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ABSTRACT

It has recently been observed that sparse and compressible signals can be sketched using very few nonadaptive
linear measurements in comparison with the length of the signal. This sketch can be viewed as an embedding
of an entire class of compressible signals into a low-dimensional space. In particular, d-dimensional signals with
m nonzero entries (m-sparse signals) can be embedded in O(m log d) dimensions. To date, most algorithms for
approximating or reconstructing the signal from the sketch, such as the linear programming approach proposed
by Candès–Tao and Donoho, require time polynomial in the signal length.

This paper develops a new method, called Chaining Pursuit, for sketching both m-sparse and compressible
signals with O(m polylog d) nonadaptive linear measurements. The algorithm can reconstruct the original signal
in time O(m polylog d) with an error proportional to the optimal m-term approximation error. In particular,
m-sparse signals are recovered perfectly and compressible signals are recovered with polylogarithmic distortion.
Moreover, the algorithm can operate in small space O(m polylog d), so it is appropriate for streaming data.
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1. INTRODUCTION

A compressible signal is a long signal that can be represented with an amount of information that is small relative
to the length of the signal. Many classes of d-dimensional signals are compressible, e.g.,

• The m-sparse class B0(m) consists of signals with at most m nonzero entries.

• For 0 < p < 1, the weak ℓp class Bweak-p(r) contains each signal f whose decreasing rearrangement f◦

satisfies |f◦

i | ≤ r i−1/p.

These types of signals are pervasive in applications. Natural images are highly compressible, as are audio and
speech signals. Image, music, and speech compression algorithms and coders are vital pieces of software in
many technologies, from desktop computers to MP3 players. Many types of automatically generated signals
are also highly redundant. For example, the distribution of bytes per source IP address in a network trace is
compressible—just a few source IP addresses send the majority of the traffic.

Observe that the signals in B0(m) are determined completely by 2m numbers: the locations and sizes of
their nonzero entries. Similarly, each signal f in Bweak-p(r) can be approximated by an m-sparse signal fm

with error ‖f − fm‖1 ≤ Cp r m1−1/p. In other words, the essential information in these signals is captured
by approximately m numbers even though the length d of these signals is considerably higher. The current
paradigm for encoding and decoding compressible signals places the burden on the encoder so that the decoder
can operate more efficiently. But there are emerging technologies, such as sensor networks, where it is more
appropriate to reduce the burden on the encoder at the expense of greater decoding times. Because our signals
inherently contain about m pieces of information and because we wish to decode these m pieces of information
only (they are sufficient to approximate the signal), we hope that we can encode our signal nonadaptively with
approximately m values. Moreover, we want the encoder to be a linear function of the signal, for reasons that
will soon be clear.
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Let us define the problem more formally. We have as input f a compressible signal of length d which is
approximated well by an m-sparse signal where m ≪ d. We sketch f with a small number of nonadaptive linear
measurements. The reconstruction algorithm uses these measurements to approximate f ; that is, the algorithm
returns an m-sparse signal that approximates f well. More precisely, we measure f with a matrix Φ consisting
of N rows and d columns and produce a vector v of N nonadaptive measurements, Φf = v. This perspective
raises a number of fundamental questions include the following:

1. How many measurements are necessary; how large is N?

2. How is the measurement system constructed (i.e., deterministic vs. random)?

3. What are the storage costs for the measurement system?

4. Does one system of measurements succeed for an entire class of compressible signals? Or do we need a new
set of measurements for each signal?

5. What algorithms can be used to reconstruct the signal? What are their time and storage costs?

6. How does the reconstruction error compare with the optimal error in approximation by an m-sparse signal?

This problem is a natural generalization of the heavy hitters1 problem in theoretical computer science and we
may view the quest for such measurement matrices and efficient recovery algorithms as a search for a streaming
algorithm to recover compressible signals. To understand the details of this connection, notice that because our
measurements are linear, we can update a set of measurements in the face of a stream of updates to our input
signal; that is, Φf1+Φf2 = Φ(f1+f2). If we seek measurement matrices which can be constructed in small space
with poly(m, log d) rows and if we also stipulate that our reconstruction algorithms run in time poly(m, log d),
then we are in the setting of streaming algorithms. This confluence of problems, from approximation theory and
from theoretical computer science, is a fortunate one. It highlights a common fundamental problem—how to
efficiently recover essential information in a signal.

1.1. Results

This paper describes an approach called Chaining Pursuit for sketching compressible signals and calculating m-
term approximations from the sketch. This technique has some distinct advantages over other methods described
in the literature.

• Uniformity: One system of measurements works for all signals in the class.

• Superefficient Decoding: The reconstruction time is sublinear in the length d of the signal and propor-
tional to m.

• Instance-optimal: The reconstruction error for each signal is on the order of the optimal m-term approx-
imation error. More precisely, let f be a signal, fm its best m-sparse approximation, and f̂ the computed
reconstruction. Then ∥∥f − f̂

∥∥
1
≤ (1 + C log m)

∥∥f − fm

∥∥
1

Note that the algorithm recovers m-sparse signals exactly.

• Small space: The measurement system for Chaining Pursuit can be modified to require space O(m polylog d),
although the version described here is not space-efficient.

The following table summarizes our results for this algorithm.



Chaining Pursuit

Signal class ℓ1

Uniform Yes

Error bound Instance

Approx. scheme? No

Construction Random

Storage cost O(m polylog d)

# Measurements O(m log2 d)

Encode time O(d log2 d)

Decode time O(m log2 d)

Note: The big-O notation suppresses factors of log m.

1.2. Related Work

The problem of sketching and reconstructing m-sparse and compressible signals has several precedents in the
theoretical computer sciences (TCS) literature, especially the paper of Cormode and Muthukrishnan on detecting
heavy hitters in nonnegative data streams1 and the works of Gilbert et al. on Fourier sampling.2, 3 There are
several other recent papers from the TCS literature on this subject.4, 5 Sparked by the papers of Donoho6

and Candès–Tao,7 the computational harmonic analysis and geometric functional analysis communities have
produced an enormous amount of additional work.8–14

Most of the previous work has focused on a reconstruction algorithm that involves linear programming or
second-order cone programming.5–7 Computation times have not been reported, but they are expected to be
cubic in the length d of the signal. This cost is absurd, since we are seeking an approximation that involves O(m)
terms. Tropp and Gilbert describe another algorithm with running time of order O(m2d log d), which can be
reduced to O(md log d) in certain circumstances.13 None of these approaches are competitive with the sublinear
algorithms described here.

There are a few sublinear algorithms available in the literature. The Fourier sampling paper can be viewed as
a small space, sublinear algorithm for signal reconstruction.3 Its primary shortcoming is that the measurements
are not uniformly good for the entire signal class. The recent work of Cormode and Muthukrishnan proposes
some other sublinear algorithms for reconstructing compressible signals4 . Few of these algorithms offer a uniform
guarantee. The ones that do require an enormous number of measurements—O(m2 log d) or worse—which means
that they are not summarizing the signal as efficiently as possible.

The following table describes the best algorithmic contributions on some of the same axes as before. A very
similar table appears in the paper of Cormode and Muthukrishnan.4

Ref. Signal Class Error bd. Uniform Storage # Measurements Decode time

[CRT04]8 m-sparse No error Yes O(m log d) O(m log6 d) Ω(md) LP

[RV05]12 m-sparse No error Yes O(md log d/m) O(m log d/m) Ω(md) LP

[TG05]13 m-sparse No error No O(md log d) O(m log d) O(m2d log d)

[CM05]4 m-sparse No error No O(log d) O(m log2 d) O(m log2 d)

[CM05]4 m-sparse No error Yes O(m log d/m) O(m2 log2 d) O(m log d/m)

[CT04]7 weak ℓp, ℓ1 Minimax Yes O(m log d) O(m log4 d) Ω(md) LP

[CM05]4 weak ℓp Instance Yes O(m
2−p
1−p log d) O(m

3−p
1−p log2 d) O(m

4−2p
1−p log3 d)

[GMS05]3 ℓ2 Instance No O(mε−2 log2 d) O(mε−2 log2 d) O(mε−2 log2 d)

[CM05]4 ℓ2 Instance No O(log2 d) O(mε−1 log5/2 d) O(mε−1 log5/2 d)



Notes: Ω(md) LP denotes the time to solve a linear program with Ω(md) variables.

2. ENCODING FOR CHAINING PURSUIT

Our algorithm for approximating a compressible signal is called Chaining Pursuit. This section describes a linear
measurement process that can be used to summarize a d-dimensional signal f for recovery via Chaining Pursuit.
Suppose that f is well approximated by an m-sparse function (that is, by m “spikes”). The measurement process
used for Chaining Pursuit consists of two steps, which summarize the values and locations of the spikes. First
a sequence of bit masks is applied to the signal. Then an isolation matrix is applied to the masked signals to
obtain a set of measurements. Intuitively, the goal of this process is to isolate the m spikes from each other so
that each measurement involves at most one spike. Then the bit test will correctly identify the location of the
spike and estimate its value, provided that other components of the signal (“noise”) do not accumulate in that
measurement.

Measurement Process: Bit Tests on Random Partitions. The bit-test is the following measurement
of a signal. For every bit b = 1, . . . , log2 d, the bit-test records the sums s0(b) and s1(b) of values of the signal
corresponding to positions where bit b is 0 and 1 respectively.

The Chaining Pursuit algorithm will make K = O(log m) passes over the signal, and it will use different set of
measurements for each pass. So, for for each pass k = 0, . . . , K − 1, we repeat the following set of measurements
independently O(k log d) times (trials):

1. randomly partition off the set of d signal positions into O(m/2k) subsets;

2. apply the bit-test to the signal restricted to each subset.

Formally, the measurement operator Φ is a linear operator that acts as

Φf = A(diag f)B

where A is the isolation matrix and B is the bit-test matrix. Applying the measurement operator to a signal f
yields a data matrix V with dimensions O(m log d) × O(log d). Each row of the data matrix contains the result
of the bit-test applied to the signal restricted to some subset. We will refer to each row as a measurement of the
signal.

Bit-test matrix. The bit-test matrix B = [B1 B2] is a zero–one matrix with dimensions d × O(log2 d).
Each of the two submatrices B0 and B1 has dimensions d × log2⌈d⌉. The ith column of B0 has a one in each
row whose index has a zero in the ith digit of its binary expansion. Likewise, the ith column of B1 has a one in
each row whose index has a one in the ith digit of its binary expansion. An example of a bit-test matrix B for
dimension d = 8 is

B =





1 1 1 0 0 0
0 1 1 1 0 0
1 0 1 0 1 0
0 0 1 1 1 0
1 1 0 0 0 1
0 1 0 1 0 1
1 0 0 0 1 1
0 0 0 0 1 1





.

Isolation matrix. The isolation matrix A is a zero–one matrix with dimensions O(m log d) × d and a
hierarchical structure. Let a be a sufficiently large constant, to be discussed in the next section. The Chaining
Pursuit algorithm makes K = 1 + loga m passes over the signal, and the isolation matrix involves a different set
of measurements for each pass. The measurements for the kth pass are contained in the O(mk/2k)×d submatrix
A(k). During each pass, the algorithm performs Tk = O(k log d) trials. Each trial t is associated with a further

submatrix A
(k)
t , which has dimensions O(m/2k) × d. The submatrix for each trial encodes a random partition



of the d signal positions into O(m/2k) disjoint parts. In other words, we assign each of the signal positions
independently at random to one of the O(m/2k) measurements. Here is a picture of the isolation matrix:

A =





A(1)

A(2)

...

A(K)




where A

(k) =





A
(k)
1

A
(k)
2

...

A
(k)
Tk




.

An example of A
(k)
t with dimensions 3 × 8 is

A
(k)
t =




0 1 0 0 1 1 0
1 0 0 1 0 0 0
0 0 1 0 0 0 1





Note that each of the d signal positions (corresponding to columns) appears in exactly one row.

Storage cost. The bit test matrix requires no storage. The total storage for the isolation matrix A

is O(d log2 m log d) bits. This cost is calculating by observing that the submatrix A
(k)
t can be stored using

d log2(m/2k) bits and summing over all trials and all passes.

Encoding time. The total time cost to apply the measurement operator Φ to a signal is O(d log2 m log2 d).
This follows because the number of nonzero entries in A is proportional to d log2 m log d, and we must apply A

to each of the O(log d) masked signals.

Properties of isolation matrix. The proof that Chaining Pursuit is correct relies on certain qualities of
the isolation matrix. The matrix has these qualities with high probability over the choice of random partitions.
It is conceivable that the properties could also be attained with a deterministic or small-space construction. For
more details, please see Section 4.

3. DECODING WITH CHAINING PURSUIT

The Chaining Pursuit algorithm takes as input a data matrix V , the isolation matrix A, and a target number
of spikes m. Its goal is to produce an approximation of the original signal f using at most O(m) spikes. Let
a be a sufficiently large number. The basic idea is to recover all except a 1/a fraction of the remaining spikes
in each pass. After O(log m) passes, there are no spikes left. The reason for the name “Chaining Pursuit” is
that this process decomposes the signal into pieces with supports of geometrically decreasing size. It resembles
an approach in analysis and probability, also called chaining, that is used to control the size of a function by
decomposing it into pieces with geometrically decreasing sizes. A famous example of chaining in probability
theory is to prove bounds on the expected supremum of an empirical process.15 For an example of chaining in
TCS, see the results of Indyk and Naor on embeddings.16

The overall structure of the algorithm is similar to other sublinear approximation algorithms described in the
literature. It involves three steps:

1. Identify spikes

2. Estimate their values

3. Iterate on the residual

An overview of the algorithm appears below; the details follow.



Algorithm: Chaining Pursuit

Inputs: Number m of spikes, data matrix V , isolation matrix A

Output: A list of O(m) spike locations and values

For each pass k = 0, 1, . . . , loga m:

For each trial t = 1, 2, . . . , O(k log d):
For each measurement n = 1, . . . , O(m/2k)

Use bit tests to identify the spike position

Use a bit test to estimate the spike magnitude

Retain m/ak distinct spikes with values largest in magnitude

Retain spike positions that appear in more than 9/10 of trials

Estimate final spike sizes using medians

Encode the spikes using the measurement operator

Subtract the encoded spikes from the data matrix

Implementation. Most of the steps of this algorithm are straightforward to implement using standard
abstract data structures. One point that may require comment is the application of bit tests to identify spike
positions and values.

A measurement is a row of the data matrix, consisting of 2 log2⌈d⌉ numbers:

[
b0(1) b0(2) . . . b0(log2 d) b1(1) b1(2) . . . b1(log2 d)

]
.

We omit the ceiling for legibility. These numbers allow us to obtain the binary representation of a spike location.
If |b0(i)| ≥ |b1(i)| then the ith bit of the location is zero. If |b1(i)| > |b1(i)| then the ith bit of the location is one.
Suppose that the measurement contains one spike and the ℓ1 norm of the other signal positions assigned to that
measurement is less than the magnitude of the spike. It is easy to check that this bit test correctly identifies the
spike location.

To obtain an estimated value for the spike from the measurements, we just use the least significant bit. If
|b0(1)| ≥ |b1(1)|, then the estimated size of the spike is b0(1). Otherwise, the estimated size is b1(1). Any other
bit would work just as well. A median over all the bits might be more robust, but it costs an extra factor of
O(log d). It is easy to check that, if the measurement contains one spike, then the estimated value is equal to
the actual value plus or minus the ℓ1 norm of the other positions assigned to the measurement.

In pass k, the number of recovered spikes is at most O(m/ak), so the cost of encoding these spikes is
O(ma−k log2 m log2 d). Updating the data matrix requires the same amount of time. Note that this cost assumes
random access to the isolation matrix!

Storage costs. The primary storage cost derives from the isolation matrix A. Otherwise, the algorithm
requires only O(m log d) working space.

Time costs. During pass k, the primary cost of the algorithm occurs when we encode the recovered
spikes. This operation requires O(ma−k log2 m log2 d) time in pass k. Summing over all passes, we obtain
O(m log2 m log2 d) total running time.

4. ANALYSIS OF CHAINING PURSUIT

This section summarizes our analysis of Chaining Pursuit, which yields the following theorem. Fix an isolation
matrix A that satisfies the conclusions of Theorem 2 of the sequel.

Theorem 1 (Chaining Pursuit). Suppose that f is a d-dimensional signal whose best m-term approxi-
mation with respect to ℓ1 norm is fm. Given the data matrix V = Φf and the number m, Chaining Pursuit
produces a signal f̂ consisting of at most O(m) spikes. This signal estimate satisfies

∥∥ f − f̂
∥∥

1
≤ (1 + C log m)

∥∥ f − fm

∥∥
1
.



In particular, if fm = f , then also f̂ = f .

Remark 1. (i) The number C is a constant that depends only on the constant a; it does not appear possible to

make C arbitrarily small. (ii) The number O(m) spikes in the output signal f̂ can be improved to (1+ε)m for any
fixed ε ∈ (0, 1) with small modifications of the algorithm; the current version of gives 1.105m spikes. (iii) The
factor of log m is intrinsic to this approach. However, the proof gives a stronger statement – the approximation
in the weak-1 norm without that factor:

∥∥ f − f̂
∥∥

weak−1
≤ C ‖ f − fm ‖1 . In the remainder of this section, we

will abbreviate mk = m/ak.

4.1. Challenges of the analysis

Chaining Pursuit is an iterative algorithm. The major difficulty of its analysis is to control the approximation
error from blowing up in a geometric progression from pass to pass. In pass k = 0, the algorithm is working
with measurements of the original signal f . This signal can be decomposed as f = s0 + w, where s0 is the best
m-term approximation of f (spikes) and w is the remainder of the signal, called external noise. If w = 0, the
analysis becomes quite simple. Indeed, in that case we exactly recover a constant fraction of spikes in each pass;
so we will exactly recover the signal f in O(log m) passes.

In presence of the external noise w 6= 0, we can still recover a constant fraction of spikes in the first pass,
however with error whose ℓ1 norm is proportional to the ℓ1 norm of the noise w. This error forms the “internal
noise”, which will add to the external noise in the next round. So, the total noise doubles at every round. After
the loga m rounds (needed to recover all spikes), the error of recovery will become polynomial in m. This is
clearly unacceptable: Theorem 1 claims the error to be logarithmic in m.

This calls for a more delicate analysis of the error. Instead of adding the internal noise as a whole to the
original noise, we will show that the internal noise spreads out over the subsets of the random partitions. So,
most of the measurements will contain a small fraction of the internal noise, which will yield a small error of
recovery in the current round. The major difficulty is to prove that this spreading phenomenon is uniform – one
isolation matrix spreads the internal noise for all signals f at once, with high probability. This is a quite delicate
problem. Indeed, in the last passes a constant number of spikes remain in the signal, and we have to find them
correctly. So, the spreading phenomenon must hold for all but a constant number of measurements. Allowing
so few exceptional measurements would naturally involve a very weak probability of such phenomenon to hold.
On the other hand, in the last passes the internal noise is very big (having accumulated in all previous passes).
Yet we need the spreading phenomenon to be uniform in all possible choices of the internal noise. It may seem
that the weak probability estimates would not be sufficient to control a big internal noise in the last passes.

We will resolve this difficulty by doing a “surgery” on the internal noise, decomposing it in pieces corresonding
to the previous passes, proving corresponding uniform probability estimates for each of these pieces, and uniting
them in the end. This yields the Isolation Theorem 2, which summarizes the properties of the isolation matrix.

4.2. Deterministic Part

The proof of Theorem 1 is by induction on the pass k. We will normalize the signal so that ‖w‖1 = 1/(400000a).

We will actually prove a result stronger than Theorem 1. We will show that, in pass k, the signal has the
form

f (k) = sk + w +

k−1∑

j=0

νk (1)

where sk contains at most mk spikes. The vector νj is the internal noise from pass j, which consists of 3mj or
fewer nonzero components with magnitudes at most 2m−j. When we have done with all passes, that is when
k = 1+ loga m, we will have no more spikes in the signal (mk = 0 thus sk = 0). This at once implies Theorem 1.

The proof of (1) will only use the two deterministic properties of the isolation matrix. They are summarized
in the following theorem, whose proof we will sketch in the next subsection.

Theorem 2 (Properties of Isolation Matrix). The isolation matrix has the following quality with
probability at least (1 − d−3). If a signal has the form (1) for some pass k, then at least 99/100 of the trial
submatrices have these two properties:



1. All but 1
100mk+1 spikes appear alone in a measurements, isolated from the other spikes.

2. Except for at most 1
100mk+1 of the measurements, the internal and external noise assigned to that mea-

surement have ℓ1 norm at most 1
1000m−1

k .

The first lemma considers the performance of the algorithm in one of the 99/100 non-exceptional trials under
an artificial assumption that will be removed in the second lemma.

Lemma 4.1 (One Trial, No Exceptions). Suppose that the trial is not exceptional. Assume that each
measurement contains at most one spike and that the external noise in each measurement is no greater than
ε = 1

1000m−1
k . Then the trial constructs a list of at most mk spikes.

1. If
∣∣f (k)(i)

∣∣ > 2ε then the list contains a spike with position i and estimated value f (k)(i) ± ε.

2. If the list contains a spike with position i and
∣∣f (k)(i)

∣∣ ≤ 4ε, then the estimated value of the spike is no
more than 5ε in magnitude.

We call list items that satisfy these estimates accurate.

The first lemma follows from simple observations about the performance of the bit tests and the algorithm.
The second lemma removes the artificial assumption on the spikes and noise.

Lemma 4.2 (One Trial). Suppose that the trial is not exceptional. Then the trial constructs a list of at
most mk spikes. All items in the list are accurate, except at most 3

50mk+1.

Proof. [Proof sketch.] The list produced by the algorithm is stable. That is, if the noise in a measurement is
too large, at most two entries in the list are ruined. If a spike is not isolated, it ruins at most one entry of the
list.

Lemma 4.3 (Combining Trials). The number of list items that are inaccurate in more than 1/10 of the
trials is at most mk+1. The total number of positions that appear in 9/10 of the trials is at most 10

9 mk.

Both parts follow by simple counting arguments. The list items that are inaccurate come from the accumu-
lation of the 3

50mk+1 exceptional positions in Lemma 4.2. These become the spikes in the next pass.

Lemma 4.4 (Induction Hypothesis). After pass k, there are at most mk+1 spikes remaining. The
contribution νk to the internal noise contains at most 3mk components with values at most 2/mk.

Proof. [Proof sketch.] The list items that are inaccurate in more than 1/10 of the become spikes in the
next pass. The list items that are identified in 9/10 of the trials consist of at least 8/10 accurate estimates,
so medians over all values also yield accurate estimates. Since accurate estimates are either close to the actual
spike value or close to zero, the value of the residual signal in these locations is less than 9ε < m−1

k . The
difference between the spikes in the signal f (k) and the large entries in the update signal yields contains at most
mk+1 + mk + 10

9 mk < 3mk terms of size less than m−1
k + m−1

k+1 < 2m−1
k .

An immediate consequence of Lemma 4.4 is (1) for pass k + 1, completing the proof.

4.3. Probabilistic Part

Here we prove that the random isolation matrix indeed has the two properties described in Theorem 2.

Lemma 4.5 (Isolations). With probability at least 1 − exp{−4mk log d}, the following is true. In pass k,
at least 99/100 of the trial submatrices isolate all but 1

100 of the mk spikes.

Proof. [Proof sketch.] A standard martingale argument shows that the probability that one trial fails to
isolate a 1

100 fraction of the mk spikes is e−O(mk). Apply the Chernoff bound over trials to obtain the result.

Lemma 4.6 (Noise control). With probability at least 1− exp{−4mk log d}, the following is true. In pass
k, in every trial, the number of measurements where the ℓ1 norm of the external noise exceeds 1

2000m−1
k is at most

1
200mk+1. In pass k, in at least 99/100 trials, the number of measurements where the ℓ1 norm of the internal

noise exceeds 1
2000m−1

k is at most 1
200mk+1.



Proof. [Proof sketch.] The external noise is controlled by Markov’s inequality and the fact that each trial

submatrix A
(k)
t has (1,1) operator norm equal to one.

The internal noise control is a delicate statement, which forms a main technical part of the argument. First
we pass from the random partition model to a model where measurements are independent, using conditioning.
Each piece νj of the internal noise exceeds λjmk in a single measurement with probability e−O(mjTk). We apply
Chernoff’s bound to find the probability that more than εjmkTk measurements are noisy during all Tk trials.
Then Markov’s inequality controls the number of trials where more than εjmk measurements are contaminated.
The numbers λj and εj are chosen so that the quantitative pigeonhole principle yields a bound on the total
number of measurements with internal noise greater than 1

2000m−1
k . We must refer the reader to a forthcoming

technical report for details.
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