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Abstract

In this paper we survey recent advances in the area of sublinear-time algorithms.

1 Introduction

THe area ofsublinear-time algorithmsis a new rapidly emerging area of computer science. It
has its roots in the study of massive data sets that occur moreand more frequently in var-

ious applications. Financial transactions with billions of input data and Internet traffic analyses
(Internet traffic logs, clickstreams, web data) are examples of modern data sets that show unprece-
dented scale. Managing and analyzing such data sets forces us to reconsider the traditional notions
of efficient algorithms: processing such massive data sets in more than linear time is by far too
expensive and often even linear time algorithms may be too slow. Hence, there is the desire to
develop algorithms whose running times are not only polynomial, but in fact aresublinearin n.

Constructing a sublinear time algorithm may seem to be an impossible task since it allows one
to read only a small fraction of the input. However, in recentyears, we have seen development of
sublinear time algorithms for optimization problems arising in such diverse areas as graph theory,
geometry, algebraic computations, and computer graphics.Initially, the main research focus has
been on designing efficient algorithms in the framework ofproperty testing(for excellent surveys,
see [26, 30, 31, 40, 50]), which is an alternative notion of approximation for decision problems.
But more recently, we have seen some major progress in sublinear-time algorithms in the classical
model of randomized and approximation algorithms. In this paper, we survey some of the recent
advances in this area. Our main focus is on sublinear-time algorithms for combinatorial problems,
especially for graph problems and optimization problems inmetric spaces.

Our goal is to give a flavor of the area of sublinear-time algorithms. We focus on in our
opinion the most representative results in the area and we aim to illustrate main techniques used
to design sublinear-time algorithms. Still, many of the details of the presented results are omitted
and we recommend the readers to follow the original works. Wealso do not aim to cover the entire
area of sublinear-time algorithms, and in particular, we donot discuss property testing algorithms
[26, 30, 31, 40, 50], even though this area is very closely related to the research presented in this
survey.
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Organization. We begin with an introduction to the area and then we give somesublinear-time
algorithms for a basic problem in computational geometry [14]. Next, we present recent sublinear-
time algorithms for basic graph problems: approximating the average degree in a graph [25, 34],
estimating the cost of a minimum spanning tree [15] and approximating the size of a maximum
matching [48, 53]. Then, we discuss sublinear-time algorithms for optimization problems in metric
spaces. We present the main ideas behind recent algorithms for estimating the cost of minimum
spanning tree [19] and facility location [10], and then we discuss the quality of random sampling
to obtain sublinear-time algorithms for clustering problems [20, 46]. We finish with some conclu-
sions.

2 Basic Sublinear Algorithms

The concept of sublinear-time algorithms has been known fora very long time, but initially it has
been used to denote “pseudo-sublinear-time” algorithms, where after an appropriatepreprocessing,
an algorithm solves the problem in sublinear-time. For example, if we have a set ofn numbers, then
after anO(n logn) preprocessing (sorting), we can trivially solve a number ofproblems involving
the input elements. And so, if the after the preprocessing the elements are put in a sorted array,
then inO(1) time we can find thekth smallest element, inO(logn) time we can test if the input
contains a given elementx, and also inO(logn) time we can return the number of elements equal
to a given elementx. Even though all these results are folklore, this is not whatwe call nowadays
a sublinear-time algorithm.

In this survey, our goal is to study algorithms for which the input is taken to be in any standard
representation and with no extra assumptions. Then, an algorithm does not have to read the entire
input but it may determine the output by checking only a subset of the input elements. It is easy
to see that for many natural problems it is impossible to giveany reasonable answer if not all or
almost all input elements are checked. But still, for some number of problems we can obtain good
algorithms that do not have to look at the entire input. Typically, these algorithms arerandomized
(because most of the problems have a trivial linear-time deterministic lower bound) and they return
only anapproximatesolution rather than the exact one (because usually, without looking at the
whole input we cannot determine the exact solution). In thissurvey, we present recently developed
sublinear-time algorithm for some combinatorial optimization problems.

Searching in a sorted list. It is well-known that if we can store the input in a sorted array, then
we can solve various problems on the input very efficiently. However, the assumption that the input
array is sorted is not natural in typical applications. Let us now consider a variant of this problem,
where our goal is tosearchfor an elementx in a linked sorted list containingn distinctelements1.
Here, we assume that then elements are stored in a doubly-linked, each list element has access to
the next and preceding element in the list, and the list is sorted (that is, ifx follows y in the list,
theny < x). We also assume that we have access to all elements in the list, which for example,

1The assumption that the input elements aredistinct is important. If we allow multiple elements to have the same
key, then the search problem requiresΩ(n) time. To see this, consider the input in which about a half of the elements
has key 1, another half has key 3, and there is a single elementwith key 2. Then, searching for 2 requiresΩ(n) time.
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can correspond to the situation that alln list elements are stored in an array (but the array is not
sorted and we do not impose any order for the array elements).How can we find whether a given
numberx is in our input or is not?

On the first glace, it seems that since we do not have direct access to the rank of any element
in the list, this problem requiresΩ(n) time. And indeed, if our goal is to design a deterministic
algorithm, then it is impossible to do the search ino(n) time. However, if we allow randomization,
then we can complete the search inO(√n) expected time (and this bound is asymptotically tight).

Let us first sample uniformly at random a setS of Θ(
√
n) elements from the input. Since we

have access to all elements in the list, we can select the setS inO(√n) time. Next, we scan all the
elements inS and inO(√n) time we can find two elements inS, p andq, such thatp ≤ x < q,
and there is no element inS that is betweenp andq. Observe that since the input consist ofn
distinct numbers,p andq are uniquely defined. Next, we traverse the input list containing all the
input elements starting atp until we find either the sought keyx or we find elementq.

Lemma 1 The algorithm above completes the search in expectedO(√n) time. Moreover, no
algorithm can solve this problem ino(

√
n) expected time.

Proof. The running time of the algorithm if equal toO(√n) plus the number of the input elements
betweenp and q. SinceS containsΘ(

√
n) elements, the expected number of input elements

betweenp and q is O(n/|S|) = O(√n). This implies that the expected running time of the
algorithm isO(√n).

For a proof of a lower bound ofΩ(
√
n) expected time, see, e.g., [14]. ⊓⊔

2.1 Geometry: Intersection of Two Polygons

Let us consider a related problem but this time in a geometricsetting. Given two convex polygons
A andB in R2, each withn vertices, determine if they intersect, and if so, then find a point in their
intersection.

It is well known that this problem can be solved inO(n) time, for example, by observing that
it can be described as a linear programming instance in 2-dimensions, a problem which is known
to have a linear-time algorithm (cf. [24]). In fact, within the same time one can either find a point
that is in the intersection ofA andB, or find a lineL that separatesA from B (actually, one can
even find a bitangent separating lineL, i.e., a line separatingA andB which intersects with each
of A andB in exactly one point). The question is whether we can obtain abetter running time.

The complexity of this problem depends on the input representation. In the most powerful
model, if the vertices of both polygons are stored in an arrayin cyclic order, Chazelle and Dobkin
[13] showed that the intersection of the polygons can be determined in logarithmic time. However,
a standard geometric representation assumes that the inputis not stored in an array but ratherA
andB are given by their doubly-linked lists of vertices such thateach vertex has as its successor
the next vertex of the polygon in the clockwise order. Can we then test ifA andB intersect?

Chazelle et al. [14] gave anO(√n)-time algorithm that reuses the approach discussed above
for searching in a sorted list. Let us first sample uniformly at randomΘ(

√
n) vertices from each

A andB, and letCA andCB be the convex hulls of the sample point sets for the polygonsA and
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Figure 1:(a) Bitangent lineL separatingCA andCB, and (b) the polygonPA.

B, respectively. Using the linear-time algorithm mentionedabove, inO(√n) time we can check if
CA andCB intersects. If they do, then the algorithm will get us a pointthat lies in the intersection
of CA andCB, and hence, this point lies also in the intersection ofA andB. Otherwise, letL be
the bitangent separating line returned by the algorithm (see Figure 1 (a)).

Let a andb be the points inL that belong toA andB, respectively. Leta1 anda2 be the two
vertices adjacent toa in A. We will define now a new polygonPA. If none ofa1 anda2 is on the
sideCA of L the we definePA to be empty. Otherwise, exactly one ofa1 anda2 is on the sideCA

of L; let it bea1. We define polygonPA by walking froma to a1 and then continue walking along
the boundary ofA until we crossL again (see Figure 1 (b)). In a similar way we define polygon
PB. Observe that the expected size of each ofPA andPB is at mostO(√n).

It is easy to see thatA andB intersects if and only if eitherA intersectsPB or B intersects
PA. We only consider the case of checking ifA intersectsPB. We first determine ifCA intersects
PB. If yes, then we are done. Otherwise, letLA be a bitangent separating line that separatesCA

from PB. We use the same construction as above to determine a subpolygonQA of A that lies on
thePB side ofLA. Then,A intersectsPB if and only if QA intersectsPB. SinceQA has expected
sizeO(√n) and so doesPB, testing the intersection of these two polygons can be done inO(√n)
expected time. Therefore, by our construction above, we have solved the problem of determining
if two polygons of sizen intersect by reducing it to a constant number of problem instances of
determining if two polygons of expected sizeO(√n) intersect. This leads to the following lemma.

Lemma 2 [14] The problem of determining whether two convexn-gons intersect can be solved in
O(√n) expected time, which is asymptotically optimal.

Chazelle et al. [14] gave not only this result, but they also showed how to apply a similar
approach to design a number of sublinear-time algorithms for some basic geometric problems. For
example, one can extend the result discussed above to test the intersection of two convex polyhedra
inR3 with n vertices inO(√n) expected time. One can also approximate the volume of ann-vertex
convex polytope to within a relative errorε > 0 in expected timeO(√n/ε). Or even, for a pair of
two points on the boundary of a convex polytopeP with n vertices, one can estimate the length of
an optimal shortest path outsideP between the given points inO(√n) expected time.

In all the results mentioned above, the input objects have been represented by a linked struc-
ture: either every point has access to its adjacent verticesin the polygon inR2, or the polytope is
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defined by a doubly-connected edge list, or so. These input representations are standard in com-
putational geometry, but a natural question is whether thisis necessary to achieve sublinear-time
algorithms — what can we do if the input polygon/polytop is represented by a set of points and
no additional structure is provided to the algorithm? In such a scenario, it is easy to see that no
o(n)-time algorithm can solve exactly any of the problems discussed above. That is, for example,
to determine if two polygons withn vertices intersect one needsΩ(n) time. However, still, we can
obtain some approximation to this problem, one which is described in the framework ofproperty
testing.

Suppose that we relax our task and instead of determining if two (convex) polytopesA andB in
Rd intersects, we just want to distinguish between two cases: eitherA andB are intersection-free,
or one has to “significantly modify”A andB to make them intersection-free. The definition of
the notion of “significantly modify” may depend on the application at hand, but the most natural
characterization would be to remove at leastε n points inA andB, for an appropriate parameterε
(see [18] for a discussion about other geometric characterization). Czumaj et al. [23] gave a simple
algorithm that for anyε > 0, can distinguish between the case whenA andB do not intersect, and
the case when at leastε n points has to be removed fromA andB to make them intersection-free:
the algorithm returns the outcome of a test if a random sampleof O((d/ε) log(d/ε)) points from
A intersects with a random sample ofO((d/ε) log(d/ε)) points fromB.

Sublinear-time algorithms: perspective. The algorithms presented in this section should give
a flavor of the area and give us the first impression of what do wemean by sublinear-time and what
kind of results one can expect. In the following sections, wewill present more elaborate algorithms
for various combinatorial problems for graphs and for metric spaces.

3 Sublinear Time Algorithms for Graphs Problems

In the previous section, we introduced the concept of sublinear-time algorithms and we presented
two basic sublinear-time algorithms for geometric problems. In this section, we will discuss
sublinear-time algorithms for graph problems. Our main focus is on sublinear-time algorithms
for graphs, with special emphasizes on sparse graphs represented by adjacency lists where combi-
natorial algorithms are sought.

3.1 Approximating the Average Degree

Assume we have access to the degree distribution of the vertices of an undirected connected graph
G = (V,E), i.e., for any vertexv ∈ V we can query for its degree. Can we achieve a good
approximation of the average degree inG by looking at a sublinear number of vertices? At first
sight, this seems to be an impossible task. It seems that approximating the average degree is
equivalent to approximating the average of a set ofn numbers with values between1 andn − 1,
which is not possible in sublinear time. However, Feige [25]proved that one can approximate the
average degree inO(√n/ε) time within a factor of2 + ε.
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The difficulty with approximating the average of a set ofn numbers can be illustrated with the
following example. Assume that almost all numbers in the input set are1 and a few of them are
n− 1. To approximate the average we need to approximate how many occurrences ofn− 1 exist.
If there is only a constant number of them, we can do this only by looking atΩ(n) numbers in the
set. So, the problem is that these large numbers can “hide” inthe set and we cannot give a good
approximation, unless we can “find” at least some of them.

Why is the problem less difficult, if, instead of an arbitraryset of numbers, we have a set of
numbers that are the vertex degrees of a graph? For example, we could still have a few vertices of
degreen−1. The point is that in this case any edge incident to such a vertex can be seen at another
vertex. Thus, even if we do not sample a vertex with high degree we will see all incident edges at
other vertices in the graph. Hence, vertices with a large degree cannot “hide.”

We will sketch a proof of a slightly weaker result than that originally proven by Feige [25].
Let d denote the average degree inG = (V,E) and letdS denote the random variable for the
average degree of a setS of s vertices chosen uniformly at random fromV . We will show that if
we sets ≥ β

√
n/εO(1) for an appropriate constantβ, thendS ≥ (1

2
− ε) · d with probability at least

1−ε/64. Additionally, we observe that Markov inequality immediately implies thatdS ≤ (1+ε)·d
with probability at least1− 1/(1 + ε) ≥ ε/2. Therefore, our algorithm will pick8/ε setsSi, each
of sizes, and output the set with the smallest average degree. Hence,the probability that all of
the setsSi have too high average degree is at most(1 − ε/2)ε/8 ≤ 1/8. The probability that
one of them has too small average degree is at most8

ε
· ε
64

= 1/8. Hence, the output value will
satisfy both inequalities with probability at least3/4. By replacingε with ε/2, this will yield a
(2 + ε)-approximation algorithm.

Now, our goal is to show that with high probability one does not underestimate the average
degree too much. LetH be the set of the

√
ε n vertices with highest degree inG and letL = V \H

be the set of the remaining vertices. We first argue that the sum of the degrees of the vertices
in L is at least(1

2
− ε) times the sum of the degrees of all vertices. This can be easily seen by

distinguishing between edges incident to a vertex fromL and edges withinH. Edges incident to
a vertex fromL contribute with at least1 to the sum of degrees of vertices inL, which is fine
as this is at least1/2 of their full contribution. So the only edges that may cause problems are
edges withinH. However, since|H| = √ε n, there can be at mostε n such edges, which is small
compared to the overall number of edges (which is at leastn− 1, since the graph is connected).

Now, letdH be the degree of a vertex with the smallest degree inH. Since we aim at giving a
lower bound on the average degree of the sampled vertices, wecan safely assume that all sampled
vertices come from the setL. We know that each vertex inL has a degree between1 anddH . Let
Xi, 1 ≤ i ≤ s, be the random variable for the degree of theith vertex fromS. Then, it follows
from Hoeffding bounds that

Pr[

s∑

i=1

Xi ≤ (1− ε) · E[
s∑

i=1

Xi]] ≤ e
−

E[
∑r

i=1 Xi]·ε
2

dH .

We know that the average degree is at leastdH · |H|/n, because any vertex inH has at least degree
dH . Hence, the average degree of a vertex inL is at least(1

2
− ε) · dH · |H|/n. This just means

E[Xi] ≥ (1
2
−ε)·dH ·|H|/n. By linearity of expectation we getE[

∑s
i=1Xi] ≥ s·(1

2
−ε)·dH ·|H|/n.
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This implies that, for our choice ofs, with high probability we havedS ≥ (1
2
− ε) · d.

Feige showed the following result, which is stronger with respect to the dependence onε.

Theorem 3 [25] UsingO(ε−1 ·
√

n/d0) queries, one can estimate the average degree of a graph
within a ratio of(2 + ε), provided thatd ≥ d0.

Feige also proved thatΩ(ε−1 ·
√

n/d) queries are required, whered is the average degree in the
input graph. Finally, any algorithm that uses only degree queries and estimates the average degree
within a ratio2− δ for some constantδ requiresΩ(n) queries.

Interestingly, if one can also use neighborhood queries, then it is possible to approximate the
average degree using̃O(√n/εO(1)) queries with a ratio of(1+ ε), as shown by Goldreich and Ron
[34]. The model for neighborhood queries is as follows. We assume we are given a graph and we
can query for theith neighbor of vertexv. If v has at leasti neighbors we get the corresponding
neighbor; otherwise we are told thatv has less thani neighbors. We remark that one can simulate
degree queries in this model withO(log n) queries. Therefore, the algorithm from [34] uses only
neighbor queries.

For a sketch of a proof, let us assume that we know the setH. Then we can use the following
approach. We only consider vertices fromL. If our sample contains a vertex fromH we ignore
it. By our analysis above, we know that there are only few edges withinH and that we make only
a small error in estimating the number of edges withinL. We loose the factor of two, because
we “see” edges fromL to H only from one side. The idea behind the algorithm from [34] isto
approximate the fraction of edges fromL to H and add it to the final estimate. This has the effect
that we count any edge betweenL andH twice, canceling the effect that we see it only from one
side. This is done as follows. For each vertexv we sample fromL we take a random set of incident
edges to estimate the fractionλ(v) of its neighbors that is inH. Let λ̂(v) denote the estimate
we obtain. Then our estimate for the average degree will be

∑
v∈S∩L(1 + λ̂(v)) · d(v)/|S ∩ L|,

whered(v) denotes the degree ofv. If for all vertices we estimateλ(v) within an additive error
of ε, the overall error induced by thêλ will be small. This can be achieved with high probability
queryingO(log n/ε2) random neighbors. Then the output value will be a(1+ε)-approximation of
the average degree. The assumption that we knowH can be dropped by taking a set ofO(

√
n/ε)

vertices and settingH to be the set of vertices with larger degree than all verticesin this set
(breaking ties by the vertex number).

(We remark that the outline of a proof given above is different from the proof in [34].)

Theorem 4 [34] Given the ability to make neighbor queries to the input graphG, there exists an
algorithm that makesO(

√
n/d0 · ε−O(1)) queries and approximates the average degree inG to

within a ratio of(1 + ε).

3.2 Minimum Spanning Trees

One of the most fundamental graph problems is to compute a minimum spanning tree. Since the
minimum spanning tree is of size linear in the number of vertices, no sublinear algorithm for sparse
graphs can exists. It is also know that no constant factor approximation algorithm witho(n2) query
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complexity in dense graphs (even in metric spaces) exists [37]. Given these facts, it is somewhat
surprising that it is possible to approximate the cost of a minimum spanning tree in sparse graphs
[15] as well as in metric spaces [19] to within a factor of(1 + ε).

In the following we will explain the algorithm for sparse graphs by Chazelle et al. [15]. We will
prove a slightly weaker result than in [15]. LetG = (V,E) be an undirected connected weighted
graph with maximum degreeD and integer edge weights from{1, . . . ,W}. We assume that the
graph is given in adjacency list representation, i.e., for every vertexv there is a list of its at most
D neighbors, which can be accessed fromv. Furthermore, we assume that the vertices are stored
in an array such that it is possible to select a vertex uniformly at random. We assume also that the
values ofD andW are known to the algorithm.

The main idea behind the algorithm is to express the cost of a minimum spanning tree as the
number of connected components in certain auxiliary subgraphs ofG. Then, one runs a random-
ized algorithm to estimate the number of connected components in each of these subgraphs.

To start with basic intuitions, let us assume thatW = 2, i.e., the graph has only edges of
weight1 or 2. LetG(1) = (V,E(1)) denote the subgraph that contains all edges of weight (at most)
1 and letc(1) be the number of connected components inG(1). It is easy to see that the minimum
spanning tree has to link these connected components by edges of weight2. Since any connected
component inG(1) can be spanned by edges of weight1, any minimum spanning tree ofG has
c(1)−1 edges of weight2 andn−1− (c(1)−1) edges of weight1. Thus, the weight of a minimum
spanning tree is

n− 1− (c(1) − 1) + 2 · (c(1) − 1) = n− 2 + c(1) = n−W + c(1) .

Next, let us consider an arbitrary integer value forW . DefiningG(i) = (V,E(i)), whereE(i) is the
set of edges inG with weight at mosti, one can generalize the formula above to obtain that the
costMST of a minimum spanning tree can be expressed as

MST = n−W +
W−1∑

i=1

c(i) .

This gives the following simple algorithm.

APPROXMSTWEIGHT(G, ε)
for i = 1 to W − 1

Compute estimator̂c(i) for c(i)

output M̃ST = n−W +
∑W−1

i=1 ĉ(i)

Thus, the key question that remains is how to estimate the number of connected components.
This is done by the following algorithm.
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APPROXCONNECTEDCOMPS(G, s)
{ Input: an arbitrary undirected graphG }
{ Output: ĉ: an estimation of the number of connected components ofG }

chooses verticesu1, . . . , us uniformly at random
for i = 1 to s do

chooseX according toPr[X ≥ k] = 1/k
run breadth-fist-search (BFS) starting atui until either

(1) the whole connected component containingui has been explored, or
(2)X vertices have been explored

if BFS stopped in case (1)then bi = 1
else bi = 0

output ĉ = n
s

∑s
i=1 bi

To analyze this algorithm let us fix an arbitrary connected componentC and let|C| denote the
number of vertices in the connected component. Letc denote the number of connected components
in G. We can write

E[bi] =
∑

connected componentC

Pr[ui ∈ C] ·Pr[X ≥ |C|] =
∑

connected componentC

|C|
n
· 1

|C| =
c

n
.

And by linearity of expectation we obtainE[ĉ] = c.
To show that̂c is concentrated around its expectation, we apply Chebyshevinequality. Sincebi

is an indicator random variable, we have

Var[bi] = E[b2i ]− E[bi]
2 ≤ E[b2i ] = E[bi] = c/n .

Thebi are mutually independent and so we have

Var[ĉ] = Var
[n
s
·

s∑

i=1

bi
]
=

n2

s2
·

s∑

i=1

Var[bi] ≤
n · c
s

.

With this bound forVar[ĉ], we can use Chebyshev inequality to obtain

Pr[|ĉ− E[ĉ]| ≥ λn] ≤ n · c
s · λ2 · n2

≤ 1

λ2 · s .

From this it follows that one can approximate the number of connected components within additive
error ofλn in a graph with maximum degreeD in O(D·logn

λ2·̺
) time and with probability1− ̺. The

following somewhat stronger result has been obtained in [15]. Notice that the obtained running
time is independent of the input sizen.

Theorem 5 [15] The number of connected components in a graph with maximum degreeD can be
approximated with additive error at most±λn in O( D

λ2 log(D/λ)) time and with probability3/4.
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Now, we can use this procedure with parametersλ = ε/(2W ) and ̺ = 1
4W

in algorithm
APPROXMSTWEIGHT. The probability that at least one call to APPROXCONNECTEDCOMPS is
not within an additive error±λn is at most1/4. The overall additive error is at most±εn/2.
Since the cost of the minimum spanning tree is at leastn− 1 ≥ n/2, it follows that the algorithms
computes inO(D ·W 3 · logn/ε2) time a(1 ± ε)-approximation of the weight of the minimum
spanning tree with probability at least3/4. In [15], Chazelle et al. proved a slightly stronger result
which has running timeindependent of the input size.

Theorem 6 [15] AlgorithmAPPROXMSTWEIGHT computes a valuẽMST that with probability
at least3/4 satisfies

(1− ε) ·MST ≤ M̃ST ≤ (1 + ε) ·MST .

The algorithm runs inÕ(D ·W/ε2) time.

The same result also holds whenD is only the average degree of the graph (rather than the
maximum degree) and the edge weights are reals from the interval [1,W ] (rather than integers)
[15]. Observe that, in particular, for sparse graphs for which the ratio between the maximum and
the minimum weight is constant, the algorithm from [15]runs in constant time!

It was also proved in [15] that any algorithm estimatingMST requiresΩ(D ·W/ε2) time.

3.3 Constant Time Approximation Algorithms for Maximum Matching

The next result we will explain here is an elegant technique to construct constant time approxima-
tion algorithms for graphs with bounded degree, as introduced by Nguyen and Onak [48].

LetG = (V,E) be an undirected graph with maximum degreeD. Define a randomized(α, β)-
approximation algorithmto be an algorithm that returns with probability at least2/3 a solution
with cost at mostαOpt + βn, wheren is the size of the input andOpt denotes the cost of an
optimal solution. For a graph we will define the input size to be the cardinality of its vertex set. We
will consider the problem of computingthe size of maximum matching, i.e., the size of a maximum
size setM ⊆ E such that no two edges are incident to the same vertex ofG. It is known that the
following simple greedy algorithm (that returns amaximal matching) provides a2-approximation
to this problem.

GREEDYMATCHING(G)
{ Input: an undirected graphG = (V,E) }
{ Output: a matchingM ⊆ E }

M ← ∅
for each edge (u, v) ∈ E do

Let V (M) be the set of vertices of edges inM
if u, v /∈ V (M) then M ←M ∪ {e}

return M

10



An important property of GREEDYMATCHING is that in thefor-loop of the algorithm the edges
are considered in an arbitrary ordering. We further observethat at any stage of the algorithm, the
setM is a subset of the edges that have already been processed. Furthermore, if we consider an
edgee then we know that neighboring edges can only be inM if they appear in the ordering before
e. Now assume that the edges are inserted in a random order and let us try to determine for some
fixed edgee whether it is contained in the constructed greedy matching.We could, of course,
simply run the algorithm to do so by exploring the entire graph. However, our goal is to solve it
using local computations that consider only the subgraph ofthe input graph close toe. In order
to determine whethere is in the matching it suffices to determine for all its neighboring edges
whether they are inM at the timee is considered by the algorithm. Ife appears earlier than all of
its neighbors in the random ordering, then we know thate is in the matching. Otherwise, we have
to recursively solve the problem for all neighbors ofe that appear beforee in the random ordering.
It may seem in the first place that this reasoning does not helpbecause we now have to determine
for a bigger set of edges whether they are in the matching. However, we also gained something: all
edges we have to consider recursively are known to appear beforee in the random ordering. This
makes it less likely that some of their neighbors again appear even earlier in the sequence, which
in turn means that we have to recurse for fewer of their neighbors. Thus, typically, this process
stops after a constant number of steps.

Let us now try to formalize our findings. We obtain a random ordering of the edges by picking
a priority p(e) for each edge uniformly at random from[0, 1]. The random order we consider is
now defined by increasing priorities. The benefit of this approach is that we do not have to compute
a random ordering for the whole vertex set to run the local algorithm. Instead we can drawp(e) at
random whenever we consider an edgee for the first time. If we now want to determine whether
an edgee is in the matching we only have to recurse with edges having a smaller priority thane.
Thus, we have to follow all paths of decreasing priority starting at the endpoints ofe.

For a fix path of lengthk in the graph, the probability that the priorities along the path are
decreasing is1/k! (this can be seen by the fact that for any sequence ofk distinct priorities just
one of them is decreasing; the case that probabilities are equal occurs with probability0). Since
the input graph has maximum degreeD, the number of paths of lengthk starting from a vertexv is
at mostDk. Hence, there are at most2Dk paths starting at the endpoints of an edgee. For a large
enough constantc this implies that fork ≥ 2cD, with (large) constant probability there is no path
of lengthk starting from an endpoint ofe that has decreasing priorities. This implies that we can
determine whethere is in the matching by looking at all vertices with distance atmost2cD from
the endpoints ofe.

Once we have an oracle to determine whethere ∈ M , we can sample edges to determine
whether a given edgee is in M or not. Using a sample of sizeΘ(D/ε2) we can approximate
the number of edges in the matching up to additive errorεn. This gives a constant-time(2, ε)-
approximation algorithm for estimating the size of maximummatching, assumingD and ε are
constant. The algorithm can be further improved to an(1, ε)-approximation using a more compli-
cated approximation algorithm that greedily improves the matching using short augmenting paths.
The query complexity of the improved algorithm is2D

O(1/ε)
.

A further improvement has been done in a subsequent work by Yoshida et al. [53]. In that
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paper, the authors reduce the query complexity toDO(1/ε2) + O(1/ε)O(1/ε) time. The source of
improvement is here the idea to consider the edge with lowestpriority first. If this edge turns out
to be in the matching then we are already done and do not have toperform the remaining recursive
calls.

Theorem 7 [48, 53] For any integer1 ≤ k < n
2
, there is a(1 + 1

k
, εn)-approximation algorithm

with query complexityDO(k2)kO(k)ε−2 for the size of the maximum matching for graphs withn
vertices and degree boundD.

3.4 Other Sublinear-time Results for Graphs

In this section, our main focus was on combinatorial algorithms for sparse graphs. In particular,
we did not discuss a large body of algorithms for dense graphsrepresented in the adjacency matrix
model. Still, we mention the results of approximating the size of the maximum cut inconstant time
for dense graphs [28, 32], and the more general results aboutapproximating all dense problems
in Max-SNP inconstant time[2, 8, 28]. Similarly, we also have to mention about the existence
of a large body of property testing algorithms for graphs, which in many situations can lead to
sublinear-time algorithms for graph problems. To give representative references, in addition to
the excellent survey expositions [26, 30, 31, 40, 50], we want to mention the recent results on
testability of graph properties, as described, e.g., in [3,4, 5, 6, 11, 21, 33, 43].

4 Sublinear Time Approximation Algorithms for Problems in
Metric Spaces

One of the most widely considered models in the area of sublinear time approximation algorithms
is thedistance oracle modelfor metric spaces. In this model, the input of an algorithm isa setP
of n points in a metric space(P, d). We assume that it is possible to compute the distanced(p, q)
between any pair of pointsp, q in constant time. Equivalently, one could assume that the algorithm
is given access to then × n distance matrix of the metric space, i.e., we have oracle access to the
matrix of a weighted undirected complete graph. Since the full description size of this matrix is
Θ(n2), we will call any algorithm witho(n2) running time asublinear algorithm.

Which problems can and cannot be approximated in sublinear time in the distance oracle
model? One of the most basic problems is to find (an approximation) of the shortest or the longest
pairwise distance in the metric space. It turns out that the shortest distance cannot be approximated.
The counterexample is a uniform metric (all distances are1) with one distance being set to some
very small valueε. Obviously, it requiresΩ(n2) time to find this single short distance. Hence,
no sublinear time approximation algorithm for the shortestdistance problem exists. What about
the longest distance? In this case, there is a very simple1

2
-approximation algorithm, which was

first observed by Indyk [37]. The algorithm chooses an arbitrary pointp and returns its furthest
neighborq. Let r, s be the furthest pair in the metric space. We claim thatd(p, q) ≥ 1

2
d(r, s). By

the triangle inequality, we haved(r, p) + d(p, s) ≥ d(r, s). This immediately implies that either
d(p, r) ≥ 1

2
d(r, s) or d(p, s) ≥ 1

2
d(r, s). This shows the approximation guarantee.
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In the following, we present some recent sublinear-time algorithms for a few optimization
problems in metric spaces.

4.1 Minimum Spanning Trees

We can view a metric space as a weighted complete graphG. A natural question is whether we
can find out anything about the minimum spanning tree of that graph. As already mentioned in the
previous section, it is not possible to find ino(n2) time a spanning tree in the distance oracle model
that approximates the minimum spanning tree within a constant factor [37]. However, it is possible
to approximate the weightof a minimum spanning tree within a factor of(1 + ε) in Õ(n/εO(1))
time [19].

The algorithm builds upon the ideas used to approximate the weight of the minimum spanning
tree in graphs described in Section 3.2 [15]. Let us first observe that for the metric space problem
we can assume that the maximum distance isO(n/ε) and the shortest distance is1. This can be
achieved by first approximating the longest distance inO(n) time and then scaling the problem
appropriately. Since by the triangle inequality the longest distance also provides a lower bound
on the minimum spanning tree, we can round up to1 all edge weights that are smaller than1.
Clearly, this does not significantly change the weight of theminimum spanning tree. Now we
could apply the algorithm APPROXMSTWEIGHT from Section 3.2, but this would not give us an
o(n2) algorithm. The reason is that in metric case we have a complete graph, i.e., the average
degree isD = n− 1, and the edge weights are in the interval[1,W ], whereW = O(n/ε). So, we
need a different approach. In the following we will outline an idea how to achieve a randomized
o(n2) algorithm. To get a near linear time algorithm as in [19] further ideas have to be applied.

The first difference to the algorithm from Section 3.2 is thatwhen we develop a formula for the
minimum spanning tree weight, we use geometric progressioninstead of arithmetic progression.
Assuming that all edge weights are powers of(1 + ε), we defineG(i) to be the subgraph ofG
that contains all edges of length at most(1 + ε)i. We denote byc(i) the number of connected
components inG(i). Then we can write

MST = n−W + ε ·
r−1∑

i=0

(1 + ε)i · c(i) , (1)

wherer = log1+ε W − 1.
Once we have (1), our approach will be to approximate the number of connected components

c(i) and use formula (1) as an estimator. Although geometric progression has the advantage that
we only need to estimate the connected components inr = O(log n/ε) subgraphs, the problem is
that the estimator is multiplied by(1 + ε)i. Hence, if we use the procedure from Section 3.2, we
would get an additive error ofε n · (1 + ε)i, which, in general, may be much larger than the weight
of the minimum spanning tree.

The basic idea how to deal with this problem is as follows. We will use a different graph
traversal than BFS. Our graph traversal runs only on a subsetof the vertices, which are called
representative vertices. Every pair of representative vertices are at distance at leastε · (1 + ε)i

from each other. Now, assume there arem representative vertices and consider the graph induced
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by these vertices (there is a problem with this assumption, which will be discussed later). Running
algorithm APPROXCONNECTEDCOMPS on this induced graph makes an error of±λm, which
must be multiplied by(1 + ε)i resulting in an additive error of±λ · (1 + ε)i · m. Since the
m representative vertices have pairwise distanceε · (1 + ε)i, we have a lower boundMST ≥
m · ε · (1 + ε)i. Choosingλ = ε2/r would result in a(1 + ε)-approximation algorithm.

Unfortunately, this simple approach does not work. One problem is that we cannot choose a
random representative point. This is because we have no a priori knowledge of the set of repre-
sentative points. In fact, in the algorithm the points are chosen greedily during the graph traversal.
As a consequence, the decision whether a vertex is a representative vertex or not, depends on the
starting point of the graph traversal. This may also mean that the number of representative vertices
in a connected component also depends on the starting point of the graph traversal. However, it is
still possible to cope with these problems and use the approach outlined above to get the following
result.

Theorem 8 [19] The weight of a minimum spanning tree of ann-point metric space can be ap-
proximated inÕ(n/εO(1)) time to within a(1+ε) factor and with confidence probability at least3

4
.

4.1.1 Extensions: Sublinear-time (2 + ε)-approximation of metric TSP and Steiner trees

Let us remark here one direct corollary of Theorem 8. By the well known relationship (see, e.g.,
[52]) between minimum spanning trees, travelling salesmantours, and minimum Steiner trees, the
algorithm for estimating the weight of the minimum spanningtree from Theorem 8 immediately
yieldsÕ(n/εO(1)) time(2+ε)-approximation algorithms for two other classical problems in metric
spaces (or in graphs satisfying the triangle inequality): estimating the weight of thetravelling
salesman tourand theminimum Steiner tree.

4.2 Uniform Facility Location

Similarly to the minimum spanning tree problem, one can estimate the cost of themetric uniform
facility location problem inÕ(n/εO(1)) time [10]. This problem is defined as follows. We are
given ann-point metric space(P, d). We want to find a subsetF ⊆ P of open facilities such that

|F |+
∑

p∈P

d(p, F )

is minimized. Here,d(p, F ) denote the distance fromp to the nearest point inF . It is known that
one cannot find a solution that approximates the optimal solution within a constant factor ino(n2)
time [51]. However, it is possible to approximate thecostof an optimal solution within a constant
factor.

The main idea is as follows. Let us denote byB(p, r) the set of points fromP with distance at
mostr from p. For eachp ∈ P let rp be the unique value that satisfies

∑

q∈B(p,rp)

(rp − d(p, q)) = 1 .

Then one can show that
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Lemma 9 [10]
1

4
·Opt ≤

∑

p∈P

rp ≤ 6 ·Opt ,

whereOpt denotes the cost of an optimal solution to the metric uniformfacility location problem.

Now, the algorithm is based on a randomized algorithm that for a given pointp, estimatesrp to
within a constant factor in timeO(rp ·n · logn) (recall thatrp ≤ 1). Thus, the smallerrp, the faster
the algorithm. Now, letp be chosen uniformly at random fromP . Then the expected running time
to estimaterp isO(n log n ·∑p∈P rp/n) = O(n logn · E[rp]). We pick a random sample setS of
s = 100 logn/E[rp] points uniformly at random fromP . (The fact that we do not knowE[rp] can
be dealt with by using a logarithmic number of guesses.) Thenwe use our algorithm to compute
for eachp ∈ S a valuer̂p that approximatesrp within a constant factor. Our algorithm outputs
n
s
·∑p∈S r̂p as an estimate for the cost of the facility location problem.Using Hoeffding bounds

it is easy to prove thatn
s
·∑p∈S rp approximates

∑
p∈P rp = Opt within a constant factor and

with high probability. Clearly, the same statement is true,when we replace therp values by their
constant approximationŝrp. Finally, we observe that expected running time of our algorithm will
beÕ(n/εO(1)). This allows us to conclude with the following.

Theorem 10 [10] There exists an algorithm that computes a constant factor approximation to the
cost of the metric uniform facility location problem inO(n log2 n) time and with high probability.

4.3 Clustering via Random Sampling

The problems of clustering large data sets into subsets (clusters) of similar characteristics are one
of the most fundamental problems in computer science, operations research, and related fields.
Clustering problems arise naturally in various massive datasets applications, including data mining,
bioinformatics, pattern classification, etc. In this section, we will discuss theuniformly random
samplingfor clustering problems in metric spaces, as analyzed in tworecent papers [20, 46].

(a) (b) (c)

Figure 2: (a) A set of points in a metric space, (b) its3-clustering (white points correspond to the center
points), and (c) the distances used in the cost for the3-median.

Let us consider a classical clustering problem known as thek-median problem. Given a finite
metric space(P, d), the goal is to find a setC ⊆ P of k centers (points inP ) that minimizes∑

p∈P d(p, C), whered(p, C) denotes the distance fromp to the nearest point inC. Thek-median
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problem has been studied in numerous research papers. It is known to beNP-hard and there exist
constant-factor approximation algorithms running inÕ(n k) time. In two recent papers [20, 46],
the authors asked the question about the quality of the uniformly random sampling approach to
k-median, that is, is the quality of the following generic scheme:

(1) choose a multisetS ⊆ P of sizes i.u.r. (with repetitions),
(2) run anα-approximation algorithmAα on inputS to compute a solutionC∗, and
(3) return setC∗ (the clustering induced by the solution for the sample).

The goal is to show that already a sublinear-size sample setS will suffice to obtain a good
approximation guarantee. Furthermore, as observed in [46](see also [45]), in order to have any
guarantee of the approximation, one has to consider the quality of the approximation as a function
of the diameter of the metric space. Therefore, we consider amodel with the diameter of the metric
space∆ given, that is, withd : P × P → [0,∆].

Using techniques from statistics and computational learning theory, Mishra et al. [46] proved

that if we sample a setS of s = Õ
((

α∆
ε

)2
(k lnn+ ln(1/δ))

)
points fromP i.u.r. (independently

and uniformly at random) and runα-approximation algorithmAα to find an approximation of the
k-median forS, then with probability at least1−δ, the output set ofk centers hasaverage distance
to the nearest center of at most2 ·α ·med(P, k)+ ε, wheremed(P, k) denotes theaverage distance

to thek-medianC, that is,med(P, k) =
∑

v∈P d(v,C)

n
. We will now briefly sketch the analysis due

to Czumaj and Sohler [20] of a similar approximation guarantee but with a smaller bound fors.
Let Copt denote an optimal set of centers forP and letcost(X,C) be the average cost of the

clustering of setX with center setC, that is,cost(X,C) =
∑

x∈X d(x,C)

|X|
. Notice thatcost(P,Copt) =

med(P, k). The analysis of Czumaj and Sohler [20] is performed in two steps.

(i) We first show that there is a set ofk centersC ⊆ S such thatcost(S, C) is a good approximation
of med(P, k) with high probability.

(ii) Next we show that with high probability, every solutionC for P with cost much bigger than
med(P, k) is either not a feasible solution forS (i.e.,C 6⊆ S) or cost(S, C)≫ α · med(P, k)
(that is, the cost ofC for the sample setS is large with high probability).

SinceS contains a solution with cost at mostc · med(P, k) for some smallc, Aα will compute
a solutionC∗ with cost at mostα · c · med(P, k). Now we have to prove that no solutionC for P
with cost much bigger thanmed(P, k) will be returned, or in other words, that ifC is feasible forS
then its cost is larger thanα · c ·med(P, k). But this is implied by (ii). Therefore, the algorithm will
not return a solution with too large cost, and the sampling isa (c · α)-approximation algorithm.

Theorem 11 [20] Let 0 < δ < 1, α ≥ 1, 0 < β ≤ 1 andε > 0 be approximation parameters.

If s ≥ c·α
β
·
(
k + ∆

ε·β
·
(
α · ln(1/δ) + k · ln

(
k∆α
εβ2

)))
for an appropriate constantc, then for the

solution set of centersC∗, with probability at least1− δ it holds the following

cost(V, C∗) ≤ 2 (α+ β) · med(P, k) + ε .
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To give the flavor of the analysis, we will sketch (a simpler) part (i) of the analysis:

Lemma 12 If s ≥ 3∆α(1+α/β) ln(1/δ)

β·med(P,k)
thenPr

[
cost(S, C∗) ≤ 2 (α+ β) · med(P, k)

]
≥ 1− δ.

Proof. We first show that if we consider the clustering ofS with the optimal set of centersCopt

for P , thencost(S, Copt) is a good approximation ofmed(P, k). The problem with this bound is
that in general, we cannot expectCopt to be contained in the sample setS. Therefore, we have to
show also that the optimal set of centers forS cannot have cost much worse thancost(S, Copt).

LetXi be the random variable for the distance of theith point inS to the nearest center ofCopt.
Then,cost(S, Copt) = 1

s

∑
1≤i≤s Xi, and, sinceE[Xi] = med(P, k), we also havemed(P, k) =

1
s
· E

[∑
Xi

]
. Hence,

Pr
[
cost(S, Copt) > (1 + β

α
) · med(P, k)

]
= Pr

[∑

1≤i≤s

Xi > (1 + β
α
) · E

[∑

1≤i≤s

Xi

]]
.

Observe that eachXi satisfies0 ≤ Xi ≤ ∆. Therefore, by Chernoff-Hoeffding bound we obtain:

Pr
[ ∑

1≤i≤s

Xi > (1 + β/α) · E
[ ∑

1≤i≤s

Xi

]]
≤ e−

s·med(P,k)·min{(β/α),(β/α)2}
3∆ ≤ δ . (2)

This gives us a good bound for the cost ofcost(S, Copt) and now our goal is to get a similar
bound for the cost of the optimal set of centers forS. LetC be the set ofk centers inS obtained
by replacing eachc ∈ Copt by its nearest neighbor inS. By the triangle inequality,cost(S, C) ≤
2 · cost(S, Copt). Hence, multisetS contains a set ofk centers whose cost is at most2 · (1 + β/α) ·
med(P, k) with probability at least1 − δ. Therefore, the lemma follows becauseAα returns an
α-approximationC∗ of thek-median forS. ⊓⊔

Next, we only state the other lemma that describe part (ii) ofthe analysis of Theorem 11.

Lemma 13 Lets ≥ c·α
β
·
(
k + ∆

ε·β
·
(
α · ln(1/δ) + k · ln

(
k∆α
ε β2

)))
for an appropriate constantc.

LetC be the set of all sets ofk centersC ofP with cost(P,C) > (2α+ 6 β) · med(P, k). Then,

Pr
[
∃Cb ∈ C : Cb ⊆ S and cost(S, Cb) ≤ 2 (α+ β)med(P, k)

]
≤ δ . ⊓⊔

Observe that comparing the result from [46] to the result in Theorem 11, Theorem 11 improves
the sample complexity by a factor of∆ · logn/ε while obtaining a slightly worse approximation
ratio of 2 (α + β)med(P, k) + ε, instead of2αmed(P, k) + ε as in [46]. However, since the
polynomial-time algorithm with the best known approximation guarantee hasα = 3 + 1

c
for the

running time ofO(nc) time [9], this significantly improves the running time of [46] for all realistic
choices of the input parameters while achieving the same approximation guarantee. As a highlight,
Theorem 11 yields a sublinear-time algorithm that in timeÕ((∆

ε
· (k + log(1/δ)))2) — fully inde-

pendent ofn — returns a set ofk centers for which the average distance to the nearest medianis at
mostO(med(P, k)) + ε with probability at least1− δ.
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Extensions. The result in Theorem 11 can be significantly improved if we assume the input
points are inEuclidean spaceRd. In this case the approximation guarantee can be improved to
(α + β)med(P, k) + ε at the cost of increasing the sample size toÕ(∆·α

ε·β2 · (k d+ log(1/δ))).
Furthermore, a similar approach as that sketched above can be applied to study similar generic

sample schemes for other clustering problems. As it is shownin [20], almost identical analysis
lead to sublinear (independent onn) sample complexity for the classicalk-means problem. Also, a
more complex analysis can be applied to study the sample complexity for themin-sumk-clustering
problem[20].

4.4 Other Results

Indyk [37] was the first who observed that some optimization problems in metric spaces can be
solved in sublinear-time, that is, ino(n2) time. He presented(1

2
− ε)-approximation algorithms for

MaxTSP and the maximum spanning tree problems that run inO(n/ε) time [37]. He also gave a
(2+ε)-approximation algorithm for the minimum routing cost spanning tree problem and a(1+ε)
approximation algorithm for the average distance problem;both algorithms run inO(n/εO(1)) time.

There is also a number of sublinear-time algorithms for various clustering problems in either
Euclidean spaces or metric spaces, when the number of clusters is small. For radius (k-center)
anddiameter clusteringin Euclidean spaces, sublinear-time property testing algorithms [1, 21]
and tolerant testing algorithms [49] have been developed. The first sublinear algorithm for thek-
medianproblem was a bicriteria approximation algorithm [37]. This algorithm computes iñO(n k)
time a set ofO(k) centers that are a constant factor approximation to thek-median objective
function. Later, standard constant factor approximation algorithms were given that run in time
Õ(n k) (see, e.g., [44, 51]). These sublinear-time results have been extended in many different
ways, e.g., to efficient data streaming algorithms and very fast algorithms for Euclideank-median
and also tok-means, see, e.g., [9, 12, 16, 27, 35, 36, 41, 42, 45]. For another clustering problem,
the min-sumk-clustering problem(which is complement to the Max-k-Cut), for the basic case
of k = 2, Indyk [39] (see also [38]) gave a(1 + ε)-approximation algorithm that runs in time
O(21/ε

O(1)
n (logn)O(1)), which is sublinear in the full input description size. No such results are

known fork ≥ 3, but recently, [22] gave a constant-factor approximation algorithm for min-sum
k-clustering that runs in timeO(n k (k log n)O(k)) and a polylogarithmic approximation algorithm
running in timeÕ(n kO(1)).

4.5 Limitations: What Cannot be done in Sublinear-Time

The algorithms discussed in the previous sections may suggest that many optimization problems
in metric spaces have sublinear-time algorithms. However,it turns out that the problems listed in
the previous sections are more like exceptions than a norm. Indeed, most of the problems have a
trivial lower bound that exclude sublinear-time algorithms. We have already mentioned in Section
4 that the problem of approximating the cost of the lightest edge in a finite metric space(P, d)
requiresΩ(n2), even if randomization is allowed. The other problems for which no sublinear-
time algorithms are possible include estimation of the costof minimum-cost matching, the cost of
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Figure 3:Two instance of the metric matching which are indistinguishable ino(n2) time and whose cost
differ by a factor greater thanλ. The perfect matching connectingL with R is selected at random and the
edgee is selected as a random edge from the matching. We setB = n (λ− 1)+ 2. The distances not shown
are all equal ton3 λ.

minimum-cost bi-chromatic matching, the cost of minimumnon-uniformfacility location, the cost
of k-median fork = n/2; all these problems requireΩ(n2) (randomized) time to estimate the cost
of their optimal solution to within any constant factor [10].

To illustrate the lower bounds, we give two instances of the metric spaces which are indistin-
guishable by anyo(n2)-time algorithm for which the cost of the minimum-cost matching in one
instance is greater thanλ times the one in the other instance (see Figure 3). Consider ametric
space(P, d) with 2n points,n points inL andn points inR. Take a random perfect matching
M between the points inL andR, and then choose an edgee ∈ M at random. Next, define the
distance in(P, d) as follows:

• d(e) is either1 orB, where we setB = n (λ− 1) + 2,

• for anye∗M \ {e} setd(e∗) = 1, and

• for any other pair of pointsp, q ∈ P not connected by an edge fromM, d(p, q) = n3 λ.

It is easy to see that both instances define properly a metric space(P, d). For such problem
instances, the cost of the minimum-cost matching problem will depend on the choice ofd(e): if
d(e) = B then the cost will ben− 1 + B > nλ, and ifd(e) = 1, then the cost will ben. Hence,
anyλ-factor approximation algorithm for the matching problem must distinguish between these
two problem instances. However, this requires to find if there is an edge of lengthB, and this is
known to require timeΩ(n2), even if a randomized algorithm is used.

5 Conclusions

It would be impossible to present a complete picture of the large body of research known in the
area of sublinear-time algorithms in such a short paper. In this survey, our main goal was to give
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some flavor of the area and of the types of the results achievedand the techniques used. For more
details, we refer to the original works listed in the references.

We did not discuss two important areas that are closely related to sublinear-time algorithms:
property testing and data streaming algorithms. For interested readers, we recommend the surveys
in [7, 26, 30, 31, 40, 50] and [47], respectively.

The current paper is a slightly updated version of the paper A. Czumaj and C. Sohler. Sublinear-
time algorithms.Bulletin of the EATCS, 89: 23–47, June 2006.
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