nd for non-crater and crater examples respectively and a test set
which include examples (x̂1, y1), . . . , (x̂m, ym), where yi, i = 1, . . . , m are unknown.
(2) The number ns indicates how many examples in a test set will be regarded as
same-distribution set
(3) Input parameter K for the # of nearest neighbors when sampling a test instance.

1: Quantize the input space range into bins and re-represent the training samples and test
samples in a probability mode.

2: Caculate the Kullback-Leibler divergence between the test set and the training set. A
distance matrix is D ∈ Rm×nd . Each row in matrix D corresponds to the distances between
one testing example to nd training examples.

3: Construct the Min-distribution divergence vector Dmin:
for each sample x̂i , i = 1, . . . , m, in the test set, K nearest neighbors in training samples can

be found according to the distance matrix D, then Dmin(i) = 1
K

∑K
j=1 D(i, j).

4: Construct the Max-distribution divergence vector Dmax:
for each sample x̂i , i = 1, . . . , m, in the test set, K training samples with farthest distances

can be found according to the distance matrix D, then Dmax(i) = 1
K

∑K
j=1 D(i, j).

5: Construct the filtered same-distribution set:
TL-Min: The same-distribution set Smin under the min filter is composed of ns examples in
the test set which have the smallest Dmin.
TL-Max: The same-distribution set Smax under the max filter is composed of ns examples in
the test set which have the largest Dmax.
TL-MinMax: The same-distribution set Sminmax under the min-max filter is composed of
⌊ ns

2
⌋ examples which have the smallest Dmin and ⌈ ns

2
⌉ examples which have the largest Dmax

in the test set.

There are two major differences between the TL algorithm and the existing algorithm
TrAdaBoost [Dai et al. 2007].

(1) Feature Selection. We use an embedded approach in feature selection (steps 3–4
in Figure 3). In our method, we select the best feature in each iteration while
constructing a strong classifier sequentially. The key contribution of the algorithm
is that some features contribute more in the new test data and should be transferred
and emphasized, while some features provide less or no contributions at all and
thus should be deemphasized. The subset features that best discriminate craters
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and noncraters in the old training set are not necessarily the same subset features
in a new unseen test set.

(2) Sampling method from the test set. TrAdaBoost uses random sampling to choose
new test instances and adds them into the training set. In addition to the random
sampling, which we denoted as TL-Random in this article, we introduce three
new methods TL-Max, TL-Min, and TL-MaxMin (see Algorithm 4) to construct the
same-distribution set in order to transfer knowledge more efficiently.

For the TL algorithm, we extracted some samples from a test set to compose the
same-distribution set. When a training set and a test set are in different distributions,
the quantity of the diff-distribution set, a.k.a. the original training set, is inadequate to
train a transferable classifier. After combining the diff-distribution set with the same-
distribution set, the quality of newly selected samples may have a great influence
on classifier training. Apparently, randomly selecting samples to construct the same-
distribution set cannot guarantee the quality of the same-distribution. We take into
consideration of the distribution divergence when constructing the same-distribution
set. Normally, the samples that distribute significantly differently with the training
samples should have more contribution for classifier induction. However, the samples
which are greatly different from the main trend distribution could be outliers thus
lead to wrong training results. Furthermore, the test samples which have very similar
distribution with the training samples may also be useful, as those samples may not be
in the same class with those in the training set. For example, the sample in the test set is
a crater but the samples in the original training set which share a similar distribution
may not be craters. Therefore, the testing samples in large and small distribution
differences to the training samples have their own benefits and deficiencies.

In order to make the training process geared to the new knowledge gained in the
same-distribution, we propose to use three new methods, TL-Min, TL-Max, and TL-
MinMax, to build a same-distribution set, considering the closest distribution, farthest
distribution, and combined cases, respectively. The detailed construction method is in
Algorithm 4. To calculate the divergence of the samples, we firstly quantize all the
training samples and testing samples with a certain bin number and rerepresent all
the samples by a probability distribution (step 1). The quantization range is deter-
mined by the minimum and maximum value of input samples. Kullback-Leibler(KL)
divergence [Kullback and Leibler 1951]1 is applied for the probability distribution
divergence calculation (step 2). We use Min(Max)-distribution divergence vectors to
find the test instances closest (farthest) to the instances in the diff-distribution set
(steps 3–4). A TL-Min filter is constructed to select same-distribution samples with
the minimum distribution difference, a TL-Max filter for the maximum distribution
difference, and a TL-MinMax fileter for the combination of these two filters to form a
same-distribution set. After the same-distribution set is constructed, feature selection
and classifier induction are conducted using the TL algorithm described in Algorithm 3.

Time Complexity Analysis. The time complexity of the TL algorithm is the combination
of the same-distribution construction and the boosting calculation. Same as the Boost
algorithm, the boosting step takes O(TNn), where n is the number of training examples,
N is the number of total features, and T is the number of boosting iterations. It takes
O(mn) on the construction of the same-distribution, where m is the number of testing

1In principle, given two discrete random variables P and Q, KL-divergence calculates information gain
achieved if P can be used instead of Q. It is also called the relative entropy, for using Q instead of P. It is
essentially the difference between two probability distributions P and Q.
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Fig. 5. Performance results of the Boost, Naive, and TL algorithms; parameter values: Boost–150 features
selected and μ = 0.525; Naive–150 features selected and μ = 0.675; TL–150 features selected, μ = 0.500,
TL-Random select 253 new test instances into the same-distribution set.

examples, because each test instance needs compare to each training instance. Thus
the TL algorithm has a time complexity of O(TNn + mn).

4. EXPERIMENTAL RESULTS

4.1. Test Image

We have selected a portion of the High-Resolution Stereo Camera (HRSC) nadir
panchromatic image h0905 [HRSC Data Browser 2009], taken by the Mars Express
spacecraft, to serve as the test set. As illustrated in Figure 15, the selected image has a
resolution of 12.5 meters/pixel and a size of 3,000 by 4,500 pixels (37,500×56,250 m2).
A domain expert manually marked ∼3,500 craters in this image to be used as the
ground truth to which the results of autodetection are compared. The image repre-
sents a significant challenge to automatic crater detection algorithms because it covers
a terrain that has spatially variable morphology and because its contrast is rather poor
(which is most noticeable when the image is inspected at a small spatial scale). We di-
vide the image into three sections denoted as the west region, the central region, and
the east region (see Figure 15). The central region is characterized by surface morphol-
ogy that is distinct from the rest of the image. The west and east regions have similar
morphology but the west region is much more heavily cratered than the east region.

4.2. Training Set Construction

In the first stage of our method, we identify 13,075 crater candidates in the image
using the pipeline depicted in Figure 3. The dataset is imbalanced as the majority
objects are noncrater candidates. 1,089 image texture features are constructed using
the 9 square-mask features described in Figure 4. The training set for the Boost and
Naive algorithms consists of 204 true craters and 292 noncrater examples selected
randomly from amongst crater candidates located in the northern half of the east
region. Thus, the training set uses only 3.75% of the total dataset. Note that we
have purposely restricted the locations of examples in a training set to a specific
sector of the image in order to mimic actual planetary research; it is likely that in
current studies such craters are identified in a specific region and are in need of
identification by a supervised learning algorithm in the rest of the image. For the TL
algorithm results shown in Figure 5, we have constructed an additional training set
(same-distribution set), using random sampling(TL-Random), consisting of 253 crater
candidates (102 true craters and 153 noncraters) selected from random locations
throughout the entire image. The ratio between the false and true examples in the
same-distribution data is proportional to that in the diff-distribution data ( 153

102
>= 292

204
).

The original training set consisting of 496 examples from the northeastern section of
the image serves as the diff-distribution set.
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Fig. 6. Boost versus Naive. x-axis: number of features selected; y-axis: performance scores.

4.3. Comparative Performance of Boost, Naive, and TL

The table in Figure 5 summarizes the performance results of crater detection by the
three algorithms: Boost, Naive, and TL. The ground truth of the entire image serves
as an external criterion to evaluate the performance of the three algorithms on the
unseen test set. Of the three algorithms, the number of features used to construct
a strong classifier and the values of the threshold μ are selected to maximize the
performance of each classifier.

The candidate data has an imbalanced class distribution and the successful detection
of true craters is more significant than the detection of noncraters. Hence we use
recall (r = TP

TP+FN
) and precision (p = TP

TP+FP
) and F1 as the evaluation metrics, where

TP stands for the number of true positive detections (detected craters that are actual
craters), FP stands for the number of false positive detections (detected craters that are
actually not), and FN stands for the number of false negative “detections” (nondetection
of real craters). F1 measures the harmonic mean between precision and recall 2

1
r
+ 1

p

. The

values of precision, recall, and F1 are listed, and the best performance of each measure
is highlighted in bold. A precision score of 1.0 means that every object classified as a
crater is indeed a crater but says nothing about the number of craters that are not
recognized by classifiers as such. A recall score of 1.0 means that every true crater is
classified as such but says nothing about how many other landforms were incorrectly
classified as craters. An F1 score of 1.0 means that all the existing craters are correctly
identified and all the objects classified as craters are true craters.

Of the three algorithms compared, the TL classifier using random sampling (TL-
Random) yields the best precision in all regions and the Naive classifier yields the
worst precision in all regions. On the other hand, the Naive classifier has the highest
recall in all regions whereas the TL classifier has the lowest value of recall, except in
the east region, where the Boost classier has the lowest value of recall. Overall, the TL
classifier has the highest value of F1 in all regions except the west region where the
Naive classifier has the highest value of F1.

The Naive classifier performs surprisingly well considering its simple nature and
low computational cost. We take an in-depth look into the performance of the Boost
and Naive classifiers on the northeastern section of the image containing 1406 crater
candidates of which 496 constitute a training set for both algorithms. Figure 6 shows
the precision, recall, and F1 for these classifiers as a function of the number of features
selected to construct a strong classifier. The Boost classifier clearly outperforms the
Naive classifier on F1 and precision measures if more than 100 features are selected.
However, the recall measures of the two classifiers remain comparable regardless of
the number of selected features. Thus, the Boost classifier is superior to the Naive
classifier on crater candidates that closely resemble those in the training set, but that
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Fig. 7. (A) KL-divergence measures between the set of feature vectors in the original training set and the
sets of feature vectors in the west, central, and east regions. (B) Graphical illustration of F1 scores of the
three algorithms. (Best viewed in color.)

disadvantage decreases and/or disappears when classifying crater candidates that are
less similar to those in the training set. We link the relatively small advantage (or lack
of advantage) of the Boost classifier over the naive classifier to the peculiarity of image
texture features in the context of crater detection. Top features (weak classifiers) are
actually quite strong performers by themselves capable of achieving an F1 score as
high as 0.81. These features limit the advantage of the boosting algorithm that works
best with an ensemble of weak classifiers.

4.4. Distribution Divergence Filters with Transfer Learning

In order to better understand the results of the three proposed algorithms Boost,
Naive, and TL, it is useful to assess dissimilarity between the set of feature vectors in
the original training set and those in the west, central, and east regions. Figure 7(a)
shows such dissimilarity as measured by the KL-divergence; Figure 7(b) plots the F1
scores graphically of the three regions. Clearly, the central region is most dissimilar
to the training set, whereas the east region is the most similar (since the training
set was selected from the northeastern portion of the image). This is why the TL
classifier performs best (relatively to the other classifiers) in the central region. It is
expected that the TL classifier would have the least advantage in the east region, as it
is the region best characterized by the training set, but the results show that the TL
classifier has the smallest gain (if any) in the west region. This can be explained by
the fact that the west region has a similar character to the east region, but is much
more heavily cratered, so in fact, relatively fewer additional training samples come
from these regions resulting in no sufficient information gain to be exploited by the TL
classifier.

Randomly selecting samples from the test set cannot always guarantee the quality
of the selected samples. Thus, we apply the distribution divergence analysis filters to
select the cotraining samples. We test the TL-Min, TL-Max, TL-MinMax filters, and
TL-Random on the north half the west region (denoted as Region 1) and the north
half of the central region (denoted as Region 2). Region 1 is selected as a site that
closely resembles the training set, and the region is also featured with high-density
subkilometer craters. Region 2 is used as a site that has a heterogeneous surface with
different morphology from the training set.

The distributions of these two test sets Regions 1 and 2, and the training set are
reported in Figures 8 and 9. In each figure, all the samples from the test set and
training set are quantized into 1 to 50 bins. The bin sizes of different figures may
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Fig. 8. Distribution comparison between Region 1 and the training set. (a) Distribution of positive samples.
(b) Distribution of negative samples.

Fig. 9. Distribution comparison between Region 2 and the training set.(a) Distribution of positive samples.
(b) Distribution of negative samples.

be different due to different distributions of the two test sets, thus the training set
curves may vary in those two figures. In Figures 8(a) and 9(a), we can find that the
blue curve is very similar to the red curve, where the blue/red curve denotes positive
test/training examples (craters). However, In Figures 8(b) and 9(b), the blue curve
always has big differences with the red curve, where in those figures the blue/red
curve denotes negative test/training examples (noncraters). This illustrates that the
craters (positive samples) are always similar and the noncraters (negative samples) are
different with each other in their own ways. Furthermore, the test samples in Figure 8
distribute significantly differently from the training set than those test samples in
Figure 9, which means the model trained from the training set may be more suitable
in Region 1 than Region 2 because the significantly different surface morphology in
Region 2. Figure 10 shows the KL- divergence and probability distributions, between
positive and negative examples in the training set and Regions 1 and 2, respectively.
The divergence between Region 2 and the training set is almost 3 times larger than
the divergence between Region 1 and the training set.

The experimental results of the four algorithms, TL-Random, TL-Min, TL-Max, and
TL-MinMax, are reported in Figure 11 for Region 1 and Figure 12 for Region 2.
Figure 11 indicates that when the samples are not sufficient, TL-MinMax slightly
outperforms the TL-Random and achieves its peak F1 score 0.8532 with 90 same-
distribution samples. Because Region 1 is similar to the training set, the TL-Min has
less contribution to improve classification performance. And TL-Max achieves better
results when there are sufficient samples to select. In Figure 12, TL-MinMax and
TL-Random are comparable and TL-MinMax is slightly better than TL-Random most
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Fig. 10. Distribution comparison between Region 1, Region 2, and the training set. The smaller the KL-
distribution divergence, the similar the two sets.

Fig. 11. F1 score versus the size of same distribution samples in Region 1. A comparison of TL-MinMax,
TL-Min, TL-Max, and TL-Random algorithms.

of the time. Because of the difference between the training set and the test set, TL-Max
can select the samples which have significant difference to help reconstruct the model
and capture the main trend of the sample distribution. But the performance of TL-Max
is limited if there is no sufficient test samples to select.

4.5. Feature Selection by Naive, Boost, and TL

It is instructive to compare top features (weak classifiers) selected by each of the
three classification algorithms (Naive, Boost, and TL). Figure 13 shows six top features
selected by each algorithm. The top two features selected by the three algorithms con-
centrate on the transition between the shadow and the highlight which best define the
characteristics of a crater, but there are significant differences between other selected
top features. Features selected by the Naive algorithm are relatively strong by them-
selves. Most of them utilize the transition between the shadow and the highlight to
distinguish craters from no craters, while the next best feature selected by the Boost
algorithm always attempts to correct mistakes done by the previous feature. Figure 14
illustrates how the second best feature selected by the Boost algorithm corrects the
mistakes by the first best feature, and we can observe that this feature performs well

ACM Transactions on Intelligent Systems and Technology, Vol. 2, No. 4, Article 39, Publication date: July 2011.



TIST0204-39 ACM-TRANSACTION June 20, 2011 15:30

39:18 W. Ding et al.

Fig. 12. F1 score versus the size of same distribution samples in Region 2. A comparison of TL-MinMax,
TL-Min, TL-Max, and TL-Random algorithms.

Fig. 13. Top 6 features selected by Naive, Boost, and TL with random sampling (TL-Random), respectively.

on candidates with shifted shadow regions. Not all top features selected by the TL al-
gorithm utilize the transition between shadows and highlights, but rather crater rims.
This indicates the new test data has different characteristics on crater edges.

Figure 15 displays the results of the TL algorithm, using top 150 features and the
threshold μ = 0.500. Notice that the large craters ≥5000-meter in diameter are in-
tentionally not detected as we set the parameters of our algorithm to target small
subkilometer craters (large craters on Mars have already been identified manually
[Barlow 1988]).
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Fig. 14. The second best feature selected by the Boost algorithm successfully classified 6 misclassified
examples using the first best feature.

Fig. 15. Craters (<= 5000-meter in diameter) detected in a 37,500 × 56,250 m2 test image. (Best viewed in
color.) Green: True detections, Red: False detections.

4.6. Comparative Performance with Existing Algorithms

Table II provides a in-depth evaluation of the TL method with the crater detection
method proposed by Urbach and Stepinski [2009]. Our method outpeforms their method
on precision, recall, and F1 measure on all regions and each individual region.

We have also tested three representative algorithms for the purpose of a thorough
comparative performance study: AdaBoost [Freund and Schapire 1995] with C4.5 as the
base leaner for an example of boosting algorithms, SVM [Boser et al. 1992; Joachims
2002] with a linear kernel as an example of kernel-based learning algorithms, and
TrAdaBoost [Dai et al. 2007] with C4.5 as the base leaner for an example of transfer
learning algorithms. Using all the 1089 features, the F1 score of SVM on all regions is
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Table II. Performance of our TL Method (Ours) vs. the Performance of Urbach and Stepinski’s
Method (Theirs)

Evaluation Metrics
Type All Regions West Region Central Region East Region

Ours Theirs Ours Theirs Ours Theirs Ours Theirs
Precision 0.919 0.801 0.911 0.794 0.902 0.802 0.954 0.813

Recall 0.791 0.635 0.779 0.593 0.769 0.615 0.843 0.755
F1 0.851 0.709 0.840 0.680 0.830 0.696 0.895 0.783

Improvement in Classification Performance
Improvement All Regions West Region Central Region East Region

on Precision (%) 14.7 10.0 12.0 20.0
on Recall (%) 24.6 30.0 25.0 10.0

on F1 (%) 20.0 20.0 19.0 10.0

Parameter values: Ours–TL with 150 features selected, μ = 0.500, TL-Random select 253
new test instances into the same-distribution set; Theirs–same parameter values proposed in
Urbach and Stepinski’s paper.

0.202, AdaBoost is 0.302, TrAdaBoost is slightly better than 0.4. As we can see from
Figure 9, the three algorithms designed in this article can achieve an F1 score above
0.85.

The huge performance gain by the three algorithms (Boost, Naive, and TL) is because
the proposed algorithms intelligently select and integrate subset of best features out
of all 1089 features to build a strong ensembled classifiers using boosting. The 1089
features are overcompleted by contructing 9 maskes in different scales, stepwise, and
positions. Without a built-in mechanism on feature selection to remove irrelevant and
redunt features, the AdaBoost, SVM, and TrAdaBoost classifiers cannot perform well.
Comparable results would be obtained on the crater detection, if similar feature set is
used on those classifiers. However, this approach is less desirable as feature selection
and classifier induction have already been simultaneously integrated into the learning
process of the three proposed algorithms.

5. CONCLUSIONS

The aim of this article is to present a robust and reliable framework for autodetection
of small craters in high-resolution images of planetary surfaces. This is one of the
most challenging problems in planetary science: effective and automatic crater detec-
tion from extremely large orbiter images. The framework uses an innovative method
that integrates improved techniques on embedding feature selection with supervised
classification, and transfer learning. First, we have demonstrated that our method
identifies craters with high accuracy. The test site is an HRSC image of Martian scene
that presents a heterogeneous region of 37,500 × 56,250 m2, and detecting craters in
various forms is challenging using regular algorithms. Our approach can achieve an F1
score above 0.85, and provides a reliable mechanism for planetary research. Second,
we have demonstrated that a consistently accurate detection can be achieved through
transfer learning. Without transfer learning the performance of our algorithms (Boost
and Naive) decreases in the central region of the image where surface morphology
differs as characterized by the training set. However, using the TL algorithm partially
restores the level of performance. Third, we noticed that the Naive algorithm can per-
form well in the context of crater detection for a fraction of the computational cost of
the Boost algorithm.

We contend that the robustness and reliability of our methodology make it an effec-
tive tool for planetary research. If adopted, our approach has great potential to produce
surveys of small craters over entire surfaces of planets, thus revolutionizing certain as-
pects of planetary science. Our future research will address means of efficient selection
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of additional training samples for construction of the same-distribution for transfer
learning. The goal is to intelligently select samples that exemplify differences between
the existing training sets and new candidate sets.
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