Sublinear-time algorithms

Artur Czumaj Christian Sohlér

Abstract
In this paper we survey recent advances in the area of sabliimee algorithms.

1 Introduction

He area ofsublinear-time algorithmss a new rapidly emerging area of computer science. It
has its roots in the study of massive data sets that occur amatenore frequently in var-

ious applications. Financial transactions with billiorfSrput data and Internet traffic analyses
(Internet traffic logs, clickstreams, web data) are exaspfenodern data sets that show unprece-
dented scale. Managing and analyzing such data sets fateseconsider the traditional notions
of efficient algorithms: processing such massive data setsare than linear time is by far too
expensive and often even linear time algorithms may be tow.sHence, there is the desire to
develop algorithms whose running times are not only polyiagrbut in fact aresublinearin n.

Constructing a sublinear time algorithm may seem to be awgsiple task since it allows one
to read only a small fraction of the input. However, in recgserirs, we have seen development of
sublinear time algorithms for optimization problems argsin such diverse areas as graph theory,
geometry, algebraic computations, and computer graplmisally, the main research focus has
been on designing efficient algorithms in the frameworgmiperty testingfor excellent surveys,
see [[26] 30, 31, 40, 50]), which is an alternative notion gfragimation for decision problems.
But more recently, we have seen some major progress in salpitrme algorithms in the classical
model of randomized and approximation algorithms. In tlapgy, we survey some of the recent
advances in this area. Our main focus is on sublinear-tig@ighms for combinatorial problems,
especially for graph problems and optimization problem®@tric spaces.

Our goal is to give a flavor of the area of sublinear-time athars. We focus on in our
opinion the most representative results in the area and mweaillustrate main techniques used
to design sublinear-time algorithms. Still, many of theadlstof the presented results are omitted
and we recommend the readers to follow the original worksalsfe do not aim to cover the entire
area of sublinear-time algorithms, and in particular, wendbdiscuss property testing algorithms
[26,[30,/31] 40}, 50], even though this area is very closebteel to the research presented in this
survey.

*Department of Computer Science and Centre for Discrete &taditics and its Applications (DIMAP), University
of Warwick. Email: A.Czumaj@warwick.ac.uk.
fDepartment of Computer Science, TU Dortmund, Email: classohler@tu-dortmund.de

Organization. We begin with an introduction to the area and then we give ssubénear-time
algorithms for a basic problem in computational geométd}.[Next, we present recent sublinear-
time algorithms for basic graph problems: approximatirgjdlierage degree in a graphl[25] 34],
estimating the cost of a minimum spanning tree [15] and apprating the size of a maximum
matching[48, 53]. Then, we discuss sublinear-time algord for optimization problems in metric
spaces. We present the main ideas behind recent algorittmestimating the cost of minimum
spanning tree [19] and facility location [10], and then weadiss the quality of random sampling
to obtain sublinear-time algorithms for clustering probge[20/46]. We finish with some conclu-
sions.

2 Basic Sublinear Algorithms

The concept of sublinear-time algorithms has been knowa f@ry long time, but initially it has
been used to denote “pseudo-sublinear-time” algorithrheyevafter an appropriapeeprocessing

an algorithm solves the problem in sublinear-time. For gxamf we have a set of numbers, then
after anO(n log n) preprocessing (sorting), we can trivially solve a numbegsroblems involving
the input elements. And so, if the after the preprocessiagetaments are put in a sorted array,
then inO(1) time we can find théth smallest element, i®(logn) time we can test if the input
contains a given element and also inD(logn) time we can return the number of elements equal
to a given element. Even though all these results are folklore, this is not wiatall nowadays

a sublinear-time algorithm.

In this survey, our goal is to study algorithms for which thput is taken to be in any standard
representation and with no extra assumptions. Then, amidgodoes not have to read the entire
input but it may determine the output by checking only a stib&éhe input elements. It is easy
to see that for many natural problems it is impossible to gmg reasonable answer if not all or
almost all input elements are checked. But still, for sommlner of problems we can obtain good
algorithms that do not have to look at the entire input. Tgfyc these algorithms amandomized
(because most of the problems have a trivial linear-timerdanistic lower bound) and they return
only anapproximatesolution rather than the exact one (because usually, witlooking at the
whole input we cannot determine the exact solution). Inghisey, we present recently developed
sublinear-time algorithm for some combinatorial optintiaa problems.

Searching in asorted list. It is well-known that if we can store the input in a sorted grthen
we can solve various problems on the input very efficientigwdver, the assumption that the input
array is sorted is not natural in typical applications. Lethow consider a variant of this problem,
where our goal is tgearchfor an element in a linked sorted list containing distinctelemen
Here, we assume that theelements are stored in a doubly-linked, each list elementibaess to
the next and preceding element in the list, and the list ieddthat is, ifz follows y in the list,
theny < x). We also assume that we have access to all elements in thehish for example,

1The assumption that the input elementsdigtinctis important. If we allow multiple elements to have the same
key, then the search problem requif&s:) time. To see this, consider the input in which about a halhefélements
has key 1, another half has key 3, and there is a single elemiirkey 2. Then, searching for 2 requir@én) time.

2

can correspond to the situation thatallist elements are stored in an array (but the array is not
sorted and we do not impose any order for the array eleméttsy.can we find whether a given
numberz is in our input or is not?

On the first glace, it seems that since we do not have direesado the rank of any element
in the list, this problem requireQ(n) time. And indeed, if our goal is to design a deterministic
algorithm, then it is impossible to do the search(n) time. However, if we allow randomization,
then we can complete the searchify/n) expected time (and this bound is asymptotically tight).

Let us first sample uniformly at random a sebf ©(/n) elements from the input. Since we
have access to all elements in the list, we can select theisaD(,/n) time. Next, we scan all the
elements inS and inO(y/n) time we can find two elements i#\, p andg, such thap < = < ¢,
and there is no element ifi that is between andq. Observe that since the input consistrof
distinct numbersp andq are uniquely defined. Next, we traverse the input list comtagi all the
input elements starting atuntil we find either the sought keyor we find elemeng.

Lemmal The algorithm above completes the search in expe€égn) time. Moreover, no
algorithm can solve this problem ir{,/n) expected time.

Proof. The running time of the algorithm if equal @(/n) plus the number of the input elements
betweenp andg¢. SinceS contains©(y/n) elements, the expected number of input elements
betweenp and g is O(n/|S|) = O(y/n). This implies that the expected running time of the
algorithm isO(y/n).

For a proof of a lower bound d#(,/n) expected time, see, e.d., [14]. O

2.1 Geometry: Intersection of Two Polygons

Let us consider a related problem but this time in a geomsétitng. Given two convex polygons
A andB in R?, each withn vertices, determine if they intersect, and if so, then findiatdn their
intersection.

It is well known that this problem can be solvedd@n) time, for example, by observing that
it can be described as a linear programming instance in 2/msmons, a problem which is known
to have a linear-time algorithm (cf._[24]). In fact, withing same time one can either find a point
that is in the intersection oft and B, or find a line£ that separated from B (actually, one can
even find a bitangent separating ligei.e., a line separating and B which intersects with each
of A andB in exactly one point). The question is whether we can obtdiatter running time.

The complexity of this problem depends on the input repriagiem. In the most powerful
model, if the vertices of both polygons are stored in an aimapyclic order, Chazelle and Dobkin
[13] showed that the intersection of the polygons can berohéted in logarithmic time. However,

a standard geometric representation assumes that theisnpot stored in an array but rathdr
and B are given by their doubly-linked lists of vertices such teath vertex has as its successor
the next vertex of the polygon in the clockwise order. Canhemttest ifA and B intersect?

Chazelle et al.[[14] gave afi(,/n)-time algorithm that reuses the approach discussed above
for searching in a sorted list. Let us first sample uniforntlyaamdom®(./n) vertices from each
A andB, and letC'y andC'i be the convex hulls of the sample point sets for the polygbasd

3

(b)
Figure 1:(a) Bitangent lineC separatingC'4 andCp, and (b) the polygorP,.

B, respectively. Using the linear-time algorithm mentioabdve, inO(,/n) time we can check if
C4 andC’ intersects. If they do, then the algorithm will get us a pohnatt lies in the intersection
of C'y andC'z, and hence, this point lies also in the intersectiodland B. Otherwise, letC be
the bitangent separating line returned by the algorithra Bgurd1 (a)).

Let « andb be the points inC that belong taA and B, respectively. Let;; anda, be the two
vertices adjacent to in A. We will define now a new polygo®,. If none ofa; andas, is on the
sideC'4 of £ the we defineP, to be empty. Otherwise, exactly oneaqfandas, is on the side”',
of £; let it bea;. We define polygorP, by walking froma to a; and then continue walking along
the boundary ofA until we crossC again (see Figure 1 (b)). In a similar way we define polygon
Pg. Observe that the expected size of eaclPgfand Py is at mostO(y/n).

It is easy to see that and B intersects if and only if eithed intersectsPg or B intersects
P,. We only consider the case of checkingdifintersectsPz. We first determine it” 4 intersects
Pg. If yes, then we are done. Otherwise, k&t be a bitangent separating line that separéates
from Pz. We use the same construction as above to determine a sgbpdly, of A that lies on
the Py side of £ 4. Then, A intersectsPg if and only if @ 4 intersectsPg. Since@ 4 has expected
sizeO(y/n) and so doe#;;, testing the intersection of these two polygons can be dod¥ {/n)
expected time. Therefore, by our construction above, we baived the problem of determining
if two polygons of sizen intersect by reducing it to a constant number of problemaimsts of
determining if two polygons of expected si@g./n) intersect. This leads to the following lemma.

Lemma 2 [[14] The problem of determining whether two conuegons intersect can be solved in
O(y/n) expected time, which is asymptotically optimal.

Chazelle et al. [[14] gave not only this result, but they alsovwgeed how to apply a similar
approach to design a number of sublinear-time algorithmsdme basic geometric problems. For
example, one can extend the result discussed above togestehsection of two convex polyhedra
in R3 with n vertices inO(/n) expected time. One can also approximate the volume ofeartex
convex polytope to within a relative errer> 0 in expected time&(,/n /). Or even, for a pair of
two points on the boundary of a convex polytapavith n vertices, one can estimate the length of
an optimal shortest path outsidebetween the given points if(1/n) expected time.

In all the results mentioned above, the input objects haea bepresented by a linked struc-
ture: either every point has access to its adjacent veritick® polygon inR?, or the polytope is

4

defined by a doubly-connected edge list, or so. These inpu¢sentations are standard in com-
putational geometry, but a natural question is whetherishigecessary to achieve sublinear-time
algorithms — what can we do if the input polygon/polytop ipnesented by a set of points and
no additional structure is provided to the algorithm? Infsacscenario, it is easy to see that no
o(n)-time algorithm can solve exactly any of the problems disedsabove. That is, for example,
to determine if two polygons with vertices intersect one nee@$n) time. However, still, we can
obtain some approximation to this problem, one which is dieed in the framework oproperty
testing

Suppose that we relax our task and instead of determinimgi{¢onvex) polytopesl andB in
R? intersects, we just want to distinguish between two castsered and B are intersection-free,
or one has to “significantly modifyA and B to make them intersection-free. The definition of
the notion of “significantly modify” may depend on the applion at hand, but the most natural
characterization would be to remove at leastpoints in A and B, for an appropriate parameter
(seel[18] for a discussion about other geometric charaeti@on). Czumaj et al[[23] gave a simple
algorithm that for any > 0, can distinguish between the case whkeand B do not intersect, and
the case when at least: points has to be removed frorhand B to make them intersection-free:
the algorithm returns the outcome of a test if a random sawipt®((d/<) log(d/<)) points from
A intersects with a random sample®f(d/<) log(d/<)) points fromB.

Sublinear-time algorithms: perspective. The algorithms presented in this section should give
a flavor of the area and give us the first impression of what dove@n by sublinear-time and what
kind of results one can expect. In the following sectionsyEpresent more elaborate algorithms
for various combinatorial problems for graphs and for neetpaces.

3 Sublinear Time Algorithmsfor Graphs Problems

In the previous section, we introduced the concept of sebttime algorithms and we presented
two basic sublinear-time algorithms for geometric proldenin this section, we will discuss
sublinear-time algorithms for graph problems. Our mairuges on sublinear-time algorithms
for graphs, with special emphasizes on sparse graphs egpeelsby adjacency lists where combi-
natorial algorithms are sought.

3.1 Approximating the Average Degree

Assume we have access to the degree distribution of thegsmif an undirected connected graph
G = (V,E), i.e., for any vertexo € V we can query for its degree. Can we achieve a good
approximation of the average degreednby looking at a sublinear number of vertices? At first
sight, this seems to be an impossible task. It seems thabdpmting the average degree is
equivalent to approximating the average of a set oumbers with values betwednandn — 1,
which is not possible in sublinear time. However, Felge [2%ved that one can approximate the
average degree i@(y/n /<) time within a factor o + ¢.

The difficulty with approximating the average of a set:aiumbers can be illustrated with the
following example. Assume that almost all numbers in theutrget arel and a few of them are
n — 1. To approximate the average we need to approximate how nawyrences of. — 1 exist.

If there is only a constant number of them, we can do this owlipbking at{2(n) numbers in the
set. So, the problem is that these large numbers can “hidiieiset and we cannot give a good
approximation, unless we can “find” at least some of them.

Why is the problem less difficult, if, instead of an arbitrast of numbers, we have a set of
numbers that are the vertex degrees of a graph? For examptmwid still have a few vertices of
degreer — 1. The pointis that in this case any edge incident to such axedn be seen at another
vertex. Thus, even if we do not sample a vertex with high degre will see all incident edges at
other vertices in the graph. Hence, vertices with a largeegegannot “hide.”

We will sketch a proof of a slightly weaker result than thagorally proven by Feigel [25].
Let d denote the average degreeGh= (V, E) and letds denote the random variable for the
average degree of a sgtof s vertices chosen uniformly at random frarm We will show that if
we sets > 3/n /<90 for an appropriate constafit thendg > (% — ¢) - d with probability at least
1—¢/64. Additionally, we observe that Markov inequality immedigtimplies thatis < (1+4-¢)-d
with probability at least — 1/(1 + ¢) > /2. Therefore, our algorithm will pick /¢ setsS;, each
of size s, and output the set with the smallest average degree. Here@robability that all of
the setsS; have too high average degree is at mdst- £/2)/* < 1/8. The probability that
one of them has too small average degree is at @10%‘14— = 1/8. Hence, the output value will
satisfy both inequalities with probability at leestd. By replacinge with /2, this will yield a
(2 4 ¢)-approximation algorithm.

Now, our goal is to show that with high probability one doe$ noderestimate the average
degree too much. Let be the set of the/z n vertices with highest degree{nand letL, = V' \ H
be the set of the remaining vertices. We first argue that the cluthe degrees of the vertices
in L is at Ieast(% — ¢) times the sum of the degrees of all vertices. This can beyessén by
distinguishing between edges incident to a vertex filoand edges withir/. Edges incident to
a vertex fromL contribute with at least to the sum of degrees of vertices In which is fine
as this is at least/2 of their full contribution. So the only edges that may causgbfems are
edges within/d. However, sincéH | = /= n, there can be at most: such edges, which is small
compared to the overall number of edges (which is at leastl, since the graph is connected).

Now, letdy be the degree of a vertex with the smallest degrei .irBince we aim at giving a
lower bound on the average degree of the sampled verticesanveafely assume that all sampled
vertices come from the sét We know that each vertex ih has a degree betweéranddy. Let
X;, 1 <1 < s, be the random variable for the degree of ttievertex fromS. Then, it follows
from Hoeffding bounds that

E[X_ X;]e?

Pr[ZXig(l—g)'E[ZXi]] < e in

We know that the average degree is at lelast| H | /n, because any vertex iff has at least degree
dy. Hence, the average degree of a verteXiis at least(; —) - dy - |H|/n. This just means
E[X;] > (3—¢)-dy-|H|/n. By linearity of expectation we g& (>~} | X;] > s-(3—¢)-dy-|H|/n.

6

This implies that, for our choice of with high probability we haves > (3 —) - d.
Feige showed the following result, which is stronger witkpect to the dependence an

Theorem 3 [25] UsingO(s~! - \/n/dy) queries, one can estimate the average degree of a graph
within a ratio of (2 +), provided thatl > dy.

Feige also proved th&t(s~! - /n/d) queries are required, whedas the average degree in the
input graph. Finally, any algorithm that uses only degreerigs and estimates the average degree
within a ratio2 — ¢ for some constant requirest2(n) queries.

Interestingly, if one can also use neighborhood queries) this possible to approximate the
average degree usif®(/n/c°1)) queries with a ratio of1 +), as shown by Goldreich and Ron
[34]. The model for neighborhood queries is as follows. Wauase we are given a graph and we
can query for theth neighbor of vertex. If v has at least neighbors we get the corresponding
neighbor; otherwise we are told thahas less thanneighbors. We remark that one can simulate
degree queries in this model with(log n) queries. Therefore, the algorithm from [34] uses only
neighbor queries.

For a sketch of a proof, let us assume that we know thé/séthen we can use the following
approach. We only consider vertices frdm If our sample contains a vertex fromi we ignore
it. By our analysis above, we know that there are only few sdgéhin H# and that we make only
a small error in estimating the number of edges withinWe loose the factor of two, because
we “see” edges froni. to H only from one side. The idea behind the algorithm froml [34fois
approximate the fraction of edges frabnto A and add it to the final estimate. This has the effect
that we count any edge betweérand H twice, canceling the effect that we see it only from one
side. This is done as follows. For each vertaxe sample fronl, we take a random set of incident
edges to estimate the fractiorfv) of its neighbors that is ifFf. Let A(v) denote the estimate
we obtain. Then our estimate for the average degree will be., (1 + Av)) - d(v)/|S N L),
whered(v) denotes the degree of If for all vertices we estimate(v) within an additive error
of £, the overall error induced by thewill be small. This can be achieved with high probability
queryingO(log n/s?) random neighbors. Then the output value will big a ¢)-approximation of
the average degree. The assumption that we kHovan be dropped by taking a set@f/n /)
vertices and setting/ to be the set of vertices with larger degree than all vertinethis set
(breaking ties by the vertex number).

(We remark that the outline of a proof given above is difféfeom the proof in[34].)

Theorem 4 [34] Given the ability to make neighbor queries to the input gréghhere exists an
algorithm that make©(/n/d, - e~°)) queries and approximates the average degre€! ito
within a ratio of (1 + ¢).

3.2 Minimum Spanning Trees

One of the most fundamental graph problems is to compute amm spanning tree. Since the
minimum spanning tree is of size linear in the number of gedj no sublinear algorithm for sparse
graphs can exists. It is also know that no constant factameqpation algorithm witho(n?) query

complexity in dense graphs (even in metric spaces) exigis [Biven these facts, it is somewhat
surprising that it is possible to approximate the cost of aimium spanning tree in sparse graphs
[15] as well as in metric spaces [19] to within a facto(dft).

In the following we will explain the algorithm for sparse gtes by Chazelle et al. [15]. We will
prove a slightly weaker result than in [15]. Lét= (V, E) be an undirected connected weighted
graph with maximum degre® and integer edge weights frofri, ..., W}. We assume that the
graph is given in adjacency list representation, i.e., f@rg vertexv there is a list of its at most
D neighbors, which can be accessed fronfurthermore, we assume that the vertices are stored
in an array such that it is possible to select a vertex unilpahrandom. We assume also that the
values ofD andWW are known to the algorithm.

The main idea behind the algorithm is to express the cost ahamam spanning tree as the
number of connected components in certain auxiliary syfigr@fG. Then, one runs a random-
ized algorithm to estimate the number of connected comgenerach of these subgraphs.

To start with basic intuitions, let us assume thiét = 2, i.e., the graph has only edges of
weight1 or 2. Let GM) = (V, EM) denote the subgraph that contains all edges of weight (afy mos
1 and letc™™) be the number of connected component&if. It is easy to see that the minimum
spanning tree has to link these connected components bg eflgeight2. Since any connected
component inG(!) can be spanned by edges of weightany minimum spanning tree @f has
V) —1 edges of weigh? andn — 1 — (¢ — 1) edges of weight. Thus, the weight of a minimum
spanning tree is

n—1—(M-1)+2(W-1) = n—2+cY =n-W+cb |

Next, let us consider an arbitrary integer valuelfiér DefiningG® = (V, E®), whereE® is the
set of edges itz with weight at most, one can generalize the formula above to obtain that the
costMST of a minimum spanning tree can be expressed as

wW-1
MST = n—W+ > @ .
=1

This gives the following simple algorithm.

APPROXMSTWEIGHT(G, ¢)
fori=1toW —1
Compute estimatai® for ¢

output MST =n — W + S W 1e®

Thus, the key question that remains is how to estimate thebeuf connected components.
This is done by the following algorithm.

APPROXCONNECTEDCOMPS(G, $)
{ Input: an arbitrary undirected grapld- }
{ Output: & an estimation of the number of connected components jof
chooses verticesuy, . . ., us uniformly at random
fori=1tosdo
chooseX according taPr[X > k| = 1/k
run breadth-fist-search (BFS) starting:auntil either
(1) the whole connected component containin@as been explored,
(2) X vertices have been explored
if BFS stopped in case (1hen b, = 1
output ¢ = 2377 | b,

To analyze this algorithm let us fix an arbitrary connectethgonent”' and let|C'| denote the
number of vertices in the connected component.cldenote the number of connected components
in G. We can write

_ - Icl 1 c
E[b;] = > PriweC]-PrX>[C|=) PR
connected componeft connected componefit

And by linearity of expectation we obtalf|¢] = c.

To show that is concentrated around its expectation, we apply Chebyisleguality. Since;
is an indicator random variable, we have

Var[b;] = E[Bb] - E[b)> <E[] =E[b] =c/n .
Theb,; are mutually independent and so we have

n-c

S 2 S
Var[¢] = Var[% . Zbl] = % . ZVar[bi] < —~
i=1 i=1

With this bound forVar[¢], we can use Chebyshev inequality to obtain

n-c 1
< .
5-A2.n2 7 N\.5

Prlle— E[d| = M| <

From this it follows that one can approximate the number ohexted components within additive
error of \n in a graph with maximum degréee in O(DAL"SQ”) time and with probabilityy — . The
following somewhat stronger result has been obtained ih [N&tice that the obtained running

time isindependent of the input size

Theorem 5 [15] The number of connected components in a graph with maximgreead® can be
approximated with additive error at most\ n in O(% log(D/))) time and with probability /4.

Now, we can use this procedure with parameters- ¢/(2IV) and ¢ = 4 in algorithm
APPROXMSTWEIGHT. The probability that at least one call tcPAROXCONNECTEDCOMPS IS
not within an additive erroe-An is at mostl/4. The overall additive error is at mositen /2.
Since the cost of the minimum spanning tree is at leastl > n/2, it follows that the algorithms
computes inD(D - W3 - logn/e?) time a(1 + ¢)-approximation of the weight of the minimum
spanning tree with probability at lea&t4. In [15], Chazelle et al. proved a slightly stronger result

which has running timendependent of the input size

Theorem 6 [15] Algorithm APPROXMSTWEIGHT computes a valud/ST that with probability
at least3/4 satisfies

(1—¢)- MST < MST < (1+4¢)- MST .
The algorithm runs irO(D - W/&2) time.

The same result also holds whénis only the average degree of the graph (rather than the
maximum degree) and the edge weights are reals from thesahter 1] (rather than integers)
[15]. Observe that, in particular, for sparse graphs forolvlihe ratio between the maximum and
the minimum weight is constant, the algorithm frdm/[16hs in constant timle

It was also proved i [15] that any algorithm estimatiig 7" requiresQ(D - W/e?) time.

3.3 Constant Time Approximation Algorithmsfor Maximum Matching

The next result we will explain here is an elegant technigusonstruct constant time approxima-
tion algorithms for graphs with bounded degree, as intreddry Nguyen and Onak [48].

Let G = (V, E) be an undirected graph with maximum degfeeDefine a randomizeft, 3)-
approximation algorithrto be an algorithm that returns with probability at leass a solution
with cost at mostvOpt + Bn, wheren is the size of the input an@dpt denotes the cost of an
optimal solution. For a graph we will define the input size édlbe cardinality of its vertex set. We
will consider the problem of computirtge size of maximum matchirige., the size of a maximum
size setM C E such that no two edges are incident to the same vertéx dof is known that the
following simple greedy algorithm (that returnsreaximal matchingprovides a&-approximation
to this problem.

GREEDYMATCHING(G)
{ Input: an undirected grapli = (V, E) }
{ Output: a matching/ C E'}
M+
for each edge (u,v) € F do
Let V(M) be the set of vertices of edgesith
ifu,v ¢ V(M) then M < M U {e}
return M

10

An important property of @EEDYMATCHING is that in thefor -loop of the algorithm the edges
are considered in an arbitrary ordering. We further obstraeat any stage of the algorithm, the
setM is a subset of the edges that have already been processeldermore, if we consider an
edgee then we know that neighboring edges can only b&/iif they appear in the ordering before
e. Now assume that the edges are inserted in a random ordeetamsltry to determine for some
fixed edgee whether it is contained in the constructed greedy matchig. could, of course,
simply run the algorithm to do so by exploring the entire dgraplowever, our goal is to solve it
using local computations that consider only the subgrapheinput graph close te. In order
to determine whether is in the matching it suffices to determine for all its neighbg edges
whether they are i/ at the timee is considered by the algorithm. dfappears earlier than all of
its neighbors in the random ordering, then we know thigtin the matching. Otherwise, we have
to recursively solve the problem for all neighborsahat appear beforein the random ordering.

It may seem in the first place that this reasoning does notlfetpuse we now have to determine
for a bigger set of edges whether they are in the matching.ederwywe also gained something: all
edges we have to consider recursively are known to appeareaein the random ordering. This
makes it less likely that some of their neighbors again apgean earlier in the sequence, which
in turn means that we have to recurse for fewer of their naghbThus, typically, this process
stops after a constant number of steps.

Let us now try to formalize our findings. We obtain a randomeoirt of the edges by picking
a priority p(e) for each edge uniformly at random froffy, 1]. The random order we consider is
now defined by increasing priorities. The benefit of this apph is that we do not have to compute
a random ordering for the whole vertex set to run the locadratigm. Instead we can drap(e) at
random whenever we consider an edder the first time. If we now want to determine whether
an edgee is in the matching we only have to recurse with edges havingaller priority thane.
Thus, we have to follow all paths of decreasing priority tatgrat the endpoints af.

For a fix path of lengthk in the graph, the probability that the priorities along tlaghpare
decreasing id /k! (this can be seen by the fact that for any sequendeditinct priorities just
one of them is decreasing; the case that probabilities arel @gcurs with probability). Since
the input graph has maximum degr@ethe number of paths of lengthstarting from a vertex is
at mostD*. Hence, there are at masD* paths starting at the endpoints of an edg€or a large
enough constantthis implies that fork > 2¢P, with (large) constant probability there is no path
of lengthk starting from an endpoint af that has decreasing priorities. This implies that we can
determine whether is in the matching by looking at all vertices with distanceraist2¢” from
the endpoints of.

Once we have an oracle to determine whether M, we can sample edges to determine
whether a given edge is in M or not. Using a sample of siz8(D/s?) we can approximate
the number of edges in the matching up to additive etfor This gives a constant-timg, ¢)-
approximation algorithm for estimating the size of maximaratching, assuming ande are
constant. The algorithm can be further improved tq Bm)-approximation using a more compli-
cated approximation algorithm that greedily improves ttagahing using short augmenting paths.
The query complexity of the improved algorithni&"' .

A further improvement has been done in a subsequent work Bhitta et al. [[53]. In that

11

paper, the authors reduce the query complexitpfd!/=”) + O(1/£)°(/<) time. The source of

improvement is here the idea to consider the edge with lopréstity first. If this edge turns out

to be in the matching then we are already done and do not hgesfiarm the remaining recursive
calls.

Theorem 7 [48,53] For any integerl < k < %, there is a(1 + 1, en)-approximation algorithm
with query complexityD?**) ©*)==2 for the size of the maximum matching for graphs with
vertices and degree bourd.

3.4 Other Sublinear-time Resultsfor Graphs

In this section, our main focus was on combinatorial ald¢pong for sparse graphs. In particular,
we did not discuss a large body of algorithms for dense gregghresented in the adjacency matrix
model. Still, we mention the results of approximating theef the maximum cut inonstant time
for dense graphs [28, B2], and the more general results appubximating all dense problems
in Max-SNP inconstant timg2, [8,(28]. Similarly, we also have to mention about the exise
of a large body of property testing algorithms for graphsjclvhn many situations can lead to
sublinear-time algorithms for graph problems. To give espntative references, in addition to
the excellent survey expositioris [26,1 30] B1] 40, 50], wetviarmention the recent results on
testability of graph properties, as described, e.gllid|[®,[6,11} 21,33, 43].

4 Sublinear Time Approximation Algorithmsfor Problemsin
Metric Spaces

One of the most widely considered models in the area of se@tiime approximation algorithms
is thedistance oracle moddébr metric spaces. In this model, the input of an algorithra setP
of n points in a metric spacgP, d). We assume that it is possible to compute the distéiigg;)
between any pair of poings ¢ in constant time. Equivalently, one could assume that thersahm
is given access to the x n distance matrix of the metric space, i.e., we have oraclessco the
matrix of a weighted undirected complete graph. Since tHed@scription size of this matrix is
O(n?), we will call any algorithm witho(n?) running time asublinear algorithm

Which problems can and cannot be approximated in sublineer in the distance oracle
model? One of the most basic problems is to find (an approxmgedf the shortest or the longest
pairwise distance in the metric space. It turns out thathloetest distance cannot be approximated.
The counterexample is a uniform metric (all distanceslamgith one distance being set to some
very small values. Obviously, it require€2(n?) time to find this single short distance. Hence,
no sublinear time approximation algorithm for the shortistance problem exists. What about
the longest distance? In this case, there is a very si%}pipproximation algorithm, which was
first observed by IndyK[37]. The algorithm chooses an abjtpointp and returns its furthest
neighborg. Letr, s be the furthest pair in the metric space. We claim ti{at ¢) > %d('r’, s). By
the triangle inequality, we havw§r, p) + d(p,s) > d(r, s). This immediately implies that either
d(p,r) > % d(r,s) ord(p, s) > 3 d(r, s). This shows the approximation guarantee.

12

In the following, we present some recent sublinear-timewtigms for a few optimization
problems in metric spaces.

4.1 Minimum Spanning Trees

We can view a metric space as a weighted complete gfaphA natural question is whether we
can find out anything about the minimum spanning tree of thegtly As already mentioned in the
previous section, it is not possible to finddMm?) time a spanning tree in the distance oracle model
that approximates the minimum spanning tree within a coniéaator [37]. However, itis possible
to approximate the weighaf a minimum spanning tree within a factor @f + <) in O(n/e°M)
time [19].

The algorithm builds upon the ideas used to approximate gighwof the minimum spanning
tree in graphs described in Sectlon]3.2/[15]. Let us first nkesthat for the metric space problem
we can assume that the maximum distana@{s/c) and the shortest distancelis This can be
achieved by first approximating the longest distanc®im) time and then scaling the problem
appropriately. Since by the triangle inequality the lorigkstance also provides a lower bound
on the minimum spanning tree, we can round ugd tll edge weights that are smaller than
Clearly, this does not significantly change the weight of ti@imum spanning tree. Now we
could apply the algorithm APROXMSTWEIGHT from Sectiori 3.2, but this would not give us an
o(n?) algorithm. The reason is that in metric case we have a completph, i.e., the average
degree isD = n — 1, and the edge weights are in the interMallV'], wherelW = O(n/e). So, we
need a different approach. In the following we will outline idea how to achieve a randomized
o(n?) algorithm. To get a near linear time algorithm as’in/[19] fiertideas have to be applied.

The first difference to the algorithm from Sectlonl3.2 is taen we develop a formula for the
minimum spanning tree weight, we use geometric progresagtead of arithmetic progression.
Assuming that all edge weights are powers(bf+ <), we defineG® to be the subgraph of
that contains all edges of length at m@st+). We denote by the number of connected
components i, Then we can write

r—1

MST = n—W+e-» (1+e) -V, (1)
=0

wherer = log,, . W — 1.

Once we haved (1), our approach will be to approximate the murabconnected components
¢ and use formuld{1) as an estimator. Although geometricrpssion has the advantage that
we only need to estimate the connected componentsirO(logn/e) subgraphs, the problem is
that the estimator is multiplied byl +). Hence, if we use the procedure from Secfiod 3.2, we
would get an additive error afrn - (1 + ¢)?, which, in general, may be much larger than the weight
of the minimum spanning tree.

The basic idea how to deal with this problem is as follows. Wk wge a different graph
traversal than BFS. Our graph traversal runs only on a suidsbe vertices, which are called
representative verticesEvery pair of representative vertices are at distanceaatte (1 + ¢)°
from each other. Now, assume there areepresentative vertices and consider the graph induced

13

by these vertices (there is a problem with this assumptitighwvill be discussed later). Running
algorithm APPROXCONNECTEDCOMPS on this induced graph makes an errordokm, which
must be multiplied by(1 +)’ resulting in an additive error of) - (1 +)" - m. Since the
m representative vertices have pairwise distancél +), we have a lower bound/ST >
m -+ (1+ ¢)". Choosing\ = ¢%/r would result in a1 + £)-approximation algorithm.
Unfortunately, this simple approach does not work. One lpralis that we cannot choose a
random representative point. This is because we have nma kmniowledge of the set of repre-
sentative points. In fact, in the algorithm the points areseim greedily during the graph traversal.
As a consequence, the decision whether a vertex is a repaéservertex or not, depends on the
starting point of the graph traversal. This may also meanttiganumber of representative vertices
in a connected component also depends on the starting gdime graph traversal. However, it is
still possible to cope with these problems and use the approatlined above to get the following
result.

Theorem 8 [19] The weight of a minimum spanning tree ofapoint metric space can be ap-
proximated inO(n/e°™)) time to within a(1 +¢) factor and with confidence probability at leakt

4.1.1 Extensions: Sublinear-time (2 + ¢)-approximation of metric TSP and Steiner trees

Let us remark here one direct corollary of Theofgm 8. By th# krewn relationship (see, e.g.,
[52]) between minimum spanning trees, travelling salestoars, and minimum Steiner trees, the
algorithm for estimating the weight of the minimum spannireg from Theoreril8 immediately
yieldsO(n /W) time (2+¢)-approximation algorithms for two other classical probégmmetric
spaces (or in graphs satisfying the triangle inequalitytineating the weight of théravelling
salesman touand theminimum Steiner tree

4.2 Uniform Facility Location

Similarly to the minimum spanning tree problem, one cameste the cost of thmetric uniform
facility location problem inO(n/s°®Y) time [10]. This problem is defined as follows. We are
given ann-point metric spacéP, d). We want to find a subsét C P of open facilities such that

[FI+) _dp, F)

peEP

is minimized. Hered(p, F') denote the distance fromto the nearest point ift'. It is known that
one cannot find a solution that approximates the optimatissiwvithin a constant factor in(n?)
time [51]. However, it is possible to approximate ttwstof an optimal solution within a constant
factor.

The main idea is as follows. Let us denoteBfp, r) the set of points fronP with distance at
mostr from p. For eaclp € P letr, be the unique value that satisfies

Y, (p—dpg)=1.

q€B(p,rp)

Then one can show that

14

Lemma9 [10] X
L Opt <)y < 6-Opt

peEP

where Opt denotes the cost of an optimal solution to the metric uniftarcility location problem.

Now, the algorithm is based on a randomized algorithm thea fgiven poinp, estimates;, to
within a constant factor in timé(r,, - n - logn) (recall that-, < 1). Thus, the smaller,, the faster
the algorithm. Now, lep be chosen uniformly at random frof. Then the expected running time
to estimater, is O(nlogn - 3 pry/n) = O(nlogn - Elr,]). We pick a random sample sgtof
s = 100logn/E[r,] points uniformly at random fron®. (The fact that we do not knol[r,] can
be dealt with by using a logarithmic number of guesses.) Wemise our algorithm to compute
for eachp € S a valuer, that approximates, within a constant factor. Our algorithm outputs
o ZPGS 7, as an estimate for the cost of the facility location probléssing Hoeffding bounds
it is easy to prove that - > 7, approximates ; ., = Opt within a constant factor and
with high probability. Clearly, the same statement is tmuken we replace the, values by their
constant approximations,. Finally, we observe that expected running time of our atgor will
be O(n/e°M). This allows us to conclude with the following.

Theorem 10 [10] There exists an algorithm that computes a constant factpragmation to the
cost of the metric uniform facility location problemdn log” n) time and with high probability.

4.3 Clustering via Random Sampling

The problems of clustering large data sets into subsetstéh) of similar characteristics are one
of the most fundamental problems in computer science, tipagresearch, and related fields.
Clustering problems arise naturally in various massivaskgs applications, including data mining,
bioinformatics, pattern classification, etc. In this sectiwe will discuss theiniformly random
samplingfor clustering problems in metric spaces, as analyzed inréeent papers [20, 46].

(b) () @

(@)) °

Figure 2:(a) A set of points in a metric space, (b) ficlustering (white points correspond to the center
points), and (c) the distances used in the cost for3tineedian.

Let us consider a classical clustering problem known agtheedian problemGiven a finite

metric spaceg P, d), the goal is to find a set’ C P of k centers (points inP) that minimizes
>_pep d(p, C), whered(p, C') denotes the distance froprto the nearest point i’. Thek-median

15

problem has been studied in numerous research papersntivgko beNP-hard and there exist
constant-factor approximation algorithms running(n. k) time. In two recent papers [20, 46],
the authors asked the question about the quality of the imijorandom sampling approach to
k-median, that is, is the quality of the following generic sote:

(1) choose a multiset C P of sizes i.u.r. (with repetitions),
(2) run ana-approximation algorithnd, on inputS to compute a solutiod'™*, and

(3) return setC* (the clustering induced by the solution for the sample).

The goal is to show that already a sublinear-size samplé setl suffice to obtain a good
approximation guarantee. Furthermore, as observed In(f&&] alsol[45]), in order to have any
guarantee of the approximation, one has to consider thé&yoéthe approximation as a function
of the diameter of the metric space. Therefore, we considerdel with the diameter of the metric
spaceA given, that is, withi : P x P — [0, A].

Using techniques from statistics and computational leartheory, Mishra et al! [46] proved
that if we sample a setof s = O ((%)2 (k Inn + 1n(1/5))> points fromP i.u.r. (independently

and uniformly at randofnand runa-approximation algorithnd, to find an approximation of the
k-median forS, then with probability at leagt— 9, the output set of centers haaverage distance
to the nearest center of at ma@stw - med(P, k) + ¢, wheremed(P, k) denotes thaverage distance

to thek-medianC, that is,med(P, k) = M We will now briefly sketch the analysis due
to Czumaj and Sohler [20] of a similar approximation guagartiut with a smaller bound for

Let C,,: denote an optimal set of centers Brand letcos{ X, C') be the average cost of the

clustering of seX’ with center set’, that is,cos{ X, C') = Z%d‘(w) Notice thatos{ P, C,,;) =

med(P, k). The analysis of Czumaj and Sohler[20] is performed in tvepst

(i) We first show that there is a setlo€enters” C S such thatost{.S, C') is a good approximation
of med(P, k) with high probability.

(i) Next we show that with high probability, every solutiGhfor P with cost much bigger than
med(P, k) is either not a feasible solution fét (i.e.,C' Z S) orcos(S, C') > « - med(P, k)
(that is, the cost of” for the sample set is large with high probability).

SinceS contains a solution with cost at mastmed(P, k) for some smalt, A, will compute
a solutionC* with cost at mostv - ¢ - med(P, k). Now we have to prove that no solutiéhfor P
with cost much bigger thamed(P, k) will be returned, or in other words, thatdf is feasible forS
then its cost is larger tham- ¢ - med(P, k). But this is implied by (ii). Therefore, the algorithm will
not return a solution with too large cost, and the samplir(is- «)-approximation algorithm.

Theorem 11 [20] Let0 < d < 1,a > 1,0 < 8 < 1 ande > 0 be approximation parameters.

If s > < </~{: + % . <a -In(1/6) + k- In (i%g))) for an appropriate constant, then for the

solution set of center§™, with probability at least — ¢ it holds the following

costV,C*) < 2(a+f) -med(P,k)+¢ .

16

To give the flavor of the analysis, we will sketch (a simplexjtgi) of the analysis:

3Aa(l+a/B)In(1/6) * —_—
Lemma 12 If s > === ey thenPr [cos(S, C*) < 2 (a+ 3) - med(P, k)| > 1 — 6.

Proof. We first show that if we consider the clusteringfvith the optimal set of centers,,,
for P, thencos{ S, C,,;) is a good approximation ofied(P, k). The problem with this bound is
that in general, we cannot expec,; to be contained in the sample set Therefore, we have to
show also that the optimal set of centers focannot have cost much worse thast S, C.,;).
Let X; be the random variable for the distance oftiepoint in.S to the nearest center 6f,,,..
Then,cos(S, Cop) = * > ;. X;, and, sinceE[X;] = med(P, k), we also havened(P, k) =
E[>" X;]. Hence,

Pr[CoStS, Cop) > (14 2) -med(P k)] =Pr[>_X; > (1+2)-E[>_ X]]] .
1<i<s 1<i<s
Observe that each; satisfied) < X; < A. Therefore, by Chernoff-Hoeffding bound we obtain:
Pr[Y X, >(1+8/a) B[Y Xj]] < 7 <5 0 ()

1<i<s 1<i<s

This gives us a good bound for the costoos{(S, C,,:) and now our goal is to get a similar
bound for the cost of the optimal set of centers$orLet C' be the set ok centers inS obtained
by replacing eacl € C,,;: by its nearest neighbor ifi. By the triangle inequalitycost S, C') <
2.cos(S, C,,). Hence, multisef contains a set of centers whose cost is at mast(1 + §/«) -
med(P, k) with probability at leastt — 5. Therefore, the lemma follows becausg returns an
a-approximationC* of the k-median fors. O

Next, we only state the other lemma that describe part (iipefanalysis of Theorem1L1.

Lemmal3 Lets > <2 (k + 5 (a In(1/6) + k- In (’“AO‘)» for an appropriate constant
LetC be the set of aII sets @fcentersC' of P withcos{ P, C) > (2a + 6 3) - med(P, k). Then,

Pr[3C, € C:C, C S and €OSLS,C;) < 2(a+ B)med(P, k)] < & . 0

Observe that comparing the result frdmi[46] to the resultiedreni 1l1, TheoremIl1 improves
the sample complexity by a factor df - logn/c while obtaining a slightly worse approximation
ratio of 2 (o + B) med(P, k) + ¢, instead of2amed(P, k) + ¢ as in [46]. However, since the
polynomial-time algorithm with the best known approxinsatiguarantee has = 3 + % for the
running time ofO(n°) time [9], this significantly improves the running time bf [46r all realistic
choices of the input parameters while achieving the sameajspation guarantee. As a highlight,
Theoreni I yields a sublinear-time algorithm that in i< - (k -+ log(1/4)))?) — fully inde-
pendent of: — returns a set of centers for which the average distance to the nearest mischan
mostO(med(P, k)) + ¢ with probability at least — §.

17

Extensions. The result in Theorerh 11 can be significantly improved if weuase the input
points are inEuclidean spacé&‘. In this case the approximation guarantee can be improved to
(a+ B) med(P, k) + ¢ at the cost of increasing the sample siz@i(oﬁ'ﬁ—g‘ (kd+1log(1/0))).
Furthermore, a similar approach as that sketched aboveecapied to study similar generic
sample schemes for other clustering problems. As it is shiaWR0], almost identical analysis
lead to sublinear (independent @psample complexity for the classidalmeans problemAlso, a
more complex analysis can be applied to study the sampleleaitygfor themin-sumk-clustering

problem[20].

4.4 Other Results

Indyk [37] was the first who observed that some optimizatiosbfems in metric spaces can be
solved in sublinear-time, that is, irfn?) time. He presente(:% — ¢)-approximation algorithms for
MaxTSP and the maximum spanning tree problems that rd»(ity<) time [37]. He also gave a
(2+¢)-approximation algorithm for the minimum routing cost spiaag tree problem and@ +¢)
approximation algorithm for the average distance problesth algorithms run i) (n/e°™) time.
There is also a number of sublinear-time algorithms forousiclustering problems in either
Euclidean spaces or metric spaces, when the number of rdustemall. For radiusktcente)
and diameter clusteringn Euclidean spaces, sublinear-time property testingréhguos [1,/21]
and tolerant testing algorithms [49] have been developée. fifst sublinear algorithm for thie-
medianproblem was a bicriteria approximation algoritimi[37]. hlgorithm computes i@ (n k)
time a set ofO(k) centers that are a constant factor approximation toktmeedian objective
function. Later, standard constant factor approximatigorithms were given that run in time
O(nk) (see, e.g.,[[44, 51]). These sublinear-time results haea leatended in many different
ways, e.g., to efficient data streaming algorithms and vesydlgorithms for Euclideaktrmedian
and also tdk-meanssee, e.g.[]9, 12, 16, 27,135,/ 36] 41| 142, 45]. For anothetealung problem,
the min-sumk-clustering problemwhich is complement to the Mak-Cut), for the basic case
of £ = 2, Indyk [39] (see also [38]) gave @ + ¢)-approximation algorithm that runs in time
027" n (1og n)°M), which is sublinear in the full input description size. Nabuesults are
known fork > 3, but recently,[[2R] gave a constant-factor approximatigodthm for min-sum
k-clustering that runs in timé&(n k (k log n)°®)) and a polylogarithmic approximation algorithm

running in timeO(n k°M),

45 Limitations: What Cannot be donein Sublinear-Time

The algorithms discussed in the previous sections may stigggt many optimization problems
in metric spaces have sublinear-time algorithms. Howet&irns out that the problems listed in
the previous sections are more like exceptions than a nardeeld, most of the problems have a
trivial lower bound that exclude sublinear-time algorithriVe have already mentioned in Section
[that the problem of approximating the cost of the lightelgeein a finite metric spaceP, d)
requiresQ(n?), even if randomization is allowed. The other problems foickimo sublinear-
time algorithms are possible include estimation of the obstinimum-cost matching, the cost of

18

de) =1 de) =B
.1—. .1—.
.1—. .1—.
@) L R (b) L R

Figure 3: Two instance of the metric matching which are indistingaish in o(n?) time and whose cost
differ by a factor greater thar\. The perfect matching connectidgwith R is selected at random and the
edgee is selected as a random edge from the matching. WBsetn (A — 1) + 2. The distances not shown
are all equal ton? \.

minimum-cost bi-chromatic matching, the cost of minimaoan-uniformfacility location, the cost
of k-median fork = n/2; all these problems requife(n?) (randomized) time to estimate the cost
of their optimal solution to within any constant factor [10]

To illustrate the lower bounds, we give two instances of tlegrim spaces which are indistin-
guishable by any(n?)-time algorithm for which the cost of the minimum-cost manghin one
instance is greater thantimes the one in the other instance (see Figuire 3). Considegtac
space(P, d) with 2n points,n points in L andn points in R. Take a random perfect matching
M between the points ik and R, and then choose an edge= M at random. Next, define the
distance in P, d) as follows:

e d(e) is eitherl or B, wherewe seB =n (A — 1) + 2,
e foranye*M \ {e} setd(e*) =1, and
e for any other pair of pointg, ¢ € P not connected by an edge frafi, d(p, ¢) = n® \.

It is easy to see that both instances define properly a metsices P, d). For such problem
instances, the cost of the minimum-cost matching problelihdepend on the choice afe): if
d(e) = B then the costwillber — 1+ B > n A, and ifd(e) = 1, then the cost will bex. Hence,
any A\-factor approximation algorithm for the matching problermagndistinguish between these
two problem instances. However, this requires to find iféheran edge of length, and this is
known to require timé&2(n?), even if a randomized algorithm is used.

5 Conclusions

It would be impossible to present a complete picture of tihgeldbody of research known in the
area of sublinear-time algorithms in such a short paperhimngurvey, our main goal was to give

19

some flavor of the area and of the types of the results acheveédhe techniques used. For more
details, we refer to the original works listed in the referes

We did not discuss two important areas that are closelye®ltd sublinear-time algorithms:
property testing and data streaming algorithms. For istetereaders, we recommend the surveys

in [7,26,.30/ 31, 40, 50] and [47], respectively.

The current paper is a slightly updated version of the pap&z&maj and C. Sohler. Sublinear-
time algorithmsBulletin of the EATCS39: 23-47, June 2006.

References

[1] N. Alon, S. Dar, M. Parnas, and D. Ron. Testing of clustgri SIAM Journal on Discrete
Mathematics16(3): 393—417, 2003.

[2] N. Alon, W. Fernandez de la Vega, R. Kannan, and M. KardindRandom sampling and
approximation of MAX-CSPs.Journal of Computer and System Scien@&4?2): 212—-243,
2003.

[3] N. Alon, E. Fischer, M. Krivelevich, and M. Szegedy. Efént testing of large graph£om-
binatorica 20(4): 451-476, 2000.

[4] N. Alon, E. Fischer, I. Newman, and A. Shapira. A combaor&l characterization of the
testable graph properties: it's all about regular8fAM Journal on Computing9(1): 143—
167, 2009.

[5] N. Alon and A. Shapira. Every monotone graph propertyesable.SIAM Journal on Com-
puting, 38(2): 505-522, 2008.

[6] N. Alon and A. Shapira. A characterization of the (natugraph properties testable with
one-sided errorSIAM Journal on Computin@®7(6): 1703-1727, 2008.

[7] N. Alon and A. Shapira. Homomorphisms in graph propedsting - A survey. Infopics
in Discrete Mathemati¢ggledicated to Jarik Nesetril on the occasion of his 60thh8aty, M.
Klazar, J. Kratochvil, M. Loebl, J. Matousek, R. Thomas anddfr, eds., pp. 281-313.

[8] S. Arora, D. R. Karger, and M. Karpinski. Polynomial tirapproximation schemes for dense
instances of\VV’P-hard problemsJournal of Computer and System Sciené&&1): 193-210,
1999.

[9] V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagadad V. Pandit. Local search
heuristics for k-median and facility location problemSIAM Journal on Computing33(3):
544-562, 2004.

[10] M. Badoiu, A. Czumaj, P. Indyk, and C. Sohler. Facilibgation in sublinear timeProceed-
ings of the 32nd Annual International Colloquium on Automyatinguages and Programming
(ICALP), pp. 866-877, 2005.

20

[11] C.Borgs, J. Chayes, L. Lovasz, V. T. Sos, B. Szegedykanvesztergombi. Graph limits and
parameter testing?roceedings of the 38th Annual ACM Symposium on Theory opGiomy
(STOC) 2006.

[12] M. Charikar, L. O’'Callaghan, and R. Panigrahy. Betteeaming algorithms for clustering
problems.Proceedings of the 35th Annual ACM Symposium on Theory opQGiomg (STOC)
pp. 30—39, 2003.

[13] B. Chazelle and D. P. Dobkin. Intersection of convexeal$ in two and three dimensions.
Journal of the ACM34(1): 1-27, 1987.

[14] B. Chazelle, D. Liu, and A. Magen. Sublinear geometigoathms. SIAM Journal on
Computing 35(3): 627-646, 2006.

[15] B. Chazelle, R. Rubinfeld, and L. Trevisan. Approximgtthe minimum spanning tree
weight in sublinear timeSIAM Journal on Computing4(6): 1370-1379, 2005.

[16] K. Chen. Onk-median clustering in high dimensiorBroceedings of the 17th Annual ACM-
SIAM Symposium on Discrete Algorithms (SOD#p). 1177-1185, 2006.

[17] A. Czumaj, F. Ergun, L. Fortnow, A. Magen, |I. Newman, Rubinfeld, and C. Sohler.
Sublinear-time approximation of Euclidean minimum spagrtree. SIAM Journal on Com-
puting, 35(1): 91-109, 2005.

[18] A. Czumaj and C. Sohler. Property testing with geonsefqueries. Proceedings of the 9th
Annual European Symposium on Algorithms (E$f) 266-277, 2001.

[19] A. Czumaj and C. Sohler. Estimating the weight of metmmimum spanning trees in
sublinear-time SIAM Journal on Computin@9(3): 904-922, 2009.

[20] A. Czumaj and C. Sohler. Sublinear-time approximafmrclustering via random sampling.
Random Structures and Algorithn89(1-2): 226—-256, 2007.

[21] A. Czumaj and C. Sohler. Abstract combinatorial pragsaand efficient property testers.
SIAM Journal on Computing4(3): 580-615, 2005.

[22] A. Czumaj and C. Sohler. Small space representationsétric min-sumk-clustering and
their applicationsTheory of Computing Systend6(3): 416442, 2010.

[23] A. Czumaj, C. Sohler, and M. Ziegler. Property testingomputational geometriproceed-
ings of the 8th Annual European Symposium on Algorithms YE$A155-166, 2000.

[24] M. Dyer, N. Megiddo, and E. Welzl. Linear programminga Handbook of Discrete and
Computational Geometr2nd edition, edited by J. E. Goodman and J. O'Rourke, CRGsPre
2004, pp. 999-1014.

[25] U. Feige. On sums of independent random variables wiblbounded variance and estimating
the average degree in a graf3iAM Journal on Computing@5(4): 964-984, 2006.

21

[26] E. Fischer. The art of uninformed decisions: A primeptoperty testing.Bulletin of the
EATCS 75: 97-126, October 2001.

[27] G. Frahling and C. Sohler. Coresets in dynamic geometita streamsProceedings of the
37th Annual ACM Symposium on Theory of Computing (ST@RE)09-217, 2005.

[28] A. Frieze and R. Kannan. Quick approximation to masiaad applicationgCombinatorica
19(2): 175-220, 1999.

[29] A. Frieze, R. Kannan, and S. Vempala. Fast Monte-Cddordghms for finding low-rank
approximationsJournal of the ACM51(6): 1025-1041, 2004.

[30] O. Goldreich. Combinatorial property testing (a syjvdn P. Pardalos, S. Rajasekaran, and
J. Rolim, editorsProceedings of the DIMACS Workshop on Randomization Mstimélgo-
rithm Design volume 43 oDIMACS, Series in Discrete Mathetaics and Theoretical Catep
Sciencepp. 45-59, 1997. American Mathematical Society, ProwdeR|, 1999.

[31] O. Goldreich. Property testing in massive graphs. ImABello, P. M. Pardalos, and
M. G. C. Resende, editortlandbook of massive data sepgp. 123-147. Kluwer Academic
Publishers, 2002.

[32] O. Goldreich, S. Goldwasser, and D. Ron. Propertyrigsaind its connection to learning and
approximationJournal of the ACM45(4): 653—750, 1998.

[33] O. Goldreich and D. Ron. A sublinear bipartitenessaie&ir bounded degree graphiSom-
binatorica 19(3):335-373, 1999.

[34] O. Goldreich and D. Ron. Approximating average paramsedf graphsRandom Structures
and Algorithms32(4): 473-493, 2008.

[35] S. Har-Peled and S. Mazumdar. Coresets:foneans and-medians and their applications.
Proceedings of the 36th Annual ACM Symposium on Theory opGomg (STOC)pp. 291
300, 2004.

[36] S. Har-Peled and A. Kushal. Smaller coresets:fonedian and:-means clusteringDiscrete
& Computational Geometr\87(1): 3—-19, 2007.

[37] P. Indyk. Sublinear time algorithms for metric spacelpems. Proceedings of the 31st
Annual ACM Symposium on Theory of Computing (STQR)428—-434, 1999.

[38] P.Indyk. A sublinear time approximation scheme foistéuing in metric spaceProceedings
of the 40th IEEE Symposium on Foundations of Computer Se(@@CS) pp. 154-159, 1999.

[39] P. Indyk. High-Dimensional Computational GeometryPhD thesis, Stanford University,
2000.

[40] R. Kumar and R. Rubinfeld. Sublinear time algorithr8$GACT New;s34: 57—-67, 2003.

22

[41] A. Kumar, Y. Sabharwal, and S. Sen. A simple linear tifhet+ ¢)-approximation algo-
rithm for k-means clustering in any dimensiof&oceedings of the 45th IEEE Symposium on
Foundations of Computer Science (FOQS). 454-462, 2004.

[42] A. Kumar, Y. Sabharwal, and S. Sen. Linear time algonshfor clustering problems in
any dimensions.Proceedings of the 32nd Annual International ColloquiumAartomata,
Languages and Programming (ICALR)yp. 1374-1385, 2005.

[43] L. Lovasz and B. Szegedy. Graph limits and testing tiéaey graph properties. Technical
Report, MSR-TR-2005-110, Microsoft Research, August 2005

[44] R. Mettu and G. Plaxton. Optimal time bounds for appnoaie clusteringMachine Learn-
ing, 56(1-3):35-60, 2004.

[45] A. Meyerson, L. O’'Callaghan, and S. Plotkin. /Amedian algorithm with running time
independent of data siz&lachine Learning56(1-3): 61-87, July 2004.

[46] N. Mishra, D. Oblinger, and L. Pitt. Sublinear time appimate clusteringProceedings of
the 12th Annual ACM-SIAM Symposium on Discrete Algoritt8GA) pp. 439-447, 2001.

[47] S. Muthukrishnan. Data streams: Algorithms and agpions. InFoundations and Trends in
Theoretical Computer Scienceolume 1, issue 2, August 2005.

[48] H. Nguyen and K. Onak. Constant-time approximatioroathms via local improvements.
Proceedings of the 49th IEEE Symposium on Foundations ofpG@nScience (FOCSpp.
489-498, 2008.

[49] M. Parnas, D. Ron, and R. Rubinfeld. Tolerant propesstihg and distance approximation.
Journal of Computer and System Scien@@{6): 1012-1042, 2006.

[50] D. Ron. Property testing. In P. M. Pardalos, S. Rajaswkal. Reif, and J. D. P. Rolim,
editors,Handobook of Randomized Algorithm®lume I, pp. 597-649. Kluwer Academic
Publishers, 2001.

[51] M. Thorup. Quickk-median k-center, and facility location for sparse grapB$AM Journal
on Computing34(2):405-432, 2005.

[52] V. V. Vazirani. Approximation AlgorithmsSpringer-Verlag, New York, 2004.

[53] Y. Yoshida, M. Yamamoto, and H. Ito. Improved constéinte approximation algorithms for
maximum independent sets and maximum matchiyeceedings of the 41st Annual ACM
Symposium on Theory of Computing (STQdp) 225—-234, 20009.

23

	Introduction
	Basic Sublinear Algorithms
	Geometry: Intersection of Two Polygons

	Sublinear Time Algorithms for Graphs Problems
	Approximating the Average Degree
	Minimum Spanning Trees
	Constant Time Approximation Algorithms for Maximum Matching
	Other Sublinear-time Results for Graphs

	Sublinear Time Approximation Algorithms for Problems in Metric Spaces
	Minimum Spanning Trees
	Extensions: Sublinear-time (2 +)-approximation of metric TSP and Steiner trees

	Uniform Facility Location
	Clustering via Random Sampling
	Other Results
	Limitations: What Cannot be done in Sublinear-Time

	Conclusions

