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Abstract: A data structure is presented that explicitly maintains the graph of a Voronoi diagram of N point sites in the
plane or the dual graph of a convex hull of points in three dimensions while allowing insertions of new sites/points. Our
structure supports insertions in Õ(N3/4) expected amortized time, where Õ suppresses polylogarithmic terms. This is
the first result to achieve sublinear time insertions; previously it was shown by Allen et al. that Θ(

√
N) amortized com-

binatorial changes per insertion could occur in the Voronoi diagram but a sublinear-time algorithm was only presented
for the special case of points in convex position.
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1. Introduction

Voronoi diagrams and convex hulls are two keystone geometric
structures of central importance to computational geometry. We
focus the description here on planar Voronoi diagrams of points;
the results can be extended to the dual graph of 3D-convex hulls:
we describe the way to do so later in the paper, see Section 9. Sev-
eral algorithms, based on various different techniques, have been
developed over the years that compute the Voronoi diagram of a
set of N points in optimal time O(N log N) [4]. Surprisingly how-
ever, the problem of maintaining dynamically a Voronoi diagram
subject to insertions/deletions of points is not well understood.
1.0.1 Incremental Voronoi Diagrams

In this paper we focus on the problem of maintaining the
Voronoi diagram under insertion of new sites. In Allen et al. [1] it
was observed that while there could be a linear number of changes
to the embedded Voronoi diagram with each site insertion, this
is not equivalent to the number of combinatorial changes (i.e.,
edge insertions and deletions) to the graph of the Voronoi di-
agram. What is more, it was proved that the maximum num-
ber of combinatorial changes per site insertion is Θ(

√
N) amor-

tized. This opened the possibility of maintaining the Voronoi di-
agram graph under insertions with sublinear update time. Allen
et al. [1] achieved this for the restricted case where the sites are
in convex position, for which they designed a data structure with
O(
√

N log7 N) amortized insertion time. This result relies cru-
cially on the fact that the Voronoi diagram of a set of points in
convex position is a tree. Other more restricted special cases
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have been studied where the number of combinatorial changes
is Θ(log N) [2], [10].
1.0.2 Our Result

In this work, we provide a data structure that explicitly main-
tains the graph of a Voronoi diagram of arbitrary point sites in R2

while allowing insertions of new sites in Õ(N3/4) amortized time,
where Õ suppresses polylogarithmic terms. This is the first data
structure supporting insertions in sublinear time for this problem.

We crucially note that we are interested in maintaining explic-
itly the Voronoi diagram. In particular, we store the diagram as
a graph in adjacency list format on which primitive operations,
including links and cuts, are performed. This is different than
just maintaining a data structure that answers nearest neighbor
queries. This case can be solved dynamically in polylogarithmic
time by Dynamic Nearest Neighbor (DNN) structures [5], [6], [9];
this relies heavily on the fact that nearest neighbor is a decompos-
able search problem, whereas maintaining the Voronoi diagram is
clearly not. In fact, here we use those DNN structures as subrou-
tines for solving our problem.

We remark that maintaining the Voronoi diagram in sublinear
time in the fully dynamic setting (i.e., with both insertions and
deletions) is hopeless as the Θ(

√
N) amortized bound of combi-

natorial changes for insertions becomes Θ (N).

1.1 Brief Description of Our Approach
We now give a high-level overview of our approach and the

organization of the rest of the paper.
We store the Voronoi diagram as a combinatorial graph, which

allows the quick retrieval of any geometric information if needed.
Suppose we wish to insert a new site sN into the diagram, and

let f be the cell of the diagram that contains sN . This cell can
be found in polylogarithmic time using DNN structures. It is
known [1] that the affected cells that need to be updated, i.e., that
undergo combinatorial changes, form a connected region includ-
ing cell f . To update the diagram, we discover all the affected
cells by a variation of the breadth-first search starting from f .
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1.1.1 Small and Big Cells
The main high-level idea is to divide the cells of the Voronoi

diagram into small and big: small are the ones that have at most
N1/4 vertices and big are the ones that have more. For a Voronoi
cell f , by the paws of f we denote the Voronoi vertices connected
to the boundary of f by one edge. What we do to process small
and big cells is different, but is based on the following fact. Given
an affected cell f the neighboring cells of f that change can be
identified by finding all the paws of f whose Voronoi circles con-
tain the newly inserted site sN .

A small cell is small enough to be processed by simply check-
ing all O(N1/4) Voronoi circles of its paws in a brute force way.
This takes O(N1/4 polylog(N)) = Õ(N1/4) time per small cell.
Since the amortized number of cells changing is O(

√
N), it takes

Õ(
√

N · N1/4) = Õ(N3/4) amortized time to perform all updates
involving small cells.

For each big cell with bi neighbors, we store a circular linked
list of Θ(bi/N1/4) data structures, each associated with the con-
secutive range of O(N1/4) of its paws. Each structure stores the
Voronoi circles for those paws that are relevant. These Dynamic
Circle-Reporting structures (DCRs) are known variants of the
DNN structure that support insertion and deletion of circles in
polylogarithmic time, and given a query point, report all k circles
containing the point in time Õ(k). Overall, operations involving
a big cell require polylogarithmic time in the number of affected
neighbors. Since there are at most O(N3/4) big cells, the total time
to process them is O(N3/4 polylog(N)) = Õ(N3/4).

Overall, we need Õ(N3/4) amortized time for updating both
small and big cells, thus the main result follows.
1.1.2 Note on Previous Work

In a preliminary version of this paper [3] we presented the same
result using a randomized data structure and providing bounds on
the expected running time; the randomization came solely from
the shallow cuttings used in the DNN structure [5]. Since the
initial development of this work, Chan presented DNN structures
that use shallow cuttings deterministically [6] (implicit in [7]); us-
ing this structure all DNN and DCR structures used in this paper
can be implemented deterministically. As a result, our overall
structure is deterministic.
1.1.3 Organization

The rest of the paper is organized as follows. In Section 2.1 we

Fig. 1 A Voronoi diagram and (a) a Voronoi circle of vertex v and (b) paw v of Voronoi cell f .

characterize affected cells that undergo combinatorial changes. In
Section 3 we give a detailed description of our data structure. In
Section 4 we present the sequence of actions performed with each
insertion of a site. In Section 5 we present the procedure to find
all the affected cells, and in Sections 6 and 7 we describe the pro-
cedure to implement the combinatorial changes and update the
data structure accordingly.

2. Preliminaries and Definitions

We begin with standard definitions related to Voronoi diagrams
and their basic properties.

Let S � {s1, s2, . . . , sN} be a set of N distinct points in R2;
these points are called sites. Let dist(·, ·) denote the Euclidean
distance between two points in R2. We assume that the sites in
S are in general position, that is, no four sites lie on a common
circle.
Definition 1. The Voronoi diagram of S is the subdivision of R2

into N cells, called Voronoi cells, one cell for each site in S , such
that a point q lies in the Voronoi cell of a site si if and only if

dist(q, si) < dist(q, s j)

for each s j ∈ S with j � i.
Let fi denote the Voronoi cell of a site si. Edges of the Voronoi

diagram, called Voronoi edges, are portions of bisectors between
two sites which are the common boundary of the corresponding
Voronoi cells. Voronoi vertices are points where at least three
Voronoi cells meet. The Voronoi circle of a Voronoi vertex v is
the circle passing through the sites whose cells are incident to v,
see Fig. 1 (a). Vertex v is the center of its Voronoi circle.

Since the sites are in the general position, each Voronoi vertex
has degree three. Each Voronoi edge is either a segment or a ray
and the graph of the Voronoi diagram formed by its edges and
vertices is planar and connected.

The next three definitions are specific to our data structure.
Definition 2. The size of a Voronoi cell is the number of Voronoi
edges constituting its boundary. We denote the size of cell f by
| f |.
Definition 3. A Voronoi cell of a Voronoi diagram with N sites is
called a big cell if it has size more than N

1
4 . Otherwise it is called

small.
Definition 4. The paws of Voronoi cell f are the Voronoi vertices
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Fig. 2 Examples of (a) not flarbable curve (b) flarbable curve; (c) result of applying the flarb operation
for curve C′.

that are connected to the boundary of f by an edge and are not
themselves on the boundary of f , see Fig. 1 (b). A paw is called
relevant if it is not incident to a big cell.

2.1 Combinatorial Changes to the Voronoi Diagram and the
Flarb Operation

We now overview the definitions and results from Allen et
al. [1] that we need to present our approach. In order to prove the
Θ(N

1
2 ) bound on the number of combinatorial changes caused by

insertion of a site, a graph operation called flarb is introduced.
Let G be a planar 3-regular graph embedded inR2 without edge

crossings (edges are not necessarily straight-line). Let C be a sim-
ple closed Jordan curve in R2.
Definition 5. Curve C is called flarbable for G if:
• the graph induced by vertices inside the interior of C is con-

nected,
• C intersects each edge of G either at a single point or not at

all,
• C passes through no vertex of G, and
• the intersection of C with each face of G is path-connected.
For example, curve C in Fig. 2 (a) is not flarbable since the in-

tersection between its interior (shaded green) and the highlighted
face (red) consists of two disconnected parts. In Fig. 2 (b) curve
C′ is flarbable.

Given a graph G and a curve C flarbable for G, the flarb op-
eration is, informally, removing part of G that is inside C and
replacing it with C. Formally, the flarb operation for G and C is
defined as follows (see Fig. 2 (b), Fig. 2 (c)):
• For each edge ei ∈ G that intersects C let ui be its vertex ly-

ing inside C and vi its vertex outside C. Create a new vertex
wi = C ∩ ei and connect it to vi along ei.

• Connect consecutive vertices wi along C.
• Delete all the vertices and edges inside C.
Let G(G,C) denote the graph obtained by applying the flarb

operation to graph G and curve C.
Proposition 1. The following holds for graph G(G,C): (a)

G(G,C) has at most two more vertices than G does; (b) G(G,C)
is a 3-regular planar graph; (c) G(G,C) has at most one more

face than G does.

Proof. Items (a) and (b) are proved in Ref. [1], Lemma 2.2. To
prove (c) note that there is one new face bounded by the cycle
added along C while performing the flarb. All the other faces of
G are either deleted, left intact, or cropped by C; these operations
obviously do not increase the number of faces. �

Fig. 3 Edges n∗1 and n∗2 can be obtained without any links or cuts.

Theorem 2 (Ref. [1]). Let G be a graph of the Voronoi diagram

of a set of N − 1 sites s1 . . . sN−1. For any new site sN there exists

a flarbable curve C such that the graph of the Voronoi diagram of

sites s1 . . . sN is G(G,C).
2.1.1 Cost of the Flarb

We want to analyze the number of structural changes that a
graph undergoes when we apply the flarb operation to it. There
are two basic combinatorial operations on graphs:
• Link is the addition of an edge between two non-adjacent

vertices.
• Cut is the removal of an existing edge.
Other combinatorial operations, for example insertion of ver-

tex of degree 2, are assumed to have no cost.
Definition 6. cost(G,C) is the minimum number of links and cuts
needed to transform G into G(G,C).

Note that sometimes there are less combinatorial changes
needed than the number of edges intersected by C. Consider
edges e1, e2 of G crossed consecutively by C and edge n adja-
cent to them that reappears in G(G,C) as a part n∗ of C. Then n∗

can be obtained without any links or cuts by lifting n along e1 and
e2 until it coincides with n∗ or (which is the same) shrinking e1

and e2 until their endpoints coincide with their intersections with
C (see Fig. 3). We will call it preserving operation.
Theorem 3 (Ref. [1]). For a flarbable curve C, it holds that

cost(G,C) ≤ 12|S(G,C)| + 3|B(G,C)| + O(1).

Where

• |B(G,C)| is the number of faces of G wholly contained inside

C (g is such a face on Fig. 2 (b)).
• |S(G,C)| is the number of shrinking faces — i.e., the faces

whose number of edges decreases when flarb operation is

applied (face f is shrinking on Fig. 2 (b)–2 (c)).
The following upper bound can be used to evaluate the number

of combinatorial changes needed to update the graph of a Voronoi
diagram when a new site is inserted.
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Theorem 4 (Ref. [1]). Consider one insertion of a new site to a

Voronoi diagram V.

• The number of cells of Vundergoing combinatorial changes

is O(N
1
2 ) amortized in a sequence of insertions;

• There are a constant number of combinatorial changes per

cell;

• The cells of Vwith combinatorial changes form a connected

region.

Further in this paper by a change in cell we always mean a
combinatorial change, that is a link or a cut.

3. Description of Data Structure

Our data structure consists of the following parts.
• The graph GN of the Voronoi diagram represented by its ad-

jacency list: for each Voronoi vertex v we store the list of
all Voronoi vertices connected to v. Since the sites are in the
general position, each list has length 3, therefore we can find
and replace its elements in constant time. Thus any link or
cut can be performed in constant time as well as insertion or
deletion of a vertex of degree 2.

• For each vertex v its data Dv is stored. It is a list of the
three sites that define the Voronoi circle of v, that is, the sites
whose cells are incident to v.

• A dynamic nearest neighbor structure (DNN) [6] for the sites
which supports insertion and deletion of sites and nearest
neighbor queries in Õ(1) amortized time.

• The graph ΓN of big cells which is simply the dual graph
to the subgraph of GN formed by big cells. Vertices of ΓN

are big cells themselves and edges connect vertices corre-
sponding to pairs of big cells that are adjacent. Graph ΓN

has O(N
3
4 ) edges, since it is a planar graph of at most N

3
4

vertices. For each pair of adjacent big cells b1, b2 we also
store two Voronoi vertices they share. We store graph ΓN as
an adjacency list, where for each vertex, its edges are stored
in a binary search tree ordered counterclockwise around the
corresponding big cell. The vertices of ΓN are stored in a
binary search tree. This allows us to access any edge of ΓN

in Õ(1) time.
• For each big cell bi store a circular linked list of Θ(|bi| /N

1
4 )

data structures each associated with a consecutive range of
O(N

1
4 ) paws of Bi, see Fig. 4. Each structure stores the

Voronoi circles of the relevant paws of bi (recall that a paw

Fig. 4 b is a big cell; each of data structures S 1 . . . S 4 is associated with a
consecutive range of its paws and stores Voronoi circles of the rele-
vant ones.

is relevant if it is not incident to a big cell, see Definition 4).
The collections of circles are stored using dynamic circle-

reporting structures (DCRs) that are variants of the DNN
structure constructed in Ref. [1]. DCRs support insertion and
deletion of circles in time Õ(1), and given a query point, re-
port all k circles containing the point in time Õ(k).

• For each big cell bi a yard tree Tbi supporting the following
operations in Õ(1) time:

– for a specified continuous range v1 . . . vm of vertices of bi

updating Dv1 . . .Dvm , changing si to a given site s j.
– removing a continuous range of vertices from bi and create

a new cell with these vertices preserving their order (split),
– merging the trees that correspond to big cells bi and b j

(when two cells are merged their common edge is deleted),
so that the same operations can apply to the resulting tree.

One can use link-cut trees [11] or a collection of red-black
trees with two-way pointers for this purpose, see Cormen et
al. [8] for details.

• For each cell fi we need to store its size | fi|.
4. Insertion of a Site

We aim to implement the update of graph GN−1 to become GN

when a new site sN is added to the Voronoi diagram. Our goal is to
quickly locate the affected cells that need combinatorial changes,
and to avoid processing the other cells. When the cells that need
changes are located, we implement these changes using the tech-
niques of Ref. [1].

Let the cell of the new site sN be called fN . We denote the
boundary of fN by CN . According to Theorem 2, what we are
about to perform is the flarb operation on graph GN−1 of the cur-
rent Voronoi diagram and curve CN .

We first use the DNN structure to locate one Voronoi cell, call
it fdnn, that must change — the one whose site is the closest to
newly added sN . We then add sN to the DNN. Finally we create
the queue with all big cells of GN−1 and cell fdnn. This whole
procedure takes Õ(1) time as the list of all big cells is already
stored.

We then remove each cell f from the queue, process it, and add
into the queue the small cells neighboring f with unprocessed
changes. We do not have to add big cells neighboring f as all of
them were already in the initial queue and thus will be processed.
Figure 6 shows a pseudocode of this procedure.

5. Recognizing Cells with Changes

Let f be a cell with combinatorial changes. We can identify the
neighboring cells of f that change using the following theorem:
Theorem 5 (Ref. [1]). Let g be a cell adjacent to f . Let v1, v2
be the vertices of g that are paws of f . Cell g needs to undergo

combinatorial changes if and only if the Voronoi circle of v1 or v2
encloses sN.

See Fig. 5 (a) for an example. Cell f is a cell with changes, n1

and n2 are its paws. The Voronoi circle of n1 encloses the new
site sN and the one of n2 does not. Therefore cells f1 and f2 need
combinatorial changes as they are incident to vertex n1, and cell
f3 does not need any changes.

We now consider separately the case when cell f is a big cell
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Fig. 5 Identifying Voronoi cells that need changes. (a) Voronoi circle of vertex n1 encloses sN , and the
circle of n2 does not. (b) v is a paw of big cell f returned by a DCR. Highlighted are the cells that
are to be added to the queue.

Fig. 6 Pseudocode describing insertion of new site sN

(Section 5.1) and the case when it is a small cell (Section 5.2).

5.1 Cell f is Big
We use DCRs of cell f : they return all the relevant paws of f

whose Voronoi circles enclose sN . Small cells that are incident to
these paws and are adjacent to f need combinatorial changes and
thus have to be added to queue Q.

Two cells are to be considered separately: those that are neigh-
boring f through an edge that is crossed by CN . Denote them by
fLeft and fRight, see Fig. 5 (b). If they are small, we check whether
the Voronoi circles of at most four paws of f incident to them
(call these paws p1 . . . p4) enclose sN , and, if yes, add the corre-
sponding cell to the queue. To find Voronoi circles of these paws
we get the data Dp1 . . .Dp4 from the structures Tbi associated with
big cells adjacent to fLeft and fRight, which requires Õ(1) time.

5.2 Cell f is Small
We can look at every paw ni of f and identify those, whose

Voronoi circle encloses sN . This requires Õ(N
1
4 ) time in total.

We add to Q small cells adjacent to f that are incident to these
paws as they need changes according to Theorem 5.

6. Implementing Combinatorial Changes

In this section we describe how to implement combinatorial
changes in a cell f which lies in Changed. We again consider
separately the case when f is big (Section 6.1) and the case when
f is small (Section 6.2).

6.1 Processing Big Cells
Processing a big cell f consists of the following four steps:

6.1.1 Updating the Vertices
We update a continuous range of f ’s vertices v1 . . . vk — we

need to change their data Dv1 . . .Dvk to indicate that these vertices
are now incident to the cell of sN and not the cell of s. This can
be done in Õ(1) time using the yard tree T f .
6.1.2 Updating the Graph of the Voronoi Diagram

The first thing to do is a link along CN creating two vertices:
vertex v1 incident to f , fN , fLeft, and vertex v2 incident to f , fN ,
fRight (see Fig. 5 (b)). After this link the part of f inside CN be-
comes a part of the new cell fN — luckily, all vertices of this part
are already updated during the previous step.

There may be some big cells adjacent to f that are already pro-
cessed, creating other parts of the new cell. We have to join these
parts together by cutting edges of f that have portions inside CN

and are incident to already processed big cells. Finding these
edges in a straightforward way could be slow as f can have a re-
ally large number of edges inside CN and we do not have enough
time to look at each of them individually. Luckily, graph ΓN−1

contains the information about edges shared by big cells. Thus
we can in Õ(1) time find and delete edges incident to both f and
already processed big cells inside CN . The edges shared by f and
other big cells inside CN will be deleted when these other big cells
will be processed.
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Fig. 7 Processing a cell with one vertex inside the new cell.

Fig. 8 Processing a cell with two vertices inside the new cell when no surrounding cells are yet processed.

6.1.3 Updating the Graph of Big Cells
The two operations we just carried out — split of f by the new

edge v1v2 and joining of some cells that are parts of fN — can
change the set of big cells and add or cut some connections be-
tween them. However, ΓN−1 can be updated accordingly in Õ(1)
time when such an operation is executed. It can be done as fol-
lows:

While undergoing a split, vertex f falls apart into two vertices:
f ′ and f ( f )

N (the latter represents a part of the new cell). They
share newly created edge v1v2 of the Voronoi diagram. Note that
the cells adjacent to f ( f )

N form a continuous range of cells that
were adjacent to f .

Thus we need Õ(1) time to cut a continuous range from the
binary search tree of cells adjacent to f , Õ(1) time to add a new
edge between f ′ and f ( f )

N to their binary search trees and Õ(1)
time to re-balance the binary search tree of all big cells.

Joining can be also done in Õ(1) time. When two cells f1, f2 are
joined we remove a node corresponding to f1 from binary search
tree of f2 and vice versa, this takes Õ(1) time. We then join the
trees of f1 and f2 also in Õ(1) time since cells that were adjacent
to f1 form a continuous range of cells adjacent to the new one.
6.1.4 Fixing Data Structures

There are two data structures associated with f that have to be
considered:
• T f can be updated in Õ(1) time the same way we did with

the graph of big cells.
• DCRs of relevant paws: when big cells are joined or split,

most of DCR-s stay intact. The only DCRs that need to be
rebuilt are those whose range contains the endpoints of the
edge that is either cut or added. Rebuilding of a DCR takes
Õ(N

1
4 ) time since at most Ø(N

1
4 ) circles are stored there.

6.2 Processing Small Cells
A small cell is different from a big cell in that we can consider

every edge of it, and it will take us Õ(N
1
4 ) time. We will imple-

ment the combinatorial changes in f , and after this we update the

DCRs of neighboring big cells.
We can in time Õ(N

1
4 ) distinguish whether f has one, two, or

more vertices inside the new cell (if they exist). Below we de-
scribe these three cases separately.
6.2.1 One Vertex Inside the New Cell

See Fig. 7 (a). Let fi, fk be the cells adjacent to f that share an
edge with f inside CN . Let those edges be called ei, ek respec-
tively.

It is certain that neither fi nor fk have been processed yet: if fi
is processed then there would be a vertex v = CN ∩ ei. Then we
have to create the face in the graph that is separated from f , fi,
fk, bounded by CN , and is a part of the new cell fN .

To do so, we perform a link operation inside f along CN : we
create new vertices v1 on ei, v2 on ek and add an edge v1v2 to GN−1,
see Fig. 7 (b). v1 is incident to the cells of sites s, si and sN ; v2 is
incident to the cells of s, s j and sN .
6.2.2 Two Vertices Inside the New Cell

We check whether cells adjacent to f that share an edge with it
inside CN have been already processed. If not (see Fig. 8 (a)), we
perform a link operation inside f similarly to the previous para-
graph, see Fig. 8 (b).

Otherwise let us denote three faces sharing an edge with cell f

inside curve CN by f1, f2, f3, see Fig. 9 (a).
Lemma 6. It is only f2 that can have been already processed.

Proof. Suppose f1 is processed. It must then have an edge along
CN . It implies that there is a vertex where CN meets the common
edge of f1 and f . This vertex becomes the third vertex of f inside
CN . However, f has only two such vertices, which is a contradic-
tion. �

If f2 is processed and is part of fN then the data Dv1 , Dv2 of
its vertices was updated when we were processing it. Therefore
f does not need to undergo any combinatorial changes, the com-
mon edge of f and fN can be obtained by preserving operation
which was described in Section 2.1, see Fig. 3. Thus no links and
cuts are required, see Fig. 9 (b). This completes implementing
changes in f .
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Fig. 9 Processing a cell with two vertices inside the new cell when there are processed neighboring cells
— no structural changes are needed.

Fig. 10 Processing a cell with three or more vertices inside the new cell. (a) No adjacent faces have been
processed yet, (b) Adjacent face f ′ has been processed.

6.2.3 More Vertices Inside the New Cell
Again we check whether any of the cells adjacent to f have

been processed already. If not, it is enough to perform one link

creating two new vertices v1, v2 and to update the data Dv j of all
the vertices of cell f between v1 and v2: now they are incident to
the cell of sN , see Fig. 10 (a).

If some cells sharing an edge with f inside CN are already pro-
cessed and represent a part of new cell, then for each processed
cell f ′ adjacent to f we also perform a cut removing their com-
mon edge e and then remove vertices incident to this edge that
now have degree 2, see Fig. 10 (b).
6.2.4 Updating the DCRs of Big Neighbors of f

The last step is that for every vertex v of f whose list of adja-
cent cells has changed during update of GN−1 we find all big cells
for which v is a paw (there are at most three such cells, since v has
degree 3), recalculate the Voronoi circle of v, and update Voronoi
circle of v in DCRs of those cells which takes Õ(1) time.

7. When Small Cells Become Big

When the size of a cell crosses the threshold of N
1
4 , it can be

easily identified since we store all the sizes. If a big cell b is split
into a number of cells and one of them is small, or if N becomes
greater than |b|4, we delete all the structures associated with it,
including DCRs and the structure T f . We also remove from ΓN−1

the vertex corresponding to b.
The other way around, a new big cell can appear in the diagram

when:
• the new cell fN intersects many of the old cells and has more

than N
1
4 vertices, or

• a cell fk with N
1
4 − 1 vertices has one vertex inside fN and

gets one additional vertex while being processed, see Fig. 7.
New cell fN inherits the portion of its DCRs from its parts that

previously were parts of big cells. The number of circles of paws
of previously small cells that need to be added to DCRs can be

bounded from above by the size of a small cell times the number
of cells that undergo changes — that is,

N
1
2 · N 1

4 = N
3
4 .

The structure T fN is inherited in part by fN from big cells that
intersect curve CN . The number of vertices that have to be added
to T fN after that is bounded from above by the number of combi-
natorial changes in current insertion.

The cell fk still has size | fk | ≤ 2N
1
4 , so yard tree T fk can be

built in Õ(N
1
4 ): it only takes time polylogarithmic in the size of

the cell to add each vertex.

8. Correctness and Time Complexity

Theorem 7. Inserting a new site sN to our data structure and

updating it requires Õ(N
3
4 ) amortized time.

Proof. Let s be the number of small cells that change, and
b1, b2, . . . , b|B| be the big cells. Let �i be the number of circles
returned by the DCR structures of bi.

All the operations on a small cell take Õ(N
1
4 ) time. For all the

big cells together the operations on updating the graph structure
and the graph of big cells require Õ(N

3
4 ) total time. The number

of DCR-s that have to be rebuilt is bounded from above by the
number of changes in the graph.

Finally, the amortized time complexity is

Õ

⎛⎜⎜⎜⎜⎜⎜⎝sN
1
4 +

|B|∑
i=1

(⌈ |bi|
N

1
4

⌉
+ �i

)
+ N

3
4 + sN

1
4

⎞⎟⎟⎟⎟⎟⎟⎠ .

Since s is O(N
1
2 ) amortized [1],

∑|B|
i=1 |bi| ≤ N, |B| ≤ N

3
4 , and∑|B|

i=1 �i ≤ sN
1
4 , this is simply Õ(N

3
4 ) amortized. �

9. Discussion

The problem of maintaining the convex hull of a set of points
in R3 subject to point insertion can also be solved using our data
structure. Namely, consider the dual problem of maintaining the
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intersection of a set of halfspaces. The two blocks of our data
structure that are specific for Voronoi diagrams, translate in this
setting as follows. To find the first face affected by the insertion
(or report that it does not exist) we need to find the vertex extreme
in the direction normal to the plane being inserted; if it is affected,
then all the three incident faces are affected. We check whether
a vertex is affected by determinimg the above/below relation be-
tween this vertex and the plane baing inserted. Thus Chan’s struc-
ture [6] is again enough for our needs.

There remains a gap between the Õ(N3/4) expected amortized
runtime of our structure and the Θ(

√
N) amortized number of

combinatorial changes to the Voronoi diagram. Also, it would
be interesting to get output-sensitive bounds, where the update
time depends on the number of combinatorial changes. This was
achieved by Allen et al. [1] for points in convex position, where
their update time is O(K log7 N), where K the number of combi-
natorial changes. We are unable to show this using our technique,
due to the fact that we need to process all Θ(N3/4) big cells, no
matter how many of them undergo combinatorial changes.
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Université libre de Bruxelles in Belgium
where he is currently a professor. He is a
recipient of a Sloan fellowship and a Ful-

bright fellowship. His interests are in data structures, algorithms,
and computational geometry.

Grigorios Koumoutsos obtained his
Ph.D. from Eindhoven University of
Technology (TU/e) in 2018. He is now a
postdoctoral researcher at the Computer
Science Department of ULB. His research
interests include Online Algorithms, Data
Structures and Computational Geometry.

Stefan Langerman obtained his Ph.D.
from Rutgers University in 2001. In 2002
he joined the Computer Science Depart-
ment at the Université Libre de Bruxelles
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